2016-2017年最新人教版新课标小学数学五年级下册第三课时《长方体和正方体的展开图》优秀课件(精品资料)

合集下载

五年级【下】册数学-第三单元长方体和正方体人教新课标(优)(15张ppt)公开课课件

五年级【下】册数学-第三单元长方体和正方体人教新课标(优)(15张ppt)公开课课件

(名师示范课)五年级【下】册数学- 第三单 元长方 体和正 方体第 2课时 人教新 课标(2 014秋 ) (15张ppt)公开课课件
2.正方体有几条棱? (12)
(名师示范课)五年级【下】册数学- 第三单 元长方 体和正 方体第 2课时 人教新 课标(2 014秋 ) (15张ppt)公开课课件
长方体和正方体有什么相同点和不同点? 相同点:
都有6个面,12条棱,8个顶点.
(名师示范课)五年级【下】册数学- 第三单 元长方 体和正 方体第 2课时 人教新 课标(2 014秋 ) (15张ppt)公开课课件
不同点:
长方体
6个面是长方形(特殊 面 情况有两个面是正方
形)。
正方体 6个面都是正方形。
(名师示范课)五年级【下】册数学- 第三单 元长方 体和正 方体第 2课时 人教新 课标(2 014秋 ) (15张ppt)公开课课件
2 我会辩
(1)长方体和正方体都有6个面、12条棱和8个顶点。( √) (2)长方体的六个面一定是长方形。( × ) (3)相交于一个顶点的三条棱相等的长方体一定是正方体。( √ )
长方体 正方体
(名师示范课)五年级【下】册数学- 第三单 元长方 体和正 方体第 2课时 人教新 课标(2 014秋 ) (15张ppt)公开课课件
1 我能填
(1)长方体有( 6 )个面,一般都是( 长方 )形,也 可能有一组相对的面是(正方)形。正方体有( 6 )个 面,每个面都(正方)形。
(名师示范课)五年级【下】册数学- 第三单 元长方 体和正 方体第 2课时 人教新 课标(2 014秋 ) (15张ppt)公开课课件
墨水瓶Leabharlann 正方体 (立方体)活动
研究手中的正方体,思考下列问题: 1.正方体有几个面?都是什么图形?它们有什么特点? 2.正方体有几条棱?这些棱有什么特点? 3.正方体有几个顶点?

新人教版五年级下册《第3章_长方体和正方体》小学数学-有答案-单元测试卷(1)

新人教版五年级下册《第3章_长方体和正方体》小学数学-有答案-单元测试卷(1)

新人教版五年级下册《第3章长方体和正方体》小学数学-有答案-单元测试卷(1)一、填空(2分*10=20分)1. 长方体和正方体都有________个面,________个顶点,________条棱。

2. 一个长方体的长是9厘米,宽5厘米,高4厘米,棱长总和是________厘米。

3. 一个正方体的棱长总和是84分米,这个正方体的棱长是________分米,表面积是________平方厘米。

4. 把4个长2厘米,宽和高都是1厘米的长方体拼成一个正方体,这个正方体的表面积是________平方厘米。

5. 一个长方体的底面积是1平方米,高是18分米,它的体积是________立方分米。

6. 把两个棱长都是3厘米的正方体拼成一个长方体,这个长方体六个面中最大一个面的面积是________平方厘米。

7. 一个长方体的长、宽、高是三个连续的奇数,且都是质数。

这个长方体的表面积是________,体积是________.8. 把一个棱长为5厘米的正方体截成大小不同的两个长方体,表面积会增加________平方厘米。

9. 用一根长36厘米的铁丝焊接成一个正方体框架,如果给这个框架包上一层彩纸,至少需要________平方厘米的彩纸。

10. 做一个长1.2分米,宽1分米,高0.8分米的长方体木水箱,从箱子里量得长1分米,宽0.8分米,高0.6分米。

这个木水箱的容积是________升,把这个水箱放在地面上,占地面积至少是________平方分米。

二.判断.(对的打“√”,错的打“×”)(2分*7=14分)长方体的6个面一定是长方形。

________.(判断对错)正方体的表面积=棱长×6.________.(判断对错)一个正方体的棱长扩大2倍,它的表面积扩大4倍。

________.(判断对错)1立方米比1平方米大。

________.(判断对错)容积的计算方法和体积的计算方法相同。

________.(判断对错)长方体是特殊的正方体。

五年级【下】册数学-第三单元长方体与正方体人教新课标(优)(18张ppt)公开课课件

五年级【下】册数学-第三单元长方体与正方体人教新课标(优)(18张ppt)公开课课件
一根长方体木料,长5m,横截面的面积是0.06m2。这根木料的 体积是多少?
V=Sh=0.06×5 =0.3(m3) 0.06m2
答:这根木料的体积是0.3m3。
2
(名师示范课)五年级【下】册数学- 第三单 元长方 体与正 方体第 7课时 人教新 课标(2 014秋 ) (18张ppt)公开课课件
(名师示范课)五年级【下】册数学- 第三单 元长方 体与正 方体第 7课时 人教新 课标(2 014秋 ) (18张ppt)公开课课件
长方体与正方体 第7课时 长方体、正方体体积公式的应用
人教版 数学 五年级 下册
1.在能运用公式进行计算的基础上,进一步研究求长方体和正方 体体积的其他计算公式。 2.进一步发展空间观念,能解决一些简单的实际问题。
理解公式“长方体(或正方体)的体积=底面积×高”的推导 过程,掌握计算方法。
理解公式“长方体(或正方体)的体积=底面积×高”的推导 过程。
建筑工地要挖一个长50m,宽30m ,深50cm的长方体土坑,一 共要挖出多少方的土?
在工程上,1m3的土、沙、 石等均简称“1方”
50 cm =0.5 m
50பைடு நூலகம்30×0.5 =750(m3)
750 m3 =750方 答:一共要挖出750方的土。
3
(名师示范课)五年级【下】册数学- 第三单 元长方 体与正 方体第 7课时 人教新 课标(2 014秋 ) (18张ppt)公开课课件
体,长方体铁块的高是多少厘米?
12×12×12 =1728( cm3 ) 1728÷9 ÷8 =24(cm) 答:长方体铁块的高是24 cm。
(名师示范课)五年级【下】册数学- 第三单 元长方 体与正 方体第 7课时 人教新 课标(2 014秋 ) (18张ppt)公开课课件

人教版数学五年级下册-三2《长方体和正方体的表面积》教案设计

人教版数学五年级下册-三2《长方体和正方体的表面积》教案设计

上课解决方案教案设计教学目标知识与技能1.理解表面积的意义,初步掌握长方体和正方体表面积的计算方法。

2.能运用长方体、正方体表面积的计算方法解决生活中的实际问题。

过程与方法经历长方体、正方体表面积计算方法的探究过程,培养学生的分析能力和空间想象能力。

情感、态度与价值观在探究过程中,获得积极的情感体验,感受数学与生活的密切联系,培养学生应用数学的意识。

重点难点重点:理解长方体、正方体表面积的意义,掌握长方体、正方体表面积的计算方法。

难点:运用长方体、正方体表面积的计算方法解决实际问题。

课前准备教师准备PPT课件学生准备长方体、正方体纸盒剪刀教学过程板块一趣味成语,引入新课e师:同学们,老师这里有一则有趣的成语故事画面,你能找到这则成语,并解释吗?预设生1:金玉其外,败絮其中。

生2:外表像金、像玉,里面却是破棉絮。

比喻外表很华丽,而里面一团糟。

师:我们要做一个有内涵、有真才实学的人,不要外表看着一表人才,实则不学无术。

任何事物都有自己的外表,像我们学过的长方体或正方体也有外表,就是表面,长方体或正方体外表的面积的大小,我们就叫作长方体或正方体的表面积。

(板书课题:长方体和正方体的表面积)学生拿出自己的长方体或正方体纸盒,触摸外表,体会表面积。

师:看一看,长方体或正方体的表面是由几个面组成的?生:长方体和正方体的表面都是由6个面组成的。

师:什么叫作长方体或正方体的表面积?生:长方体或正方体6个面的总面积,叫作它的表面积。

操作指导先通过猜成语,在游戏中让学生初步体会什么是外表,引起学生的兴趣,再通过触摸长方体或正方体纸盒,建立长方体或正方体表面积的概念,引起学生研究长方体或正方体表面积的想法,同时引发学生的讨论,使学生主动思考,寻求解决问题的方法。

板块二演示操作,形成表象活动1小组合作,引发思考手工操作,尝试总结求表面积的方法。

出示合作提纲:(1)在长方体纸盒棱的边缘标上长、宽、高。

(2)把准备好的长方体纸盒沿一些棱剪开并展开,分别用“上、下、前、后、左、右”标明6个面,观察并思考以下问题:长方体哪些面的面积相等?长方体每个面的长和宽与长方体的长、宽、高有什么关系?(3)长方体每个面的面积怎么求?小组合作标长、宽、高,剪开长方体纸盒并展开,找到每个面的长和宽。

人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件

人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件

公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米

5

4

10
1 3 2 棱长/米

6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析教学目标1、通过观察、操作,认识长方体和正方的特征以及它们的展开图。

2、通过实例,理解体积(包括容积)的含义,认识常用的度量单位(立方米、立方分米、立方厘米、升、毫升),建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,会利用单位间的进率进行简单的换算。

3、探索并掌握长方体、正方体的体积和表面积的计算方法,并能解决一些简单的实际问题。

4、探索某些实物体积的测量方法。

二、内容安排三、各小节的教材说明和教学建议例1、例2例3例1、例2例6(一)长方体和正方体的认识(第18~22页)a、理解长方体各部分的名称,面、棱、顶点。

b、理解和掌握长方体的特征,形成长方体的概念。

长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

c、认识长方体的长、宽、高。

d、理解和掌握正方体的特征,形成正方体的概念。

正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。

e、长方体和正方体的相同点和不同点f、长方体和正方体的关系本小节学生应掌握的基本技能正确找出长方体横放、竖放、侧放几种不同情况下摆放的长、宽、高。

培养学生的动手能力和观察能力。

例如:用附页的图样做长方体和正方体;用小棒、橡皮泥做长方体框架;测量长方体的长、宽、高;用棱长1厘米的小正方体搭一搭等等。

运用所学知识解决实际问题。

例如:练习五中的第6题,学生要明确需要的彩灯线实际上是哪些棱长之和。

再例如练习五的第9题,要教给学生做这类题的方法对例题的理解主题图教材首先呈现了一些长方体或正方体形状的建筑物和生活用品。

让学生观察它们的形状,其落脚点是让学生感受到生活中很多物品的形状都是长方体和正方体的。

为进一步研究长方体,正方体的特征做准备。

看完主题图后,可以让学生说一说生活中还有哪些物体的形状是长方体或正方体的。

然后从实物图中抽象出长方体的几何直观图,让学生观察这个长方体,图中有什么?学生回答有面、线段、顶点。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。

2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。

3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。

4.学生能够探索某些实物体积的测量方法。

长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。

长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。

长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。

同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。

容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。

不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。

总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。

同时,学生需要探索某些实物体积的测量方法。

同。

第二个价值是通过操作让学生深入理解长、宽、高的概念。

建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。

练五是应用题,要求学生根据长方体的特征计算面积、体积等。

人教版数学五下第3章《长方体和正方体》(容积)教案

人教版数学五下第3章《长方体和正方体》(容积)教案

人教版数学五下第3章《长方体和正方体》(容积)教案
教学目标
1.了解长方体和正方体的定义和特点。

2.掌握长方体和正方体容积计算的方法。

3.能够运用所学知识解决实际问题。

教学重难点
重点
1.长方体和正方体的定义和特点。

2.长方体和正方体容积计算公式的推导和运用。

难点
1.多步解决实际问题的能力培养。

教学准备
1.教师准备:课件、黑板、彩色粉笔、教学实物模型等。

2.学生准备:文具、作业本。

教学过程
导入
教师通过一个实际的问题引出本节课的主题,让学生思考长方体和正方体在日常生活中的应用。

学习
1.长方体和正方体的定义和特点。

–长方体的六个面都是矩形,对边平行且相等;正方体的六个面都是正方形,相邻面互相垂直。

2.长方体和正方体容积计算方法。

–长方体容积公式:V = 长 × 宽 × 高
–正方体容积公式:V = 边长³
实践
让学生分组进行容积计算的练习,包括简单的计算和应用题。

拓展
让学生通过拼凑实物模型,感受长方体和正方体的容积增减变化。

总结
回顾本节课所学知识,强调长方体和正方体容积计算的方法,及时纠正容易犯的错误。

作业布置
1.完成课堂练习。

2.思考:长方体和正方体在日常生活中还有哪些应用?
教学反馈
及时对学生的作业进行批改和评价,针对性地指导学生弥补知识漏洞。

以上内容为本节课的教案内容,希望同学们能够认真学习,掌握相关知识,提高解题能力。

五年级数学下册第三单元长方体和正方体第3课时教案新人教版

五年级数学下册第三单元长方体和正方体第3课时教案新人教版

五年级数学下册第三单元长方体和正方体第3课时教案新人教版教学三维目标:1、理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

2、在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

3、进一步感受立体图形的学习价值,增强学习数学的兴趣。

教学重、难点:1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

教学准备:长方体、正方体纸盒、剪刀。

教学过程设计:一、猜测导入(1)出示两个纸盒(一个长方体、一个正方体)提问:长方体和正方体有哪些特征?(2)考察学生眼力:这两个纸盒,看起来大小差不多,请你猜一猜,哪个纸盒用的硬纸板多?有什么方法可以证明你的猜测是否正确?(引出可以计算它们所用硬纸板的面积,然后再比较。

)二、探究新知1、长方体和正方体表面积的意义。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。

教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?学生讨论。

(把六个面展开放在一个平面上。

)教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。

也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

教师:请再说一说什么是长、正方体的表面积。

(学生口答。

)教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

2、长方体表面积的计算方法。

(1)请同学拿着自己的长方体(用展开图折上)。

人教版数学五下第三单元《长方体和正方体的认识》教案

人教版数学五下第三单元《长方体和正方体的认识》教案

人教版数学五下第三单元《长方体和正方体的认识》教案一、教学目标1.知识与能力:–掌握长方体和正方体的概念。

–能够辨别长方体和正方体。

–学会计算长方体和正方体的体积。

2.过程与方法:–激发学生的学习兴趣,引导他们积极参与课堂讨论和互动。

–通过实例和练习,巩固学生对长方体和正方体的认识。

–鼓励学生勇于提出问题和思考,培养他们的逻辑思维和解决问题的能力。

二、教学重点和难点1.教学重点:–掌握长方体和正方体的定义和特征。

–学会计算长方体和正方体的体积。

2.教学难点:–区分长方体和正方体的特点。

–理解长方体和正方体的体积计算方法。

三、教学过程1.导入:通过展示图片或实物,让学生观察长方体和正方体,并与他们讨论不同之处。

2.学习长方体:–引导学生理解长方体是由长方形面拼接而成的立体图形。

–让学生测量和计算长方体的长、宽、高。

–练习计算长方体的体积公式:长 × 宽 × 高。

3.学习正方体:–讲解正方体是一种所有边相等且都是正方形的立体图形。

–比较长方体和正方体的特点。

–练习计算正方体的体积公式:边长的立方。

4.综合练习:–让学生做一些综合练习,巩固长方体和正方体的认识和体积计算。

5.拓展应用:–提出一些拓展问题,让学生运用所学知识解决实际问题,如房间体积计算等。

四、课堂作业1.完成练习册上关于长方体和正方体的作业题目。

2.拓展练习:设计一个包含长方体和正方体的实际问题,计算它们的体积。

五、教学反思在教学过程中,应注重引导学生理解长方体和正方体的定义和特点,通过实例和练习帮助他们巩固所学知识,激发他们对数学的兴趣和学习动力。

同时,教师要充分关注学生的学习情况,及时发现问题并加以引导和解决,确保教学效果的达成。

人教版五年级数学下册第三单元《长方体和正方体》整体规划

人教版五年级数学下册第三单元《长方体和正方体》整体规划

五年级数学下册第三单元《长方体和正方体》整体规划教学内容:人教版义务教育课程标准实验教科书五年级数学下册第三单元的内容《长方体和正方体》。

教材分析:《长方体和正方体》是人教版数学第十册第三单元内容,本单元分三小节编排:长方体和正方体的认识,长方体和正方体的表面积,长方体和正方体的体积。

在长方体和正方体的体积一节中,还介绍了容积的概念。

同时,按照《标准》的要求,新增加了探索某些实物体积的测量方法。

具体内容安排如下:本单元非常重视与实际生活的联系,主要体现在以下几方面。

(1)图形和概念的认识,结合学生所熟悉的事物进行。

如长方体、正方体特征的认识,安排了让学生说出纸巾盒、数学课本、粉笔盒等的形状、长、宽、高等练习。

(2)注意用所学的知识解决实际问题。

在各部分知识的学习中,都注意学以致用。

如在长方体、正方体认识时,安排了计算俱乐部四周要安多长的彩灯线等练习;在学习表面积时,安排了大量的根据具体情况计算物体表面积的内容。

(3)选取具有鲜明时代特征的素材。

如计算拼插奥运墙所用积木的体积,为“神舟五号”载人航天飞船返回舱的容积选取合适的容积单位等。

即巩固了所学数学知识,又激发了学生的民族自豪感。

体积对学生来说是一个新概念,物体占有一定的空间对学生来说理解有一定的困难。

为此,教材先通过学生熟悉的“乌鸦喝水”的故事,以形象、生动的方式,让学生初步感知物体占有空间。

然后通过把石头放入有水的玻璃杯里的实验,让学生进一步体验物体确实占有空间,为引出体积概念做充分的感知准备。

在学习容积时,计算不规则物体的体积,让学生利用已建立的体积概念想到可以用排水法求得不规则物体的体积,加深对体积概念的认识。

本单元一些概念和计算方法都是通过学生动手操作、自主探索来学习的。

如,体积单位,就是通过让学生回顾旧知、迁移类推引出来的。

教材通过比较两个不容易看出大小的长方体的体积,让学生由比较物体的长度有统一的长度单位,比较物体的面积有统一的面积单位,想到比较物体的体积应有统一的体积单位,由此引出体积单位。

人教版数学五下第三单元《长方体和正方体》教案

人教版数学五下第三单元《长方体和正方体》教案

人教版数学五下第三单元《长方体和正方体》教案一、教学目标1.知识与技能:了解长方体和正方体的定义和性质,能够区分长方体和正方体,并且能够运用相关知识解决问题。

2.过程与方法:通过实例引导学生在实际问题中运用长方体和正方体的概念解决问题,培养学生的逻辑思维和数学推理能力。

3.情感态度:激发学生对数学的兴趣,培养学生对数学的自信心和学习动力。

二、教学重点1.掌握长方体和正方体的定义;2.能够判断物体是否为长方体或正方体;3.能够应用长方体和正方体的相关知识解决实际问题。

三、教学难点1.区分长方体和正方体的性质;2.运用长方体和正方体的相关知识解决复杂问题。

四、教学过程1. 导入通过展示一些长方体和正方体的图片,引导学生猜测它们的名称并简单描述它们的特点。

2. 学习长方体和正方体的定义•长方体:具有三对相对相等的面的立体称为长方体。

•正方体:六个面都是正方形的立体称为正方体。

3. 区分长方体和正方体通过比较长方体和正方体的特点,让学生能够准确区分它们,并给出相应的理由支持自己的判断。

4. 运用长方体和正方体的知识解决问题1.问题一:一个长方体的长、宽、高分别为3cm、4cm、5cm,求它的体积和表面积。

2.问题二:一个正方体的体积为64立方厘米,求它的边长。

5. 拓展练习1.请学生自行寻找周围环境中长方体和正方体的例子,并描述它们的特点。

2.出示一些复杂的问题,让学生在小组讨论的过程中运用长方体和正方体的知识进行解答。

五、课堂小结通过本节课的学习,我们学习了长方体和正方体的定义及其区分方法,能够应用相关知识解决实际问题。

希望同学们在课后能够多加练习,进一步巩固所学内容。

以上就是本节课的教学内容,希木同学们能够认真对待,取得好的学习效果。

新人教版五年级数学下册第3单元《长方体和正方体》教学设计doc

新人教版五年级数学下册第3单元《长方体和正方体》教学设计doc

3长方体和正方体【教学目的】1.让学生通过观看和操作,认识长方体和正方体的特征以及它们的展开图。

2.让学生通过实例,理解体积〔包括容积〕的意义及度量单位〔立方米、立行分米、立方厘米、升、毫升〕,会进展单位之间的换算。

感受1m3,1dm3,1cm3以及1L,1mL的实际意义。

3.结合详细情境,让学生探究并掌握长方体和正方体的体积和外表积的计算方法,并能运用所学知识解决一些简单的实际咨询题。

4.使学生掌握某些实物体积的测量方法。

【重点难点】1.掌握长方体和正方体的特征以及它们的体积和外表积的计算方法。

2.能运用所学知识解决一些简单的实际咨询题。

3.难点是体积和外表积两个概念的建立。

【教学指导】1.注意所学知识与现实生活的亲密联络。

在空间与图形的教学中,应充分利用生活中的事物,引导学生探究图形的特征,丰富空间与图形的经历。

如长方体和正方体的认识,能够从现实生活中情境引入。

通过对一些建筑物、生活用品形状的观看、抽象出长方体和正方体图形,使学生理解到生活中非常多物体的形状是长方体或正方体。

学惯用数学的目光来观看生活中物体的形状。

外表积、体积和容积这些知识在日常生活中也会经常接触到,教学中应创设咨询题情境,让学生在解决这些咨询题的过程中,加深对所学知识的理解,同时培养解决咨询题的意识。

2.在动手操作、自主探究中,培养空间观念,建构新知。

空间观念的培养应通过多种感官协同作用,教学中能够让学生通过对长方体实物或模型进展看一看、摸一摸、比一比、想一想等活动,引导学生认识长方体的面、棱、顶点和空间位置关系,从而对长方体有一个比拟全面的认识。

在体积的教学中,要让学生亲自动手做实验,感受到物体所占的空间,不同物体所占的空间有大有小,从而深入地理解体积的含义。

通过用小正方体来摆不同形状的长方体,来观看、猜想、归纳、推理出长方体的体积计算公式。

【课时安排】建议共分11课时1.长方体和正方体的认识…………………………………………………………2课时2.长方体和正方体的外表积………………………………………………………3课时3.长方体和正方体的体积…………………………………………………………6课时【知识构造】第1课时长方体板书:顶点〔4〕师生在长方体教具上指出面、棱、顶点。

五年级数学下册教案第3单元《长方体和正方体》人教版

五年级数学下册教案第3单元《长方体和正方体》人教版
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解长方体和正方体的基本概念。长方体是一种有六个面的立体图形,其中相对的两个面是相等的矩形;正方体则是特殊的长方体,它的六个面都是相等的正方形。它们在日常生活中有着广泛的应用,比如家具、建筑和包装设计等。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个长方体纸箱的表面积和体积,展示长方体和正方体在实际中的应用,以及它们如何帮助我们解决问题。
五年级数学下册教案第3单元《长方体和正方体》人教版
一、教学内容
《长方体和正方体》为五年级数学下册第3单元,本节课将涵盖以下内容:
1.认识长方体和正方体的特征,理解它们的定义。
2.学习长方体和正方体的表面积计算方法。
3.学习长方体和正方体的体积计算方法。
4.通过实际操作,观察长方体和正方体的展开图,理解它们之间的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,制作长方体和正方体的模型,并计算它们的表面积和体积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“长方体和正方体在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
5.培养学生严谨的学习态度,养成数学思考的习惯,为后续学习奠定基础。
三、教学难点与重点
1.教学重点
-长方体和正方体的特征:理解长方体和正方体的定义,掌握它们各自的边长、面积和体积的关系。
-表面积计算:熟练运用长方体和正方体表面积的计算公式,解决实际问题。
-体积计算:掌握长方体和正方体体积的计算公式,并能应用于实际问题。
3.重点难点解析:在讲授过程中,我会特别强调长方体和正方体的表面积、体积的计算方法这两个重点。对于难点部分,比如如何确定长方体的长、宽、高,我会通过实物模型和具体例题来帮助大家理解。

五年级数学下册《长方体、正方体表面积和体积的比较》课件 人教新课标版

五年级数学下册《长方体、正方体表面积和体积的比较》课件 人教新课标版

长方体(或正方体)的表面积是指
长方体(正方体)6个面 的总面积。
长方体(或正方体)的体积是指
长方体(正方体)所占空 间的大小。
表面积的计量单位是
平方厘米 平方分米 平方米
体积的计量单位是
立方厘米 立方分米 立方米
要计算一个长方体的表面积, 需要测量哪些长度?
长 宽

要计算它的体积呢?
长 宽 高
平方厘米。体积是27立方厘米
4、一本书的长是20cm,宽是10cm, 高是1cm,请问给这本书包书皮, 最少用多少平方分米的纸?这本书 的体积是多少立方分米?
5、一种汽车油箱,从里面量长4分米, 宽和高都是2分米。油箱的容积是多少升? 如果用铁皮做这个油箱,至少要用多少铁 皮?如果一天用掉1升油,一箱油能用几 天?
• 6、由3个同样的长为1厘米,宽 为2厘米,高为3厘米的小长方体, 拼成一个大长方体,可能有几种 不同的拼法?如果用包装纸把他 们包起来,哪种情况最省包装纸?
注意:要想让最后的大长方体表 面积最小,就要让最大的面尽量 多的重合。
判断:
• 体积一定的情况下,表面积不一定 一样。
思考题 从一个长方体上截下一个体积是32立方 厘米的小长方体后,剩下的部分正好是 一个棱长为4厘米的正方体。原长方体的 表面积是多少平方厘米?
怎样计算长方体的表面积?
(长×宽+长×高+宽×高)×2
怎样计算长方体的体积?
长×宽×高
怎样计算正方体的表面积
棱长×棱长×6
怎样计算正方体的体积?棱源自×棱长×棱长类别意义
计量单位 计算方法 条件
(长×宽+长×高 +宽×高)×2
表 长方体 6 个面 平方厘米 面 平方分米 的总面 积 正方体 平方米 积

(完整版)人教版五年级下册数学第三单元《长方体和正方体的认识》知识点

(完整版)人教版五年级下册数学第三单元《长方体和正方体的认识》知识点

第三单元《长方体和正方体》1.长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。

2.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3.长方体的特征(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。

特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。

(3)长方体有12条棱,相对的棱长度相等。

可分为三组,每一组有4条棱。

还可分为四组,每一组有3条棱。

(3)长方体有8个顶点。

每个顶点连接三条棱。

(4) 长方体相邻的两条棱互相(相互)垂直。

长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

在一个长方体中,相对的面完全相同,相对的棱长度相等。

顶点个数面棱个数大小关系条数长度关系8 6 相对的面相等12 平行的棱长相等4.棱长总和公式:长方体棱长总和=4条长+4条宽+4条高=(长+高+宽)×4宽=棱长之和÷4-长-高长=棱长之和÷4-宽-高高=棱长之和÷4-宽-长二、正方体的认识:1. 正方体的认识:正方体是由6个完全相同的正方形围成的立体图形。

正方体有6个面,12条棱,8个顶点,每个面都是正方形,面积都相等。

每条棱的长度都相等。

正方体的长、宽、高都相等,统称棱长。

2.长方体和正方体的关系:正方体是一种特殊的长方体。

3.正方体棱长之和:棱长×12=棱长之和棱长之和÷12=棱长4.长方体的表面积(1)长方体和正方体6个面的总面积,叫做它的表面积。

(2)表面积计算公式①.因为长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面,相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。

②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示: S=(ab+ah+bh)×2长方体表面积=(长×宽+长×高+宽×高)×2设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:S = 2ab + 2bc+ 2ca= 2 ( ab + bc + ca)长方体没盖的表面积=长×宽+长×高×2 +宽×高×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。

人教版五年级下册数学《长方体和正方体的认识》教案(精选5篇)

人教版五年级下册数学《长方体和正方体的认识》教案(精选5篇)

人教版五年级下册数学《长方体和正方体的认识》教案(精选5篇)人教版五年级下册数学《长方体和正方体的认识》篇1教学目标:1.认识长方体和正方体,初步掌握各自特征和内在联系。

帮助学生在动手操作的实践中初步建立空间观念,培养学生观察、分析、推理的能力。

2.在认识长方体和正方体的相互联系和变化规律的过程中,初步培养学生辩证唯物主义观点。

教学过程:一、导入新课,揭示课题1.师:我们学过哪些基本平面图形?长方形和正方形之间有什么关系?2.出示一张纸。

师:这是什么图形?(长方形)如果把这样大小的许多纸重叠在一起,你们看,是什么形状?(长方体)3.师:在日常生活中,长方体形的物体我们常见到,如保健箱、粉笔盒等等,你们能说出一些来吗?(砖、墨水瓶盒子、教科书……)师:长方体和正方体在日常生活中与我们联系很多,在工农业生产中用途很广。

今天我们就来学习它。

板书:长方体和正方体的认识二、示范操作,认识面、棱、顶点1.拿出一根萝卜,用刀切一刀,要求学生观察并且动手摸一摸切出的面。

在学生感受的基础上,告诉学生这叫做“面”。

2.将切出的萝卜平面朝下,再垂直切一刀,取出其中的一块,出示给学生看。

师:这块萝卜有几个面?两个面相交的边叫什么呢?(棱)3.继续切,把萝卜一面平摆在桌面上,再垂直切一刀,出现了一个新情况,让学生观察后回答,有几个面,有几条棱。

师:三条棱相交的点叫做顶点。

师:刚才我们通过切萝卜的活动认识了物体的面、棱、顶点。

4.教师出示长方体模型,学生取出长方体实物,进行观察,并且摸一摸长方体的面、棱、顶点。

然后回答:一个长方体有几个面?几条棱?几个顶点?三、认识长方体1.要求学生认真观察手中的长方体实物,并自学课本,同时在黑板上出示下列自学题:(1)长方体有几个面?每个面是什么图形?哪些面的面积相等?为什么?(2)长方体有几条棱?哪些棱的长度相等?(3)长方体有几个顶点?2.讨论后,教师根据学生回答简要板书。

(1)长方体有6个面,都是长方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新知探究






新知探究 上


后 下

新知探究
上 前

新知探究
上 前

新知探究



新知探究
上 后

前 下

新知探究






新知探究 上





巩固提高
折叠后,那些图形能围成左侧的立体 图形?在括号中画“√”。

√)
( )
ห้องสมุดไป่ตู้

√)
巩固提高
将这个展开图围成正方体后,哪两个面分别相对。
周 五 周 四 周 三 周 末
周一对 周二对 周三对
周 二 周 一
周 四 周 末 周 五
《长方体和正方体的展开图》
人教版五年级下册
复习
说一说长方体和正方体的特征。
复习
1、口答填空:
(1)正方体有( 6 )个面,它们都是(正方形 ), 正方形各面的( 大 )相等;

(2)这是一个(正方形),它的棱长是( 4 ) 厘米,它的棱长之和是( 48 )厘米。
4厘米 4厘米
4厘米
新知探究


相关文档
最新文档