三角函数的性质--单调性、最值
单调性正弦曲线余弦曲线
看图说话
y sin x x R y
1
3 5
2
2 3
2
O
2
2
1
3 2
2
5 3
2
x
正弦函数图像关于原点对称
奇函数
y cos x x R y
1
3 5
2
2 3
2
O
2
2
1
3 2
2
5 3
2
x
y sin x x R y
1
3 5
2
2 3
2
O
2
1
2
3 2
2
y cos x x R y
1
3 5
2
2 3
2
O
2
1
2
3 2
2
探索新知1
5 3 x
2
5 3 x
2
观察正弦函数余弦函数的图像,判断它们具有怎样的对称性?
2
例题解析
例1.下列函数有最大值、最小值吗?如果 有,请写出取最大值、最小值时的自变 量x的集合,并说出最大值、最小值分别 是什么.
(1)y cos x 1, x R (2) y 3sin 2x, x R
探索新知2
y sin x x R y
1
3 5
2
2 3
余弦函数呢
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
成果展示
y
y sin x x R y
《三角函数的图象与性质》PPT教学课件(第三课时正、余弦函数的单调性与最值)
栏目导航
12
(1)B
(2)xx≠-4kπ-43π,k∈Z
(3)x-π4+kπ≤x<π4+kπ,k∈Z
[(1)当-π4<x<0时,-1<tan x
<0,∴ta1n x≤-1;
当0<x<π4时,0<tan x<1,∴ta1n x≥1.
即当x∈-π4,0∪0,π4时,函数y=ta1n x的值域是(-∞,-1) ∪(1,+∞).
[提示] 由正切函数图象可知(1)×,(2)√,(3)×,(4)×. [答案] (1)× (2)√ (3)× (4)×
第五章 三角函数
5.4 三角函数的图象与性质 第4课时 正切函数的性质与图象
2
学习目标
核心素养
1.能画出正切函数的图象.(重点)
1.借助正切函数的图象研究问
2.掌握正切函数的性质.(重点、难点) 题,培养直观想象素养.
3.掌握正切函数的定义域及正切曲线的 2.通过正切函数的性质的应
渐近线.(易错点)
28
栏目导航
(2)函数定义域为 xx≠kπ-π4且x≠kπ+π4,k∈Z , 关于原点对称, 又f(-x)=tan-x-π4+tan-x+π4 =-tanx+π4-tanx-π4 =-f(x), 所以函数f(x)是奇函数.
29
栏目导航
30
正切函数单调性的应用 [探究问题] 1.正切函数y=tan x在其定义域内是否为增函数? 提示:不是.正切函数的图象被直线x=kπ+π2(k∈Z)隔开,所以它的 单调区间只在kπ-π2,kπ+π2(k∈Z)内,而不能说它在定义域内是增函 数.假设x1=π4,x2=54π,x1<x2,但tan x1=tan x2.
用,提升逻辑推理素养.
栏目导航
第2课时 单调性、最大值与最小值
当 x=___2_k_π_____,k∈Z 时, ymax=___1__; 当 x=π+2kπ,k∈Z 时, ymin=__-__1____
[基础自测] 1.判断正误(正确的打“√”,错误的打“×”) (1)函数 y=12sin x 的最大值为 1.( ) (2)∃x0∈[0,2π],满足 cos x0= 2.( ) (3)正弦函数、余弦函数在定义域内都是单调函数.( )
[母题变式] 把例 3(2)中的函数换为 f(x)=2sin2x+2sin x-12,x∈π6,56π,求其值域.
解析 令 t=sin x,因为 x∈π6,56π, 所以 t∈12,1,则 f(x)可化为 y=2t2+2t-12=2t+122-1,t∈12,1, 所以当 t=12时,ymin=1, 当 t=1 时,ymax=72, 故 f(x)的值域是1,72.
()
A.0,π2 C.π,32π
B.π2,π D.32π,2π
解析 令-π2+2kπ≤x-π6≤π2+2kπ,k∈Z. 则-π3+2kπ≤x≤23π+2kπ,k∈Z. 当 k=0 时,x∈-π3,23π, 0,π2⊆-π3,23π, 故选 A. 答案 A
题型二 正弦、余弦函数单调性的应用
比较下列各组数的大小:
[提示] y=sin x 在-π2,π2上,曲线逐渐上升,是增函数,函数值由-1 增大到 1; 在π2,32π上,曲线逐渐下降,是减函数,函数值由 1 减小到-1.y=cos x 在[0,π]上, 曲线逐渐下降,是减函数,函数值由 1 减小到-1;在[π,2π]上,曲线逐渐上升,是增 函数,函数值由-1 增大到 1.
[规律方法] 一般函数的值域求法有:观察法、配方法、判别式法、反比例函数法等.三角函数 是函数的特殊形式,一般方法也适用,但要结合三角函数本身的性质. 常见的三角函数求值域或最值的类型有以下几种: (1)形如 y=sin(ωx+φ)的三角函数,令 t=ωx+φ,根据题中 x 的取值范围,求出 t 的取值范围,再利用三角函数的单调性、有界性求出 y=sin t 的最值(值域). (2)形如 y=asin2x+bsin x+c(a≠0)的三角函数,可先设 t=sin x,将函数 y=asin2x +bsin x+c(a≠0)化为关于 t 的二次函数 y=at2+bt+c(a≠0),再根据二次函数的单调性 求值域(最值). (3)对于形如 y=asin x(或 y=acos x)的函数的最值还要注意对 a 的讨论.
高中数学课件三角函数ppt课件完整版
归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数
§101 三角函数的性质
横向平移|φ|个单位
和谐函数是代表 运算主体纯字母 常用结论要熟知 复杂变换用参量
横坐标变为原来的 倍 | |
1
f ( x) f ( x)
f (x ) f (x)
f (x ) f (x )
(2)先伸缩后平移
横坐标变为原来的
倍 | |
1
横向平移 个单位
(4)余角公式
同名补角正弦等
同名补角其他反
sin(
2
) cos
互余异名值相等
cos( ) sin 2 tan( ) cot 2
诱导公式——总公式
符号看象限 奇变偶不变
k f ( ) f ( ) f ( ) 2
和角与差角公式(加法公式) 1.公式:
2.课本P:46 Ex6 3.资料P:27 左下 Ex2
4.已知函数y=sinx的定义域为[a,b],值域为[-1,1/2]
则b-a不可能是 A.
3
2 B. 3
C.
D. 4
3
和谐函数的性质 预习:
参资料P:32 知识点三
练习1.定义域
①课本P:45 练习2.值域 ②课本P:40 练习2 ③(2013年上海春)函数y=4sinx+3cosx的最大值是____
4 ④若 x , ,则函数y=sinx的值域是________ 6 3
Ex2
练习3.周期性 ⑤课本P:47 练习5.单调性 ⑥课本P:40 ⑦课本P:45 练习4 练习5 B组 Ex3(1)
θ (x0,y0)
P(x,y)
r
x x0 r cos (为参数 ) y y0 r sin
三角函数奇偶性、单调性
)-
cos( 17 )
4
解: cos( 23 )=cos 23
5
5
=cos 3 5
cos( 17 )=cos 17
4
4
=cos
4
0 3
45
cos 3 <cos
5
4
又 y=cosx 在 [0, ]上是减函数
3
即: cos 5
– cos
4
x∈ R
[-1,1]
x= 2kπ时 ymax=1 x= 2kπ+ π时 ymin=-1 周期为T=2π
偶函数
在x∈[2kπ, 2kπ+ π ]
上都是增函数 ,
在x∈[2kπ- π , 2kπ ]
上都是减函数 。
(kπ+
π
2
,0)
x = kπ
正弦、余弦函数的奇偶性、单调性
例1 不通过求值,指出下列各式大于0还是小于0:
2
2
O
3
2 u
2
2
-1
y=y-=|ssiinnuu|
即: 增区间为 kuk,kZ
减区间为 k2 uk,kZ
k3xk,kZy为2增函数
k4xk4,kZy为减函数
4
4
2
4
所以:单调增区间为
[k2 ,k8 3](kZ)8
单调减区间为 [k38,k8 7](kZ)
(2) y=2sin(-x )
8
8
解:y=2sin(-x ) = -2sinx
函数在 [
2
Байду номын сангаас
+2k,
高一数学上册知识点归纳
高一数学上册知识点归纳一、函数与方程1. 函数的概念- 定义- 函数的表示方法- 函数的图像2. 函数的性质- 单调性- 奇偶性- 周期性3. 特殊函数- 一次函数- 二次函数- 幂函数- 指数函数- 对数函数- 三角函数4. 函数的应用- 实际问题建模- 函数的最值问题5. 方程与不等式- 一元一次方程- 一元二次方程- 不等式及其解集 - 系统方程的解法二、数列与数学归纳法1. 数列的概念- 数列的定义- 常见的数列类型2. 等差数列与等比数列 - 定义与性质- 通项公式- 求和公式3. 数列的极限- 极限的概念- 极限的性质4. 数学归纳法- 原理- 证明方法三、三角函数1. 三角函数的基础- 角度与弧度- 三角函数的定义 - 三角函数的图像2. 三角函数的性质- 单调性- 奇偶性- 周期性3. 三角恒等变换- 基本恒等式- 恒等变换的应用4. 解三角形- 正弦定理- 余弦定理四、平面向量1. 向量的基本概念- 向量的定义- 向量的加法与数乘2. 向量的几何运算- 向量的减法与数量积- 向量的投影3. 向量的应用- 平面向量的坐标表示- 向量在几何问题中的应用五、立体几何1. 空间几何体- 多面体- 旋转体2. 空间直线与平面- 直线与平面的位置关系- 直线与平面的方程3. 空间向量- 空间向量的基本概念- 空间向量的基本运算4. 立体几何的应用- 体积与表面积的计算- 立体图形的构造请将以上内容复制到Word文档中,并根据实际需要进行格式设置和内容补充。
您可以调整字体、段落、列表等,以确保文档的专业性和可读性。
此大纲仅供参考,具体知识点的深入和扩展应依据实际教材和教学大纲进行。
高中数学三角函数的单调性知识分析
高中数学三角函数的单调性知识分析卢玉玺(安徽省临泉第二中学㊀236400)摘㊀要:纵观近几年的高考数学卷ꎬ我们不难发现三角函数这部分的知识已经成为了数学高考中的一大 风景点 .但是在实际解题中ꎬ很多学生对这部分知识中的应用能力并不特别强.因此ꎬ本文中将以 三角函数中的单调性 类题目的解法为例ꎬ与同学们一起寻找此类题目的解题规律.关键词:高中数学ꎻ三角函数ꎻ单调性中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)13-0024-02收稿日期:2020-02-05作者简介:卢玉玺(1979.12-)ꎬ男ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀一㊁正弦函数的单调区间在高中数学的学习中ꎬ函数问题较为常见ꎬ其中三角函数作为同学们整个高中阶段函数学习的重点更是具有着不容忽视的地位ꎬ在三角函数类的解题中ꎬ以正弦函数的单调性类题目为例ꎬ为更好求解正弦函数的单调区间我们就可以借助诱导公式的方法.例1㊀求函数y=sin(π3-2x)的单调区间.思路分析㊀分析题目ꎬ我们可以发现ꎬ此题中函数的ω<0ꎬ因此在本题中我们就可以先利用诱导公式将函数中x的系数化为正值ꎬ然后再根据正弦函数的单调区间求出此题答案.根据这一思路我们就可以将原函数转化为y=-sin(2x-π3)ꎬ此时所求函数的增区间就是y=sin(2x-π3)的减区间ꎻ所求函数的减区间就是y=sin(2x-π3)的增区间.之后ꎬ再根据正弦函数的单调区间求法ꎬ我们就可以得到2kπ+π2ɤ2x-π3ɤ2kπ+3π2(kɪZ)ꎬ解得kπ+5π12ɤxɤkπ+11π12(kɪZ).故所求函数的增区间为[kπ+5π12ꎬkπ+11π12](kɪZ).同理ꎬ在求原函数的减区间时ꎬ我们也可以沿用这种思路ꎮ在本题中ꎬ通过分析y=sin(2x-π3)的增区间ꎬ我们可知2kπ-π2ɤ2x-π3ɤ2kπ+π2(kɪZ)ꎬ解得kπ-π12ɤxɤkπ+5π12(kɪZ).故所求函数的减区间为[kπ-π12ꎬkπ+5π12](kɪZ).方式评注㊀在求三角函数的单调区间时ꎬ当不好直接对题目进行分析时就可以先借助诱导公式对其变形处理ꎬ然后再根据相应原理进行解题分析ꎬ以此提高我们的解题效率ꎬ让我们更准确地找出问题的解答策略.㊀㊀二㊁正切函数的单调区间本部分中我将以数形结合思想为例ꎬ带领大家探究利用数形结合思想求正切函数单调区间的具体方法.例2㊀求函数y=tan|x|的单调区间.思考方式:我们可以发现题目中的正切函数是一个绝对值函数ꎬ因而在此题中我们就可以利用数形结合的方法进行求解.在解题中ꎬ我们可以先根据题目要求及已有数学经验作出y=tan|x|的函数图象ꎬ因为函数y=tan|x|是一个偶函数ꎬ所以它的图象应该关于y轴对称.通过作图分析的方式我们可以知道:当x>0时ꎬy=tanxꎬ其增区间为(0ꎬπ2)ꎬ(kπ-π2ꎬkπ+π2)ꎬkɪN∗ꎻ当x<0时ꎬy=-tanxꎬ其减区间为(-π2ꎬ0)ꎬ(kπ-3π2ꎬkπ-π2)ꎬk为非正整数.故此题的答案应为:y=tan|x|的增区间为(0ꎬπ2)ꎬ(kπ-π2ꎬkπ+π2)ꎬkɪN∗ꎻ减区间为(-π2ꎬ0)ꎬ(kπ-3π2ꎬkπ-π2)ꎬk为非正整数.方式评注㊀在三角函数的单调性类题目中这种图象42解题的方法较为常见ꎬ在如例题中的题目里ꎬ同学们就可以利用图象的方法ꎬ通过作图分析ꎬ从左到右观察图象ꎬ按照 图象中呈上升趋势的区间为增区间㊁呈下降趋势的区间为减区间 这一理念进行题目求解.㊀㊀三㊁余弦函数的单调区间三角函数的单调性部分是三角函数的主要性质之一ꎬ本部分中ꎬ我将与同学们一起探索余弦函数的单调区间求取方法.例3㊀求函数y=cos(2x+π6)的单调区间.思考方式㊀本题中的函数是一个余弦函数ꎬ我们可以利用余弦函数的单调性进行求解.在解题过程中我们可以先将2x+π6看成一个整体ꎬ然后根据余弦函数的单调增区间求解方法就可以得到2kπ-πɤ2x+π6ɤ2kπ(kɪZ)ꎬkπ-7π12ɤxɤkπ-π12(kɪZ).故所求函数y=cos(2x+π6)的增区间应为[kπ-7π12ꎬkπ-π12](kɪZ).在求函数的单调递减区间时ꎬ我们也可以用这种方法ꎬ先将2x+π6看成一个整体ꎬ然后通过对题目的分析可得2kπɤ2x+π6ɤ2kπ+π(kɪZ)ꎬkπ-π12ɤxɤkπ+5π12(kɪZ).故所求函数y=cos(2x+π6)的减区间应为[kπ-π12ꎬkπ+5π12](kɪZ).方式评注㊀对于一些比较复杂的函数ꎬ同学们就可以使用这种方法先将原函数中的式子视为一个整体ꎬ然后再利用相关定理求解.总之ꎬ在高中数学中三角函数的单调性部分的解题过程中ꎬ同学们应该注意挖掘典型题目的具体特征ꎬ并不断总结㊁不断反思ꎬ以期形成一套完整的数学解题思路ꎬ并合理地通过知识迁移及相关题目的变式练习将自己的思路运用到实际解题中ꎬ以此达到事半功倍的学习效果.㊀㊀参考文献:[1]孙月.对高中函数单调性的解析策略研究[J].新课程(中学)ꎬ2015(10):68.[2]张先龙ꎬ肖凌戆.基于数学核心素养的教学设计 以函数的单调性新授课为例[J].中学数学教学参考ꎬ2017(z1):16-19.[责任编辑:李㊀璟]一题多解一题多变在切线方程中的运用探究伍锡浪(江西省九江第一中学㊀332000)摘㊀要:本文通过对2013年高考数学山东卷理科第22题的研究ꎬ引发了对圆锥曲线的切线方程的探究ꎬ体现了导数的工具性作用ꎬ进一步表明了数学教学中应提倡一题多解一题多变的探究ꎬ从而大力提高学生的探索能力和创造能力.关键词:一题多解ꎻ一题多变ꎻ圆锥曲线ꎻ切线方程ꎻ斜率ꎻ导数中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)13-0025-02收稿日期:2020-02-05作者简介:伍锡浪ꎬ江西省九江人ꎬ硕士ꎬ高级教师ꎬ从事高中数学教学研究.基金项目:江西省教育科学 十三五 规划2018年度ꎬ课题«一题多解一题多变在教学中的运用研究»编号:18PTYB036㊀㊀«普通高中数学课程标准(实验)»指出: 学生的数学学习活动不应只限于接受㊁记忆㊁模仿和练习ꎬ高中数学课程还应倡导自主探究㊁动手实践㊁合作交流㊁阅读自学等学习数学的方式. 这就要求我们在教学中重在为学生创设良好的思维情境ꎬ让学生在自主探究和合作交流的过程中体验数学发现和创造的历程ꎬ学会研究问题㊁解决问题ꎬ做到举一反三㊁触类旁通.从而大力提高学生的探索能力和创造能力.㊀㊀一㊁真题铺路㊀引出课题(2013年高考数学山东卷理科第22题)椭圆C:x2a2+y2b2=1(a>b>0)的左㊁右焦点分别为F1㊁F2ꎬ离心率为32ꎬ过点52。
三角函数
2.同角三角函数的基本关系式(B) sin2x+cos2x=1
sin x = tan x cos x
例2.(07全国Ⅰ卷(理)1)α
5 是第四象限角,tanα=- , 12
则sinα = _____________.
5 解:因为tanα=- ,所以cosα 12 12 =- 5 sinα,又sin2α+cos2α=1, 25 所以代入得sin2α= 169
sin(α-β)=
3 3 14
.
1 sinβ= sin [α -(α-β)]= . 2 π π
又0<β <
2
,所以 β =
3
.
例17. 已知sin( +3α)sin( -3α)=
1 − cos 2α α∈(0, ) ,求( - 3) sin 2α 4
π
π
π
4
4
1 4
,
sin4α的值.
解:Q sin( + 3α ) sin( − 3α ) = sin( + 3α ) cos( + 3α ), 4 4 4 4 1 π 1 1 = sin(6α + ) = cos 6α = , 又 Q 6α ∈ (0, 3π ), 2 π 2 2 4 4 ∴α = = 10°. 18 sin α − 3 cos α sin10° − 3 cos10° 原式 = ⋅ sin 4α = ⋅ sin 40° cos α cos10° −2(sin 60° cos10° − cos 60° sin10°) = ⋅ sin 40° cos10° −2sin 50° − sin 80° = ⋅ sin 40° = = −1. cos10° cos10°
2π |ω |
三角函数的最值
(2)∵x[0, 2 ], ∴2x+ [ , 5 ]. 4 4 4
, 即 x=0 时, f(x) 取得最大值 1; ∴当 2x+ = 4 4
3 ∴当 2x+ = , 即 x = 8 时, f(x) 取得最小值 - 2 . 4
4.设 0≤x≤, 求函数 y=sin2x-8(sinx+cosx)+19 的最大值和最 小值. 解: y=2sinxcosx-8(sinx+cosx)+19.
y 无最大值.
x 2.求函数 y=(1+cosx)sin 2 (0<x<) 的最值. 解: 由已知 y>0, 只需考察 y2 的最值. x x x 2 2 2 x 2 x 2 x ≤2( 2sin 2 +cos 2 +cos 2 )3 16 2 2 ∵y =4cos 2 cos sin 2 = . 2 3 27 x x x 2 (∵0<x<) 时取等号. 2 2 仅当 2sin 2 =cos 2 , 即 tan 2 = 2 16 2 2 ∴当 x=2arctan 时, y 取最大值 27 . 2 ∴当 x=2arctan 2 时, y 取最大值 4 3 ; 2 9 y 无最小值.
8.若方程 4sin2x-cos4x-a=0 恒有实数解, 求 a 的取值范围. 7 时, 当 △ =4(7 2 a ) ≥ 0, 即 a ≤ 解法 3 正难则反, 从反面考虑. 2 若方程 f(t)=2t2+2t+a-3=0 的两根均在 [-1, 1] 之外, 则 1 ∵f(t) 图象的对称轴为直线 t=- 2 , ∴ f(1)<0. 解得: a<-1. 故满足条件的 a 的取值范围是 [-1, 7 2 ]. 解法 4 从分离参数的角度考虑. 原方程即为: 1 2 7 2 a=-2cos 2x-2cos2x+3 =-2(cos2x+ 2 ) + 2 . ∵|cos2x|≤1,
三角函数的定义域值域与单调性
三角函数的定义域值域与单调性三角函数是数学中重要的概念之一,它在几何学、物理学以及其他许多领域中都有着广泛的应用。
三角函数包括正弦函数、余弦函数和正切函数,它们的定义域、值域以及单调性是我们研究它们的重要方面。
本文将以一种合适的格式来论述三角函数的定义域、值域和单调性。
1. 正弦函数的定义域、值域与单调性三角函数正弦函数的定义域是实数集R,因为它可以接受任何实数作为自变量。
正弦函数的值域是闭区间[-1, 1],也就是说,对于任意的x,-1 ≤ sin(x) ≤ 1。
正弦函数在区间[0, π]上是单调递增的,在区间[π, 2π]上是单调递减的。
2. 余弦函数的定义域、值域与单调性余弦函数的定义域也是实数集R。
与正弦函数不同的是,余弦函数的值域也是闭区间[-1, 1],也就是说,-1 ≤ cos(x) ≤ 1。
余弦函数在区间[0, π/2]上是单调递减的,在区间[π/2, π]上是单调递增的,在区间[π,3π/2]上是单调递减的,在区间[3π/2, 2π]上是单调递增的。
3. 正切函数的定义域、值域与单调性正切函数的定义域是实数集R,除了π/2的倍数除外,即x ≠ (2n + 1)π/2,其中n为整数。
正切函数的值域是全体实数,也就是对于任意的y,都存在一个实数x使得tan(x) = y。
正切函数在区间(-π/2, π/2)上是单调递增的,而在其他区间上是周期性的。
总结:正弦函数的定义域是实数集R,值域是闭区间[-1, 1]。
其在区间[0, π]上是单调递增的,而在区间[π, 2π]上是单调递减的。
余弦函数的定义域也是实数集R,值域同样是闭区间[-1, 1]。
其在区间[0, π/2]上是单调递减的,而在区间[π/2, π]上是单调递增的,以此类推。
正切函数的定义域是实数集R,除了π/2的倍数除外。
值域是全体实数。
正切函数在区间(-π/2, π/2)上是单调递增的,其余区间上是周期性的。
通过研究三角函数的定义域、值域以及单调性,我们能够更好地理解三角函数的性质与特点,在解决数学和实际问题中起到重要的作用。
专题10 三角函数性质、最值和ω题型归类(解析版)
专题10 三角函数性质、最值和ω题型归类一、重点题型目录【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心 【题型】三、图像法求三角函数的最值或值域 【题型】四、换元法求三角函数的最值或值域【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数 【题型】六、五点法求三角函数的解析式 【题型】七、利用图象平移求函数的解析式或参数 二、题型讲解总结【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 例1.(2023·全国·高三专题练习)已知函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在56x π=时取得最大值,则()f x 在[π,0]-上的单调增区间是( ) A .5ππ6⎡⎤--⎢⎥⎣⎦, B .5ππ66⎡⎤--⎢⎥⎣⎦, C .π03⎡⎤-⎢⎥⎣⎦, D .π06⎡⎤-⎢⎥⎣⎦, 【答案】D【分析】根据题意可得5πsin 16ϕ⎛⎫+= ⎪⎝⎭,则可求出ϕ,由于0A >,所以利用正弦函数的性质可求出答案.【详解】解:因为函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在5π6x =取最大值所以5πsin 6A A ϕ⎛⎫+= ⎪⎝⎭,则5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5πππ,Z 62k k ϕ+=+∈,得ππ,Z 3k k ϕ=-+∈ 又因为π02ϕ-<< 所以π3ϕ=-, 所以π()sin (0)3f x A x A ⎛⎫=-> ⎪⎝⎭,由πππ2π2π,Z 232k x k k -+≤-≤+∈,得5ππ22,Z 66ππk x k k -+≤≤+∈, 所以()f x 的递增区间为()π5π2π,2πZ 66k k k ⎡⎤-++∈⎢⎥⎣⎦,所以()f x 在[π,0]-上的单调增区间是π06⎡⎤-⎢⎥⎣⎦,, 故选:D .例2.(2022·黑龙江·哈尔滨市剑桥第三高级中学有限公司高三阶段练习)函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的一个对称中心是( )A .,112π⎛⎫⎪⎝⎭B .7,012π⎛⎫⎪⎝⎭ C .,13π⎛⎫ ⎪⎝⎭D .5,012π⎛⎫- ⎪⎝⎭【答案】C【分析】根据余弦型函数,求出其对称中心即可判断作答.【详解】在函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭中,由2,Z 62x k k πππ-=+∈得,,Z 23k x k ππ=+∈, 所以函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的对称中心是(,1)(Z)23k k ππ+∈,显然B ,D 不满足,A 不满足,当0k =是,对称中心为(,1)3π,C 满足.故选:C例3.(2022·湖北·宜都二中高三期中)已知函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .()f x 的图象可由()cos g x A x ω=图象向右平移π9个单位长度得到B .()f x 图象的一条对称轴的方程为5π9x =-C .()f x 在区间29π17π,3636⎛⎫-- ⎪⎝⎭上单调递增 D .()2f x ≥的解集为2k π2π2k π,()393k ⎡⎤+∈⎢⎥⎣⎦Z 【答案】ABD【分析】根据函数的振幅、周期、及过点4,49π⎛⎫-⎪⎝⎭可求得π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭, 对于选项A :利用函数图象的平移检验即可;对于选项B :令ππ3π,62x k k +=+∈Z 可解得()f x 图象对称轴的方程,检验是否能取到5π9x =-即可. 对于选项C :求出π9π5π3,644x ⎛⎫+∈-- ⎪⎝⎭,验证正弦函数在9π5π,44⎛⎫-- ⎪⎝⎭是否单调增.对于选项D : 直接解三角不等式π1sin 362x ⎛⎫+≥ ⎪⎝⎭即可获得答案.【详解】由题意知34ππ4,4918A T ⎛⎫==-- ⎪⎝⎭,解得2π3T =,所以2π3T ω==, 所以()4sin(3)f x x ϕ=+.又点4,49π⎛⎫- ⎪⎝⎭在()f x 的图象上, 所以4π4sin 349ϕ⎛⎫⨯+=- ⎪⎝⎭,所以4π3π2π,32k k ϕ+=+∈Z , 解得π2π,6k k ϕ=+∈Z ,又||2ϕπ<,所以ϕ=π6, 所以π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭,将π()4cos34sin 32g x x x ⎛⎫==+ ⎪⎝⎭向右平移π9个单位可得πππ4sin 34sin 3()926y x x f x ⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确;令ππ3π,62x k k +=+∈Z ,解得ππ,93k x k =+∈Z ,令2k =-得5π9x =- 所以()f x 图象的对称轴的方程为5π9x =-.故B 正确; 当29π17π,3636x ⎛⎫∈-- ⎪⎝⎭时,π9π5π3,644t x ⎛⎫=+∈-- ⎪⎝⎭,sin y t =在9π5π,44t ⎛⎫∈-- ⎪⎝⎭上不是单调递增的,故C 错误;令()2f x ≥,即π1sin 362x ⎛⎫+≥ ⎪⎝⎭,所以ππ5π2π32π,666k x k k +≤+≤+∈Z ,解得2π2π2π,393k k x k ≤≤+∈Z ,即()2f x ≥的解集为2π2π2π,()393k k k ⎡⎤+∈⎢⎥⎣⎦Z ,故D 正确. 故选:ABD.例4.(2023·全国·高三专题练习)已知函数()[]π4sin 2,π,03f x x x ⎛⎫=-∈- ⎪⎝⎭,则()f x 的单调递增区间是________.【答案】7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【分析】利用正弦函数的单调性以及整体代入的方法,求出()f x 的单调递增区间,结合[]π,0x ∈-,得出答案.【详解】由()πππ2π22πZ 232k x k k -+≤-≤+∈,得()π5πππZ 1212k x k k -+≤≤+∈,当1k =-时,13π7π,1212x ⎡⎤∈--⎢⎥⎣⎦;当0k =时,π5π,1212x ⎡⎤∈-⎢⎥⎣⎦;又因为[]π,0x ∈-,所以()f x 的单调递增区间为7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦故答案为:7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心例5.(2023·全国·高三专题练习)已知α,β,γ是三个互不相同的锐角,则在sin cos αβ+,sin cos βγ+,sin cos γα+ )个 A .0 B .1C .2D .3【答案】C【分析】先根据辅助角公式得到三个式子的和小于得到在sin cos αβ+,sin cos βγ+,sin cos γα+三个值中,,再举出例子,得到三个值中,有2个值符合要求,故得到答案.【详解】因为α,β,γ是三个互不相同的锐角, 所以sin cos sin cos sin cos αββγγα+++++πππ444αβγ⎛⎫⎛⎫⎛⎫=+++<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以在sin cos αβ+,sin cos βγ+,sin cos γα+若令π3α=,π4β=,π6γ=,则sin cos αβ+=>sin cos βγ+=+>sin cos 1γα+=<的个数最多有2个. 故选:C例6.(2023·全国·高三专题练习)已知()1cos cos 2222x x x f x ⎫=+-⎪⎭,若存在0ππ,33x ⎡⎤∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解,则实数m 的取值范围为( )A .50,2⎡⎤⎢⎥⎣⎦B .(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭C .1,32⎡⎤-⎢⎥⎣⎦D .[)1,3,2⎛⎤-∞-⋃+∞ ⎥⎝⎦【答案】B【分析】先化简()f x 的解析式,不等式()205122f x m m ≤--在,33ππ⎡⎤-⎢⎥⎣⎦上能成立等价于()2min 51,22f x m m -≤-求得()f x 的最小值后解不等式即可求解【详解】()21sin cos 2222x x xf x =+-1cos 11cos 222x x x x +=+-=+ cossin sin cos 66xx x π=+. sin 6x π⎛⎫=+ ⎪⎝⎭0π ,33x π⎡⎤∃∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解则 ()2min 51,22f x m m -≤-π,33x π⎡⎤∈-⎢⎥⎣⎦ πππ,662x ⎡⎤∴+∈-⎢⎥⎣⎦1sin 126x π⎛⎫∴-≤+≤ ⎪⎝⎭ 当3x π=-时,()f x 取得最小值,ππ1sin 362f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭. 所以 2511,222m m --≥-解之得:52m或0m m ∴的取值范围是(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭故选:B例7.(2022·湖南·高三开学考试)若函数()22cos f x x x m ++在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为6,则下列结论正确的是( ) A .5π512f ⎛⎫= ⎪⎝⎭B .2π是函数()f x 的一个周期C .当π0,2x ⎡⎤∈⎢⎥⎣⎦时,不等式()4c f x c <<+恒成立,则实数c 的取值范围是[)2,3D .将函数()f x 的图像向左移动6π个单位得到函数()g x 的图像,则函数()g x 是一个偶函数 【答案】BD【分析】先根据三角恒等变换整理得()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭,以π26x +为整体,结合正弦函数图像与性质运算求解,并运用图像平移处理求解判断.【详解】()2π2cos cos212sin 216f x x x m x x m x m ⎛⎫++=+++=+++ ⎪⎝⎭,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,则ππ7π2,666x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以当π6x =时,()f x 的最大值为6,即3m =,所以5π412f ⎛⎫= ⎪⎝⎭,选项A 不正确; ∵()f x 的最小正周期2ππ2T ==,则2π是函数()f x 的一个周期,选项B 正确; 当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()36f x ≤≤,所以不等式()4c f x c <<+恒成立,则364c c <⎧⎨<+⎩,解得23c <<,选项C 不正确;函数()f x 的图像向左移动6π个单位得到函数()πππ2sin 242sin 242cos24662g x x x x ⎡⎤⎛⎫⎛⎫=+++=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()g x 是一个偶函数,选项D 正确. 故选:BD .例8.(2023·广东·高三学业考试)已知函数22()cossin 22x xf x a =--,R a ∈ (1)求函数()f x 的单调递增区间;(2)若函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,求a 的取值范围.【答案】(1)22[]k k πππ-, ,k ∵Z (2)1,12⎡⎤⎢⎥⎣⎦【分析】(1)利用余弦的二倍角公式化简,再结合余弦函数的单调性求解即可;(2)转化为方程cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解即可.(1)22()cos sin cos 22x xf x a x a =--=- 当22k x k πππ-≤≤ ,k ∵Z 时,()f x 单调递增,∵函数()f x 的单调递增区间为22[]k k πππ-,,k ∵Z . (2)函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,也就是cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解.∵当,36x ππ⎡⎤∈-⎢⎥⎣⎦时,1cos ,12x ⎡⎤∈⎢⎥⎣⎦.∵a 的取值范围是1,12⎡⎤⎢⎥⎣⎦.【题型】三、图像法求三角函数的最值或值域例9.(2023·全国·高三专题练习)若将()sin 214f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移4π个单位长度后得到函数()g x 的图象,则()g x 在0,8π⎡⎤⎢⎥⎣⎦上的最小值为( )A1 B .2C 1D .2【答案】C【分析】先求平移后的函数解析式,再求()g x 在闭区间上的最值【详解】因为()si 1442n g x f x x ππ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭,又因为0,8x π⎡⎤∈⎢⎥⎣⎦,所以2,442x πππ⎡⎤+∈⎢⎥⎣⎦,所以()min 1g x =. 故选:C例10.(2023·全国·高三专题练习)已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x < D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎥⎣⎦,有()()()132f x f x f x +>成立【答案】ACD【分析】利用正弦型函数的周期公式求周期判断A ,利用正弦型函数的对称性可判断B ,利用正弦型函数的单调性可判断C ,利用正弦型函数的值域可判断D.【详解】∵函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的周期22T ππ==,所以()()f x f x π+=恒成立, 故A 正确;又2sin 216f x x π⎛⎫+=+ ⎪⎝⎭,所以2sin 11663f πππ⎛⎫+=+= ⎪⎝⎭,2sin 11663f πππ⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,所以6666f f ππππ⎛⎫⎛⎫+≠--+ ⎪ ⎪⎝⎭⎝⎭, 所以6f x π⎛⎫+ ⎪⎝⎭的图象不关于原点对称,故B 错误;当50,12x π⎛⎫∈ ⎪⎝⎭时,2,332x πππ⎛⎫-∈- ⎪⎝⎭,所以函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭在50,12π⎛⎫⎪⎝⎭上单调递增,故C 正确;因为,32x ππ⎡⎤∈⎢⎥⎣⎦ ,所以22,333x πππ⎡⎤-∈⎢⎥⎣⎦sin 213x π⎛⎫≤-≤ ⎪⎝⎭,()1,3f x ⎤∴∈⎦,又)213>,即min max 2()()f x f x >,所以对123,,[,],32x x x ππ∀∈有132()()()f x f x f x +>成立,故D 正确.故选:ACD.例11.(2023·全国·高三专题练习)如图,点D 位于以AB 为直径的半圆上(含端点A ,B ),ABC 是边长为2的等边三角形,则AD CB ⋅的取值可能是( )A .1-B .0C .1D .4【答案】BC【分析】建立坐标系,利用数量积的坐标表示求AD CB ⋅,化简求其范围,由此可得结论. 【详解】如图所示,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则()1,0A -,()10B ,,(0,C .令()cos ,sin D θθ,其中0θπ≤≤,则()cos 1,sin AD θθ=+,(1,CB =,所以cos 12sin 16AD CB πθθθ⎛⎫⋅=++=++ ⎪⎝⎭.因为0θπ≤≤,所以7666πππθ≤+≤,所以1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭,所以[]2sin 10,36AD CB πθ⎛⎫⋅=++∈ ⎪⎝⎭.故选:BC.例12.(2023·全国·高三专题练习)函数()ππsin 36f x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的最大值为______.【答案】2【分析】利用三角诱导公式和恒等变换化简得到()2cos f x x =,从而求出最大值.【详解】()πππππsin cos 36362f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+--=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭πππππcos 2sin 2sin 2cos 33362x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++=++=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故函数()f x 的最大值为2 故答案为:2【题型】四、换元法求三角函数的最值或值域例13.(2023·全国·高三专题练习)已知函数()2sin cos f x x x x =,则下列结论中正确的是( )A .函数()f x 的最小正周期为2πB .3x π=时()f x 取得最小值C .()f x 关于3x π=对称 D .512x π=时()f x 取得最大值 【答案】D【分析】结合二倍角正弦公式和辅助角公式化简()f x ,再结合正弦函数性质判断各选项.【详解】因为()2sin cos f x x x x =,所以()sin 2f x x x =,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 错误,2sin 22333f πππ⎛⎫⎛⎫=⨯-=≠- ⎪ ⎪⎝⎭⎝⎭,BC 错误,552sin 2212123f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:D.例14.(2023·全国·高三专题练习)函数()sin cos sin 2f x x x x =++的最大值为( ) A.1 B .1C .1D .3【答案】C【分析】利用换元法,令sin cos t x x =+,则原函数可化为21y t t =+-,再根据二次函数的性质可求得其最大值【详解】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[t ∈,则22(sin cos )12sin cos t x x x x =+=+,所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[t ∈,对称轴为12t =-,所以当t =时,21y t t =+-取得最大值,所以函数的最大值为211=,即()sin cos sin 2f x x x x =++的最大值为1 故选:C例15.(2023·全国·高三专题练习)函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .2C .32D .3【答案】C【分析】先将函数用二倍角公式进行降幂运算,得到1()sin(2)26f x x π=+-,然后再求其在区间[,]42ππ上的最大值.【详解】解:因为2()sin cos f x x x x =,所以1cos 21()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .例16.(2022·广东·汕头市达濠华侨中学高三阶段练习)已知函数()3sin 222f x x x =+,则下列选项正确的有( ) A .()f x 的最小正周期为πB .曲线()y f x =关于点π,03⎛⎫⎪⎝⎭中心对称C .()f xD .曲线()y f x =关于直线π6x =对称 【答案】ACD【分析】化简()πsin 26⎛⎫=+ ⎪⎝⎭f x x .利用周期公式求出周期可判断A ;计算π3⎛⎫⎪⎝⎭f 可判断B ; 利用π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x 可判断C ;计算π6f ⎛⎫⎪⎝⎭可判断D【详解】()3πsin 22sin 226f x x x x ⎛⎫==+ ⎪⎝⎭. 对于A ,()f x 的最小正周期2ππ2T ==,故A 正确;对于B ,πππ20336f ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x ,所以()max f x C 正确;对于D ,πππ2666f ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭D 正确.故选:ACD.【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数例17.(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ) A .3 B .4 C .5 D .6【答案】C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,根据三角函数的图象可知,零点与对称轴之间距离为:()1214T k ⨯-,k ∵N *.要求ω最大,则周期最小,∵()12142k T π-⨯=,则T 221k π=-;∵ω=2k ﹣1;当9ω=时,由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭,易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C .例18.(2023·全国·高三专题练习)若直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,且函数πsin()4y x ω=-在区间[0,π12]上不单调,则ω的最小值为( )A .9B .7C .11D .3【答案】C【分析】根据给定条件,求出ω的关系式,再求出函数πsin()4y x ω=-含有数0的单调区间即可判断作答.【详解】因直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则πππ,N 442k k ωπ-=+∈,即43,N k k ω=+∈, 由πππ242x ω-≤-≤得π3π44x ωω-≤≤,则函数πsin()4y x ω=-在π3π[,]44ωω-上单调递增, 而函数πsin()4y x ω=-在区间π[0,]12上不单调,则3π412πω<,解得9ω>, 所以ω的最小值为11. 故选:C例19.(2023·江苏南京·高三阶段练习)已知函数()()πsin 026f x x ωω⎛⎫=+<< ⎪⎝⎭,()()π0f x f x ++=,()()()0πf f αβαβ=<<<,则( )A .()()4πf x f x =+B .()()9π0f x f x ++=C .()()12f f αββα+<-= D .()()12f f βααβ-<+=【答案】AB【分析】推导出()()2πf x f x +=,可判断AB 选项;求出2π3αβ+=,并求出()f βα-的取值范围,可判断CD 选项.【详解】对于A 选项,对任意的R x ∈,()()πf x f x +=-,则()()()2ππf x f x f x +=-+=, 所以,()()()4π2πf x f x f x +=+=,A 对;对于B 选项,()()()9ππf x f x f x +=+=-,则()()9π0f x f x ++=,B 对; 对于CD 选项,由题意可知,()f x 的最小正周期为2π,则2π12πω==,则()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,当()0,πx ∈时,ππ7π666x <+<, 由πππ662x <+<可得π03x <<,则函数()f x 在π0,3⎛⎫⎪⎝⎭上单调递增, 由ππ7π266x <+<可得ππ3x <<,则函数()f x 在π,π3⎛⎫ ⎪⎝⎭上单调递减,0παβ<<<,则πππ7π6666αβ<+<+<, 所以,πππ66αβ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2π3αβ+=,所以,()2ππ5π1sin sin 3662f αβ⎛⎫+=+==⎪⎝⎭,C 错, 因为πππ7π6666αβ<+<+<,则πππ662α<+<,所以,π03α<<, 则2π2π20,33βαα⎛⎫-=-∈ ⎪⎝⎭,所以,ππ5π,666βα⎛⎫-+∈ ⎪⎝⎭ 故()1,12f βα⎛⎤-∈ ⎥⎝⎦,则()()12f f βααβ->+=,D 错.故选:AB.【题型】六、五点法求三角函数的解析式例20.(2023·全国·高三专题练习)智能主动降噪耳机工作的原理是通过耳机两端的噪声采集器采集周围的噪声,然后通过主动降噪芯片生成与噪声相位相反、振幅相同的声波来抵消噪声(如图).已知噪声的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,周期为2π,初相位为π2,则通过主动降噪芯片生成的声波曲线的解析式为( )A .sin y x =B .cos y x =C .sin y x =-D .cos y x =-【答案】A【分析】由振幅可得A 的值,由周期可得ω的值,由初相位可得ϕ的值,即可得出声波曲线的解析式,进而可得主动降噪芯片生成的声波曲线的解析式.【详解】解:因为噪音的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,则1A =, 周期为2π,则2π2π12πT ω===,初相位为π2,π2ϕ=,所以噪声的声波曲线的解析式为πcos sin 2y x x ⎛⎫=+=- ⎪⎝⎭,所以通过主动降噪芯片生成的声波曲线的解析式为sin y x =.故选:A.例21.(2022·福建省连城县第一中学高三阶段练习)函数()()sin()0,f x A x b ωϕωϕπ=++><的部分图象如图所示,下列说法正确的是( )A .函数()f x 的解析式为()2sin 213f x x π⎛⎫=++ ⎪⎝⎭B .函数()f x 的单调递增区间为5,(Z)1212k k k ππππ⎛⎫-++∈ ⎪⎝⎭C .函数()f x 的图象关于点,1(Z)2k k π⎛⎫∈ ⎪⎝⎭对称 D .为了得到函数()f x 的图象,只需将函数()2cos 23g x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位长度,再向上平移一个单位长度 【答案】ABD【分析】由题意求出()f x 的解析式可判断A ;利用正弦函数的单调性和对称性可判断BC ;由三角函数的平移变换可判断D.【详解】对于A ,由图可知,31A b A b +=⎧⎨-+=-⎩,可得21A b =⎧⎨=⎩,由π1sin 425π1sin 122ωϕωϕ⎧⎡⎤⎛⎫⨯-+=-⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎨⎛⎫⎪⨯+=- ⎪⎪⎝⎭⎩,则1122ππ+2π,Z 465π7π+2π,Z126k k k k ωϕωϕ⎧-+=-∈⎪⎪⎨⎪+=∈⎪⎩,两式相减得:()122π4π2π33k k ω=+-, 所以()1223k k ω=+-∵,又因为π2π5ππ33212425ππ2π2π31243T T ωωωω⎧⎧≤≤+⎧⎪⎪≥⎪⎪⎪⇒⇒⎨⎨⎨⎪⎪⎪≤≥+≥⎩⎪⎪⎩⎩,所以332ω≤≤,结合∵,2ω=, 因为π5ππ412212-+=,所以πππ21223ϕϕ⨯+=⇒=, 所以()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,故A 正确;对于B ,πππ2π22π,Z 232k x k k -+≤+≤+∈,解得:()5ππππ,Z 1212k x k k -+≤≤+∈,故B 正确; 对于C ,令π2ππ,Z 3+=+∈x k k ,解得:ππ,Z 32=+∈k x k , 函数()f x 的图象关于点()ππ,1Z 32k k ⎛⎫+∈ ⎪⎝⎭对称,所以C 不正确;对于D ,将函数π2cos 23x ⎛⎫+ ⎪⎝⎭向右平移π4个单位得到πππ2cos 22sin 2433⎡⎤⎛⎫⎛⎫-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦x x ,向上平移一个单位长度可得π2sin 213y x ⎛⎫=++ ⎪⎝⎭,故D 正确.故选:ABD.例22.(2023·江西·赣州市赣县第三中学高三期中(理))已知函数()sin 0,0,π()(||)f x A x A ωϕωϕ=+>><的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数()g x 的图象.(1)求函数()g x 的解析式;(2)若对于()()2π0,,303x g x mg x ⎡⎤⎡⎤⎣⎦⎢⎥∀-⎣-⎦∈≤恒成立,求实数m 的取值范围.【答案】(1)π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭,(2)1,22⎡⎤⎢⎥⎣⎦.【分析】(1)先根据函数图象求出()f x 的解析,再利用图象变换规律可求出()g x 的解析式; (2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,从而可得[]()1,2g x ∈-,然后分()0g x =,()[1,0)g x ∈-和(,])2(0g x ∈求解即可.【详解】(1)由()f x 的图象可得2A =,5πππ212122T ⎛⎫=--= ⎪⎝⎭, 所以πT =,所以2ππω=,得2ω=,所以()()(|2sin 2π|)f x x ϕϕ=+<, 因为()f x 的图象过5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πϕ⎛⎫⨯+=- ⎪⎝⎭,所以5sin 16πϕ⎛⎫+=- ⎪⎝⎭, 所以5ππ2π,Z 62k k ϕ+=-∈,得4π2π,Z 3k k ϕ=-∈, 因为||πϕ<,所以2π3ϕ=, 所以()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,可得32π2π2sin 22sin 3233y x x ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭,再将所得函数图象向右平移π6个单位长度,得 π2ππ2sin 32sin 3636y x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭(2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,所以π1sin 3,162x ⎛⎫+∈- ⎪⎝⎭⎡⎤⎢⎥⎣⎦,所以[]π2sin 31,26x ⎛⎫+∈- ⎪⎝⎭,所以[]()1,2g x ∈-,当()0g x =时,30-≤恒成立,当()[1,0)g x ∈-时,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≤-, 因为函数3y x x=-在[1,0)-上为增函数,所以min33()12()1g x g x ⎡⎤-=--=⎢⎥-⎣⎦ 所以2m ≤,当(,])2(0g x ∈,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≥-, 因为函数3y x x=-在(0,2]上为增函数,所以max331()2()22g x g x ⎡⎤-=-=⎢⎥⎣⎦ 所以12m ≥, 综上122m ≤≤,即实数m 的取值范围为1,22⎡⎤⎢⎥⎣⎦.【题型】七、利用图象平移求函数的解析式或参数例23.(2023·全国·高三专题练习)要得到函数π3sin(2)3y x =+的图象,只需要将函数3cos 2y x =的图象( )A .向右平行移动π12个单位 B .向左平行移动π12个单位 C .向右平行移动π6个单位D .向左平行移动π6个单位【答案】A【分析】由三角函数的图象变换求解【详解】π3cos 23sin(2)2y x x ==+,要得到π3sin(2)3y x =+的图象,需要向右平移πππ23212-=个单位.故选:A例24.(2022·湖南省临澧县第一中学高三阶段练习)已知函数π()2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .将函数2sin 2y x =的图象向右平移π6个单位,再向上平移1个单位得到()=y f x 的图象B .函数()=y f x 在区间π0,2⎛⎫⎪⎝⎭上单调递增C .函数()=y f x 的图象关于直线π12x =-对称 D .函数()=y f x 的图象关于点,06π⎛⎫⎪⎝⎭对称【答案】AC【分析】根据图象平移写出解析式判断A ;利用正弦函数性质,整体法判断()f x 的区间单调性判断B ,代入法判断对称性,判断C 、D. 【详解】A :根据平移过程πππ=()+1=2sin2()+1=2sin(2)+1663y g x x x ---,正确; B :π0,2x ⎛⎫∈ ⎪⎝⎭,则ππ2π2(,)333x -∈-,根据正弦函数性质()f x 在区间内不单调,错误;C :πππ()=2sin()+1=11263f ----,此时ππ2=32x --,故直线π12x =-为对称轴,正确;D :πππ()=2sin()+1=1633f -,故关于点π,16⎛⎫⎪⎝⎭对称,错误.故选:AC例25.(2022·广东·深圳中学高三阶段练习)将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,所得图像关于原点对称.若01ω<<,则下列说法正确的是( ) A .()f x 的最小正周期为4πB .()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭C .对任意的R x ∈,都有()2π=3f x f x -⎛⎫ ⎪⎝⎭D .()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x【答案】AB【分析】利用平移后得函数是奇函数求出12ω=,则()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈判断B 正确;由π=13f -⎛⎫⎪⎝⎭判断C 错误;令()=()f x g x 分析得到公,判断D 错误.【详解】将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,可得2ππ()=2sin (+)33h x x ω-⎡⎤⎢⎥⎣⎦,()h x 为奇函数,则(0)0h =,即2ππ=π33k ω-,13=+,22k k Z ω∈, 因为01ω<<,所以1=0=2k ω,,则()1π=2sin 23f x x -⎛⎫ ⎪⎝⎭,所以()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈,得2π=2π+3x k ,()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭,故B 正确;π1ππ=2sin(?)=13233f --⎛⎫⎪⎝⎭,所以3x π=不是对称轴,故C 错误;令()=()f x g x ,即1π1πsin =sin +2326x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,1π1ππ1πsin +=sin +=cos 2623223x x x --⎡⎤⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,1π1πsin =sin +=?2326x x ∴-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ ()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x故D 错误; 故选:AB.。
三角函数的定义与性质
三角函数的定义与性质三角函数是数学中重要的概念之一,它在几何学、物理学和工程学等领域中有广泛的应用。
本文将讨论三角函数的定义和性质,以帮助读者更好地理解这一概念。
一、定义三角函数是以角度为自变量的函数,其定义如下:1. 正弦函数(sine):对于任意角度θ,其正弦值定义为三角形斜边与角度θ所在直线的比值,即sin(θ) = 斜边/斜边长。
2. 余弦函数(cosine):对于任意角度θ,其余弦值定义为三角形邻边与角度θ所在直线的比值,即cos(θ) = 邻边/斜边长。
3. 正切函数(tangent):对于任意角度θ,其正切值定义为正弦值与余弦值的比值,即tan(θ) = sin(θ)/cos(θ)。
二、性质三角函数具有以下重要性质:1. 周期性:三角函数的周期是360度(或2π弧度),即在一个周期内,函数值会重复出现。
例如,sin(θ)在θ=0°和θ=360°处取得相同的值。
2. 奇偶性:正弦函数是奇函数,即sin(-θ) = -sin(θ);余弦函数是偶函数,即cos(-θ) = cos(θ);正切函数是奇函数,即tan(-θ) = -tan(θ)。
3. 单调性:在一定范围内,三角函数可以是增加的、减少的或保持不变的。
例如,sin(θ)在0°到90°的范围内是增加的。
4. 最值:三角函数的取值范围在[-1, 1]之间,即-1 ≤ sin(θ) ≤ 1,-1 ≤ cos(θ) ≤ 1,无穷大≤ tan(θ) ≤ 无穷大。
其中的最值点是sin(θ)在θ=90°和θ=270°处取得最大值1,最小值-1;cos(θ)在θ=0°和θ=180°处取得最大值1,最小值-1。
5. 互余关系:正弦函数和余弦函数是互余的,即sin(θ) = cos(90° - θ),cos(θ) = sin(90° - θ)。
这意味着两个角度的正弦值和余弦值互为倒数。
高中数学《三角函数的单调性与最值》教学课件
1.思考辨析(正确的画“√”,错误的画“×”)
(1)正弦函数、余弦函数在 R 上都是单调函数. ( )
(2)存在 x∈R 满足 cos x=1.2.( )
(3)函数 y=-12sin x,x∈0,π2的最大值为 0.(
)
[答案] (1)× (2)× (3)√
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
由 z∈2kπ-π2,2kπ+π2(k∈Z),
得 x-π3∈2kπ-π2,2kπ+π2(k∈Z),
即 x∈2kπ-π6,2kπ+56π(k∈Z),
故函数 y=2sinx-π3的单调递增区间为2kπ-π6,2kπ+56π(k∈Z). 同 理 可 求 函 数 y = 2sin x-π3 的 单 调 递 减 区 间 为
cos-147π=cos147π=cos4π+π4=cosπ4. ∵0<π4<35π<π,且 y=cos x 在[0,π]上是单调递减的,
∴cos35π<cosπ4,
即 cos-253π<cos-147π.
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
提醒:复合函数的单调性遵循“同增异减”的规律.
第2课时 单调性与最值
1
2
3
4
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 课后素养落实
[跟进训练] 1.(1)函数 y=sin3x+π6,x∈-π3,π3的单调递减区间为________. (2)已知函数 y=cos3π-2x,则它的单调递减区间为________.
备战高考数学复习考点知识与题型讲解32---三角函数的单调性与最值
备战高考数学复习考点知识与题型讲解 第32讲 三角函数的图象和性质考向预测核心素养 以考查三角函数的性质为主,题目涉及单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换相结合,中档难度. 直观想象、 逻辑推理一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). (2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质 函数y =sin x y =cos x y =tan x图象定义域 R R⎩⎪⎨⎪⎧x ⎪⎪⎪x ≠k π+π2,}k ∈Z值域[-1,1][-1,1]R奇偶性奇函数偶函数奇函数函数的最值最大值1,当且仅当x=2kπ+π2,k∈Z时取得;最小值-1,当且仅当x=2kπ-π2,k∈Z时取得最大值1,当且仅当x=2kπ,k∈Z时取得;最小值-1,当且仅当x=2kπ-π,k∈Z时取得无最大值和最小值单调性增区间:[2kπ-π2,2kπ+π2](k∈Z);减区间:[2kπ+π2,2kπ+3π2](k∈Z)增区间:[2kπ-π,2kπ](k∈Z);减区间:[2kπ,2kπ+π](k∈Z)增区间(kπ-π2,kπ+π2)(k∈Z)周期性周期为2kπ,k≠0,k∈Z,最小正周期为2π周期为2kπ,k≠0,k∈Z,最小正周期为2π周期为kπ,k≠0,k∈Z,最小正周期为π对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎪⎫kπ+π2,0,k∈Z⎝⎛⎭⎪⎫kπ2,0,k∈Z 对称轴x=kπ+π2,k∈Z x=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Z kπ,k∈Z常用结论1.函数y=sin x与y=cos x的对称轴分别是经过其图象的最高点或最低点且垂直于x轴的直线.2.正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两个对称中心之间的距离是半个周期.3.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.4.对于y =tan x 不能认为其在定义域上为增函数,而是在每个开区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、教材衍化1.(人A 必修第一册P 206例5改编)函数y =2sin ⎝ ⎛⎭⎪⎫x -π3(x ∈[-π,0])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π,-5π6B.⎣⎢⎡⎦⎥⎤-5π6,-π6 C.⎣⎢⎡⎦⎥⎤-π3,0 D.⎣⎢⎡⎦⎥⎤-π6,0 解析:选D.令-π2+2k π≤x -π3≤π2+2k π,k ∈Z ,则-π6+2k π≤x ≤5π6+2k π,k ∈Z .由于x ∈[-π,0],所以所求的单调递增区间为⎣⎢⎡⎦⎥⎤-π6,0.2.(人A 必修第一册P 207练习T 2(2)改编)函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为________,此时x =________.答案:53π4+2k π(k ∈Z ) 3.(人A 必修第一册P 212例6改编)函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________________.解析:由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ).答案:⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内单调递减.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 二、易错纠偏1.(奇偶性概念不清致误)下列函数中,是奇函数的是( ) A .y =|cos x +1| B.y =1-sin x C .y =-3sin(2x +π)D.y =1-tan x解析:选C.选项A 中的函数是偶函数,选项B ,D 中的函数既不是奇函数,也不是偶函数;因为y =-3sin(2x +π)=3sin 2x ,所以是奇函数,故选C.2.(多选)(三角函数性质理解不透致误)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),则下列结论正确的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递增C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数解析:选ABC.由题意,可得f (x )=-cos x , 对于选项A ,T =2π1=2π,所以选项A 正确;对于选项B ,y =cos x 在⎣⎢⎡⎦⎥⎤0,π2上单调递减,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递增,所以选项B 正确;对于选项C ,f (-x )=-cos(-x )=-cos x =f (x ),所以函数是偶函数,所以其图象关于直线x =0对称,所以选项C 正确;选项D 错误.故选ABC.3.(忽视取最值的条件致误)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:f (x )=sin 2x +3cos x -34=1-cos 2x +3cos x -34=-⎝⎛⎭⎪⎫cos x -322+1,cos x ∈[0,1],当cos x =32时,f (x )取得最大值1.答案:1考点一 三角函数的定义域(自主练透)复习指导:求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π6B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6(k ∈Z ) D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6(k ∈Z ) 解析:选D.由2x +π6≠k π+π2,得x ≠k π2+π6(k ∈Z ). 2.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎨⎧sin x >0,cos x -12≥0, 即⎩⎨⎧sin x >0,cos x ≥12,解得⎩⎨⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π,k ∈Z .所以函数y 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z 3.函数y =sin x -cos x 的定义域为________.解析:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一平面直角坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 答案:{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }三角函数的定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域.(2)转化为求解简单的三角不等式来求复杂函数的定义域.考点二 三角函数的单调性(多维探究)复习指导:借助图象理解正弦函数、余弦函数在[0,2π],正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的单调性.角度1 求三角函数的单调区间(1)(2022·广东省七校联考)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+4π3,k ∈Z B.⎝⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z C.⎣⎢⎡⎦⎥⎤4k π-2π3,4k π+4π3,k ∈Z D.⎝⎛⎭⎪⎫4k π-2π3,4k π+4π3,k ∈Z (2)函数f (x )=sin ⎝ ⎛⎭⎪⎫π3-2x 的单调递减区间为________.【解析】 (1)由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z ,故选B.(2)f (x )=sin ⎝ ⎛⎭⎪⎫π3-2x 的单调递减区间是f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z1.若本例(2)f (x )变为:f (x )=-cos ⎝⎛⎭⎪⎫-2x +π3,求f (x )的单调递增区间.解:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3=-cos ⎝ ⎛⎭⎪⎫2x -π3,欲求函数f (x )的单调递增区间, 只需求y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z . 故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).2.本例(2)f (x )变为:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,试讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:令z =2x -π3,易知函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,又因为π4-⎝ ⎛⎭⎪⎫-π4=π2<T ,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.求三角函数单调区间的方法求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.角度2 已知三角函数的单调性求参数(1)(一题多解)(2022·湖南师大附中月考)若函数f (x )=23sin ωx cos ωx+2sin 2ωx +cos 2ωx 在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D.13(2)定义在[0,π]上的函数y =sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)有零点,且值域M ⊆⎣⎢⎡⎭⎪⎫-12,+∞,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,43 B.⎣⎢⎡⎦⎥⎤43,2 C.⎣⎢⎡⎦⎥⎤16,43 D.⎣⎢⎡⎦⎥⎤16,2 【解析】 (1)方法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增, 所以⎩⎪⎨⎪⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.方法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎪⎨⎪⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16. (2)由0≤x ≤π,得-π6≤ωx -π6≤ωπ-π6,当x =0时,y =-12.因为函数y =sin ⎝⎛⎭⎪⎫ωx -π6在[0,π]上有零点,所以ωπ-π6≥0,ω≥16.因为值域M ⊆⎣⎢⎡⎭⎪⎫-12,+∞,所以ωπ-π6≤π+π6,ω≤43,从而16≤ω≤43. 【答案】 (1)B(2)C已知函数单调性求参数(1)明确一个不同:“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)抓住两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.|跟踪训练|1.函数y =-2+tan ⎝ ⎛⎭⎪⎫12x +π3的单调递增区间是( )A.⎝⎛⎭⎪⎫2k π-5π3,2k π+π3,k ∈Z B.⎝⎛⎭⎪⎫2k π-π3,2k π+5π3,k ∈ZC.⎝⎛⎭⎪⎫k π-5π3,k π+π3,k ∈Z D.⎝⎛⎭⎪⎫k π-π3,k π+5π3,k ∈Z 解析:选A.由题意,令-π2+k π<12x +π3<π2+k π,k ∈Z ,解得2k π-5π3<x <2k π+π3,k ∈Z ,所以函数y =-2+tan ⎝ ⎛⎭⎪⎫12x +π3的单调递增区间为(2k π-5π3,2k π+π3),k ∈Z .2.若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.解析:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,所以a +π10≤3π2,即a ≤7π5, 所以a 的最大值为7π5. 答案:7π53.(2022·重庆市高三质量检测)函数f (x )=3sin(ωx +φ),|φ|<π2的图象过点⎝ ⎛⎭⎪⎫0,32,且在⎝ ⎛⎭⎪⎫π4,π3上单调递增,则ω的最大值为________.解析:依题意f (0)=3sin φ=32,sin φ=12,由于|φ|<π2,所以φ=π6. 所以f (x )=3sin ⎝⎛⎭⎪⎫ωx +π6.令ω>0,由2k π-π2≤ωx +π6≤2k π+π2,化简得2k π-2π3ω≤x ≤2k π+π3ω,由于f (x )在⎝ ⎛⎭⎪⎫π4,π3上单调递增,所以⎩⎪⎨⎪⎧2k π-2π3ω≤π4,2k π+π3ω≥π3,解得8k -83≤ω≤6k +1,k ∈Z ,要使ω有解,则8k -83≤6k+1,解得k ≤116,由于k ∈Z ,故k max =1,故k =1时,163≤ω≤7,ω的最大值为7. 答案:7考点三 三角函数的最值(值域)(综合研析)(1)(2022·衡水调研)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.(2)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)因为x ∈⎣⎢⎡⎦⎥⎤-π3,a ,所以x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6,因为当x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象(图略)知,π2≤a +π6≤7π6,所以π3≤a ≤π. (2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t22,且-2≤t ≤ 2.所以y =-t 22+t +12=-12(t -1)2+1,t ∈[-2, 2 ].当t =1时,y max =1;当t =-2时,y min =-1+222. 所以函数的值域为⎣⎢⎡⎦⎥⎤-1+222,1.【答案】 (1)⎣⎢⎡⎦⎥⎤π3,π (2)⎣⎢⎡⎦⎥⎤-1+222,1三角函数值域的求法(1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域.(3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域.|跟踪训练|1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( )A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3解析:选B.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.2.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B.⎣⎢⎡⎦⎥⎤-π6,0 C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3 解析:选B.记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝⎛⎭⎪⎫t +122+2.因为函数的最大值为2,显然此时t =-12.令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.故选B.3.(2020·高考北京卷)若函数f (x )=sin(x +φ)+cos x 的最大值为2,则常数φ的一个取值为________.解析:因为f (x )=cos φsin x +(sin φ+1)cos x =cos 2φ+(sin φ+1)2sin(x+θ)⎝ ⎛⎭⎪⎫其中tan θ=1+sin φcos φ, 因为sin(x +θ)≤1,所以cos 2φ+(sin φ+1)2=2,解得sin φ=1.则φ=π2+2k π,k ∈Z ,故常数φ的一个取值为π2.答案:π2⎝ ⎛⎭⎪⎫符合2k π+π2,k ∈Z 均可,答案不唯一[A 基础达标]1.(2021·新高考卷Ⅰ)下列区间中,函数f (x )=7sin ⎝ ⎛⎭⎪⎫x -π6单调递增的区间是( )A.⎝⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫π2,π C.⎝⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π 解析:选A.令-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤2π3+2k π,k ∈Z .取k =0,则-π3≤x ≤2π3.因为⎝⎛⎭⎪⎫0,π2⎣⎢⎡⎦⎥⎤-π3,2π3,所以区间⎝⎛⎭⎪⎫0,π2是函数f (x )的单调递增区间.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1 B.-22C.22D.0解析:选B.由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.3.(2022·山西省实验中学期中)若tan 2=a ,tan 3=b ,tan 5=c ,则( ) A .a <b <c B.b <c <a C .c <b <aD.c <a <b解析:选D.因为tan 5=tan(5-π),π2<5-π<2<3<π,且函数y =tan x 在区间⎝ ⎛⎭⎪⎫π2,π上单调递增,所以tan(5-π)<tan 2<tan 3,所以tan 5<tan 2<tan 3,即c <a <b .4.(2022·福州检测)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是( )A.π4B.π2C.3π8D.π解析:选 C.由题意得,f (x )=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ),解得-π8+k π≤x ≤3π8+k π(k ∈Z ),当k =0时,-π8≤x≤3π8,即函数f (x )在⎣⎢⎡⎦⎥⎤-π8,3π8上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8,即m 的最大值为3π8,故选C. 5.(多选)函数f (x )=sin x cos x 的单调递减区间可以是( ) A.⎣⎢⎡⎦⎥⎤k π-3π4,k π-π4(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z )C.⎣⎢⎡⎦⎥⎤2k π+π4,2k π+π2(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π+π4,k π+π2(k ∈Z )解析:选AB.f (x )=sin x cos x =12sin 2x ,由π2+2k π≤2x ≤2k π+3π2,k ∈Z , 得π4+k π≤x ≤k π+3π4,k ∈Z , 所以函数f (x )=sin x cos x 的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ),故B正确,因为函数的周期是k π(k ≠0),故A 也正确. 故选AB.6.已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.解析:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ),又因为x ∈[-π,0],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.答案:⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,07.(2022·上海市进才中学期中)已知定义在[-a ,a ]上的函数f (x )=cos x -sin x 是减函数,其中a >0,则当a 取最大值时,f (x )的值域是________.解析:f (x )=cos x -sin x =-2sin ⎝⎛⎭⎪⎫x -π4, 令2k π-π2≤x -π4≤2k π+π2,k ∈Z ,则2k π-π4≤x ≤2k π+3π4,k ∈Z , 故f (x )的减区间为⎣⎢⎡⎦⎥⎤2k π-π4,2k π+3π4,k ∈Z ,由题设可得[-a ,a ]为⎣⎢⎡⎦⎥⎤2k π-π4,2k π+3π4,k ∈Z 的子集,故k =0且⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,a >0,故0<a ≤π4,故a max =π4, 当-π4≤x ≤π4时,-π2≤x -π4≤0,故0≤-2sin ⎝ ⎛⎭⎪⎫x -π4≤2,故f (x )的值域为[]0,2. 答案:[0, 2 ]8.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z . (2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.9.已知函数f (x )=a (2cos 2x2+sin x )+b . (1)若a =-1,求函数f (x )的单调递增区间;(2)当x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解:函数f (x )=a (1+cos x +sin x )+b=2a sin ⎝⎛⎭⎪⎫x +π4+a +b .(1)当a =-1时,f (x )=-2sin ⎝ ⎛⎭⎪⎫x +π4+b -1,由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ),得2k π+π4≤x ≤2k π+5π4(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ).(2)因为0≤x ≤π,所以π4≤x +π4≤5π4,所以-22≤sin ⎝⎛⎭⎪⎫x +π4≤1,依题意知a ≠0.①当a >0时,得⎩⎨⎧2a +a +b =8,b =5,解得a =32-3,b =5.②当a <0时,得⎩⎨⎧b =8,2a +a +b =5,解得a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.[B 综合应用]10.(2022·河南省名校联盟模拟)若函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3与g (x )=cos ⎝ ⎛⎭⎪⎫x +π4都在区间(a ,b )(0<a <b <π)上单调递减,则b -a 的最大值为( )A.π6 B.π3 C.π2D.5π12解析:选B.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3在⎝ ⎛⎭⎪⎫0,5π12上单调递增,在⎝⎛⎭⎪⎫5π12,11π12上单调递减,在⎝⎛⎭⎪⎫11π12,π上单调递增,函数g (x )=cos ⎝ ⎛⎭⎪⎫x +π4在区间⎝ ⎛⎭⎪⎫0,3π4上单调递减,在⎝ ⎛⎭⎪⎫3π4,π上单调递增,所以这两个函数在区间⎝ ⎛⎭⎪⎫5π12,3π4上单调递减,故b -a =3π4-5π12=π3,即所求的最大值.故选B. 11.(多选)(2022·江西10月大联考)在数学史上,为了三角计算的简便并追求计算的精确性,曾经出现过下列两种三角函数:定义1-cos θ为角θ的正矢,记作versinθ;定义1-sin θ为角θ的余矢,记作coversin θ.则下列说法正确的是( )A .versin ⎝ ⎛⎭⎪⎫3π2-θ=coversin(θ+π) B .若coversin x -1versin x -1=-3,则coversin 2x -versin 2x =15C .函数y =coversin x -versin x 在⎣⎢⎡⎦⎥⎤3π4,π上单调递增 D .函数f (x )=coversin ⎝ ⎛⎭⎪⎫3x +π8+versin ⎝ ⎛⎭⎪⎫3x -3π8的最小值为2- 2解析:选AC.对于A ,versin ⎝ ⎛⎭⎪⎫3π2-θ=1-cos ⎝ ⎛⎭⎪⎫3π2-θ=1+sin θ, coversin (π+θ)=1-sin (π+θ)=1+sin θ,故A 选项正确; 对于B ,由coversin x -1versin x -1=-3,得tan x =-3,因为coversin 2x -versin 2x =cos 2x -sin 2x =cos 2x -sin 2x -2sin x cos x cos 2x +sin 2x =1-tan 2x -2tan x 1+tan 2x =-15,故B 选项错误;对于C ,y =coversin x -versin x =cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,则π+2k π≤x +π4≤2π+2k π,k ∈Z ,得3π4+2k π≤x ≤7π4+2k π,k ∈Z , 所以在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,故C 选项正确; 对于D ,因为f (x )=2-sin ⎝ ⎛⎭⎪⎫3x +π8-cos ⎝ ⎛⎭⎪⎫3x -3π8=2-2sin ⎝ ⎛⎭⎪⎫3x +π8,所以最小值为0,故D 选项错误.12.(2022·日喀则市南木林高中期末)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),若f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π2,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π2内有最大值,无最小值,则ω=________.解析:因为f (x )在区间⎝ ⎛⎭⎪⎫π6,π2内有最大值,无最小值,f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π2,所以当x =π3时,f (x )取得最大值,即π3ω+π3=2k π+π2(k ∈Z ), 解得ω=6k +12(k ∈Z ),又π2-π6=π3<T ,即2πω>π3,所以ω<6,又ω>0,所以ω=12. 答案:1213.(2022·江赣十四校联考)如果圆x 2+(y -1)2=m 2至少覆盖函数f (x )=2sin 2⎝ ⎛⎭⎪⎫πm x +5π12-3cos ⎝⎛⎭⎪⎫2πm x +π3(m >0)的一个最大值点和一个最小值点,则m 的取值范围是________.解析:化简f (x )=2sin 2⎝ ⎛⎭⎪⎫πm x +5π12-3cos ⎝ ⎛⎭⎪⎫2πmx +π3得f (x )=2sin 2πx m +1,所以函数f (x )的图象靠近圆心(0,1)的最大值点为⎝ ⎛⎭⎪⎫m 4,3,最小值点为⎝ ⎛⎭⎪⎫-m 4,-1,所以只需⎩⎨⎧⎝ ⎛⎭⎪⎫m 42+(3-1)2≤m 2,⎝ ⎛⎭⎪⎫-m 42+(-1-1)2≤m 2,解得m ≥81515. 答案:⎣⎢⎡⎭⎪⎫81515,+∞[C 素养提升]14.设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析:由题意得,当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin =23.答案:2321 / 21 15.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 解:(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k 2π(k ∈Z ), 所以当x ∈(0,π)时,对称轴为x =512π和x =1112π. 又由(1)知当x =512π时,f (x )取得最大值1,且f (x 1)=f (x 2)=23>0,所以x 1,x 2关于x =512π对称, 所以x 1+x 2=56π,则x 1=56π-x 2, 所以cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.。
《三角函数的图象与性质》PPT教学课件(第三课时正、余弦函数的单调性与最值)
当 u∈kπ,kπ+π2(k∈Z)时,函数 y=|sin u|递增. 函数 y=sinx+π4的单调递增区间是kπ-π4,kπ+π4(k∈Z).
栏目 导引
比较三角函数值的大小
(2)cos-78π=cos 78π,
因为 0<67π<78π<π,y=cos x 在(0,π)上是减函数,
所以 cos
78π<cos
6π 7.
所以 cos-78π<cos 67π.
栏目 导引
第五章 三角函数
(3)由于 sin 194°=sin(180°+14°)=-sin 14°, cos 160°=cos(180°-20°)=-cos 20°=-sin 70°, 又 0°<14°<70°<90°, 而 y=sin x 在0°,90°上单调递增, 所以 sin 14°<sin 70°,-sin 14°>-sin 70°, 即 sin 194°>cos 160°.
2.求函数 y=cos2x+4sin x 的最值及取到最大值和最小值时的 x 的集合.
栏目 导引
解:y=cos2x+4sin x=1-sin2x+4sin x =-sin2x+4sin x+1 =-(sin x-2)2+5.
第五章 三角函数
所以当 sin x=1,即 x=2kπ+π2,k∈Z 时,
5.4 三角函数的图象与性质
第三课时 正、余弦函数的单调性与最值
第五章 三角函数
考点
学习目标
核心素养
理解正弦函数与余弦函数
正、余弦函数的单调性 的单调性,会求函数的单 数学运算
调区间
利用正、余弦函数的单 会利用三角函数单调性比 数学运算、
三角函数的单调性
三角函数的单调性
三角函数的单调性:
1、余弦函数是递减的:
余弦函数属于三角函数,它表示的是曲线在角度大小与变形上的映射关系。
若角度值从小到大,余弦函数也会从正到负,最终到达一个最小值后变为正。
总的来说,余弦函数是递减的单调函数。
2、正弦函数是递增的:
和余弦函数相比,正弦函数同样属于三角函数,它表示的是曲线在角度大小与变形上的映射关系。
若角度值从小到大,正弦函数也会从负到正,最终到达一个最大值后变为负。
所以可以认为,正弦函数是递增的单调函数。
3、斜率函数是恒定的:
斜率函数也属于三角函数,它描述的是曲线在斜率上的关系。
无论是从小到大,还是从大到小,斜率函数均是恒定的。
所以斜率函数既不是递减的也不是递增的,而是一个常数,它不具有单调性。
总结:
三角函数可以分为余弦函数、正弦函数和斜率函数三种,其中,余弦函数是递减的单调函数,正弦函数是递增的单调函数,而斜率函数是恒定的常数函数,不具有单调性。
高考数学复习三角函数的单调性与最值
第4讲 三角函数的图象与性质最新考纲考向预测1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. 命题趋势以考查三角函数的性质为主,题目涉及单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度. 核心素养 直观想象、逻辑推理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质 函数y =sin xy =cos xy =tan x图象定义 域 R R {x |x ≠k π+π2,k ∈Z } 值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数单调递增区间[-π2+2kπ,π2+2kπ],k∈Z[-π+2kπ,2kπ],k∈Z(-π2+kπ,π2+kπ),k∈Z续表函数y=sin x y=cos x y=tan x单调递减区间[π2+2kπ,3π2+2kπ],k∈Z[2kπ,π+2kπ],k∈Z无对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎪⎫kπ+π2,0,k∈Z⎝⎛⎭⎪⎫kπ2,0,k∈Z 对称轴x=kπ+π2,k∈Zx=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Zkπ,k∈Z常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则有φ=kπ+π2(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+π2(k ∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ). 常见误区1.对于y =tan x 不能认为其在定义域上为增函数,而是在每个开区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 2.求函数y =A sin(ωx +φ)的单调区间时要注意A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.1.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(易错点)函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠kx +π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z 解析:选D.由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,所以y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π2+π4,k ∈Z . 3.(多选)下列函数中,最小正周期为π的偶函数有( ) A .y =tan xB .y =|sin x |C .y =2cos xD .y =sin ⎝ ⎛⎭⎪⎫π2-2x解析:选BD.对于A 选项,函数y =tan x 为奇函数,不符合题意;对于B 选项,函数y =|sin x |是最小正周期为π的偶函数,符合题意;对于C 选项,函数y =2cos x 的最小正周期为2π,不符合题意;对于D 选项,函数y =sin ⎝ ⎛⎭⎪⎫π2-2x =cos 2x ,是最小正周期为π的偶函数,符合题意.故选BD.4.函数y =cos ⎝ ⎛⎭⎪⎫2x -π4的单调递减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )5.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,当φ∈⎣⎢⎡⎦⎥⎤-π2,π2时,φ的值为________.解析:由已知得π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).又因为φ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以当k =0时,φ=-π4符合条件.答案:-π4第1课时 三角函数的单调性与最值求三角函数的单调区间(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan(2x +π3)的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)由k π-π2<2x +π3<k π+π2(k ∈Z ),得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) 【引申探究】1.(变条件、变问法)若本例(1)f (x )变为:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3,求f (x )的单调递增区间.解:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3=-cos ⎝ ⎛⎭⎪⎫2x -π3,欲求函数f (x )的单调递增区间, 只需求y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z .故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).2.(变条件、变问法)本例(1)f (x )变为:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,试讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:令z =2x -π3,易知函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,又因为π4-⎝ ⎛⎭⎪⎫-π4=π2<T ,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.函数y =|cos x |的一个单调递增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A .函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C .函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减D .函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增解析:选C.由x ∈⎣⎢⎡⎦⎥⎤-π2,0得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,所以f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,所以f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,所以f (x )先减后增.三角函数单调性的应用 角度一 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 10π21,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sinπ3,因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上单调递增,且π3<10π21<π2,所以c <a <b .【答案】 B利用函数的单调性比较大小(1)比较同名三角函数的大小,首先把三角函数转化为同一单调区间上的三角函数,利用单调性,由自变量的大小确定函数值的大小;(2)比较不同名三角函数的大小,应先化成同名三角函数,再进行比较.角度二 利用三角函数的单调性求值域(最值)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3 (2)函数y =sin x -cos x +sin x cos x的值域为_________________________________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.(2)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2. 所以函数y 的值域为[-12-2,1]. 【答案】 (1)B (2)[-12-2,1] 【引申探究】1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6,则f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,1, 故f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-332,3. 答案:⎣⎢⎡⎦⎥⎤-332,3 2.(变条件)若本例(2)中x ∈[0,π],则函数f (x )的值域为________. 解析:设t =sin x -cos x ,则t =2sin ⎝ ⎛⎭⎪⎫x -π4,又x ∈[0,π],所以t ∈[-1,2]. t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. 所以函数y 的值域为[-1,1]. 答案:[-1,1]三角函数值域的求法(1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域.(3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域.1.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°解析:选C.因为sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin(90°-10°)=sin 80°,由正弦函数y =sin x 在0°≤x ≤90°上是增函数,得sin 11°<sin 12°<sin 80°,所以sin 11°<sin 168°<cos 10°,故选C.2.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B.⎣⎢⎡⎦⎥⎤-π6,0 C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3 解析:选B.记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2.因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.故选B.根据三角函数的单调性确定参数(一题多解)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D.13【解析】 方法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,所以⎩⎪⎨⎪⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.方法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎪⎨⎪⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B. 【答案】 B已知函数单调性求参数—— 明确一个不同,掌握两种方法(1)明确一个不同.“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)掌握两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.1.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π解析:选A.f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,则f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减.因为函数f (x )在[-a ,a ]上是减函数, 所以[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,所以0<a ≤π4,所以a 的最大值为π4.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:因为f (x )=sin ωx (ω>0)过原点, 所以当0≤ωx ≤π2,即0≤x ≤π2ω时, y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由已知得π2ω=π3,解得ω=32. 答案:32[A 级 基础练]1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( ) A.⎣⎢⎡⎭⎪⎫0,π2 B.⎝ ⎛⎦⎥⎤π2,π C.⎣⎢⎡⎭⎪⎫π,3π2 D.⎝ ⎛⎦⎥⎤3π2,2π 解析:选C.方法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎣⎢⎡⎭⎪⎫π,3π2.故选C. 方法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.下列关于函数y =4sin x ,x ∈[-π,π]的单调性的叙述,正确的是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2及⎣⎢⎡⎦⎥⎤π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π及⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数解析:选B.函数y =4sin x 在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上单调递减,在⎣⎢⎡⎦⎥⎤-π2,π2上单调递增.故选B.3.(2020·武汉市学习质量检测)已知函数f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3,则f (x )的最小值为( )A.12 B.14 C.34D.22解析:选 A.f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3=sin 2x +⎝ ⎛⎭⎪⎫12sin x +32cos x 2=54sin 2x +34cos 2x +32sin x cos x =34+1-cos 2x 4+34sin 2x =1+12⎝ ⎛⎭⎪⎫32sin 2x -12cos 2x =1+12sin ⎝ ⎛⎭⎪⎫2x -π6≥1-12=12,故选A. 4.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.通解:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B. 优解:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.解析:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ), 得-π12+k π≤x ≤5π12+k π(k ∈Z ), 又因为x ∈[-π,0],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.答案:⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,08.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值为1,则ω=________.解析:因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,则f (x )max =f ⎝ ⎛⎭⎪⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12.答案:129.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤32π,则π3≤x ≤5π6. 因为-π12≤x ≤π2,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减.当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12, 所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.12.(多选)关于函数f (x )=sin|x |-|cos x |,下列结论正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递减C .f (x )的最大值为 2D .当x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立解析:选ABD.因为f (-x )=sin|-x |-|cos(-x )|=sin|x |-|cos x |=f (x ),所以f (x )为偶函数,故A 正确;当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin|x |-|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,又x ∈⎝ ⎛⎭⎪⎫π2,π,所以令t =x +π4,则t ∈⎝ ⎛⎭⎪⎫3π4,5π4,y =2sin t 单调递减,所以B 正确;因为f (x )为偶函数,所以求函数f (x )的最大值可只考虑当x ≥0时的情况,又易知当x ≥0时,2π是其一个周期,所以只需研究x ∈[0,2π]时的情况,则f (x )=sin x -|cos x |=⎩⎪⎨⎪⎧sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2∪⎝ ⎛⎦⎥⎤3π2,2πsin x +cos x ,x ∈⎝ ⎛⎦⎥⎤π2,3π2=⎩⎪⎨⎪⎧2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2∪⎝ ⎛⎦⎥⎤3π2,2π2sin ⎝ ⎛⎭⎪⎫x +π4,x ∈⎝ ⎛⎦⎥⎤π2,3π2,则函数f (x )的值域为[-2,1],因此C 错误;当x ∈⎣⎢⎡⎭⎪⎫0,π4时,f (x )=sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4,则x -π4∈⎣⎢⎡⎭⎪⎫-π4,0,所以sin ⎝ ⎛⎭⎪⎫x -π4<0,即f (x )<0在x ∈⎣⎢⎡⎭⎪⎫0,π4上恒成立,因为f (x )为偶函数,所以x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立,故D 正确.综上可知,正确结论是ABD. 13.已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.解:(1)f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以T =2π2=π.(2)证明:令t =2x +π3,因为-π4≤x ≤π4, 所以-π6≤2x +π3≤5π6,因为y =sin t 在⎣⎢⎡⎦⎥⎤-π6,π2上单调递增,在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减,且sin ⎝ ⎛⎭⎪⎫-π6<sin 5π6, 所以f (x )≥sin ⎝ ⎛⎭⎪⎫-π6=-12,得证.14.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝ ⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6, 所以x的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6. [C 级 创新练]15.(2020·贵阳市适应性考试)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为( )A .⎣⎢⎡⎭⎪⎫19π4,27π4B .⎣⎢⎡⎭⎪⎫9π2,13π2C .⎣⎢⎡⎭⎪⎫17π4,25π4D .[4π,6π)解析:选C.因为x ∈[0,1],ω>0,所以ωx +π4∈⎣⎢⎡⎦⎥⎤π4,ω+π4. 因为f (x )的图象在区间[0,1]上恰有3个最高点,所以4π+π2≤ω+π4<6π+π2,解得17π4≤ω<25π4.16.如图,角α的始边与x 轴的非负半轴重合,终边与单位圆交于点A (x 1,y 1),角β=α+2π3的终边与单位圆交于点B (x 2,y 2),记f (α)=y 1-y 2.若角α为锐角,则f (α)的取值范围是________.解析:由题意可知y 1=sin α,y 2=sin β=sin ⎝ ⎛⎭⎪⎫α+2π3,所以f (α)=y 1-y 2=sin α-sin ⎝ ⎛⎭⎪⎫α+2π3=sin α+12sin α-32cos α=32sin α-32cos α=3sin ⎝ ⎛⎭⎪⎫α-π6.又因为α为锐角,即0<α<π2,所以-π6<α-π6<π3,所以-12<sin ⎝ ⎛⎭⎪⎫α-π6<32,则-32<f (α)<32,即f (α)的取值范围是⎝ ⎛⎭⎪⎫-32,32.答案:⎝ ⎛⎭⎪⎫-32,32第4讲 三角函数的图象与性质最新考纲考向预测1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. 命题趋势以考查三角函数的性质为主,题目涉及单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度. 核心素养 直观想象、逻辑推理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质 函数y =sin xy =cos xy =tan x图象定义 域 R R {x |x ≠k π+π2,k ∈Z } 值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数单调递增区间[-π2+2kπ,π2+2kπ],k∈Z[-π+2kπ,2kπ],k∈Z(-π2+kπ,π2+kπ),k∈Z续表函数y=sin x y=cos x y=tan x单调递减区间[π2+2kπ,3π2+2kπ],k∈Z[2kπ,π+2kπ],k∈Z无对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎪⎫kπ+π2,0,k∈Z⎝⎛⎭⎪⎫kπ2,0,k∈Z 对称轴x=kπ+π2,k∈Zx=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Zkπ,k∈Z常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则有φ=kπ+π2(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+π2(k ∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ). 常见误区1.对于y =tan x 不能认为其在定义域上为增函数,而是在每个开区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 2.求函数y =A sin(ωx +φ)的单调区间时要注意A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.1.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(易错点)函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠kx +π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z 解析:选D.由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,所以y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π2+π4,k ∈Z . 3.(多选)下列函数中,最小正周期为π的偶函数有( ) A .y =tan xB .y =|sin x |C .y =2cos xD .y =sin ⎝ ⎛⎭⎪⎫π2-2x解析:选BD.对于A 选项,函数y =tan x 为奇函数,不符合题意;对于B 选项,函数y =|sin x |是最小正周期为π的偶函数,符合题意;对于C 选项,函数y =2cos x 的最小正周期为2π,不符合题意;对于D 选项,函数y =sin ⎝ ⎛⎭⎪⎫π2-2x =cos 2x ,是最小正周期为π的偶函数,符合题意.故选BD.4.函数y =cos ⎝ ⎛⎭⎪⎫2x -π4的单调递减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )5.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,当φ∈⎣⎢⎡⎦⎥⎤-π2,π2时,φ的值为________.解析:由已知得π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).又因为φ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以当k =0时,φ=-π4符合条件.答案:-π4第1课时 三角函数的单调性与最值求三角函数的单调区间(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan(2x +π3)的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)由k π-π2<2x +π3<k π+π2(k ∈Z ),得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) 【引申探究】1.(变条件、变问法)若本例(1)f (x )变为:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3,求f (x )的单调递增区间.解:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3=-cos ⎝ ⎛⎭⎪⎫2x -π3,欲求函数f (x )的单调递增区间, 只需求y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z .故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).2.(变条件、变问法)本例(1)f (x )变为:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,试讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:令z =2x -π3,易知函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,又因为π4-⎝ ⎛⎭⎪⎫-π4=π2<T ,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.函数y =|cos x |的一个单调递增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A .函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C .函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减D .函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增解析:选C.由x ∈⎣⎢⎡⎦⎥⎤-π2,0得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,所以f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,所以f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,所以f (x )先减后增.三角函数单调性的应用 角度一 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 10π21,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sinπ3,因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上单调递增,且π3<10π21<π2,所以c <a <b .【答案】 B利用函数的单调性比较大小(1)比较同名三角函数的大小,首先把三角函数转化为同一单调区间上的三角函数,利用单调性,由自变量的大小确定函数值的大小;(2)比较不同名三角函数的大小,应先化成同名三角函数,再进行比较.角度二 利用三角函数的单调性求值域(最值)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3 (2)函数y =sin x -cos x +sin x cos x的值域为_________________________________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.(2)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2. 所以函数y 的值域为[-12-2,1]. 【答案】 (1)B (2)[-12-2,1] 【引申探究】1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6,则f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,1, 故f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-332,3. 答案:⎣⎢⎡⎦⎥⎤-332,3 2.(变条件)若本例(2)中x ∈[0,π],则函数f (x )的值域为________. 解析:设t =sin x -cos x ,则t =2sin ⎝ ⎛⎭⎪⎫x -π4,又x ∈[0,π],所以t ∈[-1,2]. t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. 所以函数y 的值域为[-1,1]. 答案:[-1,1]三角函数值域的求法(1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域.(3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域.1.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°解析:选C.因为sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin(90°-10°)=sin 80°,由正弦函数y =sin x 在0°≤x ≤90°上是增函数,得sin 11°<sin 12°<sin 80°,所以sin 11°<sin 168°<cos 10°,故选C.2.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B.⎣⎢⎡⎦⎥⎤-π6,0 C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3 解析:选B.记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2.因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.故选B.根据三角函数的单调性确定参数(一题多解)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D.13【解析】 方法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,所以⎩⎪⎨⎪⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.方法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎪⎨⎪⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B. 【答案】 B已知函数单调性求参数—— 明确一个不同,掌握两种方法(1)明确一个不同.“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)掌握两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.1.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π解析:选A.f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,则f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减.因为函数f (x )在[-a ,a ]上是减函数, 所以[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,所以0<a ≤π4,所以a 的最大值为π4.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:因为f (x )=sin ωx (ω>0)过原点, 所以当0≤ωx ≤π2,即0≤x ≤π2ω时, y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由已知得π2ω=π3,解得ω=32. 答案:32[A 级 基础练]1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( ) A.⎣⎢⎡⎭⎪⎫0,π2 B.⎝ ⎛⎦⎥⎤π2,π C.⎣⎢⎡⎭⎪⎫π,3π2 D.⎝ ⎛⎦⎥⎤3π2,2π 解析:选C.方法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎣⎢⎡⎭⎪⎫π,3π2.故选C. 方法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.下列关于函数y =4sin x ,x ∈[-π,π]的单调性的叙述,正确的是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2及⎣⎢⎡⎦⎥⎤π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π及⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数解析:选B.函数y =4sin x 在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上单调递减,在⎣⎢⎡⎦⎥⎤-π2,π2上单调递增.故选B.3.(2020·武汉市学习质量检测)已知函数f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3,则f (x )的最小值为( )A.12 B.14 C.34D.22解析:选 A.f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3=sin 2x +⎝ ⎛⎭⎪⎫12sin x +32cos x 2=54sin 2x +34cos 2x +32sin x cos x =34+1-cos 2x 4+34sin 2x =1+12⎝ ⎛⎭⎪⎫32sin 2x -12cos 2x =1+12sin ⎝ ⎛⎭⎪⎫2x -π6≥1-12=12,故选A. 4.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.通解:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B. 优解:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.解析:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ), 得-π12+k π≤x ≤5π12+k π(k ∈Z ), 又因为x ∈[-π,0],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.答案:⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,08.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值为1,则ω=________.解析:因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,则f (x )max =f ⎝ ⎛⎭⎪⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12.答案:129.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤32π,则π3≤x ≤5π6. 因为-π12≤x ≤π2,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减.当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12, 所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.12.(多选)关于函数f (x )=sin|x |-|cos x |,下列结论正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递减C .f (x )的最大值为 2D .当x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立解析:选ABD.因为f (-x )=sin|-x |-|cos(-x )|=sin|x |-|cos x |=f (x ),所以f (x )为偶函数,故A 正确;当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin|x |-|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,又x ∈⎝ ⎛⎭⎪⎫π2,π,所以令t =x +π4,则t ∈⎝ ⎛⎭⎪⎫3π4,5π4,y =2sin t 单调递减,所以B 正确;因为f (x )为偶函数,所以求函数f (x )的最大值可只考虑当x ≥0时的情况,又易知当x ≥0时,2π是其一个周期,所以只需研究x ∈[0,2π]时的情况,。
第2课时正弦函数、余弦函数的单调性与最值
【跟踪训练】 1.变式练将本例(2)变为:求函数 y=2cos( -x)的单调递 增区间. 解:y=2cos( -x)=2cos(x- ), 由 2kπ+π≤x- ≤2kπ+2π,k∈Z, 得 2kπ+ ≤x≤2kπ+ ,k∈Z. 所以原函数的单调递增区间是[2kπ+ ,2kπ+ ](k∈Z).
解析:当 sin x=-1,即 x=- +2kπ,k∈Z 时, 函数 y=2-sin x 取得最大值 3.
4.函数 y=3-2cos( x+ )的最大值为 5 , 此时自变量 x 的 取值是 3kπ+π,k∈Z .
解析:当 cos( x+ )=-1 时,ymax=3-2×(-1)=5.此时自变量 x=3kπ+π,k∈Z.
所以 ≤ω≤ ,故选 C. 答案:C
探索点二 比较三角函数值大小问题 【例 2】 比较下列各组数的大小:
(1)cos(- )与 cos(- );(2)sin 194°与 cos 160°.
【解题模型示范】
【跟踪训练】 4.cos 1,cos 2,cos 3 的大小关系是cos 1>cos 2>cos 3.(用 “>”连接)
课堂建构
解:(1)因为-1≤sin 2x≤1, 所以-2≤-2sin 2x≤2,所以 1≤3-2sin 2x≤5, 所以函数 y=3-2sin 2x 的值域是[1,5].
(2)由 y=cos(x+ ),x∈[0, ],得 x+ ∈[ , ].
六种三角函数性质
六种三角函数性质、公式三角函数包括。
它包含六种基本函数:正弦、余弦、正切、余切、正割、余割1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx.反三角函数:arcsinx arccosxarctanx arccotx函数y=sinx y=cosx y=tanx y=cotx定义域R R {x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数在(kπ-2π,在(kπ,kπ+π)内都是减函数(k∈Z)y=secx的性质:(1)定义域,{x|x≠π/2+kπ,k∈Z}(2)值域,|secx|≥1.即secx≥1或secx≤-1;(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.(5)正割与余弦互为倒数;余割与正弦互为倒数;(6)正割函数无限趋于直线x=π/2+Kπ;(7) 正割函数是无界函数;(8)正割函数的导数:(secx)′=secx×tarx;(9正割函数的不定积分:∫secxdx=ln∣secx+tanx∣+Cy=cscx的性1、定义域:{x|x≠kπ,k∈Z}2、值域:{y|y≤-1或y≥1}3、奇偶性:奇函数4、周期性:最小正周期为2π5、图像:图像渐近线为:x=kπ ,k∈Z 余割函数与正弦函数互为倒数第一部分三角函数公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)=sinα/(1-cosα) ·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinαsec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30tanα+cotα=2/sin2αtanα-cotα=-2cot21+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^21+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 5 2
2 3
2
2
O
2
1
3 2
2
5 2
3
x
最大值: 当
x
2
有最大值 y 1 2k 时,
有最小值 y 1 2k 时,
最小值:当x
2
探究:余弦函数的最大值和最小值 y
1
3 5 2
2 3
2
2
O
(k ,0) k Z
x k , k Z
( k ,0) k Z 2
对称中心:
对称中心:
周期求法:
• 1.定义法: • 2.公式法: 一般地,函数 y=Asin(ωx+φ) 及 y=Acos(ωx+φ) (其中A ,ω,φ为常数, 且 A≠0, ω≠0 )的周期是:
T 2
• 3.图象法:
( 0)
3.单调性
探究:正弦函数的单调性 y
1
3 5 2
2 3
2
2
O
2
1
3 2
2
5 2
3
x
探究:余弦函数的单调性 y
1
3 5 2
2 3
2
2
O
2
1
3 2
2
5 2
3
x
4.最值
探究:正弦函数的最大值和最小值 y
§1.4.2正弦余弦函数的性质
(1)定义域 (2)值 域
(3)单调性 (4)奇偶性 (5)对称性
(6)周期性
函数
y
1
y=sinx
y
y=cosx
1
图像
2
0
-1
2
3 2
2
5 2
x
0
-1
2
3 2
2
5 2
x
奇偶性
周期
奇函数
偶函数
2
对称轴:
2
对称轴:
对称性
x k , k Z 2
2
1
3 2
2
5 2
3
x
最大值: 当 最小值:当
x 0 2k 时, 有最大值 y 1
x 2k 时, 有最小值 y 1