北京市门头沟区2017-2018学年九年级上期末数学试卷(含答案解析)
2017-2018学年北京市门头沟区初三数学二模试卷(含答案)
门头沟区2018年初三年级综合练习(二)数 学 试 卷 2018.6一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在2018政府工作报告中,总理多次提及大数据、人工智能等关键词, 经过数年的爆发式发展,我国人工智能在2017年迎来发展的“应用元年”,预计2020年中国人工智能核心产业规模超1500亿元,将150 000 000 000用科学计数法表示应为 A .1.5×102B .1.5×1010C .1.5×1011D .1.5×10122.如果代数式221x x -+的结果是负数,则实数x 的取值范围是 A .2x > B .2x <C .1x ≠-D .21x x <≠-且3. 下列各式计算正确的是A .3423a a a += B .236a a a ⋅= C .624a a a ÷= D .238()a a = 4.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO 的度数为6.数轴上分别有A 、B 、C 三个点,对应的实数分别为a 、b 、c 且满足,a c >,0b c ⋅<,则原点的位置A .点A 的左侧B .点A 点B 之间C .点B 点C 之间D .点C 的右侧 7. 如图,已知点A ,B ,C ,D 是边长为1的正方形的顶点,连接任意两点均可得到一条线段,以下的树状图是所有可能发生的结果,在连接两点所得的所有线段中任取一条线段,取到长度为1的线段的概率为A .14B .13C .12 D .238.某中学举办运动会,在1500米的项目中,参赛选手在200米的环形跑道上进行,下图记录了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中x 代表的是最快的选手全程的跑步时间,y 代表的是这两位选手之间的距离,下列说不合理的是 AB 第二次相遇的用时短;C .最快的选手到达终点时,最慢的选手还有415米未跑;D .跑的最慢的选手用时446′″.二、填空题(本题共16分,每小题2分) 9.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是______. 10. 写出一个不过原点,且y 随x 的增大而增大的函数_________. 11. 如果23410a a +-=,那么2(21)(2)(2)a aa +--+的结果是 .12.某生产商生产了一批节能灯,共计10000个,为了测试节能灯的使用寿命(使用寿命大于等于6000小时为合格产品),从中随机挑选了100个产品进行测试,有5个不合格产品,预计这批节能灯有_________个不合格产品.a AB CCAD)DDCD C B 另一顶点1个顶点开始13. 如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.14. 某校为学生购买名著《三国演义》100套、《西游记》80套,共用了12000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x元,可列方程为_____________________.15.如图:已知Rt ABC请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A与点E重合、点B与点D重合,写出一种变化的过程_____.16.以下是通过折叠正方形纸片得到等边三角形的步骤依据是________________________.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26、27题7分,第28题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:()032232cos30π-++-+︒.18. 解不等式组:30229+2.xx x ⎧-⎪⎨⎪+⎩≤,≤4()19.已知:如图,在Rt △ABC 中,∠C =90°,点D 在CB 边上,∠DAB =∠B ,点E 在AB 边上且满足∠CAB =∠BDE . 求证: AE =BE .20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点(2,2)M .(1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例函数ky x=的图象相交于点1(,)A x b 、2(,)B x b , 当12x x <时,画出示意图并直接写出a 的取值范围.21.如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BF =BE . (1)求证:四边形BDEF 为平行四边形;(2)当∠C =45°,BD =2时,求D ,F 两点间的距离.22.已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且212y ax x =-,求这个函数的表达式.23.如图,BC 为⊙O 的直径,CA 是⊙O 的切线,连接AB 交⊙O 于点D ,连接CD ,∠BAC 的平分线交BC 于点E ,交CD 于点F . (1)求证:CE =CF ;(2)若BD =43DC ,求DF CF的值.24. 在“朗读者”节目的影响下,某中学在暑期开展了“好书伴我成长”读书话动,并要求读书要细读,最少要读完2本书,最多不建议超过5本。
2017-2018届北京市门头沟区九年级上学期期末考试数学试题及答案
门头沟区2017-2018学年度第一学期期末测试试卷九年级数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知325x,则x的值是A.103B.152C.310D.2152.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin B 的值是A.54B.53C.45D.35AB C4.如果反比例函数1m y x+=在各自象限内,y 随x 的增大而减小,那么m 的取值范围是A .m <0B .m >0C .m <-1D .m >-15.如图,⊙O 是△ABC 的外接圆,如果o100AOB ∠=,那么 ∠ACB 的度数是 A .40° B .50° C .60°D .80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是 A .14B .16C .12D .137.将抛物线25y x =先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A .25(2)3y x =++ B . 25(2)3y x =-+C .25(2)3y x =--D .25(2)3y x =+-8.如图,等边三角形ABC 边长为2,动点P 从点A 出发,以每秒1个单位长度的速度,沿A →B →C →A 的方向运动,到达点A 时停止.设运动时间为x 秒,y =PC ,则y 关于x 函数的图象大致为A B CD二、填空题:(本题共16分,每小题4分)9. 扇形的半径为9,圆心角为120°,则它的弧长为_______. 10.三角尺在灯泡O 的照射下在墙上形成的影子如图所示. 如果OA =20cm ,OA ′=50cm ,那么这个三角尺的周长与它在墙上形成影子的周长的比是 .11. 如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a ≠0)的对称轴是直线13x =,在下列结论中,唯一正确的是 . (请将正确的序号填在横线上) ① a <0;② c <-1; ③ 2a +3b =0;④ b 2-4ac <0;⑤ 当x =13时,y 的最大值为99c a -.12.如图,在平面直角坐标系xOy 中,正方形ABCD 顶点A(-1,-1)、B (-3,-1). 我们规定“把正方形ABCD 先沿x 轴翻折,再向右平移2个单位”为一次变换. (1)如果正方形ABCD 经过1次这样的变换得到正方形A 1B 1C 1D 1,那么B 1的坐标是 .影子三角尺灯泡OA A'(2)如果正方形ABCD 经过2017-2018次这样的变换得到正方形A 2017-2018B 2017-2018C 2017-2018D 2017-2018,那么B 2017-2018的坐标是 .三、解答题:(本题共30分,每题5分) 13.计算:tan 30cos 60tan 45sin 30.︒-︒⨯︒+︒14.已知抛物线y =x 2-4x +3.(1)用配方法将y =x 2-4x +3化成y =a (x -h )2+k 的形式; (2)求出该抛物线的对称轴和顶点坐标; (3)直接写出当x 满足什么条件时,函数y <0.15.如图,在△ABC 中,D 是AB 上一点,且∠ABC =∠ACD . (1)求证:△ACD ∽△ABC ;(2)若AD =3,AB =7,求AC 的长.[来16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B 的仰角为45°,看这栋高楼底部C 的俯角为60°,热气球与高楼的水平距离AD为20m ,求这栋楼的高度.(结果保留根号)ABCD17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB 于点E.(1)求证:∠BCO=∠D;AE=2,求⊙O的半径.(2)若CD=18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数my的图象的一个交点为A(2,3).x(1)分别求反比例函数和一次函数的表达式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,请直接写出点P的坐标.四、解答题:(本题共20分,每题5分).19.如图,在锐角△ABC中,AB=AC,BC=10,sin A=35(1)求tan B的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过点(-3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=1∠CAB.2(2)若AB=5,sin∠CBF BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).图1 图2请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC. 当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y= mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B 落在CD边上的点P处.图1 图2 (1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,说明理由.25.我们规定:函数ax k y x b+=+(a 、b 、k 是常数,k ≠ab )叫奇特函数.当a =b =0时,奇特函数ax k y x b+=+就是反比例函数ky x=(k 是常数,k ≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x 和y 后,得到新矩形的面积为8.求y 与x 之间的函数表达式,并判断它是否为奇特函数; (2)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 、C 坐标分别为(6,0)、(0,3),点D 是OA 中点,连接OB 、CD 交于E ,若奇特函数4ax k y x +=-的图象经过点B 、E ,求该奇特函数的表达式;(3)把反比例函数2y x=的图象向右平移4个单位,再向上平移 个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE 中点M 的一条直线l与这个奇特函数图象交于P ,Q 两点(P 在Q 右侧),如果以B 、E 、P 、Q 为顶点组成的四边形面积为16,请直接写出点P的坐标.以下为草稿纸门头沟区2017-2018学年度第一学期调研参考答案九 年 级 数 学一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每题5分)13.解:tan 30cos 60tan 45sin 30︒-︒⨯︒+︒11122=-⨯+ …………………………………………………………………4分 =. …………………………………………………………………5分14.解:(1)y =x2-4x +4-4+3 …………………………………………………………1分=(x -2)2-1 (2)分(2)对称轴为直线2x =,顶点坐标为(2,-1). (4)分 (3)1<x<3. …………………………………………………………………5分15.(1)证明:∵∠A =∠A ,∠ABC =∠ACD ,…………………………………………1分∴ △A C D ∽△ABC. ……………………………………………………2分(2)解:∵ △ACD ∽△ABC ,∴.AC AD AB AC= (3)分∴ 3.7AC AC= (4)分∴AC ………………………………………………………………5分16.解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.………………………………………………………………2分在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=…4分∴B C=B D+C D=20+(m).………………………………………………5分m.答:这栋楼高为(20+∴∠B C O=∠B.…………………………………………………………1分∵AC AC=,∴∠B=∠D,∴∠B C O=∠D.…………………………………………………………2分(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=11CD=⨯ (3)22分在Rt △OCE 中,OC 2=CE 2+OE 2,设⊙O 的半径为r ,则OC =r ,OE =OA -AE =r -2, ∴(()2222r r =+-,…………………………………………………4分解得:r =3,∴⊙O 的半径为3.………………………………………………………5分18.解:(1)把A (2,3)代入m y x =,∴ 32m =. ∴ m =6.∴6y x=.…………………………………………………………………1分把A (2,3)代入y =kx +2,∴2k +2=3,……………………………………………………………………2分∴ 12k =. ∴122y x =+.………………………………………………………………3分(2)P 1(1,6)或P 2(-1,-6).…………………………………………5分四、解答题(本题共20分,每题5分)19.解:(1)如图,过点C 作C D ⊥A B ,垂足为D . (1)分∵ 在Rt △ADC 中,∠ADC =90°, ∴3sin 5CD A AC ==. 设CD =3k ,则AB =AC =5k .∴AD4k ,…2分∴BD =AB -AD =5k -4k =k ,∴3tan 3CD k B BD k===. (3)分 (2)在Rt △BDC 中,∠BDC =90°, ∴BC =. ∵B C =10,∴10=, (4)分 ∴k =∴AB =5k =…5分 20.解:(1)∵抛物线y =-x 2+bx +c 经过点(-3,0)和(1,0).∴930,10.b c b c --+=⎧⎨-++=⎩………………………………………………………1分 解得2,3.b c =-⎧⎨=⎩……………………………………………………………2分∴抛物线的表达式为y =-x 2-2x +3.……………………………………3分(2)正确画出图象.…………………………………………………………4分(3)2<t ≤4.……………………………………………………………………5分21.(1)证明:连结AE .∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵BF 是⊙O 的切线,∴BF ⊥AB ,∴∠CBF +∠2=90°.∴∠C B F =∠1. …………………………………………………………1分∵AB=AC ,∠AEB=90°,∴∠1=21∠CAB . ∴∠C B F =21∠CAB . ……………………………………………………2分(2)解:过点C 作CG ⊥AB 于点G .∵sin ∠CBF=55,∠1=∠CBF , ∴sin ∠1=55.∵∠AEB=90°,AB =5.∴BE=AB ·sin ∠1=5.∵AB=AC ,∠AEB=90°,∴BC=2BE =52.…………………………………………………………3分在Rt △ABE 中,由勾股定理得5222=-=BE AB AE . ∴sin ∠2=552,cos ∠2=55.在Rt △CBG 中,可求得GC=4,GB=2.∴AG=3. ……………………………………………………………………4分∵GC ∥BF ,∴△AGC ∽△ABF . ∴ABAG BF GC =, ∴320=⋅=AG AB GC BF .…………………………………………………5分22.解:图1中∠P P ′C 的度数等于90°.………………………………………………1分图1中∠A P B 的度数等于150°.………………………………………………3分如图,在y 轴上截取OD =2,作CF ⊥y 轴于F ,AE ⊥x 轴于E ,连接AD 和CD .∵点A 的坐标为(1),∴tan ∠AOE=,∴AO =OD =2,∠AOE =30°,∴∠AOD =60°.∴△A O D 是等边三角形. ………………………………………………………4分又∵△ABC 是等边三角形,∴AB =AC ,∠CAB =∠OAD =60°,∴∠CAD =∠OAB ,∴△ADC ≌△AOB .∴∠ADC =∠AOB =150°,又∵∠ADF =120°,∴∠CDF=30°..∴DF,∴y-∴y=五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)证明:∵m≠0,∴mx2+(3m+1)x+3=0是关于x的一元二次方程.∴△=(3m+1)2-12m………………………………………………………1分=(3m-1)2.∵ (3m-1)2≥0,∴方程总有两个实数根.………………………………………………2分(2)解:由求根公式,得x1=-3,x2=1.……………………………………3分m∵方程的两个根都是整数,且m为正整数,∴m=1.……………………………………………………………………4分(3)解:∵m=1时,∴y=x2+4x+3.∴抛物线y=x2+4x+3与x轴的交点为A(-3,0)、B(-1,0).依题意翻折后的图象如图所示.…………………………………………5分当直线y=x+b经过A点时,可得b=3.当直线y=x+b经过B点时,可得b=1.∴1<b<3.…………………6分当直线y=x+b与y=-x2-4x-3的图象有唯一公共点时,可得x+b=-x2-4x-3,∴x2+5x+3+b=0,∴△=52-4(3+b) =0,.∴b=134∴b>13. (4)…7分综上所述,b的取值范围是1<b<3,b>13.4 24.解:(1)①如图1,∵四边形ABCD是矩形,∴∠C =∠D =90°.………………………………………………………1分∴∠1+∠3=90°.∵由折叠可得∠APO =∠B =90°,∴∠1+∠2=90°.∴∠2=∠3.……………………2分又∵∠D =∠C ,∴△OCP ∽△PDA .……………………………………………………3分② 如图1,∵△OCP 与△PDA 的面积比为1:4,∴12OPCP PA DA ==.∴CP =12AD =4. 设OP =x ,则CO =8-x .在Rt△PCO 中,∠C =90°,由勾股定理得 x 2=(8-x )2+42.…………………………………………4分解得:x =5.∴AB =AP =2OP =10.………………………………………………………5分∴边AB 的长为10.(2)作MQ ∥AN ,交PB 于点Q ,如图2.∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP .∴MP =MQ .又BN =PM ,∴BN =QM .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ . ∵MQ ∥AN ,∴∠QMF =∠BNF .又∵∠QFM =∠NFB ,∴△MFQ ≌△NFB .∴QF =12QB . ∴EF =EQ +QF =12PQ +12QB =12PB .……………………………………6分由(1)中的结论可得:PC =4,BC =8,∠C =90°.∴PB=EF =12PB =.∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为 (7)分25.解:(1)由题意得,(2+x )(3+y )=8. ∴832y x +=+. ∴832y x =-+322x x -+=+.…………………………………………………1分根据定义,322x y x -+=+是奇特函数. (2)分 (2)由题意得,B (6,3)、D (3,0),∴点E (2,1). (3)分将点B (6,3)和E (2,1)代入4ax k y x +=-得 63,6421.24a k a k +⎧=⎪⎪-⎨+⎪=⎪⎩- ……………………………………………………………4分 解得2,6.a k =⎧⎨=-⎩ ∴奇特函数的表达式为264x y x -=-.……………………………………5分(3)2.……………………………………………… (6)分 (4)P1(,4)、P 2(8,). (8)分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分,谢谢!。
【精选3份合集】2017-2018年北京市九年级上学期数学期末质量检测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若23=ABBC,DE=4,则EF的长是()A.83B.203C.6 D.10【答案】C【分析】根据平行线分线段成比例可得AB DEBC EF=,代入计算即可解答.【详解】解:∵l1∥l2∥l3,∴AB DE BC EF=,即243EF =,解得:EF=1.故选:C.【点睛】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.2.如果2a=5b,那么下列比例式中正确的是()A.25ab=B.25ab=C.52ab=D.25a b=【答案】C【分析】由2a=5b,根据比例的性质,即可求得答案.【详解】∵2a=5b,∴52ab=或52a b=.故选:C.【点睛】此题主要考查比例的性质,解题的关键是熟知等式与分式的性质.3.下列语句,错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦【答案】B【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.∵在同圆或等圆中,相等的圆心角所对的弧相等,∴相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【点睛】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.4.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )A .13B .25C .12D .35【答案】B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球, ∴从袋子中随机摸出一个球,它是黄球的概率为:25. 故选B .5.如果抛物线()22y a x =+开口向下,那么a 的取值范围为( ) A .2a >B .2a <C .2a >-D .2a <-【答案】D 【分析】由抛物线的开口向下可得不等式20a +<,解不等式即可得出结论.【详解】解:∵抛物线()22y a x =+开口向下, ∴20a +<,∴2a <-.故选D .【点睛】本题考查二次函数图象与系数的关系,解题的关键是牢记“0a >时,抛物线向上开口;当0a <时,抛物线向下开口.”6.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上B .它的图象顶点坐标为(0,4)C .它的图象对称轴是y 轴D .当0x =时,y 有最大值4【答案】D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵224y x =+,∴抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4,故A 、B 、C 正确,D 错误;故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ).7.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高1.2,0.6,30CD m DE m BD m ===(点,,B E D 在同一条直线上).已知小明身高EF 是1.6m ,则楼高AB 为( )A .20mB .21.2mC .31.2mD .31m【答案】B 【分析】过点C 作CN ⊥AB ,可得四边形CDME 、ACDN 是矩形,即可证明CFM CAN ∽,从而得出AN ,进而求得AB 的长.【详解】过点C 作CN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDEM 、BDCN 是矩形,∴ 1.2300.6BN ME CD m CN BD m CM DE m =======,,,∴ 1.6 1.20.4MF EF ME m =-=-=,依题意知,EF ∥AB ,∴CFM CAN ∽,∴CM FM CN AN =,即:0.60.430AN=, ∴AN=20,20 1.221.2AB AN BN =+=+=(米),答:楼高为21.2米.故选:B .【点睛】本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.8.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 【答案】C【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.下列函数属于二次函数的是( )A .y =x ﹣1x B .y =(x ﹣3)2﹣x 2 C .y =21x ﹣x D .y =2(x+1)2﹣1 【答案】D【分析】由二次函数的定义:形如()20y ax bx c a =++≠,则y 是x 的二次函数,从而可得答案.【详解】解:A .自变量x 的次数不是2,故A 错误;B .()223y x x =--整理后得到69y x =-+,是一次函数,故B 错误C .由221y x x x x-=-=-可知,自变量x 的次数不是2,故C 错误; D .()2211y x =+-是二次函数的顶点式解析式,故D 正确.故选:D .【点睛】本题考查的是二次函数的定义,掌握二次根式的定义是解题的关键.10.用配方法解一元二次方程2210x x +-=,可将方程配方为A .()212x +=B .()210x +=C .()212x -=D .()210x -= 【答案】A【解析】试题解析:2210,x x +-= 221,x x +=22111,x x ++=+()21 2.x ∴+=故选A.11.一根水平放置的圆柱形输水管横截面积如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是( )A .4米B .5米C .6米D .8米【答案】B 【详解】解:∵OC ⊥AB ,AB=8米,∴AD=BD=4米,设输水管的半径是r ,则OD=r ﹣2,在Rt △AOD 中,∵OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+42,解得r=1.故选B .【点睛】本题考查垂径定理的应用;勾股定理.12.下列各点中,在反比例函数3y x =图象上的是( ) A .(3,1)B .(-3,1)C .(3,13)D .(13,3) 【答案】A 【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A 、∵3×1=3,∴此点在反比例函数的图象上,故A 正确;B 、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B 错误;C 、∵13=133, ∴此点不在反比例函数的图象上,故C 错误; D 、∵13=133, ∴此点不在反比例函数的图象上,故D 错误; 故选A.二、填空题(本题包括8个小题)13.把抛物线2112y x =-+沿着x 轴向左平移3个单位得到的抛物线关系式是_________. 【答案】21(3)12y x =-++ 【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式,写出抛物线解析式,即可. 【详解】由题意知:抛物线2112y x =-+的顶点坐标是(0,1). ∵抛物线向左平移3个单位∴顶点坐标变为(-3,1).∴得到的抛物线关系式是21(3)12y x =-++. 故答案为21(3)12y x =-++. 【点睛】本题主要考查了二次函数图像与几何变换,正确掌握二次函数图像与几何变换是解题的关键. 14.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.【答案】120°【分析】利用圆周角定理得到∠BAC =12∠BOC ,再利用∠BAC+∠BOC =180°可计算出∠BOC 的度数. 【详解】解:∵∠BAC 和∠BOC 所对的弧都是BC ,∴∠BAC =12∠BOC ∵∠BAC+∠BOC =180°, ∴12∠BOC+∠BOC =180°, ∴∠BOC =120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.15.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为(0)x x >,六月份的营业额为y 万元,那么y 关于x 的函数解式是______.【答案】22001y x =+()或2200400200y x x =++ 【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x 表示出五月份的营业额,再根据题意表示出六月份的营业额,即可列出方程求解.【详解】解:设增长率为x ,则五月份的营业额为:200(1)y x =+,六月份的营业额为:22202004002(1)000x x y x +==++;故答案为:2200(1)y x =+或2200400200y x x =++.【点睛】本题考查了一元二次方程的应用中增长率问题,若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a (1±x )1.增长用“+”,下降用“-”.16.两个相似多边形的一组对应边分别为2cm 和3cm ,那么对应的这两个多边形的面积比是__________【答案】4:9【分析】根据相似三角形面积的比等于相似比的平方列式计算即可.【详解】解:因为两个三角形相似, ∴较小三角形与较大三角形的面积比为(23 )2=49 , 故答案为:49. 【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.17.点A (a ,3)与点B (﹣4,b )关于原点对称,则a +b =_____.【答案】1.【解析】试题分析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b .试题解析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a=4且b=-3,∴a+b=1.考点:关于原点对称的点的坐标.18.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)【答案】不能【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B (0,-3)、C (2,-3),∴BC ∥x 轴,而点A (1,-3)与C 、B 共线,∴点A 、B 、C 共线,∴三个点A (1,-3)、B (0,-3)、C (2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.三、解答题(本题包括8个小题)19.已知关于x 的方程2(1)220k x kx -++=(1)求证:无论k 为何值,方程总有实数根.(2)设1x ,2x 是方程2(1)220k x kx -++=的两个根,记211212x x S x x x x =+++,S 的值能为2吗?若能,求出此时k 的值;若不能,请说明理由.【答案】(1)见解析;(2)2k =时,S 的值为2【解析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;(2)由韦达定理得121222,,11k x x x x k k +=-=--,代入到2112122x x x x x x +++=中,可求得k 的值. 【详解】解:(1)①当10k -=,即k=1时,方程为一元一次方程220x +=,∴1x =-是方程的一个解.②当10k -≠时,1k ≠时,方程为一元二次方程,则222(2)42(1)4884(1)40k k k k k ∆=-⨯-=-+=-+>,∴方程有两不相等的实数根.综合①②得,无论k 为何值,方程总有实数根.(2)S 的值能为2,根据根与系数的关系可得121222,11k x x x x k k +=-⋅=-- ∴22211212121212()x x x x S x x x x x x x x +=+++=++=22121212()22()2211x x k k x x x x k k +++=--=--, 即2320k k -+=,解得11k =,22k =∵方程有两个根,∴10k -≠∴1k =应舍去,∴2k =时,S 的值为2【点睛】 本题考查了根与系数的关系及根的判别式,熟练掌握12b x x a +=-,12c x x a⋅=是解题的关键. 20.某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为x 元(30x >)时,每周的销售量y (件)满足关系式:10600y x =-+.(1)若每周的利润W 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元? (2)当3552x ≤≤时,求每周获得利润W 的取值范围.【答案】(1)售价应定为每件40元;(2)每周获得的利润的取值范围是1250元W ≤≤2250元.【分析】(1)根据题意列出方程即可求解;(2)根据题意列出二次函数,根据3552x ≤≤求出W 的取值.【详解】解:(1)根据题意得()()30106002000x x --+=,解得140x =,250x =.∵让消费者得到最大的实惠,∴140x =.答:售价应定为每件40元.(2)()()230106001090018000W x x x x =--+=-+- ()210452250x =--+.∵100-<,∴当45x =时,W 有最大值2250.当35x =时,1250W =;当52x =时,1760W =.∴每周获得的利润的取值范围是1250元W ≤≤2250元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出方程或二次函数进行求解. 21.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形统计图(如图1)和不完整的扇形图(如图2),其中条形统计图被墨迹遮盖了一部分.(1)求条形统计图中被遮盖的数,并写出册数的中位数;(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没有改变,则最多补查了____人.【答案】(1)被遮盖的数是9,中位数为5;(2)1.【分析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;(2)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【详解】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24-5-6-4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了1人.故答案为1.【点睛】本题考查了统计图和中位数,解题的关键是明确题意,找出所求问题需要的条件.22.根据要求完成下列题目:(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.【答案】6,根据三视图的基本画法,画出其基本三视图【分析】试题分析:小正方形的数=3+2+1=6考点:简单图形三视图的画法点评:三视图的图形画法是常考知识点,需要考生在熟练把握的基础上画出各种图形的三视图【详解】23.()1解方程组:39 24 x yx y-=⎧⎨+=⎩;()2化简: 2442m mm m m --⎛⎫-÷ ⎪⎝⎭. 【答案】()132x y =⎧⎨=-⎩;()2 2–2m m 【分析】(1)运用加减消元法解答即可;(2)按分式的四则混合运算法则解答即可.【详解】解:(1)3924x y x y -=⎧⎨+=⎩①② ②×3+①得:7x=21,解得x=3③将③代入①得y=-2所以该方程组的解为x=3y=-2⎧⎨⎩(2)2442m m m m m --⎛⎫-÷ ⎪⎝⎭ =22442m m m m m ⎛⎫-+⨯ ⎪-⎝⎭=()2222m m m m -⨯- =m (m-2)=m 2-2m【点睛】本题考查了二元一次方程组和分式的四则混合运算,掌握二元一次方程组的解法和分式四则混合运算的运算法则是解答本题的关键.24.教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图 乙射靶成绩的折线统计图(1)请你根据图中的数据填写下表:(2)根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.【答案】(1)【答题空1】6 6 2.8(2)利用见解析.【分析】(1)先求出甲射击成绩的平均数,通过观察可得到乙的众数,再根据乙的平均数结合方差公式求出乙射击成绩的方差即可;(2)根据平均数和方差的意义,即可得出结果.【详解】解:(1)5676665x ++++==甲,乙的众数为6, 2S 乙 ()()()()()2222213666667686 2.85⎡⎤=⨯-+-+-+-+-=⎣⎦. (2)因为甲、乙的平均数与众数都相同,甲的方差小,所以更稳定,因此甲的成绩好些.【点睛】本题考查了平均数、众数、方差的意义等,解题的关键是要熟记公式,在进行选拔时要结合方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 25.某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)m 的值为 ;(2)该班学生中考体育成绩的中位数落在 组;(在A 、B 、C 、D 、E 中选出正确答案填在横线上) (3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)18;(2)D组;(3)图表见解析,2 3【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案为:18;(2)∵全班学生人数有50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段,∴落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6种等情况数,∴恰好选到一男一女的概率是=46=23.【点睛】此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键.26.先化简,再求值:2224x xx+-÷(1+x+222xx+-),其中x=tan60°﹣tan45°.【答案】11x+,33.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【详解】原式()()()()()21222222x x x x x x x x +--++=÷+--()122x x x x x +=÷-- 2x x =-•()21x x x -+ 11x =+.当x=tan60°﹣tan45°=1时,原式=== 【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.27.已知二次函数222y x kx =-+.(1)当2k =时,求函数图象与x 轴的交点坐标;(2)若函数图象的对称轴与原点的距离为2,求k 的值.【答案】(1)()2和()2;(2)1k =或-1.【分析】(1)把k=2代入222y x kx =-+,得242y x x =-+.再令y=0,求出x 的值,即可得出此函数图象与x 轴的交点坐标;(2)函数图象的对称轴与原点的距离为2,列出方程求解即可.【详解】(1)∵2k =,∴242y x x =-+,令0y =,则2420x x -+=,解得2x =±∴函数图象与x 轴的交点坐标为()2和()2.(2)∵函数图象的对称轴与原点的距离为2, ∴2221k --=±⨯, 解得1k =或-1.【点睛】本题考查了抛物线与x 轴的交点,二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的交点与一元二次方程ax 2+bx+c=0根之间的关系:△=b 2-4ac 决定抛物线与x 轴的交点个数.△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A.一直不变B.一直变大C.先变小再变大D.先变大再变小【答案】D【解析】如图,连接OP,PF,作PH⊥AB于H.点P的运动轨迹是以O为圆心、OP为半径的⊙O,易知EF=2FH=222--PH的值由大变小再变大,推出EF的值由小变大16PF PH PH再变小.【详解】如图,连接OP,PF,作PH⊥AB于H.∵CD=8,∠COD=90°,∴OP=1CD=4,2∴点P的运动轨迹是以O为圆心OP为半径的⊙O,∵PH⊥EF,∴EH=FH,∴EF=2FH=222PF PH PH-=-16观察图形可知PH的值由大变小再变大,∴EF的值由小变大再变小,故选:D.【点睛】此题主要考查圆与几何综合,解题的关键是熟知勾股定理及直角坐标系的特点.2.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.152B.43C.215D55【答案】C【解析】∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴DE EF AE EB=,∴4212EB=,∴EB=6,∵CF=CB,CG⊥BF,∴BG=12BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG=22BC BG-=2282-=215,故选C.点睛:此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.3.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=43GE;④S四边形CEGF=S△ABG,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据正方形的性质证明△ABE≌△BCF,可证得①AE⊥BF;②AE=BF正确;证明△BGE∽△ABE,可得BGGE=ABBE=32,故③不正确;由S△ABE=S△BFC可得S四边形CEGF=S△ABG,故④正确.【详解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,又∵BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∴∠FBC+∠BEG=∠BAE+∠BEG=90°,∴∠BGE=90°,∴AE⊥BF,故①,②正确;∵CF=2FD,BE=CF,AB=CD,∴ABBE=32,∵∠EBG+∠ABG=∠ABG+∠BAG=90°,∴∠EBG=∠BAE,∵∠EGB=∠ABE=90°,∴△BGE∽△ABE,∴BGGE=ABBE=32,即BG=32GE,故③不正确,∵△ABE≌△BCF,∴S△ABE=S△BFC,∴S△ABE−S△BEG=S△BFC−S△BEG,。
北京市门头沟区届九年级数学上学期期末考试试题【含答案】
E D CBA门头沟区2016~2017学年度第一学期期末调研试卷九年级数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果23a b=(a ≠0、b ≠0),那么下列比例式变形错误的是 A .23a b = B .32b a = C .32a b = D .32a b = 2.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点 均在格点上,则sin ∠ABC 的值为A . 3B . 13CD .3. ⊙O 的半径为4,点P 到圆心O 的距离为d ,如果点P 在圆内,则d A. 4d < B. =4d C. 4d > D. 4d 0≤<4. 甲、乙、丙三名运动员参加了射击预选赛,他们射击的平均环数-x 及其方差2s 如下表所示.需要选一个成绩较好且状态稳定的人去参赛,如果选定的是乙,则乙的情况应为 A.8x =,20.7S = B. 8x = ,2 1.2S = C.9x =,21S = D. 9x = ,2 1.5S =5. 将抛物线y = x 2的图像向左平移2个单位后得到新的抛物线,那么新抛物线的表达式是A .()22y x =- B .()22y x =+ C .22y x =- D .22y x =+6.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =2,DB =1,4ADE S ∆=,则DBCE S 四边形A. 3B. 5C. 7D. 97.在正三角形、正四边形、正五边形、正六边形、正八边形5个图形中既是轴对称又是 中心对称的图形有AA. 2B. 3C. 4D. 58. 如图,已知⊙O 的半径为5,弦AB 长为8,则点O 到弦AB 的距离是 A. 2 B. 3 C. 49. 如图:反比例函数6y x=的图像如下,在图像上任取一点P ,过P 点作x 轴的垂线交x 轴于M ,则三角形OMP 的面积为A. 2B. 3C. 6D. 不确定10.在学完二次函数的图像及其性质后,老师让学生们说出223y x x =--的图像的一些性质,小亮说:“此函数图像开口向上,且对称轴是1x =”;小丽说:“此函数肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”;小强说:“此函数有最小值,3y =-”……请问这四位同学谁说的结论是错误的A. 小亮B. 小丽C.小红D. 小强二、填空题(本题共18分,每小题3分) 11.若25a b a -=,则a b = .12.为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律, 利用一面镜子和一根皮尺,设计如图所示的测量方案: 把一面很小的镜子放在离树底()10B 米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得 2.0DE =米,观察者目高 1.6CD =米,则树()AB 的高度约为 米.13.请写出一个过(2,1),且与x 轴无交点的函数表达式_____________________. 14. 扇面用于写字作画,是我国古代书法、绘画特有 的形式之一,扇面一般都是由两个半径不同的 同心圆按照一定的圆心角裁剪而成,如右图, 此扇面的圆心角是120°,大扇形的半径为20cm , 小扇形的半径为5cm ,则这个扇面的面积是 . 15.记者随机在北京某街头调查了100名 路人使用手机的情况,使用的品牌及 人数统计如右图,则本组数据的 众数为________.16.在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN ,然后任意作了一条弦(非直径),如图1, 接下来老师提出问题:在保证弦AB 长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB 与直径MN 保持垂直关系,如图2,它们的交点就是弦AB 的中点.请你说出小华此想法的依据是_____________________.三、解答题(本题共30分,每小题5分)17.计算:(11π4sin 452-⎛⎫- ⎪⎝⎭.BCD18. 如图,将①∠BAD = ∠C ;②∠ADB = ∠CAB ;③BC BD AB ⋅=2;④DB AB AD CA =;⑤ACDABA BC =中的一个作为条件,另一个作为结论,组成一个真命题 . (1)条件是__________,结论是_______;(注:填序号) (2)写出你的证明过程.19.已知二次函数 y = x 2-2x -8.(1)将y = x 2-2x -8用配方法....化成y = a (x -h )2+ k 的形式; (2)求该二次函数的图象的顶点坐标; (3)请说明在对称轴左侧图像的变化趋势.20. 如图,ABC △在方格纸中(1)请在方格纸上建立平面直角坐标系,使2,342A C (),(,),并求出B 点坐标; (2)以原点O 为位似中心,相似比为2,在第一象限内将ABC △放大,画出放大后的图形A B C '''△.21.在平面直角坐标系xOy 中,反比例函数ky x=(0k ≠)的图象过(2,3). (1)求反比例函数ky x=的表达式; (2)有一次函数(0)y mx m =≠的图像与反比例函数ky x=在第一象限交于点A ,第三象限交于点B ,过点A 作AM x M ⊥轴于点,过点B 作BN y N ⊥轴于点,当两条垂线段满足2倍关系时,请在坐标系中作出示意图并直接写出m 的取值.22.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25CD m =,颖颖与楼之间的距离30DN m =(C ,D ,N 在一条直线上),颖颖的身高 1.6BD m =,亮亮蹲地观测时眼睛到地面的距离0.8AC m =; 请根据以上测量数据帮助他们求出住宅楼的高度.四、解答题(本题共20分,每小题5分) 23.已知二次函数y = x 2+m x +m -2.(1)求证:此二次函数的图象与x 轴总有两个交点;(2)如果此二次函数的图象与x 轴两个交点的横坐标之和等于3,求m 的值.24.已知:如图,ABC △中,D E 、分别是边BC AB 、的中点,AD CE 、相交于G ,请写出:GE CE 的比值,并加以证明.MNB AC D21题备用图BCDG EAA25.已知二次函数2(1)2(3)y m x mx m =-+++.(1)如果该二次函数的图象与x 轴无交点,求m 的取值范围;(2)在(1)的前提下如果m 取最小的整数,求此二次函数表达式.26.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求⊙O 的直径.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,二次函数图像所在的位置如图所示: (1)请根据图像信息求该二次函数的表达式;(2)将该图像(x >0)的部分,沿y 轴翻折得到新的图像,请直接写出翻折后的二次函数表达式;(3)在(2)的条件下与原有二次函数图像构成了新的图像,记为图象G ,现有一次函数23y x b =+的图像与图像G 有4个交点, 请画出图像G 的示意图并求出b28.已知在Rt △ABC 中,∠ABC =90°,点P 是AC 的中点.(1)当∠A=30°且点M 、N 分别在线段AB 、BC 上时,∠MPN =90°,请在图1中将图形补充完整,并且直接写出PM 与PN 的比值;(2)当∠A=23°且点M 、N 分别在线段AB 、BC 的延长线上时,(1)中的其他条件不变,请写出PMM与PN比值的思路.29.在平面直角坐标系xOy中,对于点P(x,y)(x≥0)的每一个整数点,给出如下定义:如果P也是整数点,则称点'P为点P的“整根点”.例如:点(25,36)的“整根点”为点(5,6).(1)点A(4,8),B(0,16),C(25,-9)的整根点是否存在,若存在请写出整根点的坐标;(2)如果点M对应的整根点'M的坐标为(2,3),则点M的坐标;(3)在坐标系内有一开口朝下的二次函数24(0y ax x a=+≠),如果在第一象限内的二次函数图像内部(不在图像上),若存在整根点的点只有三个请求出实数a的取值范围.图1 图2备用图门头沟区2016~2017学年度第一学期期末调研评分标准九年级数学一、选择题(本题共30分,每小题3分)BC二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)解:原式12=+--……………………………………………………………4分1.=………………………………………………………………………5分18.(本小题满分5分)(1)证明:条件正确; ………………………………………1分 结论;(条件支持的结论)………………………………2分 (2)条件正确 ……………………………………………3分得出△ABD ∽△CBA , ……………………………………………4分 得出结论:……………………………………………………………5分 19.(本小题满分5分) 解:(1)y =x 2-2x -8=x 2-2x +1-9 …………………………………………………………2分=(x -1)2-9. ……………………………………………………………………3分 (2)∵y =(x -1)2-9,∴该二次函数图象的顶点坐标是(1,-9). ………………………………………4分 (3)在对称轴左侧,y 随x 的增大而减小. ……………………………5分x20.(本小题满分5分)解:(1)坐标系正确,如图所示 , …………………1分点B 的坐标为(1,1); …………………2分 (2)画位似图形正确 ………………………5分21.(本小题满分5分) 解:(1)∵反比例函数ky x=(0k ≠)的图象过(2,3), ∴32k=, ……………………………………………1分 解得6k = …………………………………………2分∴反比例函数表达式为6y x=(2)草图:正确 ……………………………………………3分122m m ==或 ………………………………………………5分 22.(本小题满分5分)解:过A 作CN 的平行线交BD 于E ,交MN 于F .…………………………………………………1分由已知可得FN =ED =AC =0.8m ,AE =CD =1.25m ,EF =DN =30m , ∠AEB =∠AFM =90°. 又∵∠BAE=∠MAF ,∴△ABE ∽△AMF .…………………………………………………………2分 ∴.AE BEAF MF= …………………………………………………………3分1.250.8.1.2530MF=+解得MF =20m . ……………………………………………………4分 ∴MN =MF +FN =20+0.8=20.8m .………………………………………5分 答:住宅楼的高度为20.8m . 四、解答题(本题共20分,每小题5分) 23.(本小题满分5分)(1)证明:∵12a b m c m ===-,,∴△=m 2-4m +8 ………………………………………………………1分=(m -2)2+4…………………………………………………………2分 ∵(m -2)2≥0, ∴(m -2)2+4>0∴此二次函数的图象与x 轴总有两个交点.…………………………………3分(2)解:令y =0,得x 2+m x +m -2=0,解得 x 1,x2………………………4分∵二次函数的图象与x 轴两个交点的横坐标之和等于3 ∴-m =3,解得,m =-3 …………………………………………………………………5分24.(本小题满分5分)(1)结论::1:3GE CE = ……………………………………1分(2)证明:连结ED , …………………………………2分D E ∵、分别是边BC AB 、的中点,12DE DE AC AC =∴∥,, ……………………………………3分ACG DEG ∴△∽△, ……………………………………4分 12GE DE GC AC ==∴,BCDG EA13GE CE =∴. ……………………………………5分 25.(本小题满分5分)解:(1)∵二次函数2(1)2(3)y m x mx m =-+++的图象与x 轴无交点,∴△<0, ………………………………………………1分 ∴244(1)(3)0m m m --+<, …………………………………………………………2分 解得32m >. ……………………………………………………3分(2)根据题意得 解得m =2.∴二次函数的表达式是245y x x =++.……………………………………………………5分26.(本小题满分5分)(1)证明:连接OD ,∵CD 是⊙O 切线,∴∠ODC =90°,即∠ODB +∠BDC =90°, ∵AB 为⊙O 的直径,∴∠ADB =90°,即∠ODB +∠ADO =90°,∴∠BDC =∠ADO , …………………………………………1分 ∵OA =OD ,∴∠ADO =∠A ,∴∠BDC =∠A ;…………………………………………2分 (2)∵CE ⊥AE ,∴∠E =∠ADB =90°,∴DB ∥EC ,∴∠DCE =∠BDC , …………………………………………3分 ∴∠DCE =∠A ,∵CE =4,DE =21tan tan 2A DCE ∴∠=∠=∴在Rt △ACE 中,可得AE =8∴AD=6 ……4分 在在Rt △ADB 中 可得BD =3∴根据勾股定理可得AB =…………………………………………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.(本小题满分7分)解:(1)∵根据图像特征设出解析式代入正确 ………………………1分∴得出表达式:234x y x =-+. …………………………………………2分 (2)表达式为234x y x =++ (0x <)…………………………………………………3分 (3)示意图正确 ………………………………………………………4分MEM另22334x b x x ++=+ 整理得:230103x b x +-=+△=21041(3)03b ⎛⎫-⨯⋅- ⎪⎝⎭>解得:29b > ………………5分当23y x b =+过(0,3)时,3b = ………………6分 所以综上所述符合题意的b 的取值范围是239b << ……………………………………………7分28.(本小题满分7分)(1)补充图形正确 ……………………………………………1分PM PN =……………………………………………2分 (2)作出示意图 ……………………………………………3分思路:在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F ………………………4分 由PF ⊥BC 和∠ABC =90º可以得到AB PF ∥,∠PFC =90º进而得到∠A =∠FPC ;由∠PFC =∠AEP= 90º, AP=PC 可以得到 △AEP ≌ △PFC ,进而推出AE=PF ;由点P 处的两个直角可以得到∠EPM =∠FPN , 进而可以得到△MEP ∽ △NPF ,由此可以得到PFPE =PN PM等量代换可以得到PM PE PN AE =;在Rt △AEP 中 tan PE A AE ∠=,可以得到tan 23PMPN=︒………………7分M29.(本小题满分8分)解:(1)B’(0,4),C’(5,3); …………………………………………………………2分 (2)M (4,9)或M (4,﹣9);…………………………………………………3分(3)由于图像开口向下,根据表达式特点及对称轴所在位置的变化,将分为以下两种情况进行讨论当图像经过(4,4)时,如图:根据轴对称性,此时恰有1个整根点在图像上,2个整根点在图像内部因此:代入表达式得:41616a =+解得a =34-………………………………………………5分当图像过(4,9)时, 代入表达式得:91616a =+解得a =716-根据图像的轴对称性可以验证(1,4) (9,1)都不在图像内部, 因此此时有3个整根点在图像内部,………………………7分 综合上述分析当37416a --<≤………………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
北京市门头沟2018-2019学年第一学期期末九年级数学试题(含答案)
门头沟区2018—2019学年度第一学期九年级期末数学试卷 2019年1月一、选择题(本题共16分,每小题2分)1. 点P (2,1-)关于原点对称点的坐标是( )A .(2-,1)B .(2-,1-)C .(1-,2)D .(1,2-) 2.抛物线2y x =的对称轴是( )A .直线1x =-B .直线1x =C .y 轴D .x 轴3.如图是某几何体的三视图,那么该几何体是( )A .球B .正方体C .圆锥D .圆柱4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其它差别,从中随机摸出一个小球,恰好是黄球的概率为( )A .16B .13C .12D .235.⊙O 的半径为5,点P 到圆心O 的距离为3,点P 与⊙O 的位置关系是( )A .无法确定B .点P 在⊙O 外C .点P 在⊙O 上D .点P 在⊙O 内6.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点,»»AD CD=,如果∠CAB =40°,那么∠CAD 的度数为( )CBAA .25°B .50°C .40°D .80° 7.如图是一个正方体的展开图,那么该正方体是( )8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟二、填空题(本题共16分,每小题2分)9.已知∠A 为锐角,1sin 2A =,那么∠ A = °.10.在Rt △ABC 中,∠C =90°,AB = 5,BC =4,那么cos B = . 11.写出一个图象位于第一,三象限的反比例函数的表达式 .12.如图,等边三角形ABC 的外接圆半径OA = 2,其内切圆的半径为 .13.函数2y ax bx c =++(a ≠0)的图象如图所示,那么ac 0.(填“>”,“=”,或“<”)14.将抛物线2y x =沿y 轴向上平移2个单位长度后的抛物线的表达式为 .15.如图,在平面直角坐标系xOy 中,A (1,1),B (3,1),如果抛物线2y ax =(a >0)与线段AB 有公共点,那么a 的取值范围是 .xyOA B16.电影公司随机收集了2 000部电影的有关数据,经分类整理得到下表:注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大?答: .三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(1112cos 454-⎛⎫+-︒+ ⎪⎝⎭.18.已知二次函数243y x x =-+.(1)用配方法将其化为()2y a x h k =-+的形式;(2)在所给的平面直角坐标系xOy 中,画出它的图象.xyO19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 和⊙O 外的一点P . 求作:过点P 作⊙O 的切线.作法:如图2,① 连接OP ;② 作线段OP 的垂直平分线MN ,直线MN 交OP 于C ; ③ 以点C 为圆心,CO 为半径作圆,交⊙O 于点A 和B ; ④ 作直线P A 和PB .则P A ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:连接OA ,OB ,∵ 由作图可知OP 是⊙C 的直径, ∴ ∠OAP =∠OBP = 90°, ∴ OA ⊥P A ,OB ⊥PB ,又∵ OA 和OB 是⊙O 的半径,∴ P A ,PB 就是⊙O 的切线( )(填依据).OP 图1图 2 O P N MC20.如图,在平面直角坐标系xOy 中,点A (3,3),B (4,0),C (0,1-).(1)以点C 为旋转中心,把△ABC 逆时针旋转90°,画出旋转后的△''A B C ; (2)在(1)的条件下,① 点A 经过的路径¼'AA 的长度为 (结果保留π);② 点'B 的坐标为 .xyO ABC21.如图,在四边形ABCD 中,AB = AD ,∠A = 90°,∠CBD = 30°,∠C = 45°,如果AB求CD 的长.ABCD22.如果抛物线2224y x x k =++-与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值.23.如图,直线4y ax =-(0a ≠)与双曲线ky x=(0k ≠)只有一个公共点A (1,2-).(1)求k 与a 的值;(2)在(1)的条件下,如果直线y ax b =+(0a ≠)与双曲线ky x=(0k ≠)有两个公共点,直接写出b 的取值范围.xyO A1-224.如图,AB 是⊙O 的直径,过点B 作⊙O 切线BM ,弦CD ∥BM ,交AB 于F ,»»AD DC,连接AC 和AD ,延长AD 交BM 于点E .(1)求证:△ACD 是等边三角形;(2)连接OE ,如果DE = 2,求OE 的长.DBEM OFCA25.阅读材料:工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工.处理这种材料时,材料温度y (℃)是时间x (min )的函数. 下面是小明同学研究该函数的过程,把它补充完整:(1)在这个函数关系中,自变量x 的取值范围是 .(2)下表记录了17min 内10个时间点材料温度y 随时间x 变化的情况:上表中m 的值为 .(3)如下图,在平面直角坐标系xOy 中,已经描出了上表中的部分点.根据描出的点,画出该函数的图象.yOx(4)根据列出的表格和所画的函数图象,可以得到,当0≤x ≤5时,y 与x 之间的函数表达式为 ,当x >5时,y 与x 之间的函数表达式为 .(5)根据工艺的要求,当材料的温度不低于30℃时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为 min .26.在平面直角坐标系xOy 中,抛物线22y x mx n =-++经过点A (0,2),B (3,4-). (1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有两个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.xyO27.如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD .(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE .① 依题意补全图形;② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.ABCDE28.对于平面直角坐标系xOy 中的⊙C 和点P ,给出如下定义:如果在⊙C 上存在一个动点Q ,使得△PCQ 是以CQ 为底的等腰三角形,且满足底角∠PCQ ≤60°,那么就称点P 为⊙C 的“关联点”. (1)当⊙O 的半径为2时, ① 在点P 1(2-,0),P (1,1-),P 3(0,3)中,⊙O 的“关联点”是 ;② 如果点P 在射线y x =-(x ≥0)上,且P 是⊙O 的“关联点”,求点P 的横坐标m 的取值范围. (2)⊙C 的圆心C 在x 轴上,半径为4,直线22y x =+与两坐标轴交于A 和B ,如果线段AB 上的点都是⊙C 的“关联点”,直接写出圆心C 的横坐标n 的取值范围.门头沟区2018—2019学年度第一学期期末调研试卷九年级数学答案及评分参考 2019年1月三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:(1112cos 454-⎛⎫+-︒+ ⎪⎝⎭124=-+……………………………………………………………………4分 5.=……………………………………………………………………………………………5分18.(本小题满分5分) 解:(1)配方正确;……………………………………………………………………3分(2)图象正确.…………………………………………………………………………5分19.(本小题满分5分) 解:(1)补图正确;……………………………………………………………………………3分 (2)依据正确.…………………………………………………………………………5分20.(本小题满分5分) 解:(1)画图正确; (3)分 (2)① 52p ; (4)分 ② (-1,3). ……………………………………………………………………5分21.(本小题满分5分)解:过点D 作D E ⊥B C 于E . (1)分∵ 在Rt △ABD 中,∠BAD = 90°,AB AD ==∴ 由勾股定理得B D =2. …………………………………………………2分∵ DE ⊥BC ,∴ 在Rt △DBE 中,∠DEB = 90°,∠CBD = 30°,∴ D E =1,…………………………………………………………………………4分 又∵ 在Rt △DEC 中,∠DEC = 90°,∠C = 45°,∴ 由勾股定理得 CD =.…………………………………………………5分22.(本小题满分5分)解:(1)由题意,得 △=()44240.k -->∴5.2k <…………………………………………………………………2分 (2)∵ k 为正整数,∴ k =1,2.……………………………………………………………3分当k =1时,方程2220x x +-=的根1x =-不是整数;………………………4分 当k =2时,方程220x x +=的根12x =-,20x =都是整数;综上所述,k =2.…………………………………………………………………5分23.(本小题满分6分) 解:(1)∵ 直线4y ax =-(0a ≠)过点A (1,2-),∴ 24a -=-,…………………………………………………………1分∴ 2.a = (2)分又∵ 双曲线ky x =(0k ≠)过点A (1,2-),∴ 21k-=, (3)分 ∴ 2.k =-………………………………………………………4分 (2)b <-4,b >4. …………………………………………………………6分24.(本小题满分6分) (1)证明:∵ AB 是⊙O 的直径,BM 是⊙O 的切线,∴ AB ⊥BM . ∵ CD ∥BM ,∴ AB ⊥CD . ∴ »»AD AC =.…………………………………………1分 ∵ »»AD DC =. ∴ »»»AD AC DC ==.…………………………………………………2分 ∴ AD =AC =DC .∴ △ACD 是等边三角形. (3)分(2)解:连接BD ,如图.∵ AB 是⊙O 的直径, ∴ ∠ADB =90°.∵ ∠ABD =∠C =60°, ∴ ∠DBE =30°.在Rt △BDE 中,DE =2,可得BE =4,BD= …………………………………………………………4分 在Rt △ADB 中,可得AB =∴ O B = . ………………………………………………………5分 在R t △O B E 中,由勾股定理得O E =. …………………………………6分25.(本小题满分6分)解:(1)x ≥0;........................................................................1分 (2)20;...........................................................................2分 (3)略; (3)分 (4)915y x =+,300y x=; (5)分 (5)25.3………………………………………………………………………………6分26.(本小题满分6分) 解:(1)∵ 点A ,B 在抛物线y =2x 2+mx +n 上,∴ 22,4233.n m n =⎧⎨-=⨯++⎩……………………………………………………………1分A E M AB E M解得4,2.mn=⎧⎨=⎩……………………………………………………………………2分∴抛物线的表达式为y=-2x2+4x+2.……………………………………………3分∴抛物线的对称轴为x=1.………………………………………………………4分(2)43≤t<4.………………………………………………………………………6分27.(本小题满分7分)(1)证明:如图1,∵∠ACB = 90°,AE⊥BD,∴∠ACB =∠AEB = 90°,又∵∠1=∠2,∴∠CAE =∠CBD.………………………………3分(2)①补全图形如图2. ………………………………………4分②EF BE=+.…………………………………………………………………5分证明:在AE上截取AM,使AM=BE. 又∵AC=CB,∠CAE =∠CBD,∴△ACM≌△BCE.∴CM=CE,∠ACM=∠BCE.又∵∠ACB =∠ACM+∠MCB=90°,∴∠MCE=∠BCE+∠MCB=90°.∴. ME=又∵射线AE绕点A顺时针旋转45°后得到AF,且∠AEF=90°,∴EF=AE=AM+ME=BE.……………………………………………………7分28.(本小题满分7分)解:(1)①P1,P2;……………………………………………………………………………2分②由题意可知⊙O的“关联点”所围成的区域是以O为圆心,半径分别为1和2的圆环内部(包含2,不包含1).……………………………………………………3分设:射线y x=-(x≥0)与该圆环交于点P1和点P2,由题意易得P1,0),P20).∴<m≤.……………………………………………………………5分(2)-≤n<3-,1<n≤3.……………………………………………7分图2图1说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2017-2018北京市各区初三数学期末考试分类汇编-基础题答案
2018.1北京市各区期末考试 数学试题 基础题部分答案2018.1石景山区C B 13.5.02-<<-x 14.3515.先以点C 为中心顺时针旋转90º,再以y 轴为对称轴翻折(答案不唯一) 22.(本小题满分5分)解:(1)一次函数错误!未找到引用源。
y x b =+的图象与x 轴交于点A (2,0), ∴02=+b . 可得,2-=b .∴2-=x y . …………………………………………………………1分 当3=x 时,1=y , ∴点B (3,1). 代入xky =中,可得3=k , ∴反比例函数的表达式为xy 3=. ……………………………………3分 (2)点P 的坐标是(6,0)或(-2,0). ……….……………………………5分23.(本小题满分5分)(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DAF =∠CDE , ……………………………………………… 1分∵ DF ⊥BA ,CE ⊥AD ,∴∠F =∠CED =90°,……………………………………………… 2分 ∴△ADF ∽△DCE ; ………………………………………………3分(2)解:∵△ADF ∽△DCE ,∴DE AFDC AD = ∴326=DC , ∴DC =9.∵四边形ABCD 是平行四边形, ∴AB =DC∴A B =9.…………………………………………………………5分24.(本小题满分5分)解:(1)∵二次函数m mx x y 522+-=的图象经过点(1,-2). ∴m m 5212+-=-解得1-=m .………………………………………………………1分 ∴二次函数的表达式522-+=x x yFE DCB A∴二次函数的对称轴为:直线-1=x .………………………2分 (2)二次函数的表达式6-)1(5222+=-+=x x x y .当-1=x 时,-6最小=y , …………………………………………3分当1=x 时,2-=y , 当-4=x 时,3=y ,∴14≤≤-x 时,y 的取值范围是36≤≤-y . …………………5分2018门头沟区CA 2 4 先将以点B 为旋转中心顺时针旋转90°,在向左平移7个单位长度(不唯一) 22.(本小题满分5分)解:根据题意补全图形如下:(1)可知60MN =,30NQ =,∠AMQ =30°,∠BMQ =60° …1分(2)在Rt △ADB 中,由MN =60,∠AMQ =30°,根据三角函数可得AN = ………………………………………2分(3)过点A 作 AK ⊥BQ 于K ,可得四边形AKQN 是矩形,进而得出AK =NQ =30,KQ =AN = ………………………………………3分 (4)在Rt △BMQ 中,由MQ =MN+NQ=90,∠BMQ =60°,根据三角函数可得BQ =BK = ………………………………………4分(5)在Rt △AKB 中,根据勾股定理可以求出AB 的长度. …………………………5分 23.(本小题满分5分)(1)证明:令y =0,可得2(1)10kx k x +++=∵11a k b k c ==+=,, ∴△=221k k -+……………………………………………………………………………1分=2(1)k - …………………………………………………………………………………2分∵2(1)0k -≥ ∴此二次函数的图象与x轴总有交点.………………………………………………………3分(2)解:令y =0,得2(1)10kx k x +++=解得 x 1=1(1)12k k k k--+-=-,x 2=1(1)12k k k----=-………………………………4分∵k 为整数,解为整数 ∴1k =±. ………………………………………………………………………………5分24.(本小题满分5分) (1)证明:连接OE ,∵AC 与圆O 相切,∴OE ⊥AC ,…………….1分 ∵BC ⊥AC ,∴OE ∥BC ,又∵O 为DB 的中点,∴E 为DF 的中点,即OE 为△DBF 的中位线, ∴OE =BF , 又∵OE =BD ,∴BF =BD ;……………………………………….2分 (2)设BC =3x ,4tan 3B ∠=可得:AB =5x , 又∵CF =2, ∴BF =3x +2,由(1)得:BD =BF , ∴BD =3x +2, ∴OE =OB =322x +,AO =AB ﹣OB =3272522x x x +--= ∵OE ∥BF ,∴∠AOE =∠B , ……………………………………………………………………………………4分 ∴cos ∠AOE =cos B ,即32232725OE x AO x +=⋅=-, 解得: 83x =则圆O 的半径为3210522x +==………………………………………………………………………5分2018丰台区DD 14.(2,0); 15.22864(08)y x x x =-++<<(可不化为一般式),2; 23.解:建立平面直角坐标系,如图. 于是抛物线的表达式可以设为()2y a x h k =-+根据题意,得出A ,P 两点的坐标分别为A (0,2),P (1,3.6). ……2分 ∵点P 为抛物线顶点, ∴1 3.6h k ==, . ∵点A 在抛物线上, ∴ 3.62a +=, 1.6a =-.…3分∴它的表达式为()21.61 3.6y x =--+. ……4分当点C 的纵坐标y =0时,有()21.61 3.6=0x --+.10.5x =-(舍去),2 2.5x =.∴BC =2.5.∴水流的落地点C 到水枪底部B 的距离为2.5m. ……5分2018顺义区B 13.35r ≤≤; 14.略; 15.1 22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分又∵AB AD = AE AC ,……………………….2分∴△ABE ∽△ACD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠ BED =∠BDE ,∴BE =BD .………………………………………………………..5分23.解:过点D 作DE ⊥AB 于点E , 在Rt △ADE 中,∠AED =90°,tan ∠1=AEDE, ∠1=30°,………………………….…..1分∴AE =DE × tan ∠1=40×tan30°=40≈40×1.73×13≈23.1……………………..2分在Rt △DEB 中,∠DEB =90°,tan ∠2=BEDE, ∠2=10°,……………………………...3分 ∴BE =DE × tan ∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分 ∴AB =AE +BE ≈23.1+7.2=30.3米.………………………………………………………..5分24.证明: 延长CE 交⊙O 于点G . ∵AB 为⊙O 的直径,CE ⊥AB 于E , ∴BC =BG ,∴∠ G =∠2,……………………………………………..2分 ∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G =∠F ,………………………………………..….5分∴∠1=∠2.…………………………………………….…6分2018密云区22.(1)解:点P(1,4), Q (2,m )是双曲线ky x=图象上一点. ∴41k=,2k m =∴4k =,2m = ………………………………………………………………………3分(2)02n << 或2n <- ………………………………………………………………………5分23. 解:(1)过C 作CE//AB 交BD 于E.由已知,14,22DCE ECB ∠=︒∠=︒∴36DCB ∠=︒ …………………………………………………………………………………………2分(2)在Rt CEB ∆中,90CEB ∠=︒,AB=20,22ECB ∠=︒∴t a n0.420BE BEECB CE ∠==≈ ∴BE ≈8 …………………………………………………………………………………………3分在Rt CED ∆中,90CED ∠=︒,CE=AB=20,14DCE ∠=︒∴t a n0.2520DE DEDCE CE ∠==≈ ∴DE ≈5 ∴BD ≈13∴国旗杆BD 的高度约为13米.……………………………………………………………………5分24.(1)证明:连结BC.AB 是 的直径,C 在O 上∴90ACB ∠=︒AC BC = ∴AC=BC∴45CAB ∠=︒AB 是O 的直径,EF 切O 于点B ∴90ABE ∠=︒ ∴45AEB ∠=︒ ∴AB=BE∴AC=CE ……………………………………………2分(2)在Rt ABE ∆中,90ABE ∠=︒,AE=,AE=BE8AB = ………………………..3分在Rt ABF ∆中,AB=8,3sin 5BAF ∠=解得:6BF = ………………………..4分连结BD ,则90ADB FDB ∠=∠=︒90BAF ABD ∠+∠=︒,90ABD DBF ∠+∠=︒,∴DBF BAF ∠=∠3sin 5BAF ∠=∴3sin 5DBF ∠=∴35DF BF = ∴185DF = …………………5分2018大兴区22.解:由题意可知:CD ⊥AD 于D ,∠ECB=∠CBD =45︒, ∠ECA=∠CAD =35︒, AB =9. 设CD x =,∵ 在Rt CDB ∆中,∠CDB =90°,∠CBD =45°, ∴ CD =BD =x . ……………………………… 2分∵ 在Rt CDA ∆中,∠CDA =90°,∠CAD =35°,∴ tan CDCAD AD ∠=,∴ tan 35xAD =︒…………………………… 4分∵ AB =9,AD =AB +BD ,∴ 90.7xx +=.解得 21x =答:CD 的长为21米.……………………… 5分23. 解:设AM 的长为x 米 , 则MB 的长为(2)x -米,以AM 和MB 为边的两个正方形面积之和为y 平方米. 根据题意,y 与x 之间的函数表达式为222(2).................................................................22(1) 2.....................................................................3y x x x =+-=-+分分因为2>0于是,当1=x 时,y 有最小值………………………..4分所以,当AM 的长为1米时截取两块相邻的正方形板料的总面积最小.……5分24. (1)证明:∵AB 是半圆直径,∴∠BDA =90°. .………………………………………………………1分 ∴90B DAB ∠+∠=︒ 又DAC B ∠=∠∴90DAC DAB ∠+∠=︒……………………………………………2分 即∠CAB =90°∴AC 是半圆O 的切线. (2)解:由题意知,,90OE BD D ∠=︒∥∴∠D =∠AFO =∠AFE = 90°∴OE AD ⊥.12AF AD =……………………………………………………3分又∵AD=6 ∴AF =3. 又B CAD ∠=∠∴△AEF ∽△BAD ……………………………………………4分 4369 (52)4EF AF AD BDBD BD EF ∴==∴==∴ 分。
门头沟区—九年级上期末数学试卷及答案
OD C AA BO门头沟区—第一学期初三期末考试数 学 试 卷考生须知 1. 本试卷共6页。
全卷共九道大题,25道小题。
2.本试卷满分120分,考试时间120分钟。
3.答题前,在答题卡上将自己的学校名称、班级、姓名填写清楚。
4.请按照题号顺序在答题卡各题目的答题区域内作答,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答,在试卷上作答无效。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“答题卡”上 对应题目答案的相应字母处涂黑. 1. 已知:2:3,a b = 那么下列等式中成立的是A .32a b =B .23a b =C .52a b b += D .13a b b -= 2.如图,点A 、B 、C 都在O ⊙上,若∠AOB =72°,则∠ACB 的度数为 A .18°B .30°C .36°D .72°3. 已知⊙O 的半径为5,点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =6,BD =2,AE =9,则EC 的长是A .8B .6C .4D .35. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠BAC =20°,AD DC =,则∠DAC 的度数是A .30°B .35°C .45°D .70°6. 桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是 A .12 B .13 C .14 D . 16AB CDE7. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是A .23(2)1y x =++ B .23(2)1y x =+- C .23(2)1y x =-+ D .23(2)1y x =-- 8. 如图,在矩形ABCD 中,AB =4,BC =3,点P 在CD 边上运动,联结AP ,过点B 作BE ⊥AP ,垂足为E ,设AP =x , BE =y ,则能反映y 与x 之间函数关系的图象大致是A .B .C .D .二、填空题(共4道小题,每题4分,共16分)9. 如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 . 10. 如图,在Rt △ABC 中,∠C =90°,AB = 5,AC = 4,则cos A = .11. 已知抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围是 . 12. 如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A B C ˝˝˝的 位置.若BC =1,AC =3,则顶点A 运动到点A ˝的 位置时,点A 经过的路线的长是 .三、解答题(共4 道小题,共20分)13. (本小题满分5分)计算: tan60sin30tan 45cos60.︒-︒⨯︒+︒A BCA BCDP E yx 0512 4 53 512 yx 0 4 53 yx 0512 4 53y x 0 4 5312 514. (本小题满分5分)已知:如图,在ABC △中,D 是AC 上一点,联结BD ,且∠ABD =∠ACB .(1)求证:△ABD ∽△ACB ;(2)若AD =5,AB = 7,求AC 的长.15. (本小题满分5分) 已知二次函数245y x x =-+.(1)将245y x x =-+化成y =a (x -h ) 2 + k 的形式; (2)指出该二次函数图象的对称轴和顶点坐标; (3)当x 取何值时,y 随x 的增大而增大?16.(本小题满分5分)已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦, 且AB ⊥CD ,垂足为E ,联结OC ,OC =5.(1)若CD =8,求BE 的长;(2)若∠AOC =150°, 求扇形OAC 的面积.四、解答题(共2道小题,共12分)17. (本小题满分6分)已知反比例函数ky x=的图象经过点A (1,3). (1)试确定此反比例函数的解析式; (2)当x =2时, 求y 的值;(3)当自变量x 从5增大到8时,函数值y 是怎样变化的?18.(本小题满分6分)已知二次函数2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为(-1,0),与y 轴的交点坐标为(0,-3). (1)求此二次函数的解析式;(2)求此二次函数的图象与x 轴的另一个交点的坐标;(3)根据图象回答:当x 取何值时,y <0?A C D E OA D BO -3-1 x y五、解答题(共2道小题,共10分) 19. (本小题满分5分)已知:如图,在△ABC 中,∠A =30°, tan B =34,AC =18,求BC 、AB 的长.20. (本小题满分5分)如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.六、解答题(共2道小题,共8分)21.(本小题满分4分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.22.(本小题满分4分)如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC 是一个格点三角形.(1)请你在第一象限内画出格点△AB 1C 1, 使得△AB 1C 1∽△ABC ,且△AB 1C 1与△ABC的相似比为3:1; (2)写出B 1、C 1两点的坐标.8 7 6 5 43C yCBA A BCD 45°30°PA BDCy xO 123456-1-2-3123456-1-2-3-4-5-6七、解答题(本题满分7分)23. 如图,在△ABC 中,∠C =60°,BC =4,AC =23P 在BC 边上运动,PD ∥AB ,交AC 于D . 设BP 的长为x ,△APD 的面积为y . (1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少? (3)点P 是否存在这样的位置,使得△ADP 的面积是△ABP 面积的23?若存在,请求出BP 的长;若不存在,请说明理由.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,反比例函数4y x=的图象与抛物线2(94)1y x m x m =+++-交于点A (3, n ).(1)求n 的值及抛物线的解析式;(2) 过点A 作直线BC ,交x 轴于点B ,交反比例函数4y x=(0x >)的图象于点C ,且AC =2AB ,求B 、C 两点的坐标;(3)在(2)的条件下,若点P 是抛物线对称轴上的一点,且点P 到x 轴和直线BC的距离相等,求点P 的坐标.y xO 123456-1-2-3-4-5-6123456-1-2-3-4-5-6九、解答题(本题满分8分)25. 在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++的对称轴是1x =,并且经过(-2,-5)和(5,-12)两点. (1)求此抛物线的解析式;(2)设此抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D是线段BC 上一点(不与点B 、C 重合),若以B 、O 、D 为顶点的三角形与△BAC 相似,求点D 的坐标;(3)点P 在y 轴上,点M 在此抛物线上,若要使以点P 、M 、A 、B 为顶点的四边形是平行四边形,请你直接写出点M 的坐标.—第一学期初三数学期末试卷评标一、选择题(共8道小题,共32分)1. A2. C3. C4. D5. B6. A7. B8. D二、填空题(共4道小题,共16分)9. 1:2 10. 4511. m <1 12. 433π⎛ ⎝⎭三、解答题(共4道小题,共20分)13. (本小题满分5分)解: tan60°- sin30°×tan45°+ cos 60°113122=⨯+ …………………………………………………………………4分3= ……………………………………………………………………5分14. (本小题满分5分)(1)证明:∵∠A =∠A ,∠ABD =∠ACB , ……… 1分∴△ABD ∽△ACB . ………………… 2分(2)解: ∵△ABD ∽△ACB ,∴AB AD ACAB=. ……………………………3分∴757AC=. ………………………………4分∴495AC =. ……………………………5分15. (本小题满分5分)解:(1)24445y x x =-+-+ ……………………………………………… 1分2(2)1x =-+. ……………………………………………………… 2分(2)对称轴为2=x , ………………………………………………………3分顶点坐标为(2,1). ……………………………………………4分 (3)当x >2时,y 随x 的增大而增大. ………………………………5分16. (本小题满分5分) 证明:(1)∵AB 为直径,AB ⊥CD ,∴∠AEC =90°,CE =DE . ……………………1分 ∵CD =8,∴118422CE CD ==⨯=. ………………… 2分∵OC =5,∴OE 2222543OC CE -=-=. …………3分∴BE =OB -OE =5-3=2. …………………………………………………4分(2)21501255.36012OAC S ππ=⨯⨯=扇形 ………………………………………5分四、解答题(共2道小题,共12分)17. (本小题满分6分)解:(1)∵反比例函数k y x=的图象过点A (1,3),ADBACD EO31k ∴=. …………………………………………………………………1分 ∴k =3. ……………………………………………………………… 2分 ∴反比例函数的解析式为3y x=. ……………………………… 3分 (2) 当2x =时,32y =. .……………………………………………4分 (3) 在第一象限内,由于k =3 >0,所以y 随x 的增大而减小.当5x =时,35y =;当8x =时,38y =. 所以当自变量x 从5增大到8时,函数值y 从35减小到38.………6分 18.(本小题满分6分)解: (1)由二次函数2y x bx c =++的图象经过(-1,0)和(0,-3)两点,得 10,3.b c c -+=⎧⎨=-⎩ …………………………………………………… 1分解这个方程组,得2,3.b c =-⎧⎨=-⎩……………………………………… 2分∴抛物线的解析式为22 3.y x x =--…………………………………3分 (2)令0y =,得2230x x --=.解这个方程,得13x =,21x =-.∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0). ………5分(3)当13x -<<时,y <0. ………………………………………… 6分五、解答题(共2道小题,共10分) 19. (本小题满分5分)解:过点C 作CD ⊥AB 于D .∴∠ADC =∠BDC =90°. ∵∠A =30°,AC =18,∴CD = 12 AC = 12 ×18=9. ……………………………………………………1分∴22221899 3.AD AC CD =-=-=………………………………2分∵3tan ,4CD B BD == ∴39,4BD=∴BD =12. ………………………………………………………………………3分D A C∴222212915.BC BD CD =+=+= …………………………………4分∴AB =AD +BD =9 3 +12. ………………………………………………5分 ∴BC =15, AB =9 3 +12.20. (本小题满分5分)解:设建筑物AB 的高度为x 米.在Rt △ABD 中,∠ADB =45°, ∴AB =DB =x .∴BC =DB +CD = x +60.在Rt △ABC 中,∠ACB =30°,∴tan ∠ACB =ABCB……………………………1分 ∴tan 3060x x ︒=+.………………………… 2分 360x x =+. ……………………………3分 ∴x =30+30 3 . ……………………………4分 ∴建筑物AB 的高度为(30+30 3 )米. …5分六、解答题(共2道小题,共8分) 21. (本小题满分4分)解:正确画出树状图或列表 ………………………………………………………3分P (数字之和为5)= 1.3………………………………………………………4分22. (本小题满分4分)解:(1)正确画出△AB 1C 1………………………………………………………… 2分(2)点B 1(4,1), ………………………………………………………… 3分点C 1(7,7). ……………………………………………………… 4分七、解答题(本题满分7分) 23.解:(1)∵PD ∥AB ,∴.AD BPAC BC=…………………………1分 ∵BC =4,AC =23BP 的长为x ,.423x = ∴ 3.AD x =……………………… 2分 (2)过点P 作PE ⊥AC 于E.∵sin ,PEACB PC∠=∠C =60°, ABCD45°30°ECD B AP∴)3sin 604.2PE PC x =⨯=-……………………………………3分 ∴2113333).2282y AD PE x x x =⋅⋅=-=-+ (4)分∴当2x =时,y 的值最大,最大值是3.2……………………………5分(3)点P 存在这样的位置. ∵△ADP 与△ABP 等高不等底,∴ΔΔ.ADP ABP S DPS AB= ∵△ADP 的面积是△ABP 面积的23,∴ΔΔ2.3ADP ABP SS =∴2.3DP AB = ∵PD ∥AB ,∴△CDP ∽△CAB . ∴.DP CPAB CB= ∴2.3CP CB = ∴42.43x -= ∴4.3x =∴4.3BP = …………………………………………………………… 7分八、解答题(本题满分7分)24. 解:(1)∵点A (3, n )在反比例函数4y x=的图象上,43n ∴=.……………………………………………………………………1分 ∴A (3,43).∵点A (3,43)在抛物线2(94)1y x m x m =+++-上,49(94)3 1.3m m ∴=++⨯+- ∴23m =- .∴抛物线的解析式为2523y x x =--. …………………………2分(2)分别过点A 、C 作x 轴的垂线,垂足分别为点D 、E ,∴AD ∥CE .∴△ABD ∽△CBE .∴AD ABCE CB=.∵AC=2AB,∴13 ABCB=.由题意,得AD=4 3 ,∴41 33 CE=.∴CE=4.……………………3分即点C的纵坐标为4.当y=4时,x=1,∴C(1,4) …………………4分∵1,3BD ABBE CB==DE=2,∴1.23 BDBD=+∴BD=1.∴B(4,0). ……………………………………………………………5分(3)∵抛物线25 23y x x=--的对称轴是1x=,∴P在直线CE 上.过点P作PF⊥BC于F.由题意,得PF=PE.∵∠PCF =∠BCE, ∠CFP =∠CEB =90°,∴△PCF∽△BCE.∴PF PCBE BC=.由题意,得BE=3,BC=5.①当点P在第一象限内时,设P(1,a) (a>0).则有4.35a a-=解得3.2a=∴点P的坐标为31,2⎛⎫⎪⎝⎭. ……………………………………………6分②当点P在第四象限内时,设P(1,a) (a<0)则有4.35a a--=解得 6.a=-∴点P的坐标为()1,6-.……………………………………………7分∴点P的坐标为31,2⎛⎫⎪⎝⎭或()1,6-.九、解答题(本题满分8分)yPPOAxBCDFEF25.解:(1)由题意,得1,2425,25512.b a a b c a b c ⎧-=⎪⎪-+=-⎨⎪++=-⎪⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩ …………………………………… 1分∴ 抛物线的解析式为y =-x 2+2x +3. ……………………………2分 (2)令0y =,得2230x x -++=.解这个方程,得1213x x =-=,. (10)(30)A B ∴-,,,. 令0x =,得3y =.(03)C ∴,.4345.AB OB OC OBC ∴===∠=,,22223332BC OB OC ∴=+=+=过点D 作DE x ⊥轴于点E .∵45OBC BE DE ∠=∴=,. 要使BOD BAC △∽△或BDO BAC △∽△, 已有ABC OBD ∠=∠,则只需BD BO BC BA =或BO BDBC BA=成立. 若BD BOBC BA=成立, 则有3329244BO BC BD BA ⨯⨯===. 在Rt BDE △中,由勾股定理,得222229224BE DE BE BD ⎫+===⎪⎪⎭.∴94BE DE ==. 93344OE OB BE ∴=-=-=. ∴点D 的坐标为3944⎛⎫⎪⎝⎭,. ……………………………………………4分若BO BDBC BA =成立,则有2 2.32BO BA BD BC ⨯=== 在Rt BDE △中,由勾股定理,得222222(22)BE DE BE BD +===.A yxBE OCD1x =∴2BE DE ==.321OE OB BE ∴=-=-=.∴点D 的坐标为(12),. ……………………………………………5分∴点D 的坐标为3944⎛⎫⎪⎝⎭,或(12),.(3)点M 的坐标为()2,3或(45),-或(421)-,-. ……………………8分。
北京市门头沟区九年级数学上学期期末考试试题(含解析) 新人教版
北京市门头沟区2015-2016学年九年级数学上学期期末考试试题一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A.B.C.D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y= .15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算: |.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠C BF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C 与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.2015-2016学年北京市门头沟区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A.B.C.D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9 .【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12 米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y= 答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26 .【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2 .【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算: |.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BA D=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C 与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,设直线BC的解析式为y=mx+n,。
门头沟区2017—2018学年度第一学期期末调研试卷数学试题含答案
门头沟区2017—2018学年度第一学期期末调研试卷七年级数学一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.18-的倒数是A .18B .8-C .8D .18-2.门头沟区是集自然风光、文物古迹、古老民风为一体的经济发展区。
主要旅游景点有“三山、两寺、一涧、一湖、一河”. 据统计2017年1-10月,门头沟区16家A 级及以上主要旅游景区共接待游客1663000人次.将数字1663000用科学记数法表示为 A .71.66310⨯ B .516.6310⨯C .61.66310⨯D .70.166310⨯3.把2.36︒用度、分、秒表示,正确的是 A .22136'''︒B .21836'''︒C.23060'''︒D.236'''︒4.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是ABCD5.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是 A .垂线段最短B .两点之间,直线最短C .两点确定一条直线D .两点之间,线段最短6.如图是一个正方体的平面展开图.若图中的“似”表示正方体的 前面, “程”表示正方体的上面,则表示正方体右面的字是 A .锦 B .你 C .前 D . 祝7.有理数a ,b 在数轴上对应点的位置如图所示,下列说法中正确的是A .a b >B .1a b>C .a b -<D .a b <8.观察下列图形:它们是按一定规律排列的,依照此规律,第n (n 为正整数)个图形中共有的点数是 A .65n + B . 5nC . ()561n +-D . 51n +二、填空题(本题共16分,每小题2分)9. 升降机运行时,如果下降13米记作“13-米”,那么当它上升25米时,记作 .……第1个图形第2个图形第3个图形和平门 前门崇文门苹果园阜成门 车公庄西直门 东直门 东四十条朝阳门 建国门复兴门古城八角游乐园八宝山玉泉路 五棵松 万寿路 公主坟军事博物馆木樨地南礼士路长椿街宣武门 北京站永安里国贸大望路四惠四惠东积水潭鼓楼安定门雍和宫西单天安门西天安门东 王府井 东单②号线 ①号线x–4–3–2–11234ab10.4.5983精确到十分位的近似值是 .11.在有理数0.2-,0,132,5-中,整数有__________________.12.两个单项式满足下列条件:① 互为同类项;②次数都是3.任意写出两个满足上述条件的单项式 ,将这两个单项式合并同类项得_______________. 13.清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生明算者,算来寺内几多僧.诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x 人,由题意可列方程为_______________________. 14.如图线段6AB =,如果在直线ABC ,使:3:2AB BC =,再分别取线段AB 、BC 的中点M 、N ,那么MN = . 15.右面的框图表示解方程()()735273y y y y +-=-- 的流程,其中A 代表的步骤是__________,步骤A 对方程进行变形的依据是_____________ ______________.16.已知5x =,21y =,且0xy>,则x y -=____________.三、解答题(本题共45分,第17题4分,第18题5分,第19题9分,第20题3分,第21题4分,第22、23、24、25题,每题5分)17.在数轴上画出表示下列各数的点,并把它们用“<”连接起来.112,2-, 0 ,0.5-.x18.计算:(1)()()()482-+--+; (2) ()()()1361242⎛⎫-÷+--⨯- ⎪⎝⎭.19.计算:(1) ()231243412⎛⎫--⨯- ⎪⎝⎭; (2) ()2442313⎡⎤⎛⎫--⨯--- ⎪⎢⎥⎝⎭⎣⎦ .20.解方程5238x x +=-.21.解方程()()3212+34x x x --=-.22.本学期学习了一元一次方程的解法,下面是小明同学的解题过程:上述小明的解题过程从第_____步开始出现错误,错误的原因是_________________. 请帮小明改正错误,写出完整的解题过程.23.先化简,再求值:已知210a -=,求()()225+212a a a a --+的值.24.按要求画图,并回答问题:如图,在同一平面内有三点A 、B 、C . (1)画直线AB 和射线BC ;(2)连接线段AC ,取线段AC 的中点D ; (3)通过画图和测量,点D 到直线AB 的距离大约是 cm (精确到0.1cm ).25.方程70x -=与方程()5221x x k x -+=-的解相同,求代数式253k k --的值.四、解答题(本题共23分,第26题7分,第27、28题,每题8分) 26.列方程解应用题:门头沟盛产名特果品,东山的京白梨,灵水的核桃,柏峪的扁杏仁,龙泉雾的香白杏, 火村红杏,太子墓的红富士苹果,陇驾庄盖柿都是上等的干鲜果品,有的曾为皇宫供品,至今在国内享有盛名.秋收季节,某公司打算到门头沟果园基地购买一批优质苹果. 果园基地对购买量在1000千克(含1000千克)以上的有两种销售方案,方案一:每千克10元,由基地送货上门;方案二:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)公司购买多少千克苹果时,选择两种购买方案的付款费用相同;(2)如果公司打算购买3000千克苹果,选择哪种方案付款最少?为什么?27.如图,点O 是直线AB 上的一点,将一直角三角板如图摆放,过点O 作射线OE 平分BOC ∠.(1)如图1,如果40AOC ∠=︒,依题意补全图形,写出求∠DOE 度数的思路(不必..写出完整的推理过程);(2)当直角三角板绕点O 顺时针旋转一定的角度得到图2,使得直角边OC 在直线AB 的上方,若AOC α∠=,其他条件不变,请你直接用含α的代数式表示∠DOE 的度数; (3)当直角三角板绕点O 继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现AOC ∠与∠DOE (0180AOC ︒≤∠≤︒,0180DOE ︒≤∠≤︒)之间有怎样的数量关系?图1 图228.本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:m a 与n a (0a ≠,m 、n 都是正整数)叫做同底数幂,同底数幂除法记作m n a a ÷.运算法则如下:;=1;1.m n m n m n m n m n n m m n a a a a a m n a a m n a a a --⎧⎪>÷=⎪÷=÷=⎨⎪⎪<÷=⎩当时,当时,当时, 根据“同底数幂除法”的运算法则,回答下列问题:(1)填空:521122⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭,3544÷= .(2)如果13-413327x x -÷=,求出x 的值. (3)如果()()2+2+6111x x x x -÷-=,请直接写出x 的值.草稿纸门头沟区2017—2018学年度第一学期期末调研试卷七年级数学答案及评分参考一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共45分,第17题4分,第18题5分,第19题9分,第20题3分,第21题4分,第22、23、24、25题,每题5分)17.解答题(本小题满分4分)表示点正确………………………………………………………………………2分 比较大小正确…………………………………………………………………………4分18.计算(本小题满分5分)(1)()()()4+8+2---;解:原式=482---…………………………………………………………………1分 =122--=14-.………………………………………………………………………2分(2)()()()136+1242⎛⎫-÷--⨯-⎪⎝⎭; 解:原式=32--……………………………………………………………………2分 =5-…………………………………………………………………………3分19.计算(本小题满分9分)(1)()231243412⎛⎫--⨯- ⎪⎝⎭;解:原式=16+18+2-…………………………………………………………………3分 =4…………………………………………………………………………4分(2)()2442313⎡⎤⎛⎫--⨯--- ⎪⎢⎥⎝⎭⎣⎦.解:原式=[]1641----………………………………………………………………3分=()165---…………………………………………………………………4分 =16+5-=11-…………………………………………………………………………5分20.解方程(本小题满分3分)5238x x +=-.解:5382x x -=--…………………………………………………………………1分210x =-………………………………………………………………2分 5.x =-…………………………………………………………………3分 ∴ 5x =-是原方程的解.21.解方程(本小题满分4分)()()3212+34x x x --=-.解:3222123x x x -+=+-………………………………………………………1分 3232122x x x -+=+-…………………………………………………………2分 412x =…………………………………………………………………3分 3.x =………………………………………………………………4分 ∴ 3x =是原方程的解.22.解答题(本小题满分5分)第 ① 步开始出现错误,错误的原因是 利用等式的性质时漏乘 .……………2分 解方程 235132x x ---= 解:方程两边同时乘以6,得:23566632x x --⨯-⨯= 去分母,得:()()223356x x ---=……………………………3分去括号,得:463156x x --+= 移项,得:636415x x --=--合并同类项,得: 913x -=- ……………………………………4分系数化1,得: 139.x =………………………………………5分23.先化简,再求值(本小题满分5分)解:()()225212a a a a +--+2252122a a a a =+---……………………………………………………………2分 231a =-…………………………………………………………………………3分 又∵210a -=∴21a =………………………………………………………………………………4分 ∴ 原式2313112a =-=⨯-=……………………………………………………5分24.按要求画图,并回答问题(本小题满分5分)解:(1)略;…………………………………………………………………………………2分 (2)略;…………………………………………………………………………………3分 (3)略.…………………………………………………………………………………5分25.解答题(本小题满分5分)∵70x -=∴7.x =………………………………………………………………………………1分 又∵()5221x x k x -+=- ∴()5727271k ⨯-+=⨯-∴3514213k --=………………………………………………………………………2分 ∴28k -=-…………………………………………………………………………3分 ∴4k =…………………………………………………………………………………4分 ∴22534543162037.k k --=-⨯-=--=-……………………………………………5分四、解答题(本题共23分,第26题7分,第27、28题,每题8分) 26.列方程解应用题(本小题满分7分)(1)解:设公司购买x 千克苹果时,选择两种购买方案的付款费用相同. ……1分 根据题意,得:1085000x x =+……………………………………………3分 解得: 2500.x = ……………………………………………4分 答:公司购买2500千克苹果时,选择两种购买方案的付款费用相同. (2)当3000x =时,1010300030000x =⨯=元…………………………………………………………5分 8500083000500029000x +=⨯+=元……………………………………………6分30000>29000∴选择方案二付款最少.…………………………………………………………7分27.解:(1① ② ③ 由直角三角板,得∠COD =90°;④ 由∠COD =90°,∠COE =70°,得∠DOE =20°. ………………………………………………………………5分(2)∠DOE .2α= ………………………………………………………………………6分(3)∠DOE 12=∠AOC ,∠DOE 180=°12-∠AOC . …………………………………8分28.(本小题满分8分)解:(1)填空:521122⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭18,3544÷=116;……………………………………2分(2)由题意,得()3413x x ---=……………………………………………………3分 解得: 3.x = ……………………………………………………………………5分∴ 3.x =(3)4x =,0x =,2x =,…………………………………………………8分。
2018-2019学年门头沟区初三上期末考试数学试卷及答案
1. 本试卷共 8 页,三道大题,28 个小题,满分 100 分.考试时间 120 分钟.2. 在试卷和答题卡上认真填写学校和姓名,并将条形码粘贴在答题卡相应位置处.3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其它试题用黑色字迹签字笔作答.5. 考试结束,将试卷、答题卡和草稿纸一并交回.门头沟区 2018—2019 学年度第一学期期末调研试卷九 年 级 数 学2019 年 1 月一、选择题(本题共 16 分,每小题 2 分)第 1- 8 题均有四个选项,符合题意的选项只.有.一个. 1. 点 P (2,- 1 )关于原点对称点的坐标是A .( - 2 ,1 )B .( - 2 ,- 1 )C .( - 1 , 2 )D .(1 ,- 2 )2. 抛物线 y = x 2 的对称轴是A .直线 x = - 1B .直线 x = 1C .y 轴D .x 轴3. 如果右图是某几何体的三视图,那么该几何体是A .球B .正方体C .圆锥D .圆柱4. 一个不透明的盒子中装有 3 个红球,2 个黄球和 1 个绿球,这些球除了颜色外无其它差别,从中随机摸出一个小球,恰好是黄球的概率为 A.16B.1 3C.1 2D.2 35. ⊙O 的半径为 5,点 P 到圆心 O 的距离为 3,点 P 与⊙O 的位置关系是A .无法确定B .点 P 在⊙O 外C .点 P 在⊙O 上D .点 P 在⊙O 内6. 如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点, »AD C »D ,如果∠CAB =40°,那么∠CAD的度数为 A .25°B .50°C .40°D .80°7. 如果左图是一个正方体的展开图,那么该正方体是考生须知8. 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率 p 与加工时间 t (单位:分钟)满足的函数关系 p = at 2 + bt + c (a ,b ,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 A .4.25 分钟 B .4.00 分钟 C .3.75 分钟D .3.50 分钟二、填空题(本题共 16 分,每小题 2 分)9. 已知∠A 为锐角,sin A = 1,那么∠A = °.210. 在 Rt △ABC 中,∠C =90°,AB = 5,BC =4,那么 cos B = . 11. 写出一个图象位于第一,三象限的反比例函数的表达式12. 如图,等边三角形 ABC 的外接圆半径 OA = 2,其内切圆的半径为.13. 函数 y = ax 2 + bx + c (a ≠0)的图象如图所示,那么 ac0.(填“>”,“=”,或“<”)14. 将抛物线 y = x 2 沿 y 轴向上平移 2 个单位长度后的抛物线的表达式为.15. 如图,在平面直角坐标系 xOy 中,A (1,1),B (3,1),如果抛物线 y = ax 2 (a >0)与线段 AB 有公共点, 那么 a 的取值范围是.16. 电影公司随机收集了 2 000 部电影的有关数据,经分类整理得到下表:注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1) 如果电影公司从收集的电影中随机选取 1 部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;(2) 电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少 0.1,可使改变投资策略后总的好评率达到最大? 答:.⎝ ⎭4 ⎪ -1三、解答题 (本题共 68 分,第 17~22 题每小题 5 分,第 23~26 题每小题 6 分,第 27~28 题每小题 7 分)解答应写出文字说明、证明过程或演算步骤.17.计算: (1 - 3 )+ -- 2 cos 45︒ + ⎛ 1 ⎫.18. 已知二次函数 y = x 2- 4x + 3 .(1) 用配方法将其化为 y = a ( x - h )2+ k 的形式;(2) 在所给的平面直角坐标系 xOy 中,画出它的图象.19. 下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图 1,⊙O 和⊙O 外的一点 P . 求作:过点 P 作⊙O 的切线. 作法:如图 2,图 1① 连接 OP ;② 作线段 OP 的垂直平分线 MN ,直线 MN 交 OP 于 C ;③ 以点 C 为圆心,CO 为半径作圆,交⊙O 于点 A 和 B ;④ 作直线 PA 和 PB .则 PA ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1) 用直尺和圆规,补全图 2 中的图形;(2) 完成下面的证明:证明:连接 OA ,OB ,∵ 由作图可知 OP 是⊙C 的直径,∴ ∠OAP =∠OBP = 90°,∴ OA ⊥PA ,OB ⊥PB ,图 2又∵ OA 和 OB 是⊙O 的半径,∴ PA ,PB 就是⊙O 的切线()(填依据).20.如图,在平面直角坐标系xOy中,点A(3,3),B(4,0),C(0,-1).(1)以点C 为旋转中心,把△ABC 逆时针旋转90°,画出旋转后的△ A 'B 'C ;(2)在(1)的条件下,①点A经过的路径¼AA'的长度为(结果保留π);②点B ' 的坐标为.21.如图,在四边形ABCD 中,AB = AD,∠A = 90°,∠CBD = 30°,∠C = 45°,如果AB = 2 ,求CD 的长.22.如果抛物线y =x2 + 2x + 2k - 4 与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值.23.如图,直线y=ax-4(a≠0)与双曲线y=k(k≠0)只有一个公共点A(1,-2).x(1)求k 与a 的值;(2)在(1)的条件下,如果直线y =ax +b (a ≠ 0 )与双曲线y =k(k ≠ 0 )有两个x公共点,直接写出 b 的取值范围.24.如图,AB是⊙O的直径,过点B作⊙O切线BM,弦CD∥BM,交AB于F,»AD=D»C,连接AC 和AD,延长AD 交BM 于点E.(1)求证:△ACD 是等边三角形;(2)连接OE,如果DE = 2,求OE 的长.。
北京市门头沟区九年级(上)期末数学试卷卷
16. 电影公司随机收集了 2000 部电影的有关数据,经分类整理得到如表:
电影类型 第一类
第二类
第三类
第四类
第五类
第六类
电影部数 140
50
300
200
800
510
好评率
0.4
0.2
0.15
0.25
0.2
0.1
注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值. (1)如果电影公司从收集的电影中随机选取 1 部,那么抽到的这部电影是获得好 评的第四类电影的概率是______; (2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好 评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的 好评率增加 0.1,哪类电影的好评率减少 0.1,可使改变投资策略后总的好评率达到 最大? 答:______.
第 3 页,共 21 页
20. 如图,在平面直角坐标系 xOy 中,点 A(3,3),B(4,0),C(0,-1). (1)以点 C 为旋转中心,把△ABC 逆时针旋转 90°,画出旋转后的△A'B'C; (2)在(1)的条件下, ①点 A 经过的路径 AA'的长度为______(结果保留 π); ②点 B'的坐标为______.
第 2 页,共 21 页
三、解答题(本大题共 12 小题,共 68.0 分) 17. 计算:(1-3)0+|-2|-2cos45°+(14)-1
18. 已知二次函数 y=x2-4x+3. (1)用配方法将其化为 y=a(x-h)2+k 的形式; (2)在所给的平面直角坐标系 xOy 中,画出它的图象.
2016-2017学年北京市门头沟区九年级(上)期末数学试卷含答案解析
2016-2017学年北京市门头沟区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)(2017秋•湛江期末)如果(a≠0、b≠0),那么下列比例式变形错误的是()A.B.C.D.3a=2b2.(3分)(2016秋•门头沟区期末)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC的值为()A.3B.C.D.3.(3分)(2018秋•卢龙县期末)⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A.d<4B.d=4C.d>4D.0≤d<44.(3分)(2016秋•门头沟区期末)甲、乙、丙三名运动员参加了射击预选赛,他们射击的平均环数及其方差s2如表所示.需要选一个成绩较好且状态稳定的人去参赛,如果选定的是乙,则乙的情况应为()A.,S2=0.7B.,S2=1.2C.,S2=1D.,S2=1.5 5.(3分)(2016秋•门头沟区期末)将抛物线y=x2的图象向左平移2个单位后得到新的抛物线,那么新抛物线的表达式是()A.y=(x﹣2)2B.y=(x+2)2C.y=x2﹣2D.y=x2+26.(3分)(2016秋•门头沟区期末)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=2,DB=1,S△ADE=4,则S四边形DBCE()A.3B.5C.7D.97.(3分)(2018秋•卢龙县期末)在正三角形、正四边形、正五边形、正六边形、正八边形5个图形中既是轴对称又是中心对称的图形有()A.2B.3C.4D.58.(3分)(2018秋•卢龙县期末)如图,已知⊙O的半径为5,弦AB长为8,则点O到弦AB的距离是()A.2B.3C.4D.9.(3分)(2016秋•门头沟区期末)如图:反比例函数y的图象如下,在图象上任取一点P,过P点作x轴的垂线交x轴于M,则三角形OMP的面积为()A.2B.3C.6D.不确定10.(3分)(2018秋•卢龙县期末)在学完二次函数的图象及其性质后,老师让学生们说出y=x2﹣2x﹣3的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是x=1”;小丽说:“此函数肯定与x轴有两个交点”;小红说:“此函数与y轴的交点坐标为(0,﹣3)”;小强说:“此函数有最小值,y=﹣3”…请问这四位同学谁说的结论是错误的()A.小亮B.小丽C.小红D.小强二、填空题(本题共18分,每小题3分)11.(3分)(2016秋•门头沟区期末)若,则.12.(3分)(2017秋•庆云县期末)为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)10米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A再用皮尺量得DE=2.0米,观察者目高CD=1.6米,则树(AB)的高度约为米.13.(3分)(2016秋•门头沟区期末)请写出一个过(2,1),且与x轴无交点的函数表达式.14.(3分)(2016秋•门头沟区期末)扇面用于写字作画,是我国古代书法、绘画特有的形式之一,扇面一般都是由两个半径不同的同心圆按照一定的圆心角裁剪而成,如图,此扇面的圆心角是120°,大扇形的半径为20cm,小扇形的半径为5cm,则这个扇面的面积是.15.(3分)(2016秋•门头沟区期末)记者随机在北京某街头调查了100名路人使用手机的情况,使用的品牌及人数统计如右图,则本组数据的众数为.16.(3分)(2016秋•门头沟区期末)在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径),如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点.请你说出小华此想法的依据是.三、解答题(本题共30分,每小题5分)17.(5分)(2016秋•门头沟区期末)计算:(π )04sin45°﹣()﹣1.18.(5分)(2016秋•门头沟区期末)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤中的一个作为条件,另一个作为结论,组成一个真命题.(1)条件是,结论是;(注:填序号)(2)写出你的证明过程.19.(5分)(2016秋•门头沟区期末)已知二次函数y=x2﹣2x﹣8.(1)将y=x2﹣2x﹣8用配方法化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的顶点坐标;(3)请说明在对称轴左侧图象的变化趋势.20.(5分)(2016秋•门头沟区期末)如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(4,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.21.(5分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,反比例函数y(k≠0)的图象过(2,3).(1)求反比例函数y的表达式;(2)有一次函数y=mx(m≠0)的图象与反比例函数y在第一象限交于点A,第三象限交于点B,过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,当两条垂线段满足2倍关系时,请在坐标系中作出示意图并直接写出m的取值.22.(5分)(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?四、解答题(本题共20分,每小题5分)23.(5分)(2016秋•门头沟区期末)已知二次函数y=x2+mx+m﹣2.(1)求证:此二次函数的图象与x轴总有两个交点;(2)如果此二次函数的图象与x轴两个交点的横坐标之和等于3,求m的值.24.(5分)(2016秋•门头沟区期末)已知:如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G,请写出GE:CE的比值,并加以证明.25.(5分)(2016秋•门头沟区期末)已知二次函数y=(m﹣1)x2+2mx+(m+3).(1)如果该二次函数的图象与x轴无交点,求m的取值范围;(2)在(1)的前提下如果m取最小的整数,求此二次函数表达式.26.(5分)(2016秋•门头沟区期末)如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,二次函数图象所在的位置如图所示:(1)请根据图象信息求该二次函数的表达式;(2)将该图象(x>0)的部分,沿y轴翻折得到新的图象,请直接写出翻折后的二次函数表达式;(3)在(2)的条件下与原有二次函数图象构成了新的图象,记为图象G,现有一次函数y x+b的图象与图象G有4个交点,请画出图象G的示意图并求出b的取值范围.28.(7分)(2016秋•门头沟区期末)已知在Rt△ABC中,∠ABC=90°,点P是AC的中点.(1)当∠A=30°且点M、N分别在线段AB、BC上时,∠MPN=90°,请在图1中将图形补充完整,并且直接写出PM与PN的比值;(2)当∠A=23°且点M、N分别在线段AB、BC的延长线上时,(1)中的其他条件不变,请写出PM与PN比值的思路.29.(8分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,对于点P(x,y)(x≥0)的每一个整数点,给出如下定义:如果P'(,)也是整数点,则称点P'为点P 的“整根点”.例如:点(25,36)的“整根点”为点(5,6).(1)点A(4,8),B(0,16),C(25,﹣9)的整根点是否存在,若存在请写出整根点的坐标;(2)如果点M对应的整根点M'的坐标为(2,3),则点M的坐标;(3)在坐标系内有一开口朝下的二次函数y=ax2+4x(a≠0),如果在第一象限内的二次函数图象内部(不在图象上),若存在整根点的点只有三个,请求出实数a的取值范围.2016-2017学年北京市门头沟区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)(2017秋•湛江期末)如果(a≠0、b≠0),那么下列比例式变形错误的是()A.B.C.D.3a=2b【解答】解:由得,3a=2b,A、由得3a=2b,所以变形正确,故本选项错误;B、由得3a=2b,所以变形正确,故本选项错误;C、由可得2a=3b,所以变形错误,故本选项正确;D、3a=2b变形正确,故本选项错误.故选:C.2.(3分)(2016秋•门头沟区期末)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC的值为()A.3B.C.D.【解答】解:如图,BC,sin∠ABC,故选:D.3.(3分)(2018秋•卢龙县期末)⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A.d<4B.d=4C.d>4D.0≤d<4【解答】解:∵点P在圆内,且⊙O的半径为4,∴0≤d<4,故选:D.4.(3分)(2016秋•门头沟区期末)甲、乙、丙三名运动员参加了射击预选赛,他们射击的平均环数及其方差s2如表所示.需要选一个成绩较好且状态稳定的人去参赛,如果选定的是乙,则乙的情况应为()A.,S2=0.7B.,S2=1.2C.,S2=1D.,S2=1.5【解答】解:∵需要选一个成绩较好且状态稳定的人去参赛,∴乙的平均成绩要高,且方差要小,故选:C.5.(3分)(2016秋•门头沟区期末)将抛物线y=x2的图象向左平移2个单位后得到新的抛物线,那么新抛物线的表达式是()A.y=(x﹣2)2B.y=(x+2)2C.y=x2﹣2D.y=x2+2【解答】解:抛物线y=x2的顶点坐标为(0,0),把(0,0))向左平移2个单位后所得对应点的坐标为(﹣2,0),所以新抛物线的表达式为y=(x+2)2.故选:B.6.(3分)(2016秋•门头沟区期末)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=2,DB=1,S△ADE=4,则S四边形DBCE()A.3B.5C.7D.9【解答】解:∵在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,AD=2,DB=1,S△ADE=4,∴△ADE∽△ABC,AB=AD+DB=3,∴,∴S△ABC=9,∴S四边形DBCE=9﹣4=5,故选:B.7.(3分)(2018秋•卢龙县期末)在正三角形、正四边形、正五边形、正六边形、正八边形5个图形中既是轴对称又是中心对称的图形有()A.2B.3C.4D.5【解答】解:正四边形、正六边形、正八边形既是轴对称又是中心对称的图形,故选:B.8.(3分)(2018秋•卢龙县期末)如图,已知⊙O的半径为5,弦AB长为8,则点O到弦AB的距离是()A.2B.3C.4D.【解答】解:作OC⊥AB于C,连接OA,则AC=BC AB=4,在Rt△OAC中,OC3,故选:B.9.(3分)(2016秋•门头沟区期末)如图:反比例函数y的图象如下,在图象上任取一点P,过P点作x轴的垂线交x轴于M,则三角形OMP的面积为()A.2B.3C.6D.不确定【解答】解:设P(x、y),则xy=6,三角形OMP的面积为OM•PM xy6=3;故选:B.10.(3分)(2018秋•卢龙县期末)在学完二次函数的图象及其性质后,老师让学生们说出y=x2﹣2x﹣3的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是x=1”;小丽说:“此函数肯定与x轴有两个交点”;小红说:“此函数与y轴的交点坐标为(0,﹣3)”;小强说:“此函数有最小值,y=﹣3”…请问这四位同学谁说的结论是错误的()A.小亮B.小丽C.小红D.小强【解答】解:抛物线y=x2﹣2x﹣3的对称轴为x1,故小亮说法正确;△=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=4+12=16,故小丽说法正确;当x=0时,y=﹣3,故小红的说法正确;y=x2﹣2x﹣3=(x﹣1)2﹣4,所以抛物线的最小值为y=﹣4,故小强说法错误,与要求相符.故选:D.二、填空题(本题共18分,每小题3分)11.(3分)(2016秋•门头沟区期末)若,则.【解答】解:∵,∴,∴,∴,∴.故答案为:.12.(3分)(2017秋•庆云县期末)为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)10米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A再用皮尺量得DE=2.0米,观察者目高CD=1.6米,则树(AB)的高度约为8米.【解答】解:根据题意,易得∠CDE=∠ABE=90°,∠CED=∠AEB,则△ABE∽△CDE,则,即,解得:AB=8米.故答案为:8.13.(3分)(2016秋•门头沟区期末)请写出一个过(2,1),且与x轴无交点的函数表达式y.【解答】解:设该函数表达式为y(k≠0).∵点(2,1)在函数y的图象上,∴1,解得:k=2,∴该函数表达式为y.故答案为:y.14.(3分)(2016秋•门头沟区期末)扇面用于写字作画,是我国古代书法、绘画特有的形式之一,扇面一般都是由两个半径不同的同心圆按照一定的圆心角裁剪而成,如图,此扇面的圆心角是120°,大扇形的半径为20cm,小扇形的半径为5cm,则这个扇面的面积是125cm2.【解答】解:扇面的面积=S大扇形﹣S小扇形125cm2.故答案为:125cm2.15.(3分)(2016秋•门头沟区期末)记者随机在北京某街头调查了100名路人使用手机的情况,使用的品牌及人数统计如右图,则本组数据的众数为华为.【解答】解:根据图表可以看出,华为出现了36次,出现的次数最多,则本组数据的众数为华为;故答案为:华为.16.(3分)(2016秋•门头沟区期末)在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径),如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点.请你说出小华此想法的依据是等腰三角形三线合一定理.【解答】解:连接OA、OB,则△OAB是等腰三角形,当MB过AB的中点时,一定有MN⊥AB,依据三线合一定理可得.故答案是:等腰三角形三线合一定理.三、解答题(本题共30分,每小题5分)17.(5分)(2016秋•门头沟区期末)计算:(π )04sin45°﹣()﹣1.【解答】解:原式=1+3221.18.(5分)(2016秋•门头沟区期末)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤中的一个作为条件,另一个作为结论,组成一个真命题.(1)条件是①,结论是③④;(注:填序号)(2)写出你的证明过程.【解答】解:(1)因为若∠BAD=∠C,则△ABC∽△DBA,故AB2=BD•BC;;故答案为:①,结论是③或④;(2)∵∠BAD=∠C,∠B=∠B,∴△ABD∽△ABC,∴,;∴AB2=BD•BC.19.(5分)(2016秋•门头沟区期末)已知二次函数y=x2﹣2x﹣8.(1)将y=x2﹣2x﹣8用配方法化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的顶点坐标;(3)请说明在对称轴左侧图象的变化趋势.【解答】解:(1)y=x2﹣2x﹣8=x2﹣2x+1﹣9=(x﹣1)2﹣9.(2)∵y=(x﹣1)2﹣9,∴该二次函数图象的顶点坐标是(1,﹣9).(3)∵a=1>0,∴在对称轴左侧,y随x的增大而减小.20.(5分)(2016秋•门头沟区期末)如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(4,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.【解答】解:(1)如图所示:点B的坐标为(1,1);(2)如图所示:△A'B'C',即为所求.21.(5分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,反比例函数y(k≠0)的图象过(2,3).(1)求反比例函数y的表达式;(2)有一次函数y=mx(m≠0)的图象与反比例函数y在第一象限交于点A,第三象限交于点B,过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,当两条垂线段满足2倍关系时,请在坐标系中作出示意图并直接写出m的取值.【解答】解:(1)∵反比例函数(k≠0)的图象过(2,3),∴,解得k=6,∴反比例函数表达式为(2)分两种情况:①如图1所示:AM=2BN,由对称的性质得:点A和B关于原点O对称,则OA=OB,OM=BN,∴AM=2OM,∴m=2;②如图2所示:BN=2AM,由对称的性质得:点A和B关于原点O对称,则OA=OB,OM=BN,∴AM=2OM,∴m∴m=2或m.22.(5分)(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?【解答】解:过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∠BAE=∠MAF,∴△ABE∽△AMF.∴.即.解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.所以住宅楼的高度为20.8m.四、解答题(本题共20分,每小题5分)23.(5分)(2016秋•门头沟区期末)已知二次函数y=x2+mx+m﹣2.(1)求证:此二次函数的图象与x轴总有两个交点;(2)如果此二次函数的图象与x轴两个交点的横坐标之和等于3,求m的值.【解答】(1)证明:∵a=1,b=m,c=m﹣2,∴△=m2﹣4m+8,=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴此二次函数的图象与x轴总有两个交点;(2)解:令y=0,得x2+m x+m﹣2=0,解得x1,x2,∵二次函数的图象与x轴两个交点的横坐标之和等于3∴﹣m=3,解得,m=﹣3.24.(5分)(2016秋•门头沟区期末)已知:如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G,请写出GE:CE的比值,并加以证明.【解答】解:GE:CE=1:3;理由如下:连结ED,如图所示:∵D、E分别是边BC、AB的中点,∴DE∥AC,DE AC,∴△ACG∽△DEG,∴,∴.25.(5分)(2016秋•门头沟区期末)已知二次函数y=(m﹣1)x2+2mx+(m+3).(1)如果该二次函数的图象与x轴无交点,求m的取值范围;(2)在(1)的前提下如果m取最小的整数,求此二次函数表达式.【解答】解:(1)∵二次函数y=(m﹣1)x2+2mx+(m+3)的图象与x轴无交点,∴△=4m2﹣4(m﹣1)(m+3)<0且m﹣1≠0,解得>;(2)根据题意得,解得m=2.∴二次函数的表达式是y=x2+4x+5.26.(5分)(2016秋•门头沟区期末)如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求⊙O的直径.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)解:∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∴∠DCE=∠A,∵CE=4,DE=2,∴tan∠A=tan∠DCE,∴在Rt△ACE中,可得AE=8,∴AD=6,在在Rt△ADB中可得BD=3,∴根据勾股定理可得AB=3五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,二次函数图象所在的位置如图所示:(1)请根据图象信息求该二次函数的表达式;(2)将该图象(x>0)的部分,沿y轴翻折得到新的图象,请直接写出翻折后的二次函数表达式;(3)在(2)的条件下与原有二次函数图象构成了新的图象,记为图象G,现有一次函数y x+b的图象与图象G有4个交点,请画出图象G的示意图并求出b的取值范围.【解答】解:(1)由图象可知抛物线经过点(1,0),(3,0),(0,3),设抛物线的解析式为y=a(x﹣1)(x﹣3),代入(0,3)得,3a=3,解得a=1,∴y=(x﹣1)(x﹣3),即:y=x2﹣4x+3.(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∵顶点为(2,﹣1),∴沿y轴翻折得到新的图象顶点为(﹣2,﹣1),∴翻折后的二次函数表达式y=x2+4x+3(x<0);(3)示意图正确解整理得:∵△>解得:>,当过(0,3)时,b=3,所以综上所述符合题意的b的取值范围是<<.28.(7分)(2016秋•门头沟区期末)已知在Rt△ABC中,∠ABC=90°,点P是AC的中点.(1)当∠A=30°且点M、N分别在线段AB、BC上时,∠MPN=90°,请在图1中将图形补充完整,并且直接写出PM与PN的比值;(2)当∠A=23°且点M、N分别在线段AB、BC的延长线上时,(1)中的其他条件不变,请写出PM与PN比值的思路.【解答】解:(1)补充图形如图1所示,过P作PE⊥AB于E,PF⊥BC于F,∵∠ABC=90°,∴四边形PEBF是矩形,∴PE∥BC,PF∥AB,∵P是AC的中点,∴PE BC,PF AB,∵∠A=30°,∴,∵∠EPF=∠MPN=90°,∴∠MPE=∠NPF,∴△PEM∽△PFN,∴;(2)思路:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F,由PF⊥BC和∠ABC=90°可以得到AB∥PF,∠PFC=90°进而得到∠A=∠FPC;由∠PFC=∠AEP=90°,AP=PC可以得到△AEP≌△PFC,进而推出AE=PF;由点P处的两个直角可以得到∠EPM=∠FPN,进而可以得到△MEP∽△NPF,由此可以得到等量代换可以得到;在Rt△AEP中,可以得到.解:点P作PE⊥AB于E,PF⊥BC于点F,则四边形PEBF是矩形,∴PF∥AB,∠EPF=90°,∴∠A=∠CPF=23°,在△AEP与△PFC中,,∴△AEP≌△PFC,∴AE=PF,∵∠EPF=∠MPN=90°,∴∠EPM=∠FPN,∴△MEP∽△NPF,∴,∴,∵tan∠A,∴tan23°.29.(8分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,对于点P(x,y)(x≥0)的每一个整数点,给出如下定义:如果P'(,)也是整数点,则称点P'为点P 的“整根点”.例如:点(25,36)的“整根点”为点(5,6).(1)点A(4,8),B(0,16),C(25,﹣9)的整根点是否存在,若存在请写出整根点的坐标B′(0,4),C′(5,3);(2)如果点M对应的整根点M'的坐标为(2,3),则点M的坐标M(4,9)或M(4,﹣9);(3)在坐标系内有一开口朝下的二次函数y=ax2+4x(a≠0),如果在第一象限内的二次函数图象内部(不在图象上),若存在整根点的点只有三个,请求出实数a的取值范围.【解答】解:(1)A不存在整根点;因为B′(,)即(0,4)也是整数点,所以B点的整根点坐标是B′(0,4).同理C点的整根点坐标是C′(5,3).故答案是:B′(0,4),C′(5,3);(2)设M(x,y)(x≥0)依题意得:M'(,),∵M'(2,3),∴M(4,9)或M(4,﹣9);故答案是:M(4,9)或M(4,﹣9);(3)由于图象开口向下,根据表达式特点及对称轴所在位置的变化,将分为以下两种情况进行讨论:当图象经过(4,4)时,如图:根据轴对称性,此时恰有1个整根点在图象上,2个整根点在图象内部因此:代入表达式得:4=16a+16解得a;当图象过(4,9)时,代入表达式得:9=16a+16解得a根据图象的轴对称性可以验证(1,4)(9,1)都不在图象内部,因此此时有3个整根点在图象内部;综合上述分析当<.。
12门头沟区九上期末数学答案(201801)
门头沟区2017~2018学年度第一学期期末调研评分标准九年级数学一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17题-24题,每小题5分,第25题6分,第26题7分,第27题7分, 第28题8分)解答应写出文字说明、演算步骤或证明过程 17.(本小题满分5分) 解:原式124=+-…………………………………………………………………………4分3.=-………………………………………………………………………………………………5分18.(本小题满分5分) 证明:∵ AB =AC ,BD =CD∴ AD BC ⊥, ……………………………………2分∵ CE ⊥AB∴90ADB BEC ∠=∠=︒……………………………………4分 ∵B B ∠=∠ABD CBE ∴△∽△ ……………………………………5分19.(本小题满分5分) 解:(1)y =x 2+2x -3=x 2+2x +1-1-3 ……………………………………………………………………………2分 =(x +1)2-4. …………………………………………………………………… …………3分 (2)∵y =(x +1)2-4,∴该二次函数图象的顶点坐标是(-1,-4).…………………………………………5分20.(本小题满分5分)原式=22211m m m m m ++⋅+ =22(1)1m m m m +⋅+ =2m m +. ………………3分 ∵ m 是方程230x x +-=的根,∴ 230m m +-=.∴ 23m m +=. ………………………5分21.(本小题满分5分) 解:(1)∵反比例函数2my x=(0k ≠)的图象过(2,2), ∴22m=, ……………………………………………………………1分 解得4m = ∵直线10y kx k =≠()的图象过(2,2), ∴22k =,解得1k = ……………………………………………………………2分(2)示意图:正确 ……………………………………………………………3分p p 或…………………………………………………5分22.(本小题满分5分)解:根据题意补全图形如下:(1)可知60MN =,30NQ =,∠AMQ=30°,∠BMQ =60° …1分(2)在Rt △ADB 中,由MN =60,∠AMQ =30°,根据三角函数可得AN = ………………………………………2分(3)过点A 作 AK ⊥BQ 于K ,可得四边形AKQN 是矩形,进而得出AK =NQ =30,KQ =AN = ………………………………………3分xx(4)在Rt △BMQ 中,由MQ =MN+NQ=90,∠BMQ =60°,根据三角函数可得BQ =BK = ………………………………………4分(5)在Rt △AKB 中,根据勾股定理可以求出AB 的长度. …………………………5分 23.(本小题满分5分)(1)证明:令y =0,可得2(1)10kx k x +++=∵11a k b k c ==+=,,∴△=221k k -+……………………………………………………………………………1分=2(1)k - …………………………………………………………………………………2分 ∵2(1)0k -≥∴此二次函数的图象与x 轴总有交点.………………………………………………………3分(2)解:令y =0,得2(1)10kx k x +++=解得 x 1=1(1)12k k k k --+-=-,x 2=1(1)12k k k----=-………………………………4分∵k 为整数,解为整数∴1k =±. ………………………………………………………………………………5分24.(本小题满分5分) (1)证明:连接OE ,∵AC 与圆O 相切,∴OE ⊥AC ,…………….1分 ∵BC ⊥AC ,∴OE ∥BC ,又∵O 为DB 的中点,∴E 为DF 的中点,即OE 为△DBF 的中位线, ∴OE =BF , 又∵OE =BD ,∴BF =BD ;……………………………………….2分 (2)设BC =3x ,4tan 3B ∠=可得:AB =5x , 又∵CF =2, ∴BF =3x +2,由(1)得:BD =BF , ∴BD =3x +2, ∴OE =OB =322x +,AO =AB ﹣OB =3272522x x x +--= ∵OE ∥BF ,∴∠AOE =∠B , ……………………………………………………………………………………4分∴cos ∠AOE =cos B ,即32232725OE x AO x +=⋅=-, 解得: 83x =则圆O 的半径为3210522x +==………………………………………………………………………5分25.(本小题满分6分)(1)2.3 ……………………………………………………………………1分(2)坐标系正确 ……………………………………………………3分 描点正确 ……………………………………………………4分 连线正确 ……………………………………………………5分 (3)2.6 ……………………………………………………………………6分 26. (本小题满分7分)(1)选择坐标代入正确 ………………………………………………1分 得出表达式243y x x =-+………………………………………………3分(2)找到位置画出示意图 ① 214x x -=………………………………………………②由图象易得当y=0时212x x -=由于该函数图象的对称轴为2x =, 1(,)P x y ,2(,)Q x y ,在对称轴左右两侧对称分布,所以两点到对称轴的距离相等 所以,当213x x -=时即PQ =3 ∴MP = MN -PN =31222-=………………………………………………5分 ∴112x =代入243y x x =-+,解得54y =………………………………………6分 综上所述:504y ≤≤………………………………………7分27.(本小题满分7分)(1) AD CB AB += ……………………………………………1分y(2)补全图形正确 ………………………………………2分 结论:AD CB AB +>………………………………………3分理由:如图:将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,联结BE 、CE ,且可得AB DE ∥且AB DE =∴四边形A 、B 、E 、D 是平行四边形………………………4分∴AD BE =∵AB CD = ∴DE CD =∵AB DE ∥,60AOD ∠=︒∴DCE △是等边三角形……………………………………5分∴CE AB =由于AD 与CB 不平行,所以C 、B 、E 构成三角形∴BE CB CE +>……………………………………………6分 ∴AD CB AB +>(3)AD CB AB +≥ …………………………………………7分 28.(本小题满分8分)解:(1)点B ,点C ; …………………………………………2分 (2)90°………………………………………………………3分 (3)当⊙W 运动到摇摆角的内部,与PF 左边的射线相切时如图28-1∵点(2,3)P 的摇摆角为60° ∴30KPF ∠=︒,3PF =在Rt △PFK 中, tan tan 30KFKPF PF∠=∠︒=在可求得KF = ∵30KPF ∠=︒, ∴60PKF ∠=︒在Rt △PFK 中, sin sin 60QW QKF KW∠=∠︒=,可求得KW =∴22OW OF KF KW =-+== 当⊙W 运动到摇摆角的内部,与PF 右边的射线相切时如图28-2同理可求得OW∴2a ≤说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2017-2018北京初三(上)期末数学各区试题汇总-圆部分
●知识模块1:圆基础(选填) (2)★与圆的位置关系 (2)★圆周角、圆心角 (2)★垂径定理 (4)★正多边形 (6)★弧长、扇形面积 (7)●知识模块2:尺规作图 (8)●知识模块3:圆解答题(计算) (13)●知识模块4:圆解答题(综合) (16)●知识模块5:新定义问题 (24)●知识模块1:圆基础(选填)★与圆的位置关系1.(密云18期末5)如图,Rt ABC ∆中,90C ∠=︒,AC=4,BC=3.以点A 为圆心,AC 长为半径作圆.则下列结论正确的是( )A.点B 在圆内B.点B 在圆上C.点B 在圆外D.点B 和圆的位置关系不确定2.(门头沟18期末6)已知ABC △,AC =3,CB =4,以点C 为圆心r 为半径作圆,如果点A 、点B 只有一个点在圆内,那么半径r 的取值范围是A .3r >B .4r ≥C .34r <≤D .34r ≤≤3.(顺义18期末13)已知矩形ABCD 中, AB =4,BC =3,以点B 为圆心r 为半径作圆,且⊙B 与边CD 有唯一公共点,则r 的取值范围是 .4.(石景山18期末14)14.如图,在Rt △ABC 中,︒=∠90C ,AB =10.若以点C 为圆心,CB 为半径的圆恰好经过AB 的中点D ,则AC =________.★圆周角、圆心角 5.(密云18期末6)如图,ABC ∆内接于O ,80AOB ∠=︒,则ACB∠的大小为( )A.20︒B.40︒C.80︒D.90︒6.(大兴18期末2)如图,点A ,B ,P 是⊙O 上的三点,若︒=∠40AOB ,则APB ∠的度数为( )A. ︒80B. ︒140C. ︒20D. ︒507.(平谷18期末6)如图,△ABC 内接于⊙O ,连结OA ,OB ,∠ABO =40°,则∠C 的度数是( )A .100°B .80°C .50° D40°8.(昌平18期末4)如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC的大小为( )A .40°B .30°C .80°D .100°B CA DABCDBAC9.(门头沟18期末3)如图,DCE ∠是圆内接四边形ABCD 的一个外角,如果75DCE ∠=︒,那么BAD ∠的度数是( ) A .65︒ B .75︒ C .85︒ D .105︒ 10.(朝阳18期末6)如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =7.则∠BDC 的度数是( )A .15°B .30°C . 45°D .60°11.(石景山18期末3)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若︒=∠25ACD ,则BOD ∠的度数为( )A .︒100B .︒120C .︒130D .︒15012.(西城18期末5)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( ).A .34°B .46°C .56°D .66°13.(丰台18期末7)如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB =140°,那么∠ACB 的度数为( )A .70°B .110°C .140°D .70°或110°14.(怀柔18期末5)如图,⊙O 是△ABC 的外接圆,∠BOC =100°,则∠A 的大小为 ( )A .B .C .D .15.(通州18期末4)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若︒=∠55ABD ,则BCD ∠的度数为( )A .︒25B .︒30C .︒35D .︒4016.(燕山18期末3)3.如图,圆心角 ∠ AOB=25°,将 AB 旋转 n°得到 CD ,则∠ COD 等于( )A .25°B .25°+ n°C .50°D .50°+ n°40︒50︒80︒100︒AA B DCBAO17.(燕山18期末13)如图,量角器的直径与直角三角尺 ABC的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 3°的速度旋转,CP 与量角器的半圆弧交于点 E ,则第 20 秒点 E 在量角器上对应的读数是 °18.(通州18期末15)⊙O 的半径为1,其内接ABC △的边2=AB ,则C ∠的度数为________. 19.(东城18期末14)⊙O 是四边形ABCD 的外接圆,AC 平分∠BAD ,则正确结论的序号是 . ①AB=AD ;②BC=CD ;③ AB AD =;④∠BCA=∠DCA ;⑤ BCCD =. 20.(丰台18期末14)在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为 .21.(西城18期末16)如图,⊙O 的半径为3,A ,P 两点在⊙O 上,点B在⊙O 内,4tan 3APB ∠=,AB AP⊥.如果OB ⊥OP ,那么OB 的长为.★垂径定理 22.(顺义18期末6)如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为( )A .B .C .D .1023.(石景山18期末4)如图,在⊙O 中,弦AB 垂直平分半径OC .若⊙O的半径为4,则弦AB 的长为( )A .32B .34C .52D .5424.(通州18期末6)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB翻折,劣弧恰好经过圆心O .则折痕AB 的长为( )A. 3B. 32C. 6D. 34CBAO25.(怀柔18期末7)某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O ,再任意找出圆O 的一条直径标记为AB (如图1),测量出AB =4分米;②将圆环进行翻折使点B 落在圆心O 的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C 、D (如图2);③用一细橡胶棒连接C 、D 两点(如图3); ④计算出橡胶棒CD 的长度.小明计算橡胶棒CD 的长度为( )A .22分米B .23分米C .32分米D .33分米26.(门头沟18期末13)如图,在△ABC 中,∠A =60°,⊙O 为△ABC的外接圆.如果BC=,那么⊙O 的半径为________.27.(西城18期末13)如图,⊙O 的半径等于4,如果弦AB 所对的圆心角等于120 ,那么圆心O 到弦AB 的距离等于 . 28.(大兴18期末13)如图,在半径为5cm 的⊙O 中,如果弦AB 的长为8cm ,OC ⊥AB ,垂足为C ,那么OC 的长为 cm . 29.(东城18期末12)如图,AB 是⊙O 的弦,C 是AB 的中点,连接OC并延长交⊙O 于点D .若CD =1,AB =4,则⊙O 的半径是_______. 30.(燕山18期末11)如图,AB 、AC 是⊙O 的弦,OM ⊥ AB ,ON ⊥ AC ,垂足分别为 M 、N .如果 MN =2.5,那么BC =_______★正多边形 31.(东城18期末2)边长为2的正方形内接于M ,则M 的半径是( )A .1B .2CD. 32.(丰台18期末12)如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为 .33.(通州18期末13)如图,AD ,AE 是正六边形的两条对角线.在不添加任何其他线段的情况下,请写出两个关于图中角度的正确结论: (1)__________________________; (2)______________________. 34.(昌平18期末13)如图,⊙O 的半径为3,正六边形ABCDEF内接于⊙O ,则劣弧AB 的长为 .35.(朝阳18期末9)如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为3,则正六边形ABCDEF 的边长为 .36.(平谷18期末13)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是我国古代著名数学家刘徽在《九章算术注》中提到的“如何求圆的周长和面积”的方法,即“割圆术”.“割圆术”的主要意思是用圆内接正多边形去逐步逼近圆.刘徽从圆内接正六边形出发,将边数逐次加倍,并逐次得到正多边形的周长和面积.如图,AB 是圆内接正六边形的一条边,半径OB =1,OC ⊥AB 于点D ,则圆内接正十二边形的边BC 的长是 (结果不取近似值).F C★弧长、扇形面积 37.(西城18期末4)圆心角为60︒,且半径为12的扇形的面积等于( ).A.48πB.24πC.4πD.2π38.(东城18期末5)A ,B 是O 上的两点,OA =1, AB 的长是1π3,则∠AOB 的度数是( ) A .30° B .60° C .90° D .120° 39.(大兴18期末4)在半径为12cm 的圆中,长为4πcm 的弧所对的圆心角的度数为( )A. ︒10B. ︒60C. ︒90D. ︒12040.(通州18期末2)已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( )A .6πB .πC .3π D . 32π41.(海淀18期末13)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为_______. 42.(丰台18期末10)半径为2的圆中,60°的圆心角所对的弧的弧长为_______. 43.(大兴18期末14)圆心角为160°的扇形的半径为9cm ,则这个扇形的面积是_______cm 2. 44.(密云18期末12)扇形半径为3cm ,弧长为πcm ,则扇形圆心角的度数为__________. 45.(平谷18期末10)圆心角为120°,半径为6cm 的扇形的弧长是 cm (结果不取近似值). 46.(朝阳18期末7)如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A’B’C ,则图中阴影部分的面积为( ) A .2 B .2πC .4D .4π47.(石景山18期末11)如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 的三等分点,则图中所有阴影部分的面积之和是________cm 2.48.(怀柔18期末15)在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为 米2. 49.(顺义18期末20)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm ,∠O =∠O ’=90°,计算图中中心虚线的长度.BO '●知识模块2:尺规作图1.(昌平18期末16)阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆;第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.2.(门头沟18期末16)下面是“作已知圆的内接正方形”的尺规作图过程.请回答:该尺规作图的依据是______________________________________________.3.(朝阳18期末16)下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是_____________________________________________.4.(石景山18期末16)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).请回答,CACCACABCSSS2211∆∆∆==成立的理由是:①;②.5.(燕山18期末16)在数学课上,老师提出利用尺规作图完成下面问题:作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则CACCACABCSSS2211∆∆∆==.图2B3B1B2MC2C1AB C图1CBA6.(怀柔18期末16)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:请回答:这样做的依据是.7.(丰台18期末16、密云18期末16)下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA,OB,可证∠OAP =∠OBP = 90°,理由是;(2)直线P A,PB是⊙O的切线,依据是.8.(大兴18期末16)下面是“作出所在的圆”的尺规作图过程.请回答:该尺规作图的依据是 . 9.(通州18期末16)16. 阅读下面材料:在数学课上,老师提出如下问题:小霞的作法如下:老师说:“小霞的作法正确.”请回答:小霞的作图依据是 .(1)如图,在平面内任取一点O ; (2)以点O 为圆心,AO 为半径作圆,交射线AB 于点D ,交射线AC 于点E ; (3)连接DE ,过点O 作射线OP 垂直线段DE ,交⊙O 于点P ; (4)连接AP .所以射线AP 为所求.尺规作图:作已知角的角平分线. 已知:如图,已知BAC ∠.求作: BAC ∠的角平分线AP .已知:.求作:所在的圆.(1)在上任取三个点D ,C ,E ;所以⊙O 即为所求作的所在的圆..10.(海淀18期末16、平谷18期末16)下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是.11.(昌平18期末21)尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.C A ●知识模块3:圆解答题(计算)1.(昌平18期末20)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AC ,BC .(1)求证:A BCD ∠=∠;(2)若AB =10,CD =8,求BE 的长. 2.(朝阳18期末18)如图,四边形ABCD 是⊙O 的内接四边形,对角线AC 是⊙O 的直径,AB=2,∠ADB =45°. 求⊙O 半径的长.3.(东城18期末18)已知等腰△ABC 内接于O , AB =AC ,∠BOC =100°,求△ABC 的顶角和底角的度数.4.(密云18期末21)如图,AB 是O 的弦,O 的半径OD AB ⊥垂足为C.若AB =,CD=1 ,求O的半径长.5.(丰台18期末20)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE = 1寸,CD = 10寸,求直径AB 的长.请你解答这个问题.6.(平谷18期末20)如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠A =15°,AB =4.求弦CD 的长.7.(大兴18期末21)已知: 如图,⊙O 的直径AB 的长为5cm ,C 为⊙O 上的一个点,∠ACB的平分线交⊙O 于点D ,求BD 的长.8.(通州18期末19)如图,ABC △内接于⊙O .若⊙O 的半径为6,︒=∠60B ,求AC 的长.A9.(顺义18期末24)已知:如图,AB 为⊙O 直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .10.(燕山18期末19)如图,AB 为⊙ O 的直径,弦 CD ⊥ AB 于点E ,连 接BC .若AB =6,∠ B =30°,求:弦CD 的长.E FO C BA●知识模块4:圆解答题(综合)1.(大兴18期末24)已知:如图,AB 是半圆O 的直径,D 是半圆上的一个动点(点D 不与点A ,B 重合), .∠=∠CAD B (1)求证:AC 是半圆O 的切线;(2)过点O 作BD 的平行线,交AC 于点E ,交AD 于点F ,且EF=4,AD=6,求BD 的长. 2.(昌平18期末24)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线;(2)如果半径的长为3,tan D=34,求AE 的长.3.(朝阳18期末24)如图,在△ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,⊙O的切线DE 交AC 于点E . (1)求证:E 是AC 中点;(2)若AB =10,BC =6,连接CD ,OE ,交点为F ,求OF 的长.4.(东城18期末25)如图,在△ABC 中,AB =AC ,以AB 为直径的O 与边BC ,AC 分别交于点D ,E .DF 是O 的切线,交AC 于点F . (1)求证:DF ⊥AC ;(2)若AE =4,DF =3,求tan A .EBC5.(海淀18期末24)如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB交弦BC 于点E ,在BC 的延长线上取一点F ,使得EF =DE . (1)求证:DF 是⊙O 的切线;(2)连接AF 交DE 于点M ,若 AD =4,DE =5,求DM 的长.6.(石景山18期末25)如图,AC 是⊙O 的直径,点D 是⊙O 上一点,⊙O 的切线CB 与AD 的延长线交于点B ,点F 是直径AC 上一点,连接DF 并延长交⊙O 于点E ,连接AE . (1)求证:∠ABC =∠AED ;(2)连接BF ,若AD 532=,AF =6,tan 34=∠AED ,求BF 的长.CA7.(西城18期末24)如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上,=DCE B∠∠.(1)求证:CE是半圆的切线;(2)若CD=10,2tan3B=,求半圆的半径.8.(丰台18期末24)如图,AB是⊙O的直径,点C是»AB的中点,连接AC并延长至点D,使CD AC=,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当2OB=时,求BH的长.9.(怀柔18期末22)22. 如图,已知AB 是⊙O 的直径,点M 在BA 的延长线上,MD 切⊙O于点D ,过点B 作BN ⊥MD 于点C ,连接AD 并延长,交BN 于点N . (1)求证:AB =BN ;(2)若⊙O 半径的长为3,cosB =52,求MA 的长.10.(平谷18期末25)25.如图,在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,点O 是AB 边上一点,以O 为圆心作⊙O 且经过A ,D 两点,交AB 于点E . (1)求证:BC 是⊙O 的切线; (2)AC =2,AB =6,求BE 的长.A11.(密云18期末24)如图,AB 是O 的直径,C 、D 是O 上两点, AC BC=.过点B 作O 的切线l ,连接AC 并延长交l 于点E ,连接AD 并延长交l 于点F .(1)求证:AC =CE .(2)若AE =3sin 5BAF ∠= 求DF 长.12.(顺义18期末26)已知:如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F . (1)求证:DE ⊥AB ;(2)若tan ∠BDE =12, CF =3,求DF 的长.B13.(大兴18期末27)已知:如图,AB 为半圆O 的直径,C 是半圆O 上一点,过点C 作AB的平行线交⊙O 于点E ,连接AC 、BC 、AE ,EB . 过点C 作CG ⊥AB 于点G ,交EB 于点H.(1)求证:∠BCG=∠E BG ;(2)若55sin =∠CAB ,求GB EC 的值.14.(门头沟18期末24)如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 边上一点,以BD为直径的⊙O 与边AC 相切于点 E ,连接DE 并延长DE 交BC 的延长线于点F . (1)求证:BD =BF ;(2)若CF =2,4tan 3B =,求⊙O 的半径.15.(通州18期末22)如图,ABC △是等腰三角形,AC AB =,以AC 为直径的⊙O 与BC 交于点D ,DE AB ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1BE =,求cos A 的值.16.(燕山18期末24)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线;(2)如果⊙O 的半径为5,sin ∠ADE =45,求BF 的长.●知识模块5:新定义问题1.(大兴18期末28)一般地,我们把半径为1的圆叫做单位圆,在平面直角坐标系xOy 中,设单位圆的圆心与坐标原点O 重合,则单位圆与x 轴的交点分别为(1,0),(-1,0),与y 轴的交点分别为(0,1),(0,-1).在平面直角坐标系xOy 中,设锐角α的顶点与坐标原点O α的一边与x 轴的正半轴重合,另一边与单位圆交于点P 11(,)x y ,且点P 在第一象限.(1)1x =_ __ (用含α的式子表示);1y =____ _ (用含α的式子表示); (2)将射线OP 绕坐标原点O 按逆时针方向旋转90︒后与单位圆交于点22(,)Q x y .①判断1y 2与的数量关系,并证明;x②12y y +的取值范围是:_ ___.2.(东城18期末28)对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O 的半径为3时, 在点P 1(1,0),P 21),P 3(72,0),P 4(5,0)中,⊙O的和睦点是________;(2)若点P (4,3)为⊙O 的和睦点,求⊙O 的半径r 的取值范围;(3)点A 在直线y =﹣1上,将点A 向上平移4个单位长度得到点B ,以AB 为边构造正方形ABCD ,且C ,D 两点都在AB 右侧.已知点E ,若线段OE 上的所有点都是正方形ABCD 的和睦点,直接写出点A 的横坐标A x 的取值范围.3.(昌平18期末28)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到x 轴的距离为4,到y 轴的距离为3,因为3 < 4,所以点P 的最大距离为4.(1)①点A (2,5-)的最大距离为 ;②若点B (a ,2)的最大距离为5,则a 的值为 ;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;(3)若⊙O 上存在..点M ,使点M 的最大距离为5,直接写出⊙O 的半径r 的取值范围.4.(朝阳18期末28)在平面直角坐标系xOy中,点A (0, 6),点B在x轴的正半轴上. 若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X矩形”. 下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围.备用图5.(海淀18期末27)对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PAQA≤≤,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P的坐标________; (2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan 2BAO ∠=,求点B 的纵坐标t 的取值范围;(3)直线y b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O的“生长点”,直接写出b 的取值范围是_____________________________.6.(石景山18期末28)在平面直角坐标系xOy 中,点P 的坐标为),(11y x ,点Q 的坐标为),(22y x ,且21x x ≠,21y y ≠,若PQ 为某个等腰三角形的腰,且该等腰三角形的底边与x 轴平行,则称该等腰三角形为点P ,Q 的“相关等腰三角形”.下图为点P ,Q 的“相关等腰三角形”的示意图....(1)已知点A 的坐标为)1,0(,点B 的坐标为)0,3(-,则点A ,B 的“相关等腰三角形”的顶角为_________°;(2)若点C 的坐标为)3,0(,点D 在直线34=y 上,且C ,D 的“相关等腰三角形”为等边三角形,求直线CD 的表达式;(3)⊙O 的半径为2,点N 在双曲线xy 3-=上.若在⊙O 上存在一点M ,使得点M 、N 的“相关等腰三角形”为直角三角形,直接写出点N 的横坐标N x 的取值范围.7.(西城18期末28)在平面直角坐标系xOy中,A,B两点的坐标分别为(2,2)A,(2,2)B-.对于给定的线段AB及点P,Q,给出如下定义:若点Q关于AB所在直线的对称点Q'落在△ABP的内部(不含边界),则称点Q是点P关于线段AB的内称点.(1)已知点(4,1)P-.①在1(1,1)Q-,2(1,1)Q两点中,是点P关于线段AB的内称点的是____________;②若点M在直线1y x=-上,且点M是点P关于线段AB的内称点,求点M的横坐标Mx的取值范围;(2)已知点(3,3)C,⊙C的半径为r,点(4,0)D,若点E是点D关于线段AB的内称点,且满足直线DE与⊙C相切,求半径r的取值范围.8.(丰台18期末28)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”. (1)当⊙O 的半径为1时,①在点P 1(12,P 2(0,-2),P 30)中,⊙O 的“离心点”是 ;②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B .如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.9.(怀柔18期末28)在平面直角坐标系xOy 中,点P 的横坐标为x ,纵坐标为2x ,满足这样条件的点称为“关系点”.(1)在点A (1,2)、B (2,1)、M (21,1)、N (1,21)中,是“关系点”的 ;(2)⊙O 的半径为1,若在⊙O 上存在“关系点”P ,求点P 坐标; (3)点C 的坐标为(3,0),若在⊙C 上有且只有一个......“关系点”P ,且“关系点”P 的横坐标满足-2≤x≤2.请直接写出⊙C 的半径r 的取值范围.10.(平谷18期末28)在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”;(2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N.①点M的坐标为(4,0),求圆心P所在直线的表达式;②⊙P的半径为5,求m-n的取值范围.11.(密云18期末28)已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点. (1)当O 的半径为1时,①点11(,0)2P,2P ,3(0,3)P 中,O 的关联点有_____________________. ②直线l 经过(0,1)点,且与y 轴垂直,点P 在直线l 上.若P 是O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图 备用图12.(门头沟18期末28)以点P 为端点竖直向下的一条射线PN ,以它为对称轴向左右对称摆动形成了射线1PN ,2PN ,我们规定:12N PN ∠为点P 的“摇摆角”, 射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含1PN ,2PN ). 在平面直角坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆角为60︒时,请判断(0,0)O 、(1,2)A 、(2,1)B、(20)C 属于点P 的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°; (3)⊙W 的圆心坐标为(,0)a ,半径为1,如果⊙W 上的所有点都在点P 的摇摆角为60︒ 时的摇摆区域内,求a 的取值范围.备用图13.(通州18期末25)点P 的“d 值”定义如下:若点Q 为圆上任意一点,线段PQ 长度的最大值与最小值之差即为点P 的“d 值”,记为P d .特别的,当点P ,Q 重合时,线段PQ 的长度为0.当⊙O 的半径为2时:(1)若点⎪⎭⎫⎝⎛-0,21C ,()4,3D ,则=C d _________,=D d _________;(2)若在直线22+=x y 上存在点P ,使得2=P d ,求出点P 的横坐标;(3)直线()033>+-=b b x y 与x 轴,y 轴分别交于点A ,B .若线段AB 上存在点P ,使得32<≤P d ,请你直接写出b 的取值范围.14.(燕山18期末28)在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l 的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线。
2018-2019学年北京市门头沟区九年级(上)期末数学试卷-普通用卷
2018-2019学年北京市门头沟区九年级(上)期末数学试卷副标题一、选择题(本大题共8小题,共16.0分)1.点P(2,-1)关于原点对称的点P′的坐标是()A. B. C. D.2.二次函数y=x2的对称轴是()A. 直线B. 直线C. y轴D. x轴3.如图是某几何体的三视图,那么该几何体是()A. 球B. 正方体C. 圆锥D. 圆柱4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A. B. C. D.5.⊙O的半径为5,点P到圆心O的距离为3,点P与⊙O的位置关系是()A. 无法确定B. 点P在⊙外C. 点P在⊙上D. 点P在⊙内6.如图,AB是⊙O的直径,C,D为⊙O上的点,=,如果∠CAB=40°,那么∠CAD的度数为()A. B. C. D.7.如图是某一正方体的展开图,那么该正方体是()A.B.C.D.8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,A. 分钟B. 分钟C. 分钟D. 分钟二、填空题(本大题共8小题,共16.0分)9.如果∠A是锐角,且sin A=,那么∠A=______°.10.在Rt△ABC中,∠C=90°,AB=5,BC=4,那么cos B=______.11.写出一个图象位于第一、三象限的反比例函数的表达式:______.12.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为______.13.函数y=ax2+bx+c(a≠0)的图象如图所示,那么ac______0.(填“>”,“=”,或“<”)14.将抛物线y=x2沿y轴向上平移2个单位长度后的抛物线的表达式为______.15.如图,在平面直角坐标系xOy中,A(1,1),B(3,1),如果抛物线y=ax2(a>0)与线段AB有公共点,那么a的取值范围是______.16.评的第四类电影的概率是______;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大?答:______.三、解答题(本大题共12小题,共68.0分)17.计算:(1-)0+|-|-2cos45°+()-118.已知二次函数y=x2-4x+3.(1)用配方法将其化为y=a(x-h)2+k的形式;(2)在所给的平面直角坐标系xOy中,画出它的图象.19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O和⊙O外的一点P.求作:过点P作⊙O的切线.作法:如图2,①连接OP;②作线段OP的垂直平分线MN,直线MN交OP于C;③以点C为圆心,CO为半径作圆,交⊙O于点A和B;④作直线PA和PB.则PA,PB就是所求作的⊙O的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;∴∠OAP=∠OBP=90°,∴OA⊥PA,OB⊥PB,图2又∵OA和OB是⊙O的半径,∴PA,PB就是⊙O的切线(______)(填依据).20.如图,在平面直角坐标系xOy中,点A(3,3),B(4,0),C(0,-1).(1)以点C为旋转中心,把△ABC逆时针旋转90°,画出旋转后的△A'B'C;(2)在(1)的条件下,①点A经过的路径AA'的长度为______(结果保留π);②点B'的坐标为______.21.如图,在四边形ABCD中,AB=AD,∠A=90°,∠CBD=30°,∠C=45°,如果AB=,求CD的长.22.如果抛物线y=x2+2x+2k-4与x轴有两个不同的公共点.(1)求k的取值范围;(2)如果k为正整数,且该抛物线与x轴的公共点的横坐标都是整数,求k的值.23.如图,直线y=ax-4(a≠0)与双曲线y=(k≠0)只有一个公共点A(1,-2).(1)求k与a的值;(2)在(1)的条件下,如果直线y=ax+b(a≠0)与双曲线y=(k≠0)有两个公共点,直接写出b的取值范围.24.如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.25.阅读材料:工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工.处理这种材料时,材料温度y(℃)是时间x(min)的函数.下面是小明同学研究该函数的过程,把它补充完整:(1)在这个函数关系中,自变量x的取值范围是______.(2)如表记录了17min内10个时间点材料温度y随时间x变化的情况:上表中m的值为______.(3)如图,在平面直角坐标系xOy中,已经描出了上表中的部分点.根据描出的点,画出该函数的图象.(4)根据列出的表格和所画的函数图象,可以得到,当0≤x≤5时,y与x之间的函数表达式为______,当x>5时,y与x之间的函数表达式为______.(5)根据工艺的要求,当材料的温度不低于30℃时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为______min.26.在平面直角坐标系xOy中,抛物线y=-2x2+mx+n经过点A(0,2),B(3,-4).(1)求该抛物线的函数表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点),如果直线CD与图象G有两个公共点,结合函数的图象,直接写出点D纵坐标t的取值范围.27.如图,在△ABC中,AC=BC,∠ACB=90°,D是线段AC延长线上一点,连接BD,过点A作AE⊥BD于E.(1)求证:∠CAE=∠CBD.(2)将射线AE绕点A顺时针旋转45°后,所得的射线与线段BD的延长线交于点F,连接CE.①依题意补全图形;②用等式表示线段EF,CE,BE之间的数量关系,并证明.28.对于平面直角坐标系xOy中的⊙C和点P,给出如下定义:如果在⊙C上存在一个动点Q,使得△PCQ是以CQ为底的等腰三角形,且满足底角∠PCQ≤60°,那么就称点P为⊙C的“关联点”.(1)当⊙O的半径为2时,①在点P1(-2,0),P2(1,-1),P3(0,3)中,⊙O的“关联点”是______;②如果点P在射线y=-x(x≥0)上,且P是⊙O的“关联点”,求点P的横坐标m(2)⊙C的圆心C在x轴上,半径为4,直线y=2x+2与两坐标轴交于A和B,如果线段AB上的点都是⊙C的“关联点”,直接写出圆心C的横坐标n的取值范围.答案和解析1.【答案】A【解析】解:点P(2,-1)关于原点对称的点P′的坐标是(-2,1),故选:A.根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接写出答案.此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.2.【答案】C【解析】解:二次函数y=x2的对称轴是直线x=0,即y轴,故选:C.根据抛物线y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h,据此解答可得.本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在y=a (x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.3.【答案】D【解析】解:A.球的三视图均为圆,不符合题意;B.正方体的三视图均为正方形,不符合题意;C.圆锥的主视图和左视图是等腰三角形,俯视图是圆,不符合题意;D.圆柱的主视图和左视图是矩形,俯视图是圆,符合题意;故选:D.根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,从而得出答案.本题考查学生对三视图掌握程度和灵活运用能力,解题的关键是熟练掌握常见几何体的三视图.解:从中随机摸出一个小球,恰好是黄球的概率==.故选:B.直接根据概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5.【答案】D【解析】解:∵OP=3<5,∴点P与⊙O的位置关系是点在圆内.故选:D.根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.6.【答案】A【解析】解:如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故选:A.先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.7.【答案】B【解析】解:根据正方体的展开图可得选:B.故选:B.根据正方体展开图的基本形态作答即可.本题考查正方体的展开图,训练了学生的观察能力和空间想象能力.8.【答案】C【解析】解:由题意知,函数p=at2+bt+c经过点(3,0.7),(4,0.8),(5,0.5),则,解得:,∴p=at2+bt+c=-0.2t2+1.5t-2.2=-0.2(t-3.75)2+0.6125,∴最佳加工时间为3.75分钟,故选:C.先结合函数图象,利用待定系数法求出函数解析式,将解析式配方成顶点式后,利用二次函数的性质可得答案.本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式及利用二次函数的图象和性质求最值问题是解题的关键.9.【答案】30【解析】解:∵∠A是锐角,且sinA=,∴∠A=30°.故答案为:30.直接利用特殊角的三角函数值得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.10.【答案】【解析】解:如图,∵∠C=90°,AB=5,BC=4,∴cosB==,故答案为:.锐角A的邻边b与斜边c的比叫做∠A的余弦,根据余弦的定义计算即可.本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.11.【答案】【解析】解;设反比例函数解析式为y=,∵图象位于第一、三象限,∴k>0,∴可写解析式为y=,故答案为:y=.首先设反比例函数解析式为y=,再根据图象位于第一、三象限,可得k>0,再写一个k大于0的反比例函数解析式即可.此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.12.【答案】1【解析】解:过点O作OH⊥AB与点H,∵△ABC是等边三角形,∴∠CAB=60°,∵O为三角形外心,∴∠OAH=30°,∴OH=OA=1,故答案为:1过点O作OH⊥AB与点H,则OH为内切圆的半径,根据等边三角形的性质即可求出OH的长.本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.13.【答案】<【解析】解:∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,∴ac<0.故答案为:<.观察函数图象,由抛物线的开口方向及抛物线与y轴的交点位置,可得出a<0,c>0,进而可得出ac<0,此题得解.本题考查了二次函数图象与系数的关系,观察函数图象,找出a<0,c>0是解题的关键.14.【答案】y=x2+2【解析】解:∵将抛物线y=x2图象沿y轴向上平移2个单位,∴y=x2+2.故所得图象的函数解析式是:y=x2+2.故答案为:y=x2+2.直接利用平移的规律“左加右减,上加下减”,在原函数上加1可得新函数解析式y=x2+2.主要考查了函数图象的平移,属于基础题,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.15.【答案】≤a≤1【解析】解:把A(1,1)代入y=ax2得a=1;把B(3,1)代入y=ax2得a=,所以a的取值范围为≤a≤1.故答案为≤a≤1.分别把A、B点的坐标代入y=ax2得a的值,根据二次函数的性质得到a的取值范围.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y 轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.16.【答案】只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大【解析】解:(1)总的电影部数为140+50+300+200+800+510=2000(部),获得好评的第四类电影:200×0.25=50(部),故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率=;故答案为:;(2)根据题意得:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大;故答案为:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大.(1)先求出总数和获得好评的第四类电影数,再根据概率公式即可求出答案;(2)由题意可得,增加电影部数多的,减少部数少的,即可得到答案.此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比;读懂图表,从图表中找到必要的数据是解题的关键.17.【答案】解:原式=1+-2×+4=1+-+4=5.【解析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:(1)y=x2-4x+3=x2-4x+22-22+3=(x-2)2-1;(2))∵y=(x-2)2-1,∴顶点坐标为(2,-1),对称轴方程为x=2.∵函数二次函数y=x2-4x+3的开口向上,顶点坐标为(2,-1),与x轴的交点为(3,0),(1,0),∴其图象为:【解析】(1)利用配方法把二次函数解析式化成顶点式即可;(2)利用描点法画出二次函数图象即可.本题考查了二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解答此题的关键.19.【答案】过半径的外端且垂直于该半径的直线为圆的切线【解析】解:(1)如图,PA、PB为所作;(2)证明:连接OA,OB,∵由作图可知OP是⊙C的直径,∴∠OAP=∠OBP=90°,∴OA⊥PA,OB⊥PB,图2又∵OA和OB是⊙O的半径,∴PA,PB就是⊙O的切线(过半径的外端且与半径垂直的直线为圆的切线).故答案为过半径的外端且垂直于该半径的直线为圆的切线.(1)利用几何语言画出对应几何图形即可;(2)先利用圆周角定理得到∠OAP=∠OBP=90°,然后根据切线的判定定理得到PA、PB为切线.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理和切线的判定.20.【答案】(-1,3)【解析】解:(1)如图所示,△A′B′C即为所求;(2)①∵AC==5,∠ACA′=90°,∴点A经过的路径的长为=,故答案为:;②由图知点B′的坐标为(-1,3),故答案为:(-1,3).(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得点B'的坐标.本题主要考查作图-旋转变换,解题的关键是根据旋转角度、旋转方向、旋转中心作出对应点.21.【答案】解:如图,过点D作DE⊥BC于E,∵AB=AD,∠BAD=90°,∴AD=AB=,∴由勾股定理可得BD==2,∵∠CBD=30°,∴DE=BD=×2=1,又∵Rt△CDE中,∠DEC=90°,∠C=45°,∴由勾股定理可得CD==.【解析】过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用△CDE是等腰直角三角形,即可求出CD的长.本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD分成两个直角三角形是解题的关键,也是本题的难点.22.【答案】解:(1)根据题意得△=22-4(2k-4)>0,解得k<;(2)∵k<,∴正整数k的值为1,2,当k=1时,抛物线解析式为y=x2+2x-2,当y=0时,x2+2x-2=0,解得x1=-1+,x2=-1-,该抛物线与x轴的公共点的横坐标不是整数;当k=2时,抛物线解析式为y=x2+2x,当y=0时,x2+2x=0,解得x1=0,x2=-2,该抛物线与x轴的公共点的横坐标为0和-2,∴k的值为2.【解析】(1)利用判别式的意义得到△=22-4(2k-4)>0,然后解不等式即可;(2)先确定正整数k的值为1,2,当k=1时,抛物线解析式为y=x2+2x-2,当k=2时,抛物线解析式为y=x2+2x,然后分别解方程x2+2x-2=0和x2+2x=0可确定满足条件的k的值.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y 轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.23.【答案】解:(1)∵直线y=ax-4与双曲线y=只有一个公共点A(1,-2),∴ ,解得:,故k=-2,a=2;(2)若直线y=2x+b(a≠0)与双曲线y=-有两个公共点,则方程组有两个不同的解,即2x+b=-有两个不相等的解,整理得:2x2+bx+2=0,△=b2-16>0,解得:b<-4,或b>4.【解析】(1)把点A的坐标分别代入直线y=ax-4与双曲线y=,求出k和a的值即可;(2)将直线y=ax+b代入y=,整理得出关于x的一元二次方程,根据根的判别式△>0即可得出结果.本题考查了反比例函数与一次函数的交点问题,一元二次方程根的判别式;知道反比例函数的图象与直线有两个公共点时,△>0是解决问题(2)的关键.24.【答案】(1)证明:∵AB是⊙O的直径,BM是⊙O的切线,∴AB⊥BE,∵CD∥BE,∴CD⊥AB,∴,∵=,∴,∴AD=AC=CD,∴△ACD是等边三角形;(2)解:连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,∴∠DAC=60°∵AD=AC,CD⊥AB,∴∠DAB=30°,∴BE=AE,ON=AO,设⊙O的半径为:r,∴ON=r,AN=DN=r,∴EN=2+,BE=AE=,在R t△NEO与R t△BEO中,OE2=ON2+NE2=OB2+BE2,即()2+(2+)2=r2+,∴r=2,∴OE2=+25=28,∴OE=2.【解析】(1)由AB是⊙O的直径,BM是⊙O的切线,得到AB⊥BE,由于CD∥BE,得到CD⊥AB,根据垂径定理得到,于是得到,问题即可得证;(2)连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,得到∠DAC=60°又直角三角形的性质得到BE=AE,ON=AO,设⊙O的半径为:r则ON=r,AN=DN=r,由于得到EN=2+,BE=AE=,在R t△DEF与R t△BEO中,由勾股定理列方程即可得到结论.本题考查了切线的性质,垂径定理,等边三角形的判定,直角三角形的性质,勾股定理,过O作ON⊥AD于N,构造直角三角形是解题的关键.25.【答案】x≥0 20 y=9x+15 y=【解析】解:(1)根据题意知x≥0,故答案为:x≥0;(2)x>5时,时间与温度乘积不变,故15m=300,m=20,故答案为:20;(3)(4)当x<5时,设,y与x之间的函数表达式为y=kx+b,把(0,15)、(1,24)代入得解得k=9,b=15,∴y=9x+15;当≥5时,设,y与x之间的函数表达式为y=,把(15,20)代入得k=300,∴,故答案为:y=9x+15,y=;(5)当y=30时,30=9x+15,30=,解得x=,x=10,10-,故答案为:.(1)根据自变量x表示的实际意义即可求解;(2)观察表格,可得x>5时,时间与温度乘积不变;(3)用平滑曲线连接即可;(4)①根据图象或表格,可知函数是一次函数,由此利用待定系数法解决问题;②根据图象或表格可知,函数反比例函数,利用待定系数法即可解决问题;(5)将30℃分别代入两个表达式,结合图象确定加工时间.本题考查一次函数、反比例函数应用,正确确定函数表达式是解答关键.26.【答案】解:(1)抛物线y=-2x2+bx+c经过点A(0,2),B(3,-4),代入得,解得:.故抛物线的表达式为y=-2x2+4x+2,对称轴为直线x=1;(2)由题意得C(-3,4),二次函数y=-2x2+4x+2的最大值为4.由函数图象得出D纵坐标最大值为4.设直线AC的表达式为y=kx+b,将点A与点C的坐标代入得,解得.∴直线BC的表达式为y=-x+2.当x=1时,y=.∴点D纵坐标t的范围为≤t<4.【解析】(1)利用待定系数法即可求得二次函数的解析式,进而利用公式求得对称轴解析式;(2)求得C的坐标以及二次函数的最大值,求得AC与对称轴的交点即可确定t的范围.本题考查了待定系数法求函数的解析式,结合图象确定t的范围是关键.27.【答案】解:(1)∵∠ACB=90°,∴∠BCD=90°,∴∠CBD+∠BDC=90°,∵AE⊥BD,∴∠AED=90°,∴∠CAE+∠BDC=90°,∴∠CAE=∠CBD;(2)①由题意补全图形如图所示:②过点C作CG⊥CE交AE于G,∴∠BCG+∠BCE=90°,∵∠ACB=90°,∴∠ACG+∠BCG=90°,∴∠ACG=∠BCE,由(1)知,∠CAE=∠CBD,在△ACG和△BCE中,,∴△ACG≌△BCE(ASA),∴AG=BE,CG=CE,在Rt△ECG中,CG=CE,∴EG=CE,∴AE=AG+EG=BE+CE,由旋转知,∠EAF=45°,∵∠AEF=90°,∴∠F=90°-∠EAF=45°=∠EAF,∴EF=AE,∴EF=BE+CE.【解析】(1)利用同角的余角即可得出结论;(2)①根据题意补全图形;②过点C作CG⊥CE角AE于G,进而判断出∠CAE=∠CBD,即可判断出△ACG≌△BCE(ASA),得出AG=BE,CG=CE,进而判断出EG=CE,得出AE=BE+CE,再判断出EF=AE,即可得出结论.此题是几何变换综合题,主要考查了同角的余角相等,等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理,构造出全等三角形是解本题的关键.28.【答案】P1或P2【解析】解:(1)①如图1中,由题意可知:⊙O的“关联点”在以O为圆心半径分别为1和2的圆环内部(包括大圆上的点,不包括小圆上的点),∴在点P1(-2,0),P2(1,-1),P3(0,3)中,⊙O的“关联点”是P1和P2.故答案为P1和P2.②如图2中,由题意可知:⊙O的“关联点”在以O为圆心半径分别为1和2的圆环内部(包括大圆上的点,不包括小圆上的点),射线y=-x(x≥0)与该圆环交于点P和P′,由题意易知P(,-),P′(,-1),∴<m≤.(2)如图3中,当BC=4时,OC==2,此时C(-2,0),当AC1=2时,此时C1(-3,0),∴当-2≤n<-3时,线段AB上的点都是⊙C的“关联点”,当点C2到直线AB的矩形为2时,易知C2(-1,0),当C3A=4时,C3(3,0),∴当-1<n≤3时,线段AB上的点都是⊙C的“关联点”,综上所述,满足条件的n的值的范围为:-2≤n<-3或-1<n≤3.(1)①由题意可知:⊙O的“关联点”在以O为圆心半径分别为1和2的圆环内部(包括大圆上的点,不包括小圆上的点),由此即可判断;②由题意可知:⊙O的“关联点”在以O为圆心半径分别为1和2的圆环内部(包括大圆上的点,不包括小圆上的点),射线y=-x(x≥0)与该圆环交于点P和P′,由题意易知P(,-),P′(,-1),由此即可判断;(2)求出四个特殊位置的点C的坐标即可判断;本题属于圆综合题,考查了⊙C的“关联点”的定义,点与圆的位置关系,一次函数的应用等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.。
北京市门头沟区2017—2018学年度第一学期期末调研试卷初三化学
门头沟区2017—2018学年度第一学期期末调研试卷九年级化学Zn 65一、选择题(每小题只有1个选项符合题意,共20个小题,每小题1分,共20分)1.下列变化属于化学变化的是A.金属拉丝B.甲烷燃烧C.酒精挥发D.冰雪融化2.地壳中含量最多的元素是A.铝B.硅C.铁D.氧3.下列气体中,能供给动植物呼吸的是A.O2B.H2C.N2D.CO24.下列物质常用于改良酸性土壤的是A.熟石灰B.烧碱C.食盐D.大理石5.氢元素与氧元素的本质区别是A.原子的最外层电子数不同B.原子的电子数不同C.原子的中子数不同D.原子的质子数不同6.下列物质中,不能..溶于水形成溶液的是A.食盐B.蔗糖C.花生油D.酒精7.下列符号中,表示两个氧分子的是A.O2B.2O2C.2O D.O2-8.下列物质的化学式书写正确的是A.硝酸银AgNO3 B.碳酸钾KCO3 C.氧化镁MgO2 D.氯化铁FeCl2 9.将空的矿泉水瓶从高原地区带到平原,瓶子变瘪,瓶内气体A.分子体积变小B.分子质量变小C.分子数目减少D.分子间隔变小10.下列图示的操作中,不正确...的是A.倾倒液体B.加热液体C.滴加液体D.过滤11.下列物质的用途中,利用其物理性质的是A.氧气用于炼钢 B. 硫酸用于处理碱性废液C.干冰用作制冷剂 D. 氧气用于气焊12.电热水壶用久后,内壁附着一层水垢(主要成分为CaCO3)。
下列物质中,能用来除去水垢的是A.酱油B.白醋C.食盐水D.水13.下列关于S+O2=SO2的理解不正确...的是A.表示硫与氧气在点燃条件下反应生成二氧化硫B.反应前后硫原子、氧原子的个数均不变C.参加反应的硫与氧气的质量比是2:1D.二氧化硫分子中硫原子与氧原子个数比为1:214.一种铁原子的原子核内有26个质子和30个中子,该原子的核外电子数为A.4 B.26 C.30 D.5615.下列实验操作能达到实验目的的是16..A.用某些植物的花瓣制酸碱指示剂B.用碎鸡蛋壳和食盐水制二氧化碳C.用柠檬酸、果汁、白糖、水、小苏打等自制汽水D.用氮气可做食品的保护气17.甲和乙在一定条件下恰好完全反应生成丙和丁。
完整word版,北京版初三数学上册期末试卷及答案,推荐文档
2017〜2018学年度第一学期期末练习初三数学1.本试卷共6页,共三道大题,28道小题,满分100分。
考试时间120分钟。
考 2.在试卷和答题卡上认真填写学校名称、姓名和考号。
生 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
须 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔知作答。
5.考试结束,将本试卷和答题卡一并交回。
、选择题(本题共16分,每小题2 分)F列各题均有四个选项,其中只有一个是符合题意的.1.如果3a 2b(ab 0),那么下列比例式中正确的是2 .将抛物线y = x2向上平移2个单位后得到新的抛物线的表达式为4.“黄金分割”是一条举世公认的美学定律.例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐•目前,照相机和手机自带的九宫格就是黄金分割的简化版•要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置A .①B .②C .③k5.如图,点A为函数y (x > 0)图象上的一点,过点A作x轴x轴于点B,连接OA,如果△ AOB的面积为2,那么k的值为A . 1B . 2C . 3D . 42018. 01C. y x 23.如图,在Rt△ ABC中,2/ C = 90 ° AB = 5, BC = 3,贝U tanA 的值为3m 3A .-B .—5444C D .-53226 •如图所示,小正方形的边长均为 1则下列选项中阴影部分的三角形与△ ABC 相似的是7 .如图,A ,B 是O O 上的两点,C 是O O 上不与 那么/ ACB 的度数为 A ,B 重合的任意一点.如果/ AOB=140 ° A • 70° 110 ° C . 140 ° 70。
或 110 °8.已知抛物线 2ax bx c 上部分点的横坐标 x 与纵坐标y 的对应值如下表: 有以下几个结论: ①抛物线y 2ax x 1 0 1 23 y 3 0 1 m 3bx c 的开口向下; ② 抛物线y ③ 方程ax 2 ④ 当y >0时,x 的取值范围是x v 0或x >2. 其中正确的是 2ax bx bx c 的对称轴为直线x 1 ; c 0的根为0和2; A .①④ B .②④ C .②③ 二、填空题(本题共 16分,每小题2分) 1 9 .如果sin a = -,那么锐角 a = .2 10.半径为2的圆中,60。
2017-2018学年北京市门头沟区2018届初三第一学期期末数学试题含答案
2017-2018学年北京市门头沟区2018届初三第⼀学期期末数学试题含答案门头沟区2017~2018学年度第⼀学期期末调研试卷九年级数学考⽣须知1.本试卷共8页,共三道⼤题,28道⼩题,满分100分,考试时间120分钟; 2.在试卷和答题卡的密封线内准确填写学校名称、班级和姓名; 3.试题答案⼀律书写在答题卡上,在试卷上作答⽆效;4.在答题卡上,作图题可⽤2B 铅笔作答,其他试题⽤⿊⾊字迹签字笔作答; 5.考试结束,将本试卷、答题卡和草稿纸⼀并交回。
⼀、选择题(本题共16分,每⼩题2分)下列各题均有四个选项,其中只有⼀个..是符合题意的. 1. 如果23a b =,那么a bb -的结果是 A .12- B .13- C .13 D .122.将抛物线y = x 2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是 A .()23y x =- B .()23y x =+C .23y x =-D .23y x =+3. 如图,DCE ∠是圆内接四边形ABCD 的⼀个外⾓,如果75DCE ∠=?,那么BAD ∠的度数是A .65?B .75?C .85?D .105?4. 在平⾯直⾓坐标系xOy 中,点A 的坐标为(4,3)-,如果射线OA 与x 轴正半轴的夹⾓为α,那么α∠的正弦值是A .35B .34C .45D .435. 右图是某个⼏何体,它的主视图是A B C DOABDC E6.已知ABC △,AC =3,CB =4,以点C 为圆⼼r 为半径作圆,如果点A 、点B 只有⼀个点在圆内,那么半径r 的取值范围是 A .3r > B .4r ≥ C .34r <≤ D .34r ≤≤7. ⼀个不透明的盒⼦中装有20张卡⽚,其中有5张卡⽚上写着“三等奖”;3张卡⽚上写着“ ⼆等奖”,2张卡⽚上写着“⼀等奖”,其余卡⽚写着“谢谢参与”,这些卡⽚除写的字以外,没有其他差别,从这个盒⼦中随机摸出⼀张卡⽚,能中奖的概率为A .12 B .14 C .320D . 110 8.李师傅⼀家开车去旅游,出发前查看了油箱⾥有50升油,出发后先后⾛了城市路、⾼速路、⼭路最终到达旅游地点,下⾯的两幅图分别描述了⾏驶⾥程及耗油情况,下⾯的描述错误的是A .此车⼀共⾏驶了210公⾥B .此车⾼速路⼀共⽤了12升油C .此车在城市路和⼭路的平均速度相同D .以此车在这三个路段的综合油耗判断 50升油可以⾏驶约525公⾥⼆、填空题(本题共16分,每⼩题2分)9.⼆次函数2351y x x =++-的图象开⼝⽅向__________.10.已知线段5AB cm =,将线段AB 以点A 为旋转中⼼,逆时针旋转90°得到线段'AB 则点B 、点'B 的距离为__________.11. 如图,在平⾯直⾓坐标系xOy 中有⼀矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有⼀反⽐例函数(0)ky k x=≠ 它的图象与此矩形没有交点,该表达式可以为_______. 12. 如图,在△ABC 中, DE 分别与AB 、AC 相交于点D 、E ,且DE ∥BC ,如果23AD DB =,那么DEBC=__________.13. 如图,在△ABC 中,∠A =60°,⊙O 为△ABC 的外接圆.xy-1-13141O EA BCD OA x /y /公⾥⽤时2101803032.51Ox /z /油量⽤时33451 2.533050O如果BC =23,那么⊙O 的半径为________.14. 如图,是某商场⼀楼与⼆楼之间的⼿扶电梯⽰意图.其中AB 、CD 分别表⽰⼀楼、⼆楼地⾯的⽔平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的⾼度h 是_________m .15. 如图,在平⾯直⾓坐标系xOy 中,图形L 2可以看作是由图形L 1经过若⼲次图形的变化(平移、旋转、轴对称)得到的,写出⼀种由图形L 1得到图形L 2的过程____.16.下⾯是“作已知圆的内接正⽅形”的尺规作图过程 .请回答:该尺规作图的依据是______________________________________________.三、解答题(本题共68分,第17题-24题,每⼩题5分,第25题6分,第26题7分,第27题7分, 第28题8分)解答应写出⽂字说明、演算步骤或证明过程已知:⊙O .求作:⊙O 的内接正⽅形. 作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆⼼,⼤于12AB 的长为半径作弧,两弧分别相交于M 、N 两点;(3)作直线MN 与⊙O 交于C 、D 两点, 顺次连接A 、C 、B 、D . 即四边形ACBD 为所求作的圆内接正⽅形. xy1L 2L 123456–1–2–3123456–1O FBA C D E DC N MBO A17.计算:()21π+3122sin 602-??+-?-.18. 如图,在△ABC 中,AB =AC ,BD =CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .19.已知⼆次函数 y = x 2+2x -3.(1)将y = x 2+2x -3⽤配⽅法....化成y = a (x -h )2+ k 的形式;(2)求该⼆次函数的图象的顶点坐标.20. 先化简,再求值: 2211m m m m m++??+÷ ,其中m 是⽅程230x x +-=的根.21.在平⾯直⾓坐标xOy 中的第⼀象限内,直线10y kx k =≠()与双曲20my m x =≠()的⼀个交点为A (2,2). (1)求k 、m 的值;E DBCA(2)过点(0)P x ,且垂直于x 轴的直线与1y kx=、2my x =的图象分别相交于点M 、N ,点M 、N 的距离为1d ,点M 、N 中的某⼀点与点P 的距离为2d ,如果12d d =,在下图中画出⽰意图.....并且直接写出点P 的坐标.22. 如图,⼩明想知道湖中两个⼩亭A 、B 之间的距离,他在与⼩亭A 、B 位于同⼀⽔平⾯且东西⾛向的湖边⼩道l 上某⼀观测点M 处,测得亭A 在点M 的北偏东60°, 亭B 在点M 的北偏东30°,当⼩明由点M 沿⼩道l 向东⾛60⽶时,到达点N 处,此时测得亭A 恰好位于点N 的正北⽅向,继续向东⾛30⽶时到达点Q 处,此时亭B 恰好位于点Q 的正北⽅向.根据以上数据,请你帮助⼩明写出湖中两个⼩亭A 、B 之间距离的思路.23. 已知⼆次函数2(1)1(0)y kx k x k =+++≠.(1)求证:⽆论k 取任何实数时,该函数图象与x 轴总有交点;(2)如果该函数的图象与x 轴交点的横坐标均为整数,且k 为整数,求k 值.xyOl北MBA24. 如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 边上⼀点,以BD 为直径的⊙O 与边AC 相切于点 E ,连接DE 并延长DE 交BC的延长线于点F .(1)求证:BD =BF ;(2)若CF =2,4tan 3B =,求⊙O 的半径.25. 如图25-1,点C 是⊙O 中直径AB 上的⼀个动点,过点C 作CD AB ⊥交⊙O 于点D ,点M 是直径AB 上⼀固定点,作射线DM 交⊙O 于点N .已知6cm AB =, 2cm AM =,设线段AC 的长度为xcm ,线段MN 的长度为ycm .⼩东根据学习函数的经验,对函数y 随⾃变量x 的变化⽽变化的规律进⾏了探索.下⾯是⼩东的探究过程,请补充完整:N D O B A C M 图25-1 图25-2 F DA C EOB(1)通过取点、画图、测量,得到了x 与y 的⼏组值,如下表:/cm x12 3 45 6/cm y43.32.82.52.12(说明:补全表格时相关数值保留⼀位⼩数)(2)在图25-2中建⽴平⾯直⾓坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AC MN =时,x 的取值约为__________cm .26. 在平⾯直⾓坐标系xOy 中,⼆次函数2y x bx c =++的图象如图所⽰.(1)求⼆次函数的表达式;(2)函数图象上有两点1(,)P x y ,2(,)Q x y ,且满⾜12x x <,结合函数图象回答问题;①当3y =时,直接写出21x x -的值;②当213x x -2≤≤,求y 的取值范围.27.如图27-1有两条长度相等的相交线段AB 、CD ,它们相交的锐⾓中有⼀个⾓为60°,为了探究AD 、CB 与CD (或AB )之间的关系,⼩亮进⾏了如下尝试:2345–112345–1O(1)在其他条件不变的情况下使得AD BC ∥,如图27-2,将线段AB 沿AD ⽅向平移AD 的长度,得到线段DE ,然后联结BE ,进⽽利⽤所学知识得到AD 、CB 与CD (或AB )之间的关系:____________________;(直接写出结果)(2)根据⼩亮的经验,请对图27-1的情况(AD 与CB 不平⾏)进⾏尝试,写出AD 、CB 与CD (或AB )之间的关系,并进⾏证明;(3)综合(1)、(2)的证明结果,请写出完整的结论: __________________________. 28.以点P 为端点竖直向下的⼀条射线PN ,以它为对称轴向左右对称摆动形成了射线1PN ,2PN ,我们规定:12N PN ∠为点P 的“摇摆⾓”,射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含1PN ,2PN ). 在平⾯直⾓坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆⾓为60?时,请判断(0,0)O 、(1,2)A 、(2,1)B 、(23,0)C +属于点P的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆⾓⾄少为_________°;(3)⊙W 的圆⼼坐标为(,0)a ,半径为1,如果⊙W 上的所有点都在点P 的摇摆⾓为60?时的摇摆区域内,求a 的取值范围.DABCEDA B C 图27-1图27-2备⽤图门头沟区2017~2018学年度第⼀学期期末调研评分标准九年级数学⼀、选择题(本题共16分,每⼩题2分)1 2 3 4 5 6 7 8 B DBACCAC⼆、填空题(本题共16分,每⼩题2分)9 1011 121314向下52答案不唯⼀满⾜0k <或01k <<或12k >25241516答案不唯⼀例:先将以点B 为旋转中⼼顺时针旋转90°,在向左平移7个单位长度到线段两端距离相等的点在这条线段的中垂线上;两点确定⼀条直线;互相垂直的直径将圆四等分;(圆内接正多边形定义)三、解答题(本题共68分,第17题-24题,每⼩题5分,第25题6分,第26题7分,第27题7分, 第28题8分)解答应写出⽂字说明、演算步骤或证明过程 17.(本⼩题满分5分)解:原式3123242=+-?-…………………………………………………4分 3 3.=-………………………………………………………………5分18.(本⼩题满分5分)证明:∵ AB =AC ,BD =CD∴ AD BC ⊥, ……………………………………2分∵ CE ⊥AB∴90ADB BEC ∠=∠=?……………………………………4分∵B B ∠=∠ ABD CBE ∴△∽△ ……………………………………5分E DBCA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年北京市门头沟区九年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果,那么的结果是()A.﹣B.﹣C.D.2.将抛物线y=x2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是()A.y=(x﹣3)2B.y=(x+3)2C.y=x2﹣3D.y=x2+33.如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是()A.65°B.75°C.85°D.105°4.在平面直角坐标系xOy中,点A的坐标为(4,﹣3),如果射线OA与x轴正半轴的夹角为α,那么∠α的正弦值是()A.B.C.D.5.右图是某个几何体,它的主视图是()A.B.C.D.6.已知△ABC,AC=3,CB=4,以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是()A.r>3B.r≥4C.3<r≤4D.3≤r≤47.一个不透明的盒子中装有20张卡片,其中有5张卡片上写着“三等奖”;3张卡片上写着“二等奖”,2张卡片上写着“一等奖”,其余卡片写着“谢谢参与”,这些卡片除写的字以外,没有其他差别,从这个盒子中随机摸出一张卡片,能中奖的概率为()A.B.C.D.8.李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下面的描述错误的是()A.此车一共行驶了210公里B.此车高速路一共用了12升油C.此车在城市路和山路的平均速度相同D.以此车在这三个路段的综合油耗判断50升油可以行驶约525公里二、填空题(本题共16分,每小题2分)9.二次函数y=﹣3x2+5x+1的图象开口方向.10.已知线段AB=5cm,将线段AB以点A为旋转中心,逆时针旋转90°得到线段AB′,则点B、点B′的距离为.11.如图,在平面直角坐标系xOy中有一矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有一反比例函数y=(k≠0)它的图象与此矩形没有交点,该表达式可以为.12.如图,在△ABC中,DE分别与AB、AC相交于点D、E,且DE∥BC,如果,那么=.13.如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=2,那么⊙O的半径为.14.下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h 是m.15.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是.三、解答题(本题共68分)解答应写出文字说明、演算步骤或证明过程17.(5分)计算:(π+)0+﹣2sin60°﹣()﹣2.18.(5分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.19.(5分)已知二次函数y=x2+2x﹣3.(1)将y=x2+2x﹣3用配方法化成y=a (x﹣h)2+k的形式;(2)求该二次函数的图象的顶点坐标.20.(5分)先化简,再求值:(m+),其中m是方程x2+x﹣3=0的根.21.(5分)在平面直角坐标xOy中的第一象限内,直线y1=kx(k≠0)与双曲y2=(m ≠0)的一个交点为A(2,2).(1)求k、m的值;(2)过点P(x,0)且垂直于x轴的直线与y1=kx、y2=的图象分别相交于点M、N,点M、N 的距离为d1,点M、N中的某一点与点P的距离为d2,如果d1=d2,在下图中画出示意图并且直接写出点P的坐标.22.(5分)如图,小明想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道上某一观测点M处,测得亭A在点M的北偏东60°,亭B在点M的北偏东30°,当小明由点M沿小道向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B 恰好位于点Q的正北方向.根据以上数据,请你帮助小明写出湖中两个小亭A、B之间距离的思路.23.(5分)已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.24.(5分)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=2,tanB=,求⊙O的半径.25.(6分)如图1,点C是⊙O中直径AB上的一个动点,过点C作CD⊥AB交⊙O于点D,点M是直径AB上一固定点,作射线DM交⊙O于点N.已知AB=6cm,AM=2cm,设线段AC的长度为xcm,线段MN的长度为ycm.小东根据学习函数的经验,对函数y随自变量的变化而变化的规律进行了探索.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)在图2中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AC=MN时,x的取值约为cm.26.(7分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示.(1)求二次函数的表达式;(2)函数图象上有两点P(x1,y),Q(x2,y),且满足x1<x2,结合函数图象回答问题;①当y=3时,直接写出x2﹣x1的值;②当2≤x2﹣x1≤3,求y的取值范围.27.(7分)如图1有两条长度相等的相交线段AB、CD,它们相交的锐角中有一个角为60°,为了探究AD、CB与CD(或AB)之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD∥BC,如图2,将线段AB沿AD方向平移AD的长度,得到线段DE,然后联结BE,进而利用所学知识得到AD、CB与CD(或AB)之间的关系:;(直接写出结果)(2)根据小亮的经验,请对图1的情况(AD与CB不平行)进行尝试,写出AD、CB 与CD(或AB)之间的关系,并进行证明;(3)综合(1)、(2)的证明结果,请写出完整的结论:.28.(8分)以点P为端点竖直向下的一条射线PN,以它为对称轴向左右对称摆动形成了射线PN1,PN2,我们规定:∠N1PN2为点P的“摇摆角”,射线PN摇摆扫过的区域叫作点P的“摇摆区域”(含PN1,PN2).在平面直角坐标系xOy中,点P(2,3).(1)当点P的摇摆角为60°时,请判断O(0,0)、A(1,2)、B(2,1)、C(2+,0)属于点P的摇摆区域内的点是(填写字母即可);(2)如果过点D(1,0),点E(5,0)的线段完全在点P的摇摆区域内,那么点P的摇摆角至少为°;(3)⊙W的圆心坐标为(a,0),半径为1,如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,求a的取值范围.2017-2018学年北京市门头沟区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果,那么的结果是( )A .﹣B .﹣C .D .【分析】根据合分比例性质,可得答案. 【解答】解:由合分比性质,得==﹣,故选:B .【点评】本题考查了比例的性质,利用合分比性质是解题关键.2.将抛物线y=x 2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是( ) A .y=(x ﹣3)2B .y=(x +3)2C .y=x 2﹣3D .y=x 2+3【分析】根据“上加下减”的原则进行解答即可.【解答】解:将抛物线y=x 2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是y=x 2+3, 故选:D .【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.如图,∠DCE 是圆内接四边形ABCD 的一个外角,如果∠DCE=75°,那么∠BAD 的度数是( )A.65°B.75°C.85°D.105°【分析】根据圆内接四边形的性质:圆内接四边形的外角等于它的内对角即可解答.【解答】解:∵四边形ABCD内接于⊙O,∴∠BAD=∠DCE=75°,故选:B.【点评】此题考查了圆内接四边形的性质,熟记圆内接四边形的外角等于它的内对角是解题的关键.4.在平面直角坐标系xOy中,点A的坐标为(4,﹣3),如果射线OA与x轴正半轴的夹角为α,那么∠α的正弦值是()A.B.C.D.【分析】画出图形,根据直角三角形的解法解答即可.【解答】解:过A点作AB⊥x轴,在Rt△OAB中,OA=,∴∠α的正弦值=,故选:A.【点评】此题考查解直角三角形的问题,关键是画出图形,利用勾股定理解答.5.右图是某个几何体,它的主视图是()A.B.C.D.【分析】主视图是从物体正面看,所得到的图形.【解答】解:从几何体的正面看可得等腰梯形,故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.已知△ABC,AC=3,CB=4,以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是()A.r>3B.r≥4C.3<r≤4D.3≤r≤4【分析】由于AC=3,CB=4,当以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内时,那么点A在圆内,而点B不在圆内.当点A在圆内时点A到点C的距离小于圆的半径,点B在圆上或圆外时点B到圆心的距离应该不小于圆的半径,据此可以得到半径的取值范围.【解答】解:当点A在圆内时点A到点C的距离小于圆的半径,即:r>3;点B在圆上或圆外时点B到圆心的距离应该不小于圆的半径,即:r≤4;即3<r≤4.故选:C.【点评】本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.7.一个不透明的盒子中装有20张卡片,其中有5张卡片上写着“三等奖”;3张卡片上写着“二等奖”,2张卡片上写着“一等奖”,其余卡片写着“谢谢参与”,这些卡片除写的字以外,没有其他差别,从这个盒子中随机摸出一张卡片,能中奖的概率为()A.B.C.D.【分析】能中奖的卡片有5+3+2=10张,根据概率公式计算即可.【解答】解:能中奖的卡片有5+3+2=10张,∴能中奖的概率==,故选:A.【点评】本题考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.8.李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下面的描述错误的是()A.此车一共行驶了210公里B.此车高速路一共用了12升油C.此车在城市路和山路的平均速度相同D.以此车在这三个路段的综合油耗判断50升油可以行驶约525公里【分析】找准几个关键点,走了城市路、高速路、山路最终到达旅游地点进行分析解答即可.【解答】解:A、此车一共行驶了210公里,正确;B、此车高速路一共用了45﹣33=12升油,正确;C、此车在城市路的平均速度是30km/h,山路的平均速度是=60km/h,错误;D、以此车在这三个路段的综合油耗判断50升油可以行驶约525公里,正确;故选:C.【点评】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本题共16分,每小题2分)9.二次函数y=﹣3x2+5x+1的图象开口方向向下.【分析】由抛物线解析式可知,二次项系数a=﹣3<0,可知抛物线开口向上.【解答】解:∵二次函数y=﹣3x2+5x+1的二次项系数a=﹣3<0,∴抛物线开口向下.故答案为:向下.【点评】本题考查了抛物线的开口方向与二次项系数符号的关系.当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.10.已知线段AB=5cm,将线段AB以点A为旋转中心,逆时针旋转90°得到线段AB′,则点B、点B′的距离为5cm.【分析】根据旋转变换的性质得到∠BAB′=90°,BA=BA′=5cm,根据勾股定理计算即可.【解答】解:由旋转变换的性质可知,∠BAB′=90°,BA=BA′=5cm,由勾股定理得,BB′==5,故答案为:5cm.【点评】本题考查的是旋转变换的性质、勾股定理,旋转变换的性质:对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角.11.如图,在平面直角坐标系xOy中有一矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有一反比例函数y=(k≠0)它的图象与此矩形没有交点,该表达式可以为y=.【分析】找出经过(1,1)与(4,3)两点的反比例函数k的值,根据反比例与矩形没有交点确定出k的范围,写出一个满足题意的解析式即可.【解答】解:当反比例函数图象经过(1,1)时,k=1,当反比例函数经过(4,3)时,k=12,∵反比例函数y=(k≠0)它的图象与此矩形没有交点,∴反比例函数k的范围是k<1或k>12且k≠0,则该表达式可以为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及矩形的性质,熟练掌握待定系数法是解本题的关键.12.如图,在△ABC中,DE分别与AB、AC相交于点D、E,且DE∥BC,如果,那么=.【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质结合,即可求出的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故答案为:.【点评】本题考查了相似三角形的判定与性质,根据找出的值是解题的关键.13.如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=2,那么⊙O的半径为2.【分析】连接OC、OB,作OD⊥BC,利用圆心角与圆周角的关系得出∠BOC=120°,再利用含30°的直角三角形的性质解答即可.【解答】解:连接OC、OB,作OD⊥BC,∵∠A=60°,∴∠BOC=120°,∴∠DOC=60°,∠ODC=90°,∴OC=,故答案为:2.【点评】此题考查三角形的外接圆与外心,关键是利用圆心角与圆周角的关系得出∠BOC=120°.14.下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h 是4m.【分析】过C作CE⊥AB,交AB的延长线于E,在Rt△BCE中,易求得∠CBE=30°,已知了斜边BC为8m,根据直角三角形的性质即可求出CE的长,即h的值.【解答】解:过C作CE⊥AB,交AB的延长线于E;在Rt△CBE中,∠CBE=180°﹣∠CBA=30°;已知BC=8m,则CE=BC=4m,即h=4m.【点评】正确地构造出直角三角形,然后根据直角三角形的性质求解,是解决此题的关键.15.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L.【分析】根据旋转的性质,平移的性质即可解决问题;【解答】解:图形L2可以看作是由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.故答案为:由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是相等的圆心角所对的弦相等,直径所对的圆周角是直角.【分析】根据作图知CD为AB的垂直平分线,据此得∠AOC=∠BOC=∠BOD=∠AOD=90°,依据相等的圆心角所对的弦相等可判断四边形ACBD是菱形,再根据直径所对的圆周角是直角可得四边形ACBD是正方形.【解答】解:由作图知CD为AB的垂直平分线,∵AB为⊙O的直径,∴CD为⊙O的直径,且∠AOC=∠BOC=∠BOD=∠AOD=90°,则AC=BC=BD=AD(相等的圆心角所对的弦相等),∴四边形ACBD是菱形,由AB为⊙O的直径知∠ACB=90°(直径所对的圆周角是直角),∴四边形ACBD是正方形,故答案为:相等的圆心角所对的弦相等,直径所对的圆周角是直角.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握圆心角定理和圆周角定理及正方形的判定.三、解答题(本题共68分)解答应写出文字说明、演算步骤或证明过程17.(5分)计算:(π+)0+﹣2sin60°﹣()﹣2.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1+2﹣2×﹣4=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【解答】证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.【点评】本题考查了相似三角形的判定,等腰三角形三线合一的性质,比较简单,确定出两组对应相等的角是解题的关键.19.(5分)已知二次函数y=x2+2x﹣3.(1)将y=x2+2x﹣3用配方法化成y=a (x﹣h)2+k的形式;(2)求该二次函数的图象的顶点坐标.【分析】(1)利用配方法先加上一次项系数的一半的平方来凑完全平方式,再把一般式转化为顶点式即可;(2)根据顶点坐标的求法,得出顶点坐标即可;【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4.(2)∵y=(x+1)2﹣4,∴该二次函数图象的顶点坐标是(﹣1,﹣4).【点评】本题考查了二次函数的性质以及二次函数的三种形式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).20.(5分)先化简,再求值:(m+),其中m是方程x2+x﹣3=0的根.【分析】根据分式的混合运算法则,化简后利用整体的思想代入计算即可.【解答】解:原式=•=•=m(m+1)=m2+m,∵m是方程x2+x﹣3=0的根,∴m2+m﹣3=0,即m2+m=3,则原式=3.【点评】本题考查分式的混合运算,解题的关键是熟练掌握分式混合运算的法则,需要注意最后结果化成最简分式或整式.21.(5分)在平面直角坐标xOy中的第一象限内,直线y1=kx(k≠0)与双曲y2=(m ≠0)的一个交点为A(2,2).(1)求k、m的值;(2)过点P(x,0)且垂直于x轴的直线与y1=kx、y2=的图象分别相交于点M、N,点M、N 的距离为d1,点M、N中的某一点与点P的距离为d2,如果d1=d2,在下图中画出示意图并且直接写出点P的坐标.【分析】(1)利用待定系数法即可解决问题;(2)构建方程即可解决问题;【解答】解:(1)∵直线y1=kx(k≠0)与双曲y2=(m≠0)的一个交点为A(2,2),∴k=1,m=4,(2)∵直线y1=x,y2=,由题意:﹣x=x或x﹣=,解得x=±或,∵x>0,∴x=或2,∴P(,0)或(2,0).【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是学会利用构建方程的思想思考问题,属于中考常考题型.22.(5分)如图,小明想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道上某一观测点M处,测得亭A在点M的北偏东60°,亭B在点M的北偏东30°,当小明由点M沿小道向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B 恰好位于点Q的正北方向.根据以上数据,请你帮助小明写出湖中两个小亭A、B之间距离的思路.【分析】如图,由题意△AMN,△BMQ都是直角三角形,作AH⊥BQ于H,只要求出AH、BH即可利用勾股定理求出AB的长.【解答】解:如图,由题意△AMN,△BMQ都是直角三角形,作AH⊥BQ于H,只要求出AH、BH即可利用勾股定理求出AB的长.易知四边形ANQH是矩形,可得AH=NQ=30米,在Rt△AMN中,根据AN=QH=MN•tan30°=20米,在Rt△MBQ中,BQ=MQ•tan60°=90,可得BH=BQ﹣QH=70米,由此即可解决问题.【点评】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(5分)已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.【分析】(1)根据根的判别式可得结论;(2)利用求根公式表示两个根,因为该函数的图象与x轴交点的横坐标均为整数,且k 为整数,可得k=±1.【解答】(1)证明:△=(k+1)2﹣4k×1=(k﹣1)2≥0∴无论k取任何实数时,该函数图象与x轴总有交点;(2)解:当y=0时,kx2+(k+1)x+1=0,x=,x=,x1=﹣,x2=﹣1,∵该函数的图象与x轴交点的横坐标均为整数,且k为整数,∴k=±1.【点评】本题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.也考查了二次函数与一元二次方程的关系.24.(5分)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=2,tanB=,求⊙O的半径.【分析】(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE垂直于AC,再由BC垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE为三角形DBF的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;(2)设BC=3x,根据题意得:AC=4x,AB=5x,根据cos∠AOE=cosB,可得=,即=,解方程即可;【解答】(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AC=4x,AB=5x又∵CF=2,∴BF=3x+2,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cosB,即=,即=,解得:x=,则圆O的半径为=5.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.25.(6分)如图1,点C是⊙O中直径AB上的一个动点,过点C作CD⊥AB交⊙O于点D,点M是直径AB上一固定点,作射线DM交⊙O于点N.已知AB=6cm,AM=2cm,设线段AC的长度为xcm,线段MN的长度为ycm.小东根据学习函数的经验,对函数y随自变量的变化而变化的规律进行了探索.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)在图2中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AC=MN时,x的取值约为 2.7cm.【分析】(1)如图1﹣1中,连接OD,BD、AN.利用勾股定理求出DM,致力于相似三角形的性质求出MN即可;(2)利用描点法画出函数图象即可;(3)利用图象寻找图象与直线y=x的交点的坐标即可解决问题;【解答】解:(1)如图1﹣1中,连接OD,BD、AN.∵AC=4,OA=3,∴OC=1,在Rt△OCD中,CD==,在Rt△CDM中,DM==,由△AMN∽△DMB,可得DM•MN=AM•BM,∴MN=≈3,故答案为3.(2)函数图象如图所示,(3)观察图象可知,当AC=MN上,x的取值约为2.7.故答案为2.7.【点评】本题考查圆综合题、勾股定理、相似三角形的判定和性质、描点法画函数图象等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考压轴题.26.(7分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示.(1)求二次函数的表达式;(2)函数图象上有两点P(x1,y),Q(x2,y),且满足x1<x2,结合函数图象回答问题;①当y=3时,直接写出x2﹣x1的值;②当2≤x2﹣x1≤3,求y的取值范围.【分析】(1)利用图中信息,根据待定系数法即可解决问题;(2)求出y=3时的自变量x的值即可解决问题;(3)当x2﹣x1=3时,易知x1=,此时y=﹣2+3=,可得点P坐标,由此即可解决问题;【解答】解:(1)由图象知抛物线与x轴交于点(1,0)、(3,0),与y轴的交点为(0,3),设抛物线解析式为y=a(x﹣1)(x﹣3),将(0,3)代入,得:3a=3,解得:a=1,∴抛物线解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3;(2)①当y=3时,x2﹣4x+3=3,解得:x1=0,x2=4,∴x2﹣x1=4;②当x2﹣x1=3时,易知x1=,此时y=﹣2+3=观察图象可知当2≤x2﹣x1≤3,求y的取值范围0≤y≤.【点评】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(7分)如图1有两条长度相等的相交线段AB、CD,它们相交的锐角中有一个角为60°,为了探究AD、CB与CD(或AB)之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD∥BC,如图2,将线段AB沿AD方向平移AD的长度,得到线段DE,然后联结BE,进而利用所学知识得到AD、CB与CD(或AB)之间的关系:AD+BC=AB;(直接写出结果)(2)根据小亮的经验,请对图1的情况(AD与CB不平行)进行尝试,写出AD、CB 与CD(或AB)之间的关系,并进行证明;(3)综合(1)、(2)的证明结果,请写出完整的结论:AD+BC≥AB.【分析】(1)先判断出BE=AD,DE=AB,利用过直线外一点作已知直线的平行线只有一条判断出点C,B,E在同一条直线上,再判断出CE=AB,即可得出结论;(2)先判断出BE=AD,DE=AB,进而判断出点C,B,E在同一条直线上,再判断出CE=AB,即可得出结论;(3)结合(1)(2)得出的结论即可.【解答】解:(1)如图2,平移AB到DE的位置,连接BE,∴四边形ABED是平行四边形,∴AD=BE,AD∥BD,∵AD∥BC,∴点C,B,E在同一条直线上,∴CE=BC+BE,∵DE∥AB,∴∠CDE=∠1=60°,∵AB=DE,AB=CD,∴CD=DE,∴△CDE是等边三角形,∴CE=AB,∴BC+AD=AB;故答案为:AD+BC=AB;(2)如图1,平移AB到DE的位置,连接BE,∴四边形ABED是平行四边形,∴AD=BE,AD∥BD,∵AD不平行BC,∴点E不在直线BC上,连接CE,∴BC+BE>CE,∵DE∥AB,∴∠CDE=∠2=60°,∵AB=DE,AB=CD,∴CD=DE,∴△CDE是等边三角形,∴CE=AB,∴BC+AD>AB;(3)由(1)(2)直接得出,BC+AD≥AB.故答案为:BC+AD≥AB.【点评】此题是三角形综合题,主要考查了等边三角形的判定和性质,平行四边形的判定和性质,三角形的三边关系,解本题的关键是判定点C,B,E是共线.28.(8分)以点P为端点竖直向下的一条射线PN,以它为对称轴向左右对称摆动形成了射线PN1,PN2,我们规定:∠N1PN2为点P的“摇摆角”,射线PN摇摆扫过的区域叫作点P的“摇摆区域”(含PN1,PN2).在平面直角坐标系xOy中,点P(2,3).(1)当点P的摇摆角为60°时,请判断O(0,0)、A(1,2)、B(2,1)、C(2+,0)属于点P的摇摆区域内的点是B、C(填写字母即可);(2)如果过点D(1,0),点E(5,0)的线段完全在点P的摇摆区域内,那么点P的摇摆角至少为90°;(3)⊙W的圆心坐标为(a,0),半径为1,如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,求a的取值范围.【分析】(1)根据点P的摇摆区域的定义出图图形后即可作出判断;(2)根据题意分情况讨论,然后根据对称性即可求出此时点P的摇摆角;(3)如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,此时⊙W与射线PN1相切,设直线PN1与x轴交于点M,⊙W与射线PN1相切于点N,P为端点竖直向下的一条射线PN与x轴交于点Q,根据特殊角锐角三角函数即可求出OM,OW 的长度,从而可求出a的范围.【解答】解:(1)根据“摇摆角”作出图形,如图所示,。