2014~2015学年度初三一模试卷数学附答案

合集下载

2014-2015学年九年级第一次质量模拟试卷及答案

2014-2015学年九年级第一次质量模拟试卷及答案

2015年九年级第一次质量预测数学模拟试卷(一)(满分120分,考试时间100分钟)学校:___________ 班级:_________ 姓名:________ 分数:__________一、选择题(每小题3分,共24分)1.与-3的差为0的数是()A.3 B.-3 C.1 3D.13-2.下列图形中,不是轴对称图形的是()A.B. C. D.3.国家统计局公布2013年中国国内生产总值568 845亿元,同比增长7.7%,完成了年初设定的7.5%的目标.请你以亿元为单位用科学记数法表示2013年我国的国内生产总值为(结果保留两个有效数字)()A.5.6×1013B.5.7×1013C.5.7×105D.5.6×1054.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,则它的俯视图为()A.B.C.D.5.不等式4-3x≥2x-6的非负整数解有()A.1个B.2个C.3个D.4个6.如图,双曲线myx=与直线y kx b=+相交于点M,N,且点M的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x的方程mkx bx=+的解为()A.-3,1 B.-3,3 C.-1,1 D.-1,37.如图,正方形OABC的两边OA,OC分别在x轴、y轴的正半轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是()A.(2,10)B.(-2,0) C.(2,10)或(-2,0)D.(10,2)或(-2,0)8.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长,交⊙O于点E,连接CE.若AB=8,CD=2,则CE的长为()A.215B.8C.210D.213二、填空题(每小题3分,共21分)9.当x=_______时,分式55xx--无意义.10.菱形ABCD中,若对角线AC=8cm,BD=6cm,则边长AB=_______cm.11.已知圆锥的底面半径为1,全面积为4π,则圆锥的母线长为_______.12.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_______.13.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数kyx=(0x>)的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_________.yxOABCFED CBANMEDCBA第13题图第14题图第15题图14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.15.如图,在矩形ABCD中,AD AB>,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积之比为1:4,则MNBM的值为_________.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:2311221x xx x x x-⎛⎫-÷-⎪+++⎝⎭,其中x满足x2-x-1=0.NMxyOxyODC BAEDC BAO第6题图第7题图第8题图O EDC BA P x y O F ED CBA GP ABC DE H Oy x17. (9分)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图1和图2,请根据有关信息,解答下列问题:m %10%20%30%25%38号37号34号35号36号图18106412人数鞋号1224610838号37号34号35号36号图2(1)本次接受随机抽样调查的学生人数为_______,图1中m 的值是_____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 18. (9分)如图,矩形ABCD 的对角线AC ,BD 相交于 点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为菱形;(2)连接AE ,BE ,AE 与BE 相等吗?请说明理由.19. (9分)如图,将透明三角形纸片P AB 的直角顶点P 落在第四象限,顶点A ,B 分别落在反比例函数ky x=图象的两支上,且PB ⊥x 轴于点C ,P A ⊥y 轴于点D ,AB 分别与x 轴,y 轴相交于点F ,E .已知B (1,3). (1)k =_________;(2)试说明AE =BF ; (3)当四边形ABCD 的面积为214时,求点P 的坐标.20. (9分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A ,B 的距离,如图,勘测飞机在距海平面垂直高度为1公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2公里到点D ,并测得端点B 的俯角为37°,求钓鱼岛两端A ,B 的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)37°45°NCDBMA21. (10分)某工程机械厂根据市场需求,计划生产A ,B 两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B 成本(万元/台) 200 240 售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B 型挖掘机的售价不会改变,每台A 型挖掘机的售价将会提高 m 万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价-成本) 22. (10分)如图,在△ABC 中,∠B =45°,O 为AC 上一个动点,过O 作∠POQ =135°,且∠POQ与AB 交于P ,与BC 交于Q .(1)如图1,若11AB AOBC CO ==,,则OP OQ=______. (2)如图2,若1132AB AO BC CO ==,,求OP OQ 的值,写出求解过程. (3)如图3,若1325AB OP BC OQ ==,,则AOCO =_____.图3图2图1A COPQ B ACO PQB Q POCBA23. (11分)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A ,D 两点,与y轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4).已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式.(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度.(3)在(2)的条件下,是否存在这样的点P ,使得以P ,B ,G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.。

2014~2015年九年级第一次月考数学试卷及参考答案

2014~2015年九年级第一次月考数学试卷及参考答案

九年级第一次月考数学试卷考生注意:本试卷共八大题,计23小题,满分150分,考试时间120分钟。

一、选择题(本大题共10小题,每小题4分,满分40分)1.二次函数y=x 2的图象向下平移2个单位,得到新图象的二次函数表达式………( ) A .y =x 2-2 B .y =(x -2)2C .y =x 2+2 D .y =(x +2)22.若二次函数y=2x 2-2mx+2m 2-2的图象的顶点在y 轴上,则m 的值是………………( ) A.0 B.±1 C.±2 D.±23.已知(-1,y 1)(-2,y 2)(-4,y 3)是抛物线y=-2x 2-8x+m 上的点,则………………( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 2>y 1>y 3D. y 2>y 3>y 1 4.已知反比例函数y =xm2-1的图像上有两点A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时, 有y 1<y 2。

则m 的取值范围是 ………………………………………………………( ) A 、m <0 B.、m >0 C 、m >21 D 、m <21 5.等边三角形的一条中线与一条中位线的比值是………………………………… ( ) A 、1:3 B 、2:3 C 、3:1 D 、1:36.下列各组线段:①a=1,b=2,c=3,d=4;②a=1,b=2,c=2,d=4;③a=2,b=5,c=8,d=20;④a=3, b=2,c=3,d=2;其中各组线段的长度成比例的有………………………………………………………………………………………( ) A .1组 B. 2组 C. 3组 D. 4组7. 下列关于二次函数的说法错误..的是………………………………………………( ) A.抛物线1322++-=x x y 的对称轴是直线x =34; B.点A(3,0)不在抛物线322--=x x y 的图象上; C.二次函数y=(x +2)2-2的顶点坐标是(-2,-2);D.函数y=2x 2+4x-3的图象的最低点在(-1,-5)8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 ………………………………………………………………( ) 9.抛物线2y a x b x c =++ 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y 随x 增大而减小。

2014---2015学年九年级质量抽测数学试题附答案

2014---2015学年九年级质量抽测数学试题附答案

2014---2015学年九年级质量抽测数学试题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. |﹣|的相反数是( )A .2B .C . ﹣2D .﹣3. 用矩形纸片折出直角的平分线,下列折法正确的是( ) ....4. 下列运算中,正确的是( )A .39±=B .236(a )a =C .3a 2a 6a ⋅=D .632-=-5. 如下图,△ABC 经过位似变换得到△DEF ,点O 是位似中心且OA=AD ,则△ABC 与△DEF 的面积比是( )A .1:6B . 1:5C .1:4D .1:2 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是( )A . 1.65,1.70B .1.70,1.65C . 1.70,1.70D . 3,47. 如下图,半径为5的⊙P 与y 轴相交于M (0,-4),N (0,-10)两点,则圆心P 的坐标为( )A .(5,-4)B .(4,-5)C .(4,-7)D .(5,-7)8. 二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=xc在同一平面直角坐标系中的大致图象为( )9. 一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其他两个顶点在矩形的边上,则剪下的等腰三角形的面积为( )平方厘米A .50B .50或40C .50或40或30D .50或30或2010. 如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF , ②∠DAF=15°, ③AC 垂直平分EF , ④BE+DF=EF , ⑤S △CEF =2S △ABE . 其中正确结论有( )个.第5题图 第7题图 第10题图第Ⅱ卷(非选择题 共90分)A .B .C .D .二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要13.甲、乙两人玩猜数字游戏,甲猜一个数字记为x,乙猜一个数字记为y,且x,y分别取1,2,3,4,则点(x,y)在反比例函数y4=的图像上的概率为___________.DC'B'CB A第12题图第15题图第16题图15.如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_________(结果保留π).16.如图,在边长相同的小正方形组成的网格中,点A,B,C,D都在这些小正方形的顶点上,AB,CD相交于点P,则tan∠APD的值是___________.17.我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是_________.第18题图18. 如图,已知点A (0,0),B ( 3 ,0),C (0,1),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B1A 2B 2,第3个△B 2A 3B 3,…,则第n 个等边三角形的面积等于 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:(2) 先化简,再求值:(a+)÷(1+).其中a 是不等式组⎩⎨⎧<-≤-81302a a 的整数解.20.(本题满分8分) 为了解中考体育科目训练情况,改进训练方法,减轻学生负担,某县教育局从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 ;(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)全县九年级共有学生8500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .21.(本题满分8分)如图,为了缓解交通拥堵,方便行人,在济南路计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角 BAD为35゜,斜坡CD的坡度为i=1:1.2(垂直高度CE 与水平宽度DE的比),上底BC=10m,天桥高度CE=5m,求天桥下底AD的长度?(结果精确到0.1m,参考数据:sin35゜≈ 0.57,cos 35゜≈ 0.82,tan35゜≈ 0.70)22.(本题满分8分) 如图,直线PQ与⊙O相交于点A、B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连结AD,已知BC=10,BE=2,求BD的长.23. (本题满分8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.24.(本题满分11分) 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.25.(本题满分12分) 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y 轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.数学试题参考答案及评分标准一.二、填空题: 11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果. 11.()()b a b a a -+ 12. 33013.16314. 5,1≠≥a a 且15.4π16. 2 17. 21 18.三、解答题:19. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=0.5+1+32-1=0.5+32 ……………………3分(2) 解:原式=()()112222122122-=--∙--=-+-÷-+-a a a a a a a a a a . ………………2分解不等式组得2,1,0,30=<≤a a 所以………………3分只有当a =0时,原式有意义,原式=-1.(因为分式的分母不为0,除数不为0,所以本题中的a 不能取1和2) …………………………4分20.解:(1)40 ……………………2分(2) 540……………………4分 图略,为14人. ………………6分 (3)1700.……………………8分 21.……………… 2分……………… 4分…………… 6分…………………7分…………………8分22.证明:(1)连结OD ,则OD=OB, ∴∠OBD=∠ODB. ………………… 1分 ∵BD 平分∠CBQ , ∴∠OBD=∠DBQ.∵ DE ⊥PQ , ∴∠BED=90°. ………… 2分 ∴ ∠EBD + ∠BDE = 90°. ∴ ∠EDB + ∠BDO = 90°. 即:∠ODE = 90°.………………………… 3分 ∴ DE ⊥OD , ∴DE 是⊙O 的切线. ………… 4分(2)连结CD , 则∠CDB = 90°=∠BED, ……………… 5分∵ ∠CBD =∠DBE.∴ △CBD ∽△DBE.……………………………6分∴BD BC =BEBD. …………7分 即:BD 2=BC ·BE=10×2=20, ∴ BD=25, …………………8分23. 解:⑴设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得: 80x +60(17- x )=1220 …………………2分 解得x =10 …………………3分 ∴ 17- x =7答:购进A 种树苗10棵,B 种树苗7棵 …………………4分 ⑵设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得:17-x < x 解得x > …………………5分购进A 、B 两种树苗所需费用为80x +60(17- x )=20 x +1020…………………6分则费用最省需x 取最小整数9,此时17- x =8,费用为20×9+1020=1200(元). …………7分 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵. 这时所需费用为1200元.……8分24.证明:(1)∵∠BAC=90°,∠ABC=45°, ∴∠ACB=∠ABC=45°, ∴AB=AC ,…………………1分 ∵四边形ADEF 是正方形, ∴AD=AF ,∠DAF=90°, ∵∠BAD=90°﹣∠DAC , ∠CAF=90°﹣∠DAC ,∴∠BAD=∠CAF , …………………2分 在△BAD 和△CAF 中,,∴△BAD ≌△CAF (SAS ),…………3分∴BD=CF ,∵BD+CD=BC ,∴CF+CD=BC ;…………………4分(2)CF ﹣CD=BC ;…………………6分(3)①CD ﹣CF=BC …………………8分 ②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC , ∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°, ∵∠BAD=90°﹣∠BAF ,∠CAF=90°﹣∠BAF ,∴∠BAD=∠CAF ,∵在△BAD 和△CAF 中,∴△BAD ≌△CAF (SAS ),…………9分 ∴∠ACF=∠ABD , ∵∠ABC=45°, ∴∠ABD=135°, ∴∠ACF=∠ABD=135°, ∴∠FCD=90°,∴△FCD 是直角三角形. …………………10分 ∵正方形ADEF 的边长为2且对角线AE 、DF 相交于点O . ∴DF=AD=4,∵O 为斜边DF 中点.∴OC=DF=2.…………………11分25.解:(1)∵抛物线的顶点为Q (2,-1)设………………… 1分 将C (0,3)代入上式,得………………… 2分∴即。

2015届中考一模数学试卷及答案

2015届中考一模数学试卷及答案
2

c θ
2011 2012 2013 2014 2015 年
(第 24 题图)
C D E A (第 7 题图) (第 8 题图)
· O (第 9 题图)
B
10. 在面积为 60 的□ABCD 中,过点 A 作 AE⊥直线 BC 于点 E,作 AF⊥直线 CD 于点 F,若 AB=10,BC =12,则 CE+CF 的值为…………………………………………( ▲ ) A. 22+11 3 C. 22+11 3或 22-11 3 B. 22-11 3 D. 22+11 3或 2+ 3
二、填空题(本大题共 8 小题,每小题 2 分,共计 16 分.请把答案直接填写在答题卡相应位置 上.) .......
1
11.已知|x|=3,则 x 的值是

. ▲ .
12.函数 y= 3-x中自变量 x 的取值范围是 ▲ .
13.据报载,2014 年我国发展固定宽带接入新用户 25000000 户,将 25000000 用科学记数法可表示为 14.已知扇形的圆心角为 120º,半径为 6cm,则扇形的弧长为 为矩形,只需再加上的一个条件是 ▲ . ▲
22.(本题满分 8 分)在一个不透明的布袋里装有 4 个完全相同的标有数字 1、2、3、4 的小球. 小明从 布袋里随机取出一个小球, 记下数字为 x, 小红从布袋里剩下的小球中随机取出一个, 记下数字为 y. 算由 x、y 确定的点(x,y)在函数 y=-x+5 的图象上的概率. 23.(本题满分 8 分)如图所示,A、B 两个旅游点从 2011 年至 2015 年“清明小长假”期间的旅游人数 变化情况分别用实线和虚线表示,请解答以下问题: (1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年? (2)求 A、B 两个旅游点从 2011 年到 2015 年旅游人数的平均数和方差,并从平均数和方差的角度,用一 句话对这两个旅游点的情况进行评价; (3)A 旅游点现在的门票价格为每人 80 元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数 为 4 万人. A 旅游点决定提高门票价格来控制游客数量. 已知游客数量 y(万人)与门票价格 x(元) x 之间满足函数关系 y=5- . 若要使 A 旅游点的游客人数不超过 4 万人,则门票价格至少应提高多 100 少元?

2014-2015年第一学期九年级数学试题答案

2014-2015年第一学期九年级数学试题答案

2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。

2014-2015九年级数学试题答案及评分标准

2014-2015九年级数学试题答案及评分标准

2014-2015学年度第二学期九年级摸底考试数学试题答案及评分标准二、填空题:17、33 18、5 19、70和120 20. -2014 三、解答题:21、(1)△=)1(4)}1(2{422--+-=-m m m ac b …………1分∵该方程有两个实数根 ∴△》0 (3)1-≥m 3分 解得:m ≥131≠-m 且…………4分(2)当m=2时,上述方程有实数根…………5分当m=2时,原方程可化为0262=+-x x ………6分 配方得:7)3(2=-x ………8分731+=x ………9分 732-=x ………10分22、(l )144: ……………………………………………………………………………2分 (2)300×40%=120 120-27-33-20=40人………………………4分(“篮球”选项的频数为40.正确补全条形统计图):………………………5分 (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为 1200×40300=160(人):………………………………………………………8分 (4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。

………10分(注:只要解释合理即可) 23、(1)证明:在△ABC 和△ADC 中∴△ABC ≌△ADC (SSS ),………………2分∴∠1=∠2,………………3分 在△ABF 和△ADF 中∴△ABF ≌△ADF (SAS )………………5分(2)证明:∵AB ∥CD ,∴∠1=∠3,………………6分又∵∠1=∠2,∴∠2=∠3,∴AD=CD ,………………7分∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,………………8分 ∴四边形ABCD 是菱形;………………9分(3)由(2)可得:BE ⊥CD 或∠BEC=∠BED=90°或△BEC ∽△DEF 或∠EFD=∠BAD ,写出其中一个.………………11分 24、(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩。

2014-2015学年北京市朝阳区2015年初三数学一模试题(附答案)

2014-2015学年北京市朝阳区2015年初三数学一模试题(附答案)

北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20° B .40° C .60° D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分) 11.若分式21x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-1,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a-,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为 万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据; (3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与 公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份 公共自行车投放数量(万辆) 利用公共自行车出行人数(万人) 2012 1.4 约9.9 2013 2.5 约17.6 2014 4 约27.6 2015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果, 精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).图1图2图329.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分 ① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分 ② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,.………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ……………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PDAP 的值为23 . …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k .∴DB =DC +BC =3k .∵E 是AC 中点,∴AE =CE .∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP . ∴DB AF PDAP =. ∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分∴M 1 : x x y 42+=,顶点为(-2,-4) .∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分∵直线n x y +=经过点F ,∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE= …………………………………………………………………………5分(2BD =BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有 ⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。

2015年初三一模数学试卷及 答 案

2015年初三一模数学试卷及 答 案
2
2
21.已知关于 x 的一元二次方程 x 2 x 3 m 0 有两个实数根.
2
(1)求 m 的取值范围; (2)若 m 为符合条件的最小整数,求此方程的根. 22.列方程或方程组解应用题: 小辰和小丁从学校出发,到离学校 2 千米的“首钢篮球馆”看篮球比赛.小丁 步行 16 分钟后,小辰骑自行车出发,结果两人同时到达.已知小辰的速度是 小丁速度的 3 倍,求两人的速度. 四、解答题(本题共 20 分,每小题 5 分) 23.如图,菱形 ABCD 中, E , F 分别为 AD ,
2014—2015 学年初三统一练习暨毕业考试
数 学 试 卷
学校
考 生 须 知
班级
姓名
1.本试卷共 7 页,共五道大题,29 道小题.满分 120 分,考试时间 120 分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个 是符合题意的. .. 1. 3 的绝对值是 A. 3 B.
10.在平面直角坐标系 xOy 中,四边形 OABC 是矩形,且 A , C 在坐标轴上,满 足 OA 3 ,OC 1 . 将矩形 OABC 绕原点 O 以每秒 15 的速度逆时针旋 转.设运动时间为 t 秒 0 t 6 ,旋 转过程中矩形在第二象限内的面积为
S 3 3 2
E
A F G B
D
AB 上的点,且 AE AF ,连接 EF 并延
水费为
元.

2014~2015学年度 江阴市2015届九年级第一次模拟考试数学试题及答案

2014~2015学年度 江阴市2015届九年级第一次模拟考试数学试题及答案
13.若一个多边形的内角和比外角和大360°,则这个多边形的边数为▲.
14.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是▲.
15.已知菱形的周长为40cm,两条对角线之比为3∶4,则菱形的面积为____▲____cm2.
16.如图,正△ABC的边长为9cm,边长为3cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为2π____▲____cm.(结果保留π)
①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;
②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;
③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.
正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交
直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1B、
BA为邻边作□ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边
作□A1B1A2C2;…;按此作法继续下去,则Cn的坐标是(▲ )
A.(﹣ ×4n,4n)B.(﹣ ×4n-1,4n-1)
C.(﹣ ×4n﹣1,4n) D.(﹣ ×4n,4n-1)
二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)

2014-2015学年北京市大兴区初三一模数学试题(含答案)

2014-2015学年北京市大兴区初三一模数学试题(含答案)

5.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共 30 分,每小题 3 分)
下面各题均有四个选项,其中只有一个 ..是符合题意的.
1.今年我区初中毕业生学业考试的考生总数为
4768 人,这个数据用科学记数法表示为
A. 47.68 102
B. 4.768 10 4
C. 0.4768 104
接圆.
( 1)试判断直线 AB与⊙ O的位置关系,并说明理由;
1 ( 2)若 AC= 4,tan ∠ DAC=2,求⊙ O的半径.
D
C
O
P
A
B
26.数学课上,老师要求同学们在扇形纸片
OAB 上画出一个正方形,使得正方形的四个顶
点分别落在扇形半径 OA 、OB 和弧 AB 上 .有一部分同学是这样画的: 如图 1,先在扇形 OAB
求证: AC+BC> 2AD;
D
C
22.列方程或方程组解应用题: 某服装商预测一种应季衬衫能畅销市场,
A
E
B
就用 8000 元购进一批衬衫, 面市后果然供不应求,
服装商又用 17600 元购进了第二批这种衬衫, 所购数量是第一批购进数量的 2 倍,但单价贵
了 8 元。商家销售这种衬衫时每件售价都是 100 元,很快售完。在这两笔生意中,商家共盈
D. 4.768 1ຫໍສະໝຸດ 32 .如果 a 为有理数,且 a a ,那么 a 是
A.负数
B .正数
C .非正数
D .非负数
3.一个口袋中有 4 个白球, 5 个红球, 6 个黄球,每个球除颜色外都相同,搅匀后随机从袋
中摸出一个球,这个球是黄球的概率是
1 A.
15

2014—2015学年第二学期九年级数学一模试卷

2014—2015学年第二学期九年级数学一模试卷

A .B .C .D .学校_____________________班级_____________姓名___________________学号__________ ………………………………装………………………………订………………………………线………………………………2014—2015学年第二学期九年级数学一模试卷测试时间:120分钟 满分:130分一、选择题(本大题共10题,每小题3分,共计30分)1.-3的倒数是………………………………………………………………………( )A .-3B .3C .-13D .132.下列计算正确的是 ………………………………………………………………( )A .2a -a =1B .a 2+a 2=2a 4C .a 2· a 3=a 5D .(a -b )2=a 2-b 23.下列图形中,不是中心对称图形的是 ……………………………………………( )4.在锐角△ABC 中,|sin A - 32 |+( cos B -22)2=0 ,则∠C 的度数是 ………( )A .30°B .45°C .60°D .75°5.下列说法中,正确的是 …………………………………………………………( ) A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C .抛掷一个正方体骰子,点数为奇数的概率是13D .“打开电视,正在播放广告”是必然事件6.若点M (-2,y 1),N (-1,y 2),P (8,y 3)在抛物线y= - 12x 2+2x 上,则下列结论正确的 …………………………………………………………………………( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 27.定义新运算:对于任意实数a ,b ,都有a ⊕b =a 2-3a +b ,如3⊕5=32-3×3+5,若x ⊕1=11则实数x 的值 ……………………………………………………………………( ) A .2或-5 B .-2或5 C .2或5 D .-2或-58.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为 ………………………………………………………………( ) A .4 B .6 C .8 D .129.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长 AE 交⊙O 于点F ,则线段AF 的长为 …………………………………………( )A .75 5B .5C .5+1D .32510.如图,正方形ABCD 的对角线BD 长为2 2 ,若直线l 满足:(1)点D 到直线l 的距离为1,(2)A 、C 两点到直线l 的距离相等,则符合题意的直线l 的条数为 …………………………………………………………………………………( ) A .1 B .2 C .3 D .4▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲二、填空题(本大题共8小题,每小题2分,共计16分)11.使1-3x 有意义的x 的取值范围是____________.12.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为___________人次. 13.分解因式:4a 2-16=____________. 14.已知0≤x ≤1,若x -2y =6,则y 的最小值是____________.15.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积...是 . 16.如图,△ABC 中,AB =5,BC =3,CA =4,D 为AB 的中点,过点D 的直线与BC 交于点E ,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE =_________.17.如图,在以点O 为原点的直角坐标系中,一次函数y =- 12x +1的图象与x 轴交于A ,与y 轴交于点B ,点C 在第二象限内且为直线AB 上一点,OC =12 AB ,反比例函数y =kx 的图象经过点C ,则k 的值为 . 18.等边三角形ABC 中,BC =6,D 、E 是边BC 上两点,且BD =CE =1,点P 是线段DE 上的一个动点,过点P 分别作AC 、AB 的平行线交AB 、AC 于点M 、N ,连接MN 、AP 交于点G ,则点P 由点D 移动到点E 的过程中,线段BG 扫过的区域面积为__________.三、解答题(本大题共10小题,共计84分.) 19.(本题满分8分)(1)计算: | 3 -1|-(12 )-2-2sin60o(2)计算: (1-3x +2 )÷x 2-1x +2B C A D · 第16题图 A O B x y第17题图 A B C P M N G D E · · 第18题图 第9题图ABCDE OF· 第10题图CDA B第8题图5 13▲ ▲ ▲▲ ▲ ▲ ▲▲(1)解方程: 2x 2x -1 +xx -2 =2; (2)解不等式组: ⎩⎪⎨⎪⎧x -32 +3≥x ,1-3(x -1)<8-x .21.(本题满分6分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是; (2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解).22.(本题满分6分)如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无刻度...的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点; (2)在图2中,画出△ABC 中AB 边上的高.B AC F ED ·· · · · · B · · CA · · 图1图2B· · CA · ·▲“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的家长大约有多少名? 24.(本题满分8分)2014年3月8日凌晨,马来西亚航空公司吉隆坡飞北京的MH370航班在起飞一个多小时后在雷达上消失,至今没有被发现踪迹.飞机上有239名乘客,其中154名是中国同胞,中国政府启动了全面应急和搜救机制,派出多艘中国舰船在相关海域进行搜救.如图,某日在南印度洋海域有两艘自西向东航行的搜救船A 、B ,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻两船同时测得在A 的东北方向,B 的北偏东15°方向有一疑似物C ,求此时疑似物C 与搜救船A 、B 的距离各是多少?(结果保留根号)25.(本题满分9分)如图,以O 为圆心的BD 度数为60 o ,∠BOE =45o ,DA ⊥OB ,EB ⊥OB .(1)求BEDA的值;(2)若OE 与BD 交于点M ,OC 平分∠BOE ,连接CM .说明:CM 为⊙O 的切线; (3)在(2)的条件下,若BC =1,求tan ∠BCO 的值.45o 15o A北 北C 东 BD ME C B O A 40 140 140 学生 学生及家长对中学生带手机的态度统计图人数 家长 赞成无所谓 反对 类别 280210 70 30 80 30 图① 赞成 无所谓20% 反对 家长对中学生带手机的态度统计图 图②26.(本题满分8分)机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关. (1)甲车间通过技术改革后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备实际耗油量是多少千克? (2)乙车间通过技术改革后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到19.2千克,问乙车间通过技术改革后,加工一台大型机械设备润滑用油量是多少千克?拥有的重复利用率是多少? 27.(本题满分10分)【问题情境】如图1,在△ABC 中,AB =AC ,点P 为边BC 上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .求证:PD +PE =CF .【结论运用】如图2,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD =8,CF =3,求PG +PH 的值;【迁移拓展】图3是一个航模的截面示意图.在四边形ABCD 中,E 为AB 边上的一点,ED ⊥AD ,EC ⊥CB ,垂足分别为D 、C ,且AD ·CE =DE ·BC ,AB =8,AD =3,BD =7;M 、N 分别为AE 、BE 的中点,连接DM 、CN ,求△DEM 与△CEN 的周长之和.C PD AF E B图1 B FH G P A E D C C' 图2 D C B AM E N 图328.(本题满分12分)如图1,平面之间坐标系中,等腰直角三角形的直角边BC 在x 轴正半轴上滑动,点C 的坐标为(t ,0),直角边AC =4,经过O 、C 两点做抛物线y 1=ax (x -t )(a 为常数,a >0),该抛物线与斜边AB 交于点E ,直线OA :y 2=kx (k 为常数,k >0)(1)填空:用含t 的代数式表示点A 的坐标及k 的值:A ,k = ; (2)随着三角板的滑动,当a =14时:①请你验证:抛物线y 1=ax (x -t )的顶点在函数y =-14x 2的图象上;②当三角板滑至点E 为AB 的中点时,求t 的值;(3)直线OA 与抛物线的另一个交点为点D ,当t ≤x ≤t +4,|y 2﹣y 1|的值随x 的增大而减小,当x ≥t +4时,|y 2﹣y 1|的值随x 的增大而增大,求a 与t 的关系式及t 的取值范围.▲ ▲2014—2015学年第二学期九年级数学一模试卷一、选择题(本大题共10题,每小题3分,共计30分)1、C2、C3、B4、D5、A6、C7、B8、B9、A 10、D二、填空题(本大题共8小题,每小题2分,共计16分)11、x ≤13 12、8.03×10613、4(a +2)(a -2) 14、-3 15、3π 16、2 17、-1150 18、3 3 2三、解答题(本大题共10小题,共计84分.) 19.(本题满分8分)(1)| 3 -1|-(12 )-2-2sin60o += 3 -1-4-2×32……………………3分 =-5…………………………………………4分(2) (1-3x +2 )÷x 2-1x +2=x -1x +2 ÷(x -1)(x +1)x +2 ……………………2分=1x +1 …………………………………………4分20.(本题满分8分)(1)2x 2x -1 +xx -2=2;解:2x(x-2)+x(2x-1)=2(2x-1)(x-2) …………1分5x=4…………………………………………2分 x=45 …………………………………………3分 经检验,x=45是原方程的根。

【最新原创】中学2014-2015学年中考模拟数学试卷(含答案)

【最新原创】中学2014-2015学年中考模拟数学试卷(含答案)

A B C D XX 中学2014-2015学年中考模拟数学试卷(说明:全卷共有八个大题,24个小题,满分120分,考试时间120分钟;答案一律写在答题卷上,否则成绩无效.)一、选择题:(本大题6小题,每小题3分,共18分.)每小题有且只有一个正确选项.1.(-2013)0的结果是( ★ ).A .1-B .1C .2013D .2013-2.如图,AD BC ∥,点E 在BD 的延长线上,若143ADE ∠=︒,则DBC ∠的度数为( ★ ). A .33︒ B .43︒ C .37︒ D .47︒3.下列“属于物体在太阳光下形成的影子”的图形是( ★ ) .4. 甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( ★ ). A .掷一枚正六面体的骰子,出现1点的概率 B .抛一枚硬币,出现正面的概率C .任意写一个整数,它能2被整除的概率D .从一个装有2个白球和1个红球的袋子中任取一球, 取到红球的概率5.不等式组1340x x +>⎧⎨-⎩≥的解集用数轴表示为( ★ ).6.已知⊙O 的半径为5,弦AB 的长为8,将AB 沿直线AB 翻折 得到ACB ,如图所示,则点O 到ACB 所在圆的切线长OC 为( ★ ).A .11B .22C .5D .3二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式:b a ab b 22+-= ★ .8.近年来,我国许多城市的“灰霾”天气增加,严重影响大家身体健康.“灰霾”天气的 最主要成因是直径小于或等于2.5微米的细颗粒物(即PM2.5),也称为可入肺颗粒物. 已知2.5微米=0.000 0025米,此数据用科学记数法表示为 ★ 米.C .24B .24A .2 4D .2 4B ECAD第2题图第6题图OA BC第4题图9.计算:xxx x -+-112= ★ . 10.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是 ★ . 11.一元二次方程()24190x --=的解是 ★ .12.如图,△ABC 的顶点都在⊙O 上,已知直径AD =6,∠ABC =∠DAC ,则AC 的长为 ★ __.13.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点1, 0A ()与点2, 0A '(-)是对应点, ABC ∆的面积是23,则A B C '''∆的面积是 ★ . 14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图 所示的四边形;经测量这个四边形的相邻两边长为10cm 、 6cm ,一条对角线的长为8cm ;则原三角形纸片的周长 是 ★ .三、(本大题共2题,每题5分,共10分.)15.计算:36327cos452π---+⨯︒. 16.我们约定:把个位数字大于十位数字、十位数字大于百位数字的三位数称为“阶梯数”, 例如689是一个“阶梯数”;若从2、4、7、9这四个数字中任选两个数字,与十位上的 固定数字5组成一个三位数.请画树形图或列表格,求出此三位数恰好是“阶梯数”的 概率.四、(本大题共2题,每题6分,共12分.)17.如图,ABC ∆的三个顶点分别在正方形网格中的格点上.(1)请在网格中找得一个格点P ,连接PB 、PC ,使12BPC BAC ∠=∠,并简要说明理由;(2)直接写出此时tan BPC ∠的值.第12题图OADBC第13题图y x123–1–2–3123–1–2OC B AA'第14题图8610第10题图第17题图“不属酒驾”人数情况统计图2012年酒驾检查人数情况扇形统计图18.如图,正方形OBCD 放置在直角坐标系xOy 中,点B 、点D 分别落在x 轴、y 轴的正半轴上; P 经过正方形的两个顶点C 与D 、且与OB 边相切于点M .已知正方形OBCD 的面积为64, 求圆心点P 的坐标.五、(本大题共2题,每题8分,共16分.)19.“六一”儿童节有一投球入盆的游戏,深受同学们的喜爱;游戏规则如下:如图,在一大盆里放一小茶盅(叫幸运区),投到小茶盅(幸运区)和小茶盅外大盆内(环形区)分别得不同的......分数,投到大盆外不得分;每人各投6个球,总得分不低于60分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图:(1)每投中“幸运区”和“环形区”一次,分别得多少分? (2)根据这种得分规则,小红能否得到一张奖券?请说明理由﹒20. 新的《道路交通安全法》规定:车辆驾驶员检测血液酒精浓度在20 (不包含20,单位:mg /100ml) 以下“不属酒驾”,在20~80(不包含80)之间,属于“酒后驾车”;血液酒精浓度在80 (包含80)以上,属于“醉酒驾车”.2008年某市交警检测的驾驶员中有220人“不属酒驾”(即检测血液酒精浓度 小于20),从2008年到2011年“不属酒驾”的人数(y )逐年(x )呈直线上升,且2010年与2012年检测中的“不属酒驾”的人数相等 (如图1所示); 2012年检测中“不属酒驾”、“酒后驾车”、“醉酒驾车”的人数情况扇形统计图如图2所示,且“醉酒驾车”有60人.(1)求图2中“醉酒驾车”所占扇形的圆心角度数及2012年“不属酒驾”的人数; (2)求2011年“不属酒驾”的人数.小刚:50分小明:78分小红:?分第18题图六、(本大题共2题,每题9分,共18分.)21﹒如图,Rt OAB ∆在平面直角坐标系,直角顶点B 在x 轴的正半轴上,已知90OBA ∠=︒,3OB =,4sin 5AOB ∠=.反比例函数ky x=(x >0)的图象经过点A .(1)求反比例函数的解析式;(2)若点C (m ,2)是反比例函数ky x=(x >0)图象上的点. ①在x 轴上是否存在点P ,使得PA PC +最小? 若存在,求出点P 的坐标;若不存在,说明理由.②在x 轴上是否存在点Q ,使得QA 与QC 的差 最大?若存在,求出点Q 的坐标;若不存在,说明理由.22.如图,已知直线12345∥∥∥∥l l l l l ,相邻两平行线间的距离都为6cm ;现把一张矩形贺年卡放在上面,贺年卡的四顶点A 、B 、C 、D 恰好落在直线1l 、2l 、5l 、4l 上,直线2l 与边AD 的交点为E ,直线4l 与边BC 的交点为F ,四边形BFDE 恰好为菱形.(1)求线段AB 与直线1l 所夹锐角BAK ∠的大小; (2)求矩形ABCD 的面积.七、(本大题共1题,共10分.)23.如图1,已知二次函数2y ax bx c =++(其中0,0,0a b c <>> )的图象与y 轴的交于点C ,其顶点为A ;直线∥CD x 轴、且与抛物线的对称轴AE 交于点B ,交抛物线于另一点D .(1)试用含b 的代数式表示ABCD的值; (2)如图2,连接AC 与AD ,我们把 ACD ∆称为抛物线的伴随三角形.①当ACD ∆为直角三角形时,求出 此时b 值;②若ACD ∆的面积记为S ,当抛物 线的对称轴为直线2x =时,请写出伴随 三角形面积S 与b 的函数关系式.第21题图l 5l 1l 2l 3l 4KF EDCBA第22题图第23题图图1图2八、(本大题共1题,共12分.)24.如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆C ,点B 是该半圆周上的一动点,连结OB 、AB ,并延长AB 至点D ,使DB =AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF .(1)当∠AOB =30°时,求AB 的长; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出所有点E 的坐标;若不存在,请说明理由.参考答案及评分标准一、选择题(本大题共6小题,每小题3分,共18分.)1.B . 2.C . 3.A . 4.D . 5.C . 6.A .二、填空题(本大题共8小题,每小题3分,共24分.)7.2(1)b a -(填2(1)b a -也对). 8.62.510-⨯. 9.x . 10.245. 11.1215, 22x x =-=; 12.32. 13.6; 14.48或(32813+)cm . (每填对一个答案得1分;两个答案都正确得3分.)温馨提示:补全原三角形,如图1,周长为2(1086)48⨯++= cm ; 如图2,周长为2(104136)(32813)⨯++=+cm ; 综上所述:原三角形纸片的周长是48或(32813)+ cm .第24题图8610第14题解答图18610第14题解答图2三、(本大题共2题,每题5分,共10分.)15.解:原式()33π=---+…………………………3分 333π=-++……………………………………4分 3π=+. ……………………………………5分16.解:由题意可画树形图如下:……………………………………3分……………………………………3分由表格或树形图可以看出,可能的出现的所有结果有12种,其中能与十位上数字5形成“阶梯数”的结果有4种,因此 P (阶梯数)=412=13.………………………5分四、(本大题共2题,每题6分,共12分.) 17.解:(1)如图,以点A 为圆心,AB 或AC 的长为半径画A ,A 经过格点1P 、2P 、3P 、4P 、5P 、6P ,取其中一个点P 与点B 、C 相连,则BPC ∠即为所求(找出一个点P 即可,其它画法参照评分!); (通常有:延长BA 至点P ,使得PA AB =,连接PC ,所得的12BPC BAC ∠=∠;即解答图中的点4P .) ……………………………………4分(2) 1tan 3BPC ∠=. …………………………6分18.解:∵⊙P 经过正方形的两个顶点C 与D ,72 97 424792 79 2 4 9 4 第17题解答图又因为正方形OABC 的面积为64,所以正方形OBCD 的边长8OB ==,……………2分 延长MP 交CD 于点N ,∵PM OB ⊥,且CD ∥OB , ∴PN CD ⊥,且142DN CD ==; 设⊙P 半径的半径为R ,则PM PD R ==,8PN R =-;………………………3分 则依据勾股定理:222(8)4R R =-+,…………………4分 化简得:22641616R R R =-++,解之得:5R =.…………………………………………5分 ∴点P 的坐标为((4 , 5) .……………………………6分五、(本大题共2题,每题8分,共16分.)19.解:(1)设每投中“幸运区”和“环形区”一次,分别得x 分与y 分,由题意可得: 550,3378;x y x y +=⎧⎨+=⎩ ………………………………………3分解之得:20,6.x y =⎧⎨=⎩………………………………………4分所以每投中“幸运区”和“环形区”一次,分别得20分与6分;……5分 (2)根据这种得分规则,小红能得到一张奖券,理由如下:根据这种得分规则,小红的得分为:220466460⨯+⨯=>分,所以小红能得到一张奖券. ……………………………8分 20.解:(1)“醉酒驾车”的人数占总人数的120%70%10%--=,∴“醉酒驾车”所占扇形的圆心角度数为36010%36,︒⨯=︒ …………2分 又2012年“醉酒驾车”的人数为60人, ∴2012年被检总人数为6010%600÷=人,∴2012年“不属酒驾”的人数为60070%420⨯=人;…………………4分(2)由于2010年与2012年检测中的“不属酒驾”的人数相等,∴2010年检测中的“不属酒驾”的人数为420人, ……………… 5分又从2008年到2012年“不属酒驾”的人数(y )逐年(x )呈直线上升,∴2012年“不属酒驾”的人数为420220420152*********-+⨯=-人.……… 8分说明:若通过求出y 与x 的一次函数关系式100200580y x =-,再把2011x =代入,求出y 的值,计算正确者也给满分(其它解法参照评分!).六、(本大题共2题,每9分,共18分.)21﹒解:(1) ∠OBA = 90°,sin ∠AOB =45,可设4AB a =,5OA a =,3OB a ∴==,又3OB =,1a ∴=,4AB ∴=,…………1分∴点A 的坐标为(3,4),点A 在其图象上,43k∴=,12k ∴=; ∴反比例函数的解析式为12(0)y x x=>; ……………………………3分 (2)点C (m ,2)是反比例函数ky x=(x >0)图象上的点,12k =, 122m∴=,6m ∴=,即点C 的坐标为(6,2); ……………………………4分 ① 在x 轴上存在点P ,使得PA +PC 最小.理由如下: 由点A (3,4)可知它关于x 轴的对称点为(3,4)A '-, 设直线A C '的解析式为:11y k x b =+,(3,4)A '-与(6,2)在其图象上,111143,26;k b k b -=+⎧∴⎨=+⎩解之得112,10.k b =⎧⎨=-⎩∴直线A C '的解析式为:210,y x =- ……………………………5分设0y =,可知5x =,(5,0)P ∴可使PA +PC 最小;……………………………6分 ②在x 轴上存在点Q ,使得线段QA 与QC 的差最大.理由如下: 设直线AC 的解析式为:22y k x b =+,(3,4)A 与(6,2)C 在其图象上,222243,26;k b k b =+⎧∴⎨=+⎩解之得222,36.k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为:26,3y x =-+ ……………………………8分设0y =,可知9x =,(9,0)Q ∴可使线段QA 与QC 的差最大.……………9分22.解:(1)解法一:过点D 作1DH l ⊥于点M ,交2l 于点H ,过点B 作1BG l ⊥于点G ,12∥l l ,90DHE ∴∠=,DHE BAE ∴∠=∠,四边形BFDE 恰好为菱形,BE DE ∴=,又DEH BEA ∠=∠,DEH ∴∆≌BEA ∆,…2分 BA DH ∴=,又2612DH =⨯=cm , 12BA ∴=cm,又6BG =cm ,30BAK ∴∠=; ……………………………5分解法二:因为直线12345∥∥∥∥l l l l l ,相邻两平行线间的距离都为6cm ,所以由平行线等分线段定理可知: 2DE AE =, ……………………………2分 又四边形BFDE 恰好为菱形,2BA DE AE ∴==,又90BAE ∠=,30ABE ∴∠=,12∥l l ,30BAK ∠=∴; ……………………………5分(2)30BAK ∠=,90BAE ∠=,60DAM ∴∠=,又6BG =cm, 18DM =cm,612sin 30AB ==∴cm,18sin 60AD == ………………………8分 ∴矩形ABCD的面积为12⨯=. ……………………9分七、(本大题共1题,共10分.)23.解:(1)解法一:2y ax bx c =++的顶点纵坐标为244ac b a-, 又直线∥CD x 轴与抛物线的对称轴AE 交于点B ,且0,0a c <>,22444ac b b AB c a a-∴=-=-; ……………………………………………1分在2y ax bx c =++中,设y c =,可得:2c ax bx c =++,解得120,b x x a ==-,0,0a b <>,0b bCD a a∴=--=-,…………2分 2()()44AB b b bCD a a ∴=-÷-=; ………………………………………………3分 l 5C第22题解答图解法二:2y ax bx c =++的顶点纵坐标为244ac b a-, 又直线∥CD x 轴与抛物线的对称轴AE 交于点B ,且0,0a c <>,22444ac b b AB c a a-∴=-=-; ………………………………………………1分又2y ax bx c =++的对称轴为2bx a=-,且0,0a b <>, 22b bCD a a∴=-⨯=-, ………………………………………………………2分 2()()44AB b b bCD a a ∴=-÷-=; ……………………………………………3分 (2)直线AE 是抛物线的对称轴,直线∥CD x 轴,∴点C 与点D 关于直线AE 对称,AC AD ∴=,ACD ∴∆是等腰三角形,又ACD ∆是直角三角形,ACD ∴∆是等腰直角三角形, 12AB CD =∴,又由(1)可知4AB b CD =,142b ∴=,…………………………5分 ∴当2b =时,ACD ∆是直角三角形;………………………………………6分(3)由(1)2,4b bAB CD a a=-=-,∴伴随ACD ∆的面积12S AB CD =⨯⨯, 2321()()248b b b S a a a=⨯-⨯-=∴,………………………………………………8分又抛物线的对称轴为直线2x =,2,2b a -=∴4ba =-∴,…………………9分 33222(0).8()42b b S b b b b ===>⨯-∴ …………………………………………10分 八、(本大题共1题,共12分.)24.解:(1)连结BC ,∵A (10,0), ∴OA =10 ,CA =5, ∵∠AOB =30°, ∴∠ACB =2∠AOB =60°, ………………………………………………………1分∴AB 的长=35180560ππ=⨯⨯; ………………………………………………3分 (2)连结OD, ∵OA 是⊙C 直径, ∴∠OBA =90°, 又∵AB =BD,∴OB 是AD 的垂直平分线;……………………………………………………4分 ∴OD =OA =10, 在Rt △ODE 中,OE ==-22DE OD 681022=-,∴AE =AO -OE=10-6=4,………………5分 由 ∠AOB =∠ADE =90°-∠OAB ,∠OEF =∠DEA ,得△OEF ∽△DEA , ∴OE EF DE AE =,即684EF =,∴EF =3; ……………………………………………7分 (3)设OE =x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角形与△AOB 相似,有∠ECF =∠BOA 或∠ECF =∠OAB ,当∠ECF =∠BOA 时,此时△OCF 为等腰三角形,点E 为OC 中点,即OE =25, ∴E 1(25,0);…………………………………………………………………8分 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB ,∵△ECF ∽△EAD, ∴AD CF AE CE =,即51104x x -=-,解得:310=x , ∴E 2(310,0);………9分 ②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO ,连结BE ,∵BE 为Rt △ADE 斜边上的中线,∴BE =AB =BD ,∴∠BEA =∠BAO,∴∠BEA =∠ECF ,∴CF ∥BE ,∴OEOC BE CF =,∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠, ∴△CEF ∽△AED ,∴CF CE AD AE =, 而AD =2BE ,∴2OC CE OE AE =, 即55210x x x -=-, 解得417551+=x , 417552-=x <0(舍去), ∴E 3(41755+,0); …………………………………………9分 ③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO 连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO , ∴∠ECF =∠BEA, ∴CF ∥BE , ∴OEOC BE CF =, 又∵∠ECF =∠BAO ,∠FEC =∠DEA =Rt ∠, ∴△CEF ∽△AED , ∴AD CF AE CE =, 而AD =2BE , ∴2OC CE OE AE =, ∴5+5210+x x x=, 解得417551+-=x , 417552--=x <0(舍去),∵点E 在x 轴负半轴上, ∴E 4(41755-,0);…………………………………………………………11分 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为:1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0). …………………………………………………………12分。

2014-2015九年级上学期第一次联考数学试卷

2014-2015九年级上学期第一次联考数学试卷

2014-2015九年级上学期第一次联考数学试卷一.仔细选一选(本题有10个小题,每小题4分,共40分) 1.下列函数中,反比例函数是( )A. 1y x =-B. 11+=x yC. 21312y x x =++ D. x y 31=2. 二次函数2(1)2y x =--的顶点坐标是( )A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2) 3. 函数3y x =-+12x -中自变量x 的取值范围是( ) A .23x# B .x 3< C . 2x <且3≠x D .3x £且2x ¹4.二次函数)0≠(2a c bx ax y ++=图象如图所示, 下面结论正确的是( )A a <0,c <0,b >0B a >0,c <0,b >0C a >0,c >0,2b -ac 4>0D a >0,c <0,2b -ac 4<05.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ) A .2(1)3=-++y x B .2(1)3y x =-+-C .2(1)3=--+y xD . 2(1)3y x =---6.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(1,2) B .y 随x 的增大而减少C .图象在第一、三象限内D .若x >1,则y <27.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则a -b+c 的值为( )A. 0B. -1C. 1D. 28..若M(-12-,y 1)、N(14-,y 2)、P(12,y 3)三点都在函数k y x =(0k >)的图象上,则y l 、y 2、y–133O xP1y3的大小关系是()A.y2>y3>y1 B. y2>y1>y3 C.y3>y1>y2 D. y3>y2>y19.如图,点A在双曲线6yx=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.27 B.47 C.22 D. 510.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一条直线上,开始时点C与点D重合,让△ABC沿直线向右平移,直到点A与点E重合为止。

2014-2015学年北京市朝阳区2015年初三数学一模试题(含答案)

2014-2015学年北京市朝阳区2015年初三数学一模试题(含答案)

九年级综合练习(一)数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A.0.8×1013B.8×1012C.8×1013D.80×1011 2. 如图,下列关于数m、n的说法正确的是A.m>n B.m=nC.m>-n D.m=-n3.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于A.20°B.40°C.60°D.80°4.下列计算正确的是A.2a+3a=6a B. a2+a3=a5 C. a8÷a2=a6 D. (a3)4= a7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是A.平均数B.中位数C.众数D.方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100 B. C. D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在 近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分)11.若分式21-x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 . 14.请写出一个图象从左向右上升且经过点(- 1,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a -,526a,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据;(3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份公共自行车投放数量(万辆)利用公共自行车出行人数(万人)2012 1.4 约9.92013 2.5 约17.62014 4 约27.62015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果,精确到0.1)25.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°,BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).图1图2图328.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a ,n n an 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数.∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,=………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ……………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE=. …………………………………………………………………………5分(2=BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有 ⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。

2014年九年级第一次模拟考试数学参考答案

2014年九年级第一次模拟考试数学参考答案

20. 解:过点A 作AC ⊥OB 于点C , ……1分 依题意得 ∠1=30°,∠2=45°,OB =20海里 …2分 设AC =x 海里,则BC =AC =x 海里, ……3分在Rt △AOC 中,tan ∠1=OCAC, ……4分∴tan30°=3120=+x x , ……5分 解得()≈+=-=13101320x 27.32, ……6分 ∴AC ≈27.32海里>25海里 ……7分 ∴该船没有触礁的危险. ……8分 21. 解:⑴列表:1 2 3 5 1 1 2 3 5 2 2 4 6 10 336915所以P (奇)=21126= …………6分(列表4分,算出概率2分) ⑵由表格得P (偶)=21126=,所以P (奇)=P (偶),……7分(缺概率相等扣1分) 所以游戏规则对双方是公平的. ……8分22. 证明:(1)∵BE ⊥AC 于E ,DF ⊥AC 于F , ∴∠1=∠2=90°, ……1分 ∵点O 是EF 的中点,∴OE =OF ……2分 在△BOE 和△DOF 中⎪⎩⎪⎨⎧∠=∠=∠=∠4321OF OE ……3分 ∴△BOE ≌△DOF (ASA ) ……4分 解:(2)四边形ABCD 是矩形,理由如下: ……5分 由(1)知△BOE ≌△DOF ,∴OB =OC , ∵点O 既是AC 的中点,∴OA =OC ,∴四边形ABCD 是平行四边形, ……6分 ∵OA =21BD ,∴AC =2OA =BD , ……7分 ∴□ABCD 是矩形. ……8分20x xCO B12东北45︒60︒A4312O FABCDE25.解:(1)易得A (0,2),B (4,0)……1分∴⎩⎨⎧=++-=04422c b c ,解得⎪⎩⎪⎨⎧==272b c ……2分 ∴2272++-=x x y ……3分 (2)由题意易得217(,2),(,2)22M t t N t t t -+-++ …… 4分22712(2)422MN t t t t t =-++--+=-+从而设△ABN 的面积为S ,则()()822442122+--=⨯+-=t t t S ……5分当t =2时,S min =8 ……6 分 (3)由题意可知,D 的可能位置有如图三种情形. 当D 在y 轴上时,设D 的坐标为(0,a ) 由AD =MN 得1224,6,2a a a -===-解得,从而D 为(0,6)或D (0,-2) ……7分 当D 不在y 轴上时,由图可知12D D N D M 为与的交点 易得126,2D N x D x +-13的方程为y=-M 的方程为y=22……8分 由两方程联立解得D 为(4,4) ……9分 故所求的D 为(0,6),(0,-2)或(4,4)(本问给分重点看学生解题思路及结果)本答案仅供参考,其他解法酌情给分。

2014-2015学年北京市西城区初三一模数学试题.docx

2014-2015学年北京市西城区初三一模数学试题.docx

北京市西城区 2015 年初三一模试卷数学2015. 4一、选择题 ( 本题共30 分,每小题 3 分 )下面各题均有四个选项,其中只有一个是符合题意的.1.1的相反数是311C. 3D.3 A. B.332.据市烟花办相关负责人介绍,2015 年除夕零时至正月十五24 时,全市共销售烟花爆竹约196 000 箱,同比下降了32%.将 196 000 用科学记数法表示应为A. 1.96105B. 1.96104C. 19.6104D. 0.196 1063.下列运算正确的是A. 3a3b 6abB. a3a a2C. a23a6D. a6a3a24.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100 米决赛,赛场共设1, 2, 3, 4 四条跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到 1 号跑道的概率是A. 11C.11 B.3D.246.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB 是⊙ O 的直径,弦CD 丄 AB,如果∠ BOC=70 °,那么∠ BAD 等于A. 20°B.30 °C. 35°D.70°8.在平面直角坐标系 xOy 中,第一象限内的点 P 在反比例函数的图象上,如果点 P 的纵坐标是 3,OP= 5,那么该函数的表达式为1212A.yB.yx x1515C. yD. yx x9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50 名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是A. 6 ,4B. 6 , 6C. 4,4D. 4, 610.如图,过半径为 6 的⊙ O 上一点 A 作⊙ O 的切线l, P 为⊙ O 上的一个动点,作PH ⊥l于点 H,连接 PA.如果 PA= x, AH= y,那么下列图象中,能大致表示y 与x的函数关系的是二、填空题 (本题共 18 分,每小题 3 分 )11.如果分式1有意义,那么x 的取值范围是.x 512.半径为 4cm,圆心角为60°的扇形的面积为cm2.13.分解因式:12m2 3 =.14.如图,△ ABC 中, AB=AC ,点 D,E 在 BC 边上,当时,△ ABD ≌ △ACE.(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以 O为横板 AB 的中点, AB 绕点 O 上下转动,横板 AB..的 B 端最大高度 h 是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB= 2 m,OC= 0.5 m,通过计算得到此时的h1,再将横板 AB换成横板 A′B′, O 为横板 A′B′的中点,且 A′B′=3m,此时 B′点的最大高度为h2,由此得到h1与 h2的大小关系是: h1 h2(填“>”、“=”或“<” ).可进一步得出, h 随横板的长度的变化而(填“不变”或“改变” ).16.如图,数轴上,点 A 的初始位置表示的数为1,现点 A 做如下移动:第 1 次点 A 向左移动 3 个单位长度至点 A1,第2次从点 A1向右移动6个单位长度至点 A2,第3次从点 A2向左移动9个单位长度至点A3,,,按照这种移动方式进行下去,点A4表示的数是,如果点A n与原点的距离不小于20,那么n的最小值是.三、解答题 (本题共 30分,每小题 5分 )17.计算:12π0 1 )1 6 tan30 .2008(218.如图,∠ C=∠ E,∠ EAC=∠ DAB, AB=AD .求证: BC=DE .2 x0,19.解不等式组3 5x 1 4x8.a23a a 3120.先化简,再求值:,其中a 2.a22a 1 a 1 a 121.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400 千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的 2.5 倍,且乘坐高铁比乘坐普通列车少用 3 小时.求高铁的平均速度是多少千米/时.22.已知关于 x 的一元二次方程x22( m1) x m(m 2) 0 .( 1)求证:此方程总有两个不相等的实数根;( 2)若x 2 是此方程的一个根,求实数m 的值.四、解答题 ( 本题共 20 分,每小题 5 分 )23.如图,四边形 ABCD 中,BD 垂直平分 AC,垂足为点 F ,E 为四边形 ABCD 外一点,且∠ ADE =∠ BAD ,AE⊥ AC.(1)求证:四边形 ABDE 是平行四边形;(2)如果 DA 平分∠ BDE , AB= 5,AD= 6,求 AC 的长.\24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据 2015 年 1 月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题:( 1)补全扇形图;( 2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程x(千米)在范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016 年 1 月这条线路的日均客流量将达到万人次;(精确到 0.1)(3)小王同学上学时,需要乘坐地铁15.9 公里到达学校,每天上下学共乘坐两次.问:调价后小王每周(按 5 天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为 2 元)25.如图,AB为⊙ O 的直径,M为⊙ O 外一点,连接 MA 与⊙ O 交于点 C,连接 MB 并延长交⊙ O 于点D,经过点 M 的直线 l 与 MA 所在直线关于直线 MD 对称.作 BE⊥ l 于点 E,连接 AD, DE.( 1)依题意补全图形;( 2)在不添加新的线段的条件下,写出图中与∠BED 相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且tan 11的度数., tan,求23小敏是这样解决问题的:如图 1,把,放在正方形网格中,使得 ABD, CBE,且 BA,BC 在直线 BD 的两侧,连接AC,可证得△ ABC 是等腰直角三角形,因此可求得=∠ ABC=°.请参考小敏思考问题的方法解决问题:如果,都为锐角,当 tan 4 , tan 32 的正方形网格中,利用已作出的锐角α,画出时,在图5∠ MON=,由此可得=______°.五、解答题 (本题共 22 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分 )27、已知二次函数 y 1 x 2 bx c 的图象 C 1 经过 ( 1,0) , (0, 3) 两点.( 1)求 C 1 对应的函数表达式;( 2)将 C 1 先向左平移 1 个单位,再向上平移 4 个单位,得到抛物线 C 2 ,将 C 2对应的函数表达式记为y 2 x 2 mx n ,求 C 2 对应的函数表达式;3y 3 2x 3 ,2 x ≤ a..x( )设在( )的条件下,如果在 2 ≤ 内存在 某一个的值,使得 y 2 ≤ y 3 成立,利用函数图象直接写出a 的取值范围.28、 △ ABC 中, AB=AC .取 BC 边的中点 D ,作 DE ⊥ AC 于点 E ,取 DE 的中点 F ,连接 BE , AF 交于点H .( 1)如图 1,如果BAC 90 ,那么 AHB ,AF;BE( 2)如图 2,如果 BAC60 ,猜想AHB 的度数和AF的值,并证明你的结论;BE( 3)如果BAC ,那么AF.(用含的表达式表示)BE29、给出如下规定:两个图形G1和 G2,点P为 G 1上任一点,点Q 为G2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形 G1和 G2之间的距离.在平面直角坐标系 xOy 中, O 为坐标原点.(1)点 A 的坐标为A(1,0),则点B(2,3)和射线 OA 之间的距离为 ________,点C ( 2,3)和射线 OA 之间的距离为 ________;( 2)如果直线 y=x 和双曲线y k2 ,那么 k=;(可在图 1 中进行研究)之间的距离为x( 3)点 E 的坐标为 (1, 3 ),将射线 OE 绕原点 O 逆时针旋转60 ,得到射线 OF ,在坐标平面内所有和射线 OE, OF 之间的距离相等的点所组成的图形记为图形M .①请在图 2 中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线 OE ,OF 组成的图形记为图形W,抛物线y x2 2 与图形M的公共部分记为图形N ,请直接写出图形 W 和图形 N 之间的距离.北京市西城区2015 年初三一模试卷数学试卷参考答案及评分标准2015. 4一、选择题(本题共30 分,每小题 3 分)题号12345678910答案B A C C D A C A B C 二、填空题(本题共18 分,每小题 3 分)1112131415168BD=CE,∠ BAD=∠ CAE,∠ ADB =∠AEC,=,x 3 2m1 2m 1 BE=CD,∠BAE=∠CAD,∠ADE =∠AED,57, 13不变3AE=AD(只填一个即可)三、解答题(本题共30 分,每小题5 分)17.解:0( 1)16tan3012 π 200823= 2 3 1 2 6,,,,,,,,,,,,,,,,,,,,,, 4 分3=2 3 3 2 3=3. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5 分18.证明:如图1.∵∠ EAC=∠DAB ,∴ EAC1DAB1.即∠ BAC=∠DAE .,,,,,,,, 1 分在△ ABC 和△ ADE 中,C E,BAC DAE , ,,,,,,,,, 3 分图 1AB AD ,∴△ ABC≌△ ADE .,,,,,,,,,,,,,,,,,,,,,,, 4 分∴ BC = DE .,,,,,,,,,,,,,,,,,,,,,,,,,, 5 分2x,①19.解:14x8. ②3 5x由①,得 x 2 .,,,,,,,,,,,,,,,,,,,,,,,,, 2 分由②,得 15x 3 4x 8 .系数化 1,得 x 1 .,,,,,,,,,,,,,,,,,,,,,,4 分所以原不等式组的解集为 x2 .,,,,,,,,,,,,,,,,,,,5 分20.解:a 2 3aa 3 1a22a 1 a 1a 1=a a3a 31 ,,,,,,,,,,,,,,,,,,,,,,,2 分a2a1a 11a a3 a 11a2a 3 a 11= a1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,3 分a 1 a1= a1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4 分a 1当 a2 时, 原式 =211.,,,,,,,,,,,,,,,,,,,,, 5 分2 1 321.解:设普通列车的平均速度为 x 千米 / 时. ,,,,,,,,,,,,,,,,, 1 分则高铁的平均速度是2.5x 千米 /时.依题意,得400 3520 . ,,,,,,,,,,,,,,,,,,,,2 分2.5xx解得 x120 .,,,,,,,,,,,,,,,,,,,,,,,,,, 3 分 经检验, x 120 是原方程的解,且符合题意. ,,,,,,,,,,,, 4 分所以 2. 5x 300 .答:高铁的平均速度是300 千米 /时 . ,,,,,,,,,,,,,,,,,,,5 分22.( 1)证明:2(m 1) 24m( m 2)4m 2 8m 4 4m 28m8m 2 4 . ,,,,,,,,,,,,,,,,,,,,,,,,,,1 分∵ 8m 2 ≥ 0,∴ 8m 2 4 > 0. ,,,,,,,,,,,,,,,,,,,,,,,,2 分∴方程总有两个不相等的实数根. ,,,,,,,,,,,,,,,3 分( 2)解:∵ x2 是此方程的一个根,∴ ( 2)22 ( 2)(m 1)m(m 2) 0 .22m 0 .整理得 m解得 m 1 0 , m 2 2 . ,,,,,,,,,,,,,,,,,,,,,5 分四、解答题(本题共20 分,每小题 5 分)23.( 1)证明:∵ ADE BAD ,∴ AB ∥ ED .,,,,,,,,,,,,,,,,,,,,,,,1 分∵ BD 垂直平分 AC ,垂足为 F ,∴ BDAC , AF=FC .又∵ AE AC ,∴EAC DFC90 .∴四边形ABDE 是平行四边形. ,,,,,,,,,,,,,,,,(2)解:如图 2,连接 BE 交 AD 于点 O.∵DA 平分∠ BDE,∴∠ ADE= ∠ 1.又∵ ADE BAD ,∴∠ 1= ∠ BAD .∴ AB= BD .,,,,,,,,,,,, 3 分∴ ABDE 是菱形.∵ AB= 5, AD= 6,∴ BD=AB= 5,AD BE ,OA 1AD 3 .2在 Rt△OAB中,OB AB2OA2 4 .∵ S V ABD 11AD OB BD AF ,22∴ 6 4 5 AF .解得 AF 4.8 .,,,,,,,,,, 4 分∵ BD 垂直平分 AC,∴ AC 2 AF9.6 .,,,,,,,, 5 分注:其他解法相应给分.24.解:( 1)补全扇形图如图 3 所示. ,,,,,,, 1 分(2) 2 号线, 52< x≤ 72 , 22.2.(各 1 分),,,,,,,,,,,,,,,, 4 分( 3) 30.,,,,,,,,,,,,,,, 5 分25.解:( 1)依题意,补全图形如图4. ,,,,,, 1 分( 2)BAD .,,,,,,,,,,,,,, 2 分证明:如图5,连接 BC, CD.∵直线 l 与直线 MA 关于直线MD 对称,∴12.,,,,,,,,, 3 分∵ AB 为⊙O的直径,∴ACB 90 ,即BC MA .又∵ BE l ,∵ MC MB cos 1 , ME MB cos 2 ,∴MC=ME .又∵ C, E 两点分别在直线 MA 与直线 l 上,可得 C, E 两点关于直线 MD 对称.∴3BED .,,,,,,, 4 分又∵3BAD ,∴BAD BED .,,,,,, 5 分26.解: 45. ,,,,,,,,,,,,,,,,,,, 1 分2 分图2图 3图 4图 511画图见图 6.,,,,,,,,,,,,,,, 3 分45. ,,,,,,,,,,,,,,,,,,, 5 分五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分)27.解:( 1)∵二次函数y1x2bx c 的图象C1经过 ( 1,0) , (0,3)两点,1 b c 0,1 分∴,,,,,,,,,,,,c 3.b2,2 分解得,,,,,,,,,,,,,c 3.∴抛物线 C 的函数表达式为y1x 22x 3 .1,,,,,,,,,,,,,, 3 分( 2)∵y1x2 2 x 3=(x1)2 4 ,图 7∴抛物线 C1的顶点为(1,4) .,,,,,,,,,,,,,,,,,, 4 分∴平移后抛物线 C 2的顶点为(0,0),它对应的函数表达式为y2x2.,5分(3)a≥1(见图 7).,,,,,,,,,,,,,,,,,,,,,,,,28.解:( 1) 90,1.,,,,,,,,,,,,,,,,,,,,,,,,,,, 2( 2)结论: AHB 90, AF3.BE2证明:如图8,连接 AD.∵AB=AC,∠ BAC=60°,∴△ ABC 是等边三角形.∵D 为 BC 的中点,∴ AD⊥ BC.∴∠ 1+∠ 2=90°.又∵ DE ⊥ AC,∴∠ DEC =90°.∴∠ 2+∠ C=90°.∴∠ 1=∠ C=60°.设 AB=BC=k (k0 ),7 分2 分图8则 CE 1CDk, DE3k .244∵ F 为 DE 的中点,∴ DF 1DE3k , AD3328AB k .22∴ AD 3 , DF 3 .BC2CE212∴ ADDF .,,,,,,,,,,,,,,,,,,,,,, 3 分BCCE又∵∠ 1=∠ C ,∴△ ADF ∽△ BCE .,,,,,,,,,,,,,,,,,,, 4 分 ∴ AFAD 3 , ,,,,,,,,,,,,,,,,,,, 5 分BEBC 2∠ 3=∠ 4.又∵∠ 4+∠ 5=90°,∠ 5=∠6,∴∠ 3+∠ 6=90°.∴ AHB 90 .,,,,,,,,,,,,,,,,,,,,,6 分( 3) 1tan (90). ,,,,,,,,,,,,,,,,,,,,,,,, 7 分22注:写 1 cos或其他答案相 分.2sin29.解:( 1) 3,13 .(每空各 1 分) ,,,,,,,,,,,,,,,,,,,,2 分 (2) 1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4 分(3)①如 9, 点 O 分 作射 OE 、OF 的垂 OG 、OH , 形 M :y 正半 ,∠ GOH的 及其内部的所有点( 中的阴影部分).,,,,,,,,7 分9明:(画 2 分,描述 1 分)( 形 M 也可描述 : y 正半 ,直 y3x 下方与直 y3x33下方重叠的部分(含 界) )② 4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分313。

2014—2015学年初中毕业班质量检测数学试题附答案

2014—2015学年初中毕业班质量检测数学试题附答案

2014—2015学年初中毕业班质量检测数学试题(满分:150分 考试时间:120分钟) 友情提示:1.作图或画辅助线等需用签字描黑;2.未注明精确度的计算问题,结果应为准确数;一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,将正确答案写在答题卡上)1.有理数﹣3的相反数是(***) A .3B .﹣3C .D .﹣3.下列图形中,是轴对称图形的是(***)A .B .C .D .4.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为(***)A .54410⨯ B. 50.4410⨯ C .54.410⨯ D .64.410⨯5.已知不等式组,其解集在数轴上表示正确的是(***)A .B .C .D .6.如图是由四个相同的小正方体组成的立体图形,它的俯视图为(***)A .B .C .D .7.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是(***)A.B.C.D.第7题图第9题图8.一个多边形的每个内角均为108°,则这个多边形是(***)A.七边形B.六边形C.五边形D.四边形9.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是(***)A.51° B.56°C.68°D.78°10.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为(***)A.4个B.3个C.2个D. 1个二.填空题(共6小题,每小题4分,满分24分.将正确答案写在答题卡上)11.计算:=***.12.根据某班40名同学一周的体育锻炼情况绘制了如下统计表,那么关于该班4013.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件*** .(只添一个即可),使平行四边形ABCD是矩形.第13题图第14题图第16题图14.如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为*** .(结果保留π)15.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为*** .16.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=*** .三.解答题(共9小题,满分86分.注意:请将答过程写在相应位置.)17.(7分)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°;18.(7分)化简:﹣÷.19.(8分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=kx的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(5分)(2)求点E的坐标.(3分)20.(8分)如图,在教学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC=22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)21.(10分)某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a=人,其中选择“绘画”的学生人数占抽样人数的百分比为b=;(4分)(2)补全条形统计图;(3分)(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?(3分) 22.(10分)某市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球,甲、乙两超市均以每只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只的用户均实行优惠:甲超市每只羽毛球按原价的八折出售;乙超市送15只羽毛球后其余羽毛球每只按原价的九折出售.(1)请你任选一超市,一次性购买x(x≥100且x为整数)只该品牌羽毛球,写出所付钱y(元)与x之间的函数关系式.(4分)(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需要付多少元钱?这时在甲、乙两超市分别购买该品牌羽毛球多少只?(6分)23.(10分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(3分)(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3分)(3)已知AF=4,CF=2.在(2)条件下,求AE的长.(4分)24.(12分)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(1)如图①,当α=90°时,求AE′,BF′的长;(4分)(2)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(4分)(3)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).(4分)25.(14分)二次函数2y ax bx c=++的图象经过点(﹣1,4),且与直线112y x=-+相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(5分)(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(5分)(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.(4分)参考答案与试题解析一.选择题(共10小题)1.A 2.C 3.D 4.D 5.B 6.C .7.A .8.C .9.A .10.B . 二.填空题(共6小题) 11..12.8.5.13.AC=BD .答案不唯一. 14.4﹣.15.﹣=.16..三.解答题(共9小题) 17.原式=1+4﹣1............6分=4...........7分18.原式=﹣•...........4分=﹣............6分=.............7分19.(1)边长为2的正方形ABCD 关于y 轴对称,边在AD 在x 轴上,点B 在第四象限,∴A (1,0),D (﹣1,0),B (1,﹣2).............1分 ∵反比例函数y=kx的图象过点B , ∴21k=-,k=﹣2,............2分∴反比例函数解析式为y=﹣, 设一次函数解析式为y=kx+b , ∵y=kx+b 的图象过B 、D 点, ∴,解得.. ............4分直线BD 的解析式y=﹣x ﹣1;...........5分 (2)∵直线BD 与反比例函数y=kx的图象交于点E , ∴,解得............7分∵B(1,﹣2),∴E(﹣2,1).............8分20.解:由题意得AC=22米,AB=1.5米,过点B做BE⊥CD,交CD于点E,............3分∵∠DBE=32°,∴DE=BEtan32°≈22×0.62=13.64米,............6分∴CD=DE+CE=DE+AB=13.64+1.5≈15.1米.答:旗杆CD的高度约15.1米.............8分21.解:(1)a=20÷20%=100人,b=×100%=40%;故答案为:100;40%;............4分(2)体育的人数:100﹣20﹣40﹣10=30人,补全统计图如图所示;............7分(3)选择“绘画”的学生共有2000×40%=800(人).答:估计全校选择“绘画”的学生大约有800人.............10分22.解:(1)甲超市:y=3×0.8x=2.4x,............2分乙超市:y=3×0.9×(x﹣15)=2.7x﹣40.5;............4分(2)设在甲超市购买羽毛球a只,乙超市购买羽毛球(260﹣a)只,所花钱数为W元,W=2.4a+2.7(260﹣a)﹣40.5=﹣0.3a+661.5;............6分∵............7分∴100≤a≤160∵﹣0.3<0,∴W随a的增大而减小,∴a=160时,W最小=613.5,260﹣160=100(只).答:至少需要付613.5元,应在甲超市购买160只,在乙超市购买100只. (10)分23.(1)证明:如图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°,............1分∴∠ADB+∠EDC=90°,............2分∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,∴EA是⊙O的切线.............3分(2)证明:如图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°,............1分∴∠CBA=∠ABC=90°∵B是EF的中点,∴在RT△EAF中,AB=BF,............2分∴∠BAC=∠AFE,∴△EAF∽△CBA.............3分(3)解:∵△EAF∽△CBA,∴=,............2分∵AF=4,CF=2.∴AC=6,EF=2AB,∴=,解得AB=2.∴EF=4,............3分∴AE===4,............4分24.解:(1)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.............2分在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.............4分(2)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.............1分在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.............3分∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.............4分(3)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.............4分(无需过程)25.解:(1)由题设可知A(0,1),B(﹣3,),根据题意得:,............3分解得:,则二次函数的解析式是:y=﹣﹣x+1;............5分(2)设N(x,﹣x2﹣x+1),............1分则M、P点的坐标分别是(x,﹣x+1),(x,0).............2分∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;............5分(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,............1分由于BC∥MN,即MN=BC,且BC=MC,............2分即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,故当N(﹣1,4)时,MN和NC互相垂直平分.............4分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DCE2014~2015学年度初三一模试卷数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-5的倒数是A .5B .15C .-5D .15-2.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A .13.1×106B .1.31×107C .1.31×108D .0.131×1083.在五张完全相同的卡片上,分别写有数字0,-1,-2,1,3,现从中随机抽取一张,抽到写有负数的卡片的概率是A.15B .45 C .35D .254.在下面四个几何体中,俯视图是三角形的是①②③④A .①B .②C .③D . ④5.已知反比例函数的表达式为1k y x-=,它的图象在各自象限内具有y 随x 增大而减小的特点,那么k 的取值范围是A .k >1B .k <1C .k >0D .k <06.如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于D , ∠CDB =30°,那么∠C 的度数为A .120°B .130°C .100°D .150°7.小明同学在社会实践活动中调查了20户家庭六月份的用水量,具体数据如下表所示:A .5,7B .7,7C .7,8D .3,78.如图,⊙O 的直径AB 与弦CD (不是直径)交于点E , 且CE =DE ,∠A =30°,OC = 4,那么CD 的长为 A . B . 4 C .D .89.如图是某一正方体的展开图,那么该正方体是A B C D10.如图1,一个电子蜘蛛从点A 出发匀速爬行,它先沿线段AB 爬到点B ,再沿半圆经过点M 爬到点C .如果准备在M 、N 、P 、Q 四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x ,电子蜘蛛与记录仪之间的距离为y ,表示y 与x 函数关系的图象如图2所示,那么记录仪可能位于图1中的CBA MN PQOx y图1 图2A. 点MB. 点NC. 点PD. 点Q二、填空题(本题共18分,每小题3分) 11.5的算术平方根是 .12.当分式21x x -+的值为0时,x 的值为 . 13.分解因式:21025ax ax a -+= .14光线从点A 出发经平面镜反射后刚好射到城墙CD 已知AB ⊥BD ,CD ⊥BD ,AB =1.2米,BP =1.8米, PD =12米, 那么该城墙高度CD= 米.15.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5” ,你认为小明回答是否正确: ,理由是 . 16.如图,在平面直角坐标系xOy 中,二次函数y =-x 2-2x 图象位于x 轴上方的部分记作F 1 ,与x 轴交于点P 1 和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为 , F 8的顶点坐标为 ,F n 的顶点坐标为 (n 为正整数,用含n 的代数式表示).Ox…y P 1P 2P 3P 4F 1F 2F 3F 4P 5F 5三、解答题(本题共30分,每小题5分)17.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD . 求证:AE =FC .18.计算:(1112cos30()4-+-︒+.EA DFBCEDBOCA19.解不等式组 32,2.3x x x x +⎧⎪+⎨⎪⎩>≥20.已知x 2-2x -7=0,求(x -2)2+(x -3)(x +3) 的值.21.已知关于x 的一元二次方程x 2+2x +k -2=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数,且该方程的根都是整数时,求k 的值.22.列方程或方程组解应用题:北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用时间是自驾车所用时间的37,问李明自驾车上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE ∥BD ,DE ∥AC ,CE 和DE 交于点E . (1)求证:四边形ODEC 是矩形;(2)当∠ADB =60°,AD=时,求tan ∠EAD 的值.24.2014年1月10日,国内成品油价格迎来了首次降低,某调查员就“汽油降价对用车的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:汽油降价对用车影响的BCDE A24%52%10%4%扇形统计图人数汽油降价对用车影响的条形统计图500(1)结合上述统计图表可得:p = ,m = ; (2)根据以上信息,补全条形统计图;(3)2014年1月末,某市有机动车的私家车车主约200 000人,根据上述信息,请你估计一下持有“影响不大”这种态度的车主约有多少人?25.如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线EF ,交AB 和AC 的延长线于E 、F . (1)求证:FE ⊥AB ;(2)当AE =6,sin ∠CFD =35时,求EB 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分Oyx∠ACB ,试判断BC 和AC 、AD 之间的数量关系.小明发现,利用轴对称做一个变化,在BC 上截取CA′=CA ,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).A'DDCB CBAA图1 图2请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ;(2)BC 和AC 、AD 之间的数量关系是 .参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根; (2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式;(3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m +2)在第一象限之间的部分为图象G ,如果直线 y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.28.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,DE ⊥BC 于E ,连接CD . (1)如图1,如果∠A =30°,那么DE 与CE 之间的数量关系是 .图3DCBA(2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论.(3)如图3,如果∠A =α(0°<α<90°),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).DBFE DAB E DAB C C CP AE图1 图2 图329.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.AABBMMOxyy=m准蝶形AMB(1)抛物线212y x的碟宽为 ,抛物线y =ax 2(a >0)的碟宽为 . (2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a = .(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.如果F n与F n-1的相似比为12,且F n的碟顶是F n-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②请判断F1,F2,…,F n的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.数学评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)17.(本小题满分5分)证明:∵BE∥DF,∴∠ABE=∠D.……………………………………………………………1分在△ABE和△FDC中,∴△ABE≌△FDC.…………………………………………………………4分∴AE=FC.……………………………………………………………………5分18.(本小题满分5分)解:原式=124+………………………………………………4分(每个1分)=5.……………………………………………………………………………5分19.(本小题满分5分)解:322.3x xxx⎧+⎪⎨+⎪⎩>,①≥②解不等式①,得3x<.………………………………………………………2分解不等式②,得 1.x≥……………………………………………………4分∴不等式组的解集为13x≤<.……………………………………………………5分20.(本小题满分5分)解:原式22449x x x=-++-…………………………………………………………2分224 5.x x=--………………………………………………………………3分∵x2-2x=7,∴原式()2225x x=--……………………………………………………4分9.=………………………………………………………………………5分21.(本小题满分5分)∠ABE=∠DAB=FD∠A=∠FEA DFBC解:(1)∵ 原方程有两个不相等的实数根,∴ △>0,……………………………………………………………………1分 即22-4(k -2)>0,∴ k <3.……………………………………………………………………2分 (2)∵k 为正整数,∴ k =1,k =2.………………………………………………………………3分 当k =1时,△=8,此时原方程的根是无理数,∴ k =1不合题意,舍去;…………………………………………………4分 当k =2时,原方程为x 2+2x =0,解得x 1=0,x 2=-2.∴ k =2.………………………………………………………………………5分22.(本小题满分5分)解:设李明自驾车上班平均每小时行使x 千米. ……………………………………1分 依题意,得xx 18739218⨯=+ ………………………………………………………2分 解得 27=x . ………………………………………………………………3分 经检验,27=x 是原方程的解,且符合题意.………………………………4分 答:李明自驾车上班平均每小时行使27千米.………………………………………5分四、解答题(本题共20分,每小题5分) 23.(本小题满分5分) (1)证明:∵ CE ∥BD ,DE ∥AC ,∴ 四边形ODEC 是平行四边形. ……………………………………1分 又 ∵菱形ABCD ,∴ AC ⊥BD ,∴ ∠DOC =90°.∴ 四边形ODEC 是矩形.………………………………………………2分(2)如图,过点E 作EF ⊥AD ,交AD 的延长线于F .∵ AC ⊥BD ,∠ADB =60°,AD=,∴ ODAO =OC =3.……………3分 ∵ 四边形ODEC 是矩形, ∴ DE =OC =3,∠ODE =90°.BOCA又∵∠ADO+∠ODE +∠EDF=180°,∴∠EDF=30°.在Rt△DEF中,∠F=90°,∠EDF=30°.∴EF=13 22 DE=.∴DF=………………………………………………………………………4分在Rt△AFE中,∠DFE=90°,∴tan∠EAD=323EF EFAF AD DF===+.………………………………5分24.(本小题满分5分)解:(1)p=24%,m=10%;……………………………………………………2分(2)补全条形统计图;……………………………………………………………4分(3)48000人.……………………………………………………………………5分25.(本小题满分5分)(1)证明:连接OD . (如图)∵OC=OD,∴∠OCD=∠ODC.∵AB=AC,∴∠ACB=∠B.∴∠ODC=∠B.∴OD∥AB. ………………………………………………………………1分∴∠ODF =∠AEF.∵EF与⊙O相切.∴OD⊥EF,∴∠ODF =90°.∴∠AEF =∠ODF =90°.∴EF⊥AB. ……………………………………………………………2分(2)解:由(1)知:OD∥AB,OD⊥EF .在Rt△AEF中,sin∠CFD = AEAF=35,AE=6.∴AF=10. …………………………………………………………………3分∵OD∥AB,∴△ODF∽△AEF.∴ AE ODAF OF =. ∴10106r r -= .解得r =154. ………………………………………………………………4分 ∴ AB = AC =2r =152. ∴ EB =AB -AE =152 -6= 32. ……………………………………………5分26.(本小题满分5分)解:阅读材料(1)△ADC ≌△A ′DC ;………………………………………………………………1分 (2)BC =AC +AD .……………………………………………………………………2分解决问题如图,在AB 上截取AE =AD ,连接CE . ∵ AC 平分∠BAD , ∴ ∠DAC =∠EAC . 又 ∵AC =AC , ∴ △ADC ≌△AEC . ………………………3分 ∴ AE =AD =9,CE=CD =10=BC . 过点C 作CF ⊥AB 于点F .∴ EF =BF .设EF =BF =x . 在Rt △CFB 中,∠CFB =90°,由勾股定理得CF 2=CB 2-BF 2=102-x 2. 在Rt △CF A 中,∠CF A =90°,由勾股定理得CF 2=AC 2-AF 2=172-(9+x )2. ∴ 102-x 2=172-(9+x )2,解得x =6.……………………………………………………………………………4分 ∴ AB =AE +EF +FB =9+6+6=21.∴ AB 的长为21. (5)分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.(本小题满分7分)(1)证明:∵ △= (m +1)2-4×(-1)×(m +2)=(m +3)2. ……………………………………………………………1分∵ m >0,∴ (m +3)2>0, 即 △>0,D C FE B A∴原方程有两个不相等的实数根. …………………………………2分(2)解:∵抛物线抛物线y=-x2+(m+1)x+(m+2)经过点(3,0),∴-32+3(m+1)+(m+2)=0,………………………………………………3分∴m=1.∴y=-x2+2x+3. ………………………………………………………4分(3)解:∵y=-x2+2x+3=-(x-1)2+4,∴该抛物线的顶点为(1,4).∴当直线y=k(x+1)+4经过顶点(1,4)时,∴4=k(1+1)+4,∴k=0,∴y=4.∴此时直线y=k(x+1)+4与y轴交点的纵坐标为4. ………………………5分∵y=-x2+2x+3,∴当x=0时,y=3,∴该抛物线与y轴的交点为(0,3).∴此时直线y=k(x+1)+4与y轴交点的纵坐标为3. ………………………6分∴3<t≤4. …………………………………………………………………7分28.(本小题满分7分)解:(1)DE.……………………………………………………………………1分(2)DE、BF、BP三者之间的数量关系是BF+BP DE.…………………2分理由如下:∵∠ACB=90°,D是AB的中点,∠A=30°∴DC=DB,∠CDB=60°.∵线段DP绕点D逆时针旋转60°得到线段DF,∴∠PDF=60°,DP=DF.又∵∠CDB=60°,∴∠CDB-∠PDB=∠PDF-∠PDB,∴∠CDP=∠BDF.∴△D C P≌△D B F.………………………………………………………3分∴ CP=BF.而CP=BC-BP,∴BF+BP=BC,……………………………………………………………4分在Rt△CDE中,∠DEC=90°,∴tanDE DCECE∠=,∴CE DE,∴BC=2CE DE,∴BF+BP=DE.………………………………………………………5分(3)BF +BP =2DE tan α,BF -BP =2DE tan α. (7)分29.(本小题满分8分)解:(1)4,2a ; (2)分 (2)13; (3)分(3)① ∵ F 1的碟宽︰F 2的碟宽=2:1,∴12222:1a a =. ∵ a 1=13,∴ a 2=23 (4)分 又∵ 由题意得F 2的碟顶坐标为(1,1), (5)分 ∴ ()222113y x =-+ (6)分 ② F 1,F 2,...,F n 的碟宽的右端点在一条直线上;........................7分 其解析式为y =-x +5. (8)分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

相关文档
最新文档