三角形(难题)
三角形(难题)
三角形(难题)一.选择题1.△ABC的三条外角平分线所在直线相交成一个△A′B′C′,则△A′B′C′()A.一定是直角三角形B.一定是钝角三角形C.一定是锐角三角形D.一定是等腰三角形2.在△ABC中,AB=AC=a,BC=b,∠A=36°,记m=,则m、n、p的大小关系为()A.m>n>p B.p>m>n C.n>p>m D.m=n=p3.设P1、P2、P3分别是以直角△ABC(C为直角)的边AB、BC、CA为边的正三角形,则P1的()为P2、P3的()之和.A.面积,面积B.周长,周长C.内角和,内角和D.AB边上的高,BC与CA边上的高4.如图,△ABC中,BD、CE是中线,BC=8cm,△ABC与△AEC的周长之差为6cm,△ABD 与△BDC的周长之差为2cm,则△BEC的周长为()A.16cm B.18cm C.20cm D.22cm5.边长为a、b、c的三角形满足:,则此三角形是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形6.杨小奇做了两块三角板,如果它们的三个内角分别是90°、75°、15°和90°、54°、36°,那么用这两块三角形可以画出()个互不相等的锐角.A.30 B.29 C.10 D.97.要使n(n≥4)边形具有稳定性,至少要添加()A.(n﹣3)条对角线B.(n﹣2)条对角线C.(n﹣1)条对角线D.n条对角线8.如果A,B两镇相距8千米,B,C两镇相距10千米,那么C,A两镇相距()A.2千米B.18千米C.2千米或8千米D.x千米,2≤x≤18,但x无法确定9.在△ABC中,若∠A>∠B,则边长a与c的大小关系是()A.a>c B.c>a C.a> c D.c>a二.填空题10.已知Rt△ABC的三边长都是整数,而且都不超过1999,其中∠A=90°,BC+AB=2AC,则一共有_________个这样的△ABC.11.已知直角三角形有一边是11,另两边的长度均为自然数,那么这个三角形的周长是_________.12.用120根火柴,首尾相接围成一个三条边互不相等的三角形,已知最大边是最小边的3倍,则最小边最少用了_________根火柴.13.在三边长为自然数、周长不超过100、最长边与最短边之差不大于2的三角形中,互不全等的三角形共有_________个.三.解答题14.如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD >BC.15.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD与CD﹣CB 的大小关系,并证明你的结论.解:结论:_________证明:16.设整数a,b,c(a≥b≥c)为三角形的三边长,满足a2+b2+c2﹣ab﹣ac﹣bc=13,求符合条件且周长不超过30的三角形的个数.17.如图,△ABC中,∠C为锐角,AD,BE分别是BC和AC边上的高线,设CD=BC,CE=AC,当m,n为正整数时,试判断△ABC的形状,并说明理由.A.一定是直角三角形B.一定是钝角三角形C.一定是锐角三角形D.一定是等腰三角形考点:三角形边角关系。
全等三角形难题(含答案.解析)
∴∠D=∠CFE
又∵∠DCE=∠FCE
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
8. 已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
ED
C
F
AB
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
1<AD<3
∴AD=2
1
2.已知:D是AB中点,∠ACB=90°,求证:
CDAB
2
A
D
CB
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A
2
1
F
C
D
E
B
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
全等三角形难题
全等三角形难题引言在初中数学中,学习了许多有关三角形的性质和定理。
其中,全等三角形是一个重要的概念。
全等三角形是指两个三角形的对应边长和对应角度完全相等的情况。
在解决全等三角形难题时,我们需要利用已知条件和全等三角形的性质来推导出未知信息。
本文将探讨一些全等三角形的难题,并提供相应的解题思路和方法。
难题一:求等腰三角形的底边长度已知一个等腰三角形的顶角度数为60°,求其底边的长度。
解题思路1.假设等腰三角形的底边长度为x。
2.根据等腰三角形的性质,顶角的度数等于底角的度数,所以底角的度数也为60°。
3.由三角形的内角和为180°可得,两个底角的度数之和为180°-60°=120°。
4.由于等腰三角形的两条底边相等,可推导出底角为等边三角形,其两个底角的度数相等,即每个底角的度数为120°/2=60°。
5.由三角形的内角和为180°可得,三个底角的度数之和为180°。
6.将三角形的底边长度记为x,则根据正弦定理可得:(x/2)/sin60° = x/sin180°。
7.化简等式可得:1/2 = x/1。
8.通过求解等式可得:x = 2。
解答和验证根据上述解题思路可得,等腰三角形的底边长度为2。
我们可以通过验证来确保解答的正确性。
1. 等腰三角形的顶角度数为60°,底角的度数也为60°。
2. 底边的长度为2。
3. 三角形的两条底边相等,满足等腰三角形的性质。
4. 三个底角的度数之和为180°。
综上所述,等腰三角形的底边长度为2。
Markdown代码# 全等三角形难题## 引言在初中数学中,学习了许多有关三角形的性质和定理。
其中,全等三角形是一个重要的概念。
全等三角形是指两个三角形的对应边长和对应角度完全相等的情况。
在解决全等三角形难题时,我们需要利用已知条件和全等三角形的性质来推导出未知信息。
完整版)全等三角形难题题型归类及解析
完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。
为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。
因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。
又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。
设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。
首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。
因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。
又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。
因此,三角形APM和三角形CPN是全等的。
因为全等三角形的对应边相等,所以PM=PN。
3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。
我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。
因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。
因此,三角形OAP和三角形OBP是直角三角形。
设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。
将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。
(专题精选)初中数学三角形难题汇编及答案解析
∴∠BAE=∠EAD=60°
∴△ABE是等边三角形,
∴AE=AB=BE,∠AEB=60°,
∵AB= BC,
∴AE=BE= BC,
∴AE=CE,故①正确;
∴∠EAC=∠ACE=30°
∴∠BAC=90°,
∴S△ABC= AB•AC,故②错误;
∵BE=EC,
∴E为BC中点,O为AC中点,
(专题精选)初中数学三角形难题汇编及答案解析
一、选择题
1.如图,已知 ,若 , , ,下列结论:① ;② ;③ ;④ 与 互补;⑤ ,其中正确的有()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.
∴S△ABE=S△ACE=2S△AOE,故③正确;
∵四边形ABCD是平行四边形,
∴AC=CO,
∵AE=CE,
∴EO⊥AC,
∵∠ACE=30°,
∴EO= EC,
∵EC= AB,
∴OE= BC,故④正确;
故正确的个数为3个,
故选:C.
【点睛】
此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE是等边三角形是解题关键.
15.如图,四边形 和 都是正方形,点 在 边上,点 在对角线 上,若 ,则 的面积是()
A.6B.8C.9D.12【答Βιβλιοθήκη 】B【解析】【分析】
根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE= EH= EF,EF= AE,即可得到结论.
数学八年级上册第一章难题
数学八年级上册第一章难题一、三角形三边关系难题1. 题目:已知三角形的两边长分别为3和5,第三边的长为整数,则第三边的长可能是多少?解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
设第三边为x,则5 3<x<5+3,即2<x<8。
因为x为整数,所以x可能是3、4、5、6、7。
2. 题目:一个三角形的三条边长分别为x、2x 1、5x 3,求x的取值范围。
解析:同样根据三边关系可得:(2x 1)+x>5x 3,3x 1>5x 3,2>2x,x < 1;(2x 1)+(5x 3)>x,7x 4>x,6x>4,x>2/3;x+(5x 3)>2x 1,6x 3>2x 1,4x>2,x>1/2。
综合可得1/2 < x < 1。
二、三角形内角和与外角难题1. 题目:在△ABC中,∠A=∠B +∠C,求∠A的度数。
解析:因为三角形内角和为180°,即∠A+∠B+∠C = 180°,又因为∠A = ∠B+∠C,所以2∠A=180°,∠A = 90°。
2. 题目:如图,在△ABC中,∠ACD是△ABC的外角,∠ACD = 120°,∠A=70°,求∠B的度数。
解析:因为∠ACD是外角,根据三角形外角性质,∠ACD = ∠A+∠B。
已知∠ACD = 120°,∠A = 70°,则∠B=∠ACD ∠A = 120° 70° = 50°。
3. 题目:在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,∠A = 50°,求∠D的度数。
解析:设∠ACB的外角为∠ACE。
根据三角形外角性质,∠ACE=∠A + ∠ABC。
因为BD平分∠ABC,CD平分∠ACE,所以∠DCE = 1/2∠ACE,∠DBC = 1/2∠ABC。
初中数学三角形难题汇编附答案
∴∠ACB=∠CDB=90°,
∴∠A+∠B=90°,∠3+∠B=90°,
∴∠A=∠3,故②正确;
∵AC∥DE,AC⊥BC,
∴DE⊥BC,
∴∠DEC=∠CDB=90°,
∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,
∴∠3=∠EDB,故③正确,④错误;
∵AC⊥BC,CD⊥AB,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠ቤተ መጻሕፍቲ ባይዱ'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
6.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE= CP=1,
∴PE= ,
∴OP=2PE=2 ,
∵PD⊥OA,点M是OP的中点,
∴DM= OP= .
故选C.
考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
A.BC = EFB.AC//DFC.∠C =∠FD.∠BAC =∠EDF
【答案】C
【解析】
【分析】
根据全等三角形的判定方法逐项判断即可.
(专题精选)初中数学三角形难题汇编含答案
(专题精选)初中数学三角形难题汇编含答案一、选择题1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【答案】B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A .8cmB .10cmC .12cmD .14cm【答案】B【解析】【分析】 根据“AAS”证明 ΔABD ≌ΔEBD .得到AD =DE ,AB =BE ,根据等腰直角三角形的边的关系,求其周长.【详解】∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠EBD .又∵ ∠A =∠DEB =90°,BD 是公共边,∴ △ABD ≌△EBD (AAS),∴ AD =ED ,AB =BE ,∴ △DEC 的周长是DE +EC +DC=AD +DC +EC=AC +EC =AB +EC=BE +EC =BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3.如图,ABCD 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,AD =∴2AB AD ==∴6BD ==∵四边形ABCD 是平行四边形 ∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.4.下列长度的三条线段能组成三角形的是( )A .2, 2,5B .C .3,4,8D .4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A 、2+2=4<5,此选项错误;B 、<3,此选项错误;C 、3+4<8,此选项错误;D 、4+5=9>6,能组成三角形,此选项正确.故选:D .【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.5.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .6.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF ,CDG ,DAH 全等,AEH △,BEF ,CFG △,DGH 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D 2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG ,∴CDG 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ,EM GN ,∵正方形ABCD 的边长为4,即4AB CDAD BC , ∴4MN =, 设EM GN x ,则42EG FH x , ∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ,解得:121,4x x ==,∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=ABE S , ∵ABE △,BCF ,CDG ,DAH 全等, ∴2====ABE BCF CDG DAHS S S S , ∵正方形ABCD 的面积4416=⨯=,AEH △,BEF ,CFG △,DGH 也全等, ∴1(4=AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.7.图中的三角形被木板遮住了一部分,这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能【答案】D【解析】 从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D .8.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )A .32B .33C .3D .6【答案】D【解析】【分析】 过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.【详解】过C 作CD ⊥直线a ,∴∠ADC =90°.∵∠1=45°,∠BAC =105°,∴∠DAC =30°.∵CD =3,∴AC =2CD =6.故选D .【点睛】本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.9.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴22,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.10.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.11.如图,△ABC ≌△A E D ,∠C =40°,∠E AC =30°,∠B =30°,则∠E AD =( );A .30°B .70°C .40°D .110°【答案】D【解析】【分析】【详解】∵△ABC ≌△AED , ∴∠D=∠C=40°,∠C=∠B=30°,∴∠E AD=180°-∠D -∠E =110°,故选D.12.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在平面直角坐标系中,已知点A (﹣2,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标介于( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间【答案】B【解析】【分析】 先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB 222+313=∴AC =AB 13,∴OC 132,∴点C 132,0), ∵3134<< , ∴11322<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.14.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠= 【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若13BC=,14AC=,15AB=,则AC2+AB2≠CB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;故答案为:C.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.等腰三角形的一个角比另一个角的2倍少20度,则等腰三角形顶角的度数是()A.140B.20或80C.44或80D.140或44或80【答案】D【解析】【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.16.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C【解析】【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.17.如图为一个66⨯的网格,在ABC ∆,A B C '''∆和A B C ''''''∆中,直角三角形有( )个A .0B .1C .2D .3【答案】C【解析】【分析】 根据题中的网格,先运用勾股定理计算出各个三角形的边长,再根据勾股定理的逆定理判断是否为直角三角形即可.【详解】设网格的小正方形的边长是1,由勾股定理(两直角边的平方等于斜边的平方)可知,ABC ∆的三边分别是:10,5,5; 由于2225510+=, 根据勾股定理的逆定理得:ABC ∆是直角三角形; '''A B C ∆的三边分别是:''A B 10, ''B C 5 ,''AC 13 由于22210513,根据勾股定理的逆定理得:'''A B C ∆不是直角三角形;A B C ''''''∆的三边分别是:A B ''''18B C ''''8 ,A C ''''26;由于22218826, 根据勾股定理的逆定理得:A B C ''''''∆是直角三角形;因此有两个直角等三角形;故选C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,能灵活运用所学知识是解题的关键.18.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )A.132B.312C.3+192D.2 7【答案】B【解析】如图,作点A关于OB的对称点点D,连接CD交OB于点P,此时PA+PC最小,作DN⊥x 轴交于点N,∵B(33OA=3,AB3OB3BOA=30°,∵在Rt△AMO中,∠MOA=30°,AO=3,∴AM=1.5,∠OAM=60°,∴∠ADN=30°,∵在Rt△AND中,∠ADN=30°,AD=2AM=3,∴AN=1.5,DN 33 2∴CN=3-12-1.5=1,∴CD2=CN2+DN2=12+3322=314,∴CD=312.故选B.点睛:本题关键在于先借助轴对称的性质确定出P点的位置,然后结合特殊角30°以及勾股定理计算.19.如图,Rt△ABC中,∠C =90°,∠ABC的平分线BD交AC于D,若AD =5cm,CD=3cm,则点D到AB的距离DE是()A .5cmB .4cmC .3cmD .2cm【答案】C【解析】 ∵点D 到AB 的距离是DE ,∴DE ⊥AB ,∵BD 平分∠ABC ,∠C =90°,∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处,∴DE=CD ,∵CD =3cm ,∴DE=3cm.故选:C.20.如图,在ABC 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.【详解】由题意可得出:PQ 是AB 的垂直平分线,∴AE =BE ,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4,∴AE=8.故选D.【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.。
解三角形难题及答案
解三角形难题及答案1、在ABC 中,角 A 、B 、C 所对的边分别为a、b 、c,若acos A b s in B ,则2sin Aco s A co s B ___D______A、12B、12C、-1D、12、在ABC 的三个内角满足sin A :sin B : sin C 5 :11 :13 ,则ABC =_C____A、一定是锐角三角形B、一定是直角三角形C、一定是钝角三角形D、可能是锐角三角形,也可能是钝角三角形53、ABC 的三内角A、B、C 的对边边长分别为a、b、c,若a b,A 2B ,则c o s B2( B )A、53B、54C、55D、564、在ABC 中,D 为BC 边上的一点,BC=3BD ,AD 2 ,ADB 135 ,若AC= 2AB ,则BD=_ 2 5 _______5、在ABC 中,角 A 、B、C 所对的边分别为a、b、c,若(3b c) c os A a c osC ,则cos A ___33___6、设 A 、 B 、 C 为三角形的三内角,且方程(sin 2 A C x C BB sin A)x (sin sin ) (sin sin ) 0有等根,那么B=___B_____A、B 60B、B 60C、B 60D、B 602 ac c bc b ac ab2 2解析:a 2 4( ) 0(a 2 b a c b2c) 4 ( ) 4(a c 2b) 0a c 2b 2 accos B23b2ac112cos B 17、在△ABC 中,角 A 、B、C 所对的边分别为a、b、c,若C=120°,c 2a ,则()A、a bB、a bC、a=bD、a 与b 的大小关系不能确定5、满足A=45 °,c 6 ,a=2 的△ABC 的个数记为m,则m a 的值为( A )A、4B、2C、1D、不定3、在三角形ABC中,a=5,b=4,31cos(A B) ,则cos _3218_____2 ,则三角形的形状为____等边三角形_________ 4、在△ABC 中,B 60 ,b ac1 1、已知△ABC三内角A、B、C 满足A C 2B ,cos12BA cos C cos,求c o sA C2的值。
初中数学三角形难题汇编及答案
A.3B.2 C.2 D.6
【答案】D
【解析】
【分析】
根据题意画出图形,利用勾股定理解答即可.
【详解】
设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:
两式相加得:
根据勾股定理得到斜边
故选:D.
故答案为:B
【点睛】
本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.
6.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是( )
A.60B.48C.24D.96
【答案】D
【解析】
∴AF=DF,BF=EF;
可得③⑤正确,
故选:B.
【点睛】
此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
13.下列几组线段中,能组成直角三角形的是()
A. , , B. , , C. , , D. , ,
【答案】C
【解析】
【分析】
【答案】B
【解析】
【分析】
由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,即AB∥CE,
∴∠ABF=∠E,
∵DE=CD,
∴AB=DE,
在△ABF和△DEF中,
∵ ,
∴△ABF≌△DEF(AAS),
∵ , ,
解三角形难题大全
解三角形难题大全1.在三角形ABC中,已知b=c,且满足sinB(1-cosB)=sinAcosA。
点O是三角形ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,求平面四边形OACB面积的最大值。
解析:根据已知条件,可以得到等边三角形ABC,且AB=5-4cosθ。
因此,平面四边形OACB的面积为S=1/2*1*2sinθ+AB^2/4=sinθ-3cosθ+13/4.将S化简可得S=1/4(4sinθ-3cosθ+3),因此最大值为3,选C。
2.在三角形ABC中,已知AB=4,AC=3,∠BAC=60°,点D,E分别是边AB,AC上的点,且DE=2,求四边形BCED的最小值。
解析:设AD=x,AE=y(0<x≤4,0<y≤3),则根据余弦定理可得DE^2=x^2+y^2-2xycos60°,即x^2+y^2-xy=4.因此,2xy-xy=xy≤4,当且仅当x=y=2时等号成立。
因此,四边形BCED的面积SBCED=SABC-SADE=1/2*3*4*sin60°-1/2*2*2*sin60°=1/2,因此最小值为1,选A。
3.在三角形ABC中,角B=C,且7a^2+b^2+c^2=43,求△ABC面积的最大值。
解析:根据角B=C和7a+b+c=43,可以得到7a^2+2b^2=43,即2b^2=43-7a^2.又因为cosC=(a^2+b^2-c^2)/(2ab)=a/(2b),因此sinC=√(1-cos^2C)=√(1-a^2/(4b^2))。
因此,△ABC的面积S=1/2ab*sinC=a/2*√(1-a^2/(4b^2))=a/2*√(4b^2-a^2)/(2b)。
将S化简可得S=a/4*√(4b^2-a^2)。
因此,S的最大值为√43/2,选D。
4.在三角形ABC中,sin∠ABC=1/3,AB=2,点D在线段AC上,且AD=2DC,BD=x,求BC的长和△DBC的面积。
三角形难题(有规范标准答案)
三角形难题(有规范标准答案)三角形难题三角形是几何学中非常重要且基础的图形之一,我们经常会面对各种与三角形相关的难题。
本文将针对一些常见的三角形难题进行探讨,并给出规范的标准答案。
一、边长关系的难题在三角形中,其边长的关系是一个常见的问题。
假设有一个三角形ABC,已知边长AB为5cm,BC为8cm,AC为7cm,我们要求出三角形ABC的面积。
解答:根据海伦公式,我们可以计算出三角形ABC的面积。
海伦公式为:面积= √[s(s-a)(s-b)(s-c)]其中,s为三角形的半周长,即s = (a + b + c)/2。
代入已知边长,有s = (5 + 8 + 7)/2 = 10cm。
将已知边长代入公式,面积= √[10(10-5)(10-8)(10-7)] = √[10*5*2*3] = 10√3 cm²。
因此,三角形ABC的面积为10√3平方厘米。
二、角度关系的难题在三角形中,角度关系也是一个常见的问题。
假设有一个三角形DEF,已知∠D = 40°,∠E = 60°,要求求出∠F的度数。
解答:三角形的内角和为180°,因此可以得到∠F = 180° - ∠D - ∠E = 180° - 40° - 60° = 80°。
所以,∠F的度数为80°。
三、相似三角形的难题相似三角形也是三角形难题中的一个重要内容。
假设有两个相似的三角形ABC和DEF,已知AC = 10cm,DF = 15cm,BC = 6cm,要求求出EF的长度。
解答:由于三角形ABC与DEF相似,我们可以得知它们的对应边长之比相等。
即AC/DF = BC/EF。
将已知边长代入上述等式,有10/15 = 6/EF。
通过交叉相乘法则,我们可以得到10*EF = 15*6,即10EF = 90。
解得EF = 9cm。
所以,EF的长度为9厘米。
四、三角形的中线问题在三角形中,中线也是一个重要的概念。
解三角形大题难题的九种技巧
解三角形大题难题的九种技巧
解三角形是高中数学中的一个重要知识点,以下是解三角形大题难题的九种技巧:
1. 边角互化:这是解三角形最基本的方法,通过正弦定理、余弦定理将边和角进行转化,从而简化问题。
2. 数边数角:在解决三角形问题时,要养成数边数角的习惯,这样可以帮助我们快速判断三角形的类型,以及使用相应的定理。
3. 三角化两角:当遇到求周长的取值范围或者最大值、求某角三角函数值的最值、求连续2-3 个角的三角函数值之和的取值范围、角平分线题以及三个三角形的问题时,可以利用三角函数的性质将问题转化为两角之间的关系。
4. 利用正余弦定理:正弦定理和余弦定理是解三角形的重要工具,要熟练掌握它们的公式,并在解题时灵活运用。
5. 三角形面积公式:三角形的面积可以通过底和高的乘积的一半来计算,也可以使用海伦公式或其他公式,根据具体题目选择合适的公式可以简化计算。
6. 利用三角形的内角和:三角形的内角和为180 度,在解题时可以利用这个性质来化简角度关系。
7. 利用三角形的外角定理:三角形的外角等于不相邻的两个内角之和,利用这个定理可以求解一些角度问题。
8. 利用特殊角:对于一些特殊角,如30 度、45 度、60 度等,可以利用它们的三角函数值来简化计算。
9. 画图辅助:在解决一些复杂的三角形问题时,可以通过画图来辅助理解和分析问题,有时可以帮助我们找到解题的思路。
这些技巧需要在实践中不断练习和掌握,通过多做练习题,可以提高解三角形的能力和技巧。
相似三角形难题
相似三角形难题难题1题目:在△ABC中,D、E分别是AB、AC的中点,BE、CD相交于点O,AO的延长线交BC于点F,求证:AF:AO=2:1。
解答思路:1.连接DE:由于D、E分别是AB、AC的中点,根据三角形的中位线定理,DE∥BC且DE=21BC。
2.利用相似三角形:由于DE∥BC,根据平行线的性质,我们有△ADE∼△ABC和△DOE∼△COB。
3.找出比例关系:由于DE=21BC,则BCDE=21。
由于△ADE∼△ABC,则AFAO=ACAE=21(因为E是AC的中点)。
4.计算AF:AO:由于AFAO=21,则AF:AO=2:1。
难题2题目:在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,DBAD=32,△ABC的面积为S,求△ADE的面积。
解答思路:1.利用相似三角形:由于DE∥BC,根据平行线的性质,我们有△ADE∼△ABC。
2.找出比例关系:由于DBAD=32,则ABAD=52。
3.计算面积比:由于△ADE∼△ABC,则S△ABC S△ADE=(ABAD)2=(52)2=254。
4.计算△ADE的面积:由于S△ABC=S,则S△ADE=254S。
难题3题目:在△ABC中,D、E分别是AB、AC上的点,且∠ADE=∠B,AE=6,AD=4,AC=9,求AB的长。
解答思路:1.利用相似三角形:由于∠ADE=∠B且∠A=∠A(公共角),根据相似三角形的判定定理,我们有△ADE∼△ACB。
2.找出比例关系:由于△ADE∼△ACB,则ACAD=ABAE。
3.代入已知值求解:代入已知值AE=6,AD=4,AC=9,得到94=AB6。
4.计算AB:解这个方程得到AB=227。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形(难题)一.选择题1.△ABC的三条外角平分线所在直线相交成一个△A′B′C′,则△A′B′C′()A.一定是直角三角形B.一定是钝角三角形C.一定是锐角三角形D.一定是等腰三角形2.在△ABC中,AB=AC=a,BC=b,∠A=36°,记m=,则m、n、p的大小关系为()A.m>n>p B.p>m>n C.n>p>m D.m=n=p3.设P1、P2、P3分别是以直角△ABC(C为直角)的边AB、BC、CA为边的正三角形,则P1的()为P2、P3的()之和.A.面积,面积B.周长,周长C.内角和,内角和D.AB边上的高,BC与CA边上的高4.如图,△ABC中,BD、CE是中线,BC=8cm,△ABC与△AEC的周长之差为6cm,△ABD 与△BDC的周长之差为2cm,则△BEC的周长为()A.16cm B.18cm C.20cm D.22cm5.边长为a、b、c的三角形满足:,则此三角形是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形6.杨小奇做了两块三角板,如果它们的三个内角分别是90°、75°、15°和90°、54°、36°,那么用这两块三角形可以画出()个互不相等的锐角.A.30 B.29 C.10 D.97.要使n(n≥4)边形具有稳定性,至少要添加()A.(n﹣3)条对角线B.(n﹣2)条对角线C.(n﹣1)条对角线D.n条对角线8.如果A,B两镇相距8千米,B,C两镇相距10千米,那么C,A两镇相距()A.2千米B.18千米C.2千米或8千米D.x千米,2≤x≤18,但x无法确定9.在△ABC中,若∠A>∠B,则边长a与c的大小关系是()A.a>c B.c>a C.a> c D.c> a二.填空题10.已知Rt△ABC的三边长都是整数,而且都不超过1999,其中∠A=90°,BC+AB=2AC,则一共有_________个这样的△ABC.11.已知直角三角形有一边是11,另两边的长度均为自然数,那么这个三角形的周长是_________.12.用120根火柴,首尾相接围成一个三条边互不相等的三角形,已知最大边是最小边的3倍,则最小边最少用了_________根火柴.13.在三边长为自然数、周长不超过100、最长边与最短边之差不大于2的三角形中,互不全等的三角形共有_________个.三.解答题14.如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD>BC.15.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD与CD ﹣CB的大小关系,并证明你的结论.解:结论:_________证明:16.设整数a,b,c(a≥b≥c)为三角形的三边长,满足a2+b2+c2﹣ab﹣ac﹣bc=13,求符合条件且周长不超过30的三角形的个数.17.如图,△ABC中,∠C为锐角,AD,BE分别是BC和AC边上的高线,设CD=BC,CE=AC,当m,n为正整数时,试判断△ABC的形状,并说明理由.A.一定是直角三角形B.一定是钝角三角形C.一定是锐角三角形D.一定是等腰三角形考点:三角形边角关系。
分析:根据三角形的外角性质可得到:∠C′AB=(∠ABC+∠ACB),∠C′BA=(∠ACB+∠BAC),再根据三角形内角和定理表示出∠C′,整理可得到∠C′是锐角,同理可求得∠A′,∠B′也是锐角,从而得到△A′B′C′一定是锐角三角形.解答:解:∵∠C′AB=(∠ABC+∠ACB),∠C′BA=(∠ACB+∠BAC),∠C′=180°﹣∠C′AB﹣∠C′BA,∴∠C′=180°﹣12(∠ABC+∠ACB)﹣12(∠ACB+∠BAC)=90°﹣12∠ACB.∵90°﹣12∠ACB<90°.∴∠C′<90°.同理:∠A′<90°,∠B′<90°.∴△A′B′C′一定是锐角三角形.故选C.点评:本题主要考查三角形边角关系的知识点,熟练掌握(1)三角形内角和定理:三角形内角和是180°.(2)三角形的一个外角等于和它不相邻的两个内角的和,此题难度一般.2.在△ABC中,AB=AC=a,BC=b,∠A=36°,记m=,则m、n、p的大小关系为()A.m>n>p B.p>m>n C.n>p>m D.m=n=p考点:三角形边角关系。
分析:作底角B的角平分线交AC于D,利用顶角为36°的等腰三角形的性质证明△BCD∽△ABC,得出比例式,再利用等腰三角形的性质得a2﹣b2=ab,再代入n、p的表达式变形即可.解答:解:作底角B的角平分线交AC于D,易推得△BCD∽△ABC,所以=,即CD=,AD=a﹣=b(△ABD是等腰三角形)因此得a2﹣b2=ab,∴n====m,p====m,∴m=n=p.故选D.点评:本题考查了三角形的三边关系.关键是由三角形相似得比例,利用等腰三角形的边相等得三边关系,再对n、p的式子化简.3.设P1、P2、P3分别是以直角△ABC(C为直角)的边AB、BC、CA为边的正三角形,则P1的()为P2、P3的()之和.A.面积,面积B.周长,周长C.内角和,内角和D.AB边上的高,BC与CA边上的高考点:三角形边角关系。
分析:首先根据P1、P2、P3分别是以直角△ABC(C为直角)的边AB、BC、CA为边的正三角形,分别求出三角形P1的面积=AB2sin60°,三角形P2的面积=BC2sin60°,三角形P3的面积=AC2sin60°,在直角三角形中,利用勾股定理可得AB2=BC2+AC2,于是得到P1的面积为P2、P3的面积之和.解答:解:∵P1、P2、P3分别是以直角△ABC(C为直角)的边AB、BC、CA为边的正三角形,∴三角形P1的面积=AB2sin60°,三角形P2的面积=BC2sin60°,三角形P3的面积=AC2sin60°,∵△ABC为直角三角形,∴AB2=BC2+AC2,∴P1的面积为P2、P3的面积之和,故选A.点评:本题主要考查三角形边角关系的知识点,解答本题的关键是熟练掌握直角三角形和等边三角形的性质,此题难度不大.4.如图,△ABC中,BD、CE是中线,BC=8cm,△ABC与△AEC的周长之差为6cm,△ABD 与△BDC的周长之差为2cm,则△BEC的周长为()A.16cm B.18cm C.20cm D.22cm考点:三角形边角关系。
分析:首先根据BD、CE是中线,BC=8cm,△ABD与△BDC的周长之差为2cm,求出AB 的长度,然后根据△ABC与△AEC的周长之差为6cm,即可求出△BEC的周长.解答:解:∵AD=CD,BD=BD,∴△ABD与△BDC的周长差=AB+BD+AD﹣(BC+BD+CD)=AB﹣BC=2,∵BC=8cm,∴AB=10,∵△ABC与△AEC的周长之差为6cm,∴AB+BC+AC﹣AE﹣AC﹣CE=6cm,∴BE+BC+CE=20,∴△BEC的周长=20cm.故选C.点评:本题主要考查三角形的三边关系的知识点,解答本题的关键是熟练运用题干中三角形周长差的关系,此题难度不大.5.边长为a、b、c的三角形满足:,则此三角形是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形考点:三角形边角关系。
分析:首先把恒等式移项通分得:=,再进一步移项并通分整理得到(b﹣c)=0,根据三角形任意两边之和大于第三边可得只有b﹣c=0,从而证明得到三角形是等腰三角形.解答:解:∵,∴﹣=﹣,∴=,∴(b﹣c)=0,∵a+b>c,∴b﹣c=0,∴b=c,∴此三角形是等腰三角形.故选B.点评:本题主要考查三角形边角关系的知识点,解答本题的关键是进行恒等式转化,此题比较简单.6.杨小奇做了两块三角板,如果它们的三个内角分别是90°、75°、15°和90°、54°、36°,那么用这两块三角形可以画出()个互不相等的锐角.A.30 B.29 C.10 D.9考点:三角形边角关系。
分析:根据题干中两个三角板可以画出的最小锐角为3°,观察发现两个三角板的内角都是3的倍数,锐角范围内只要是3的倍数的锐角都可以画出,进一步求出锐角的个数.解答:解:用三个内角分别是90°、75°、15°和90°、54°、36°的三角板可以画出最小角是:54°﹣36°﹣15°=3°,两个三角板内角度数都是3的整数度,即可知在锐角范围内,只要是3的倍数的锐角都可以画出,在锐角范围内3倍数最大锐角为87°,3°、6°…87°共有29个3的倍数的锐角,故选B.点评:本题主要考查三角形边角关系的知识点,解答本题的关键是掌握锐角的定义,此题比较简单.7.要使n(n≥4)边形具有稳定性,至少要添加()A.(n﹣3)条对角线B.(n﹣2)条对角线C.(n﹣1)条对角线D.n条对角线考点:三角形边角关系。
分析:若n(n≥4)边形具有稳定性,则从n边形一顶点n﹣3条对角线构成n﹣3的三角形即可满足,即可选出正确选项.解答:解:根据三角形具有稳定性可知,若n(n≥4)边形具有稳定性,则从n边形一顶点n﹣3条对角线构成n﹣3的三角形即可满足.故选A.点评:本题主要考查三角形边角关系的知识点,解答本题的关键是掌握三角形具有稳定性,此题难度不大.8.如果A,B两镇相距8千米,B,C两镇相距10千米,那么C,A两镇相距()A.2千米B.18千米C.2千米或8千米D.x千米,2≤x≤18,但x无法确定考点:三角形边角关系。
分析:当A、B和C三点在一直线上时,C,A两镇相距为2千米或18千米,当A、B和C 三点不在一直线上时,A、B和C三点构成一个三角形,利用三角形三边关系可以进行解答.解答:解:当A、B和C三点在一直线上时,C,A两镇相距为2千米或18千米,当A、B和C三点不在一直线上时,A、B和C三点构成一个三角形,根据三角形的边角关系知,C,A两镇相距大于2且小于18,综上可知C,A两镇相距x千米,2≤x≤18,但x无法确定.故选D.点评:本题主要考查三角形边角关系的知识点,解答本题的关键是熟练掌握三角形三边关系,两边之和大于第三边,两边之差小于第三边,此题难度一般.9.在△ABC中,若∠A>∠B,则边长a与c的大小关系是()A.a>c B.c>a C.a> c D.c> a考点:三角形边角关系。