七年级数学上册《3.3解一元一次方程(二)—去括号与去分母(第1课时)》教案(新版)新人教版

合集下载

解一元一次方程(二)——去括号与去分母 优秀教案设计

解一元一次方程(二)——去括号与去分母  优秀教案设计
解一元一次方程(二)——去括号去分母
【第一课时】 【教学目标】
1.知识与技能: 进一步掌握列一元一次方程解应用题的方法步骤。 2.过程与方法: 通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件 配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。 3.情感与价值观: 培养学生自主探究和合作交流意识和能力,体会数学的应用价值。
课堂小结: 通过以上问题的讨论,我们进 一步体会到列方程解决实际问题的 关键是正确地建立方程中的等量关 系,另外在求出 X 值后,一定要检 验它是否合理,虽然不必写出检验 过程,但这一步绝不是可有可无 的。
4/4
教师分析:(1)顺流行驶的速 度、逆流行驶的速度、水流速度, 船 静水中的速度之间的关系如何?
生:顺流行驶速度=船在静水的速 度+水流速度。 逆流行驶速度=船在静水中的速度 -水流速度
教师引导:设船在静水中的平 均速度为 X 千米/小时。
教师提问:问题中的相等关系 是什么?
生:一般情况下,船返回是按原 路线行驶的,因此,可以认为这船的 往返路程相等。由此,列方程: 2(X+3)=2.5(X-3)
【教学设想】
本课时主要在前一课时的基础上进一步学掌握去括号,并通过分析行程问题,零件配套 问题的等量关系,运用方程解决实际问题。
【教材分析】
本课时主要复习去括号的法则,并在这基础上列方程解决实际问题。
【教学重点】
分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程, 并会解方程。
【教学难点】
找出能够表示问题会部含义的相等关系,列出方程。
【教学方法】
引导式。
【教学过程】

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。

二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。

(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。

2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。

(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。

三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。

2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。

3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。

4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。

5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。

四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。

2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。

3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。

4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。

五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。

2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。

3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。

数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)

数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)

通渭县七年级数学下册导学案通渭县七年级数学下册导学案通渭县七年级数学下册导学案组长查阅教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到D CA BD CABDCA B∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习(1)如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.CE DC A B P3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+(2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

人教版 七年级上册 数学 3.3解一元一次方程(二) 去括号与去分母 教案

人教版 七年级上册 数学   3.3解一元一次方程(二) 去括号与去分母 教案

一、学习目标:1.理解去括号的理论依据,掌握去括号的方法;2.理解去分母的理论依据,掌握去分母的方法;3.会解较复杂的一元一次方程;4.会列一元一次方程解决实际问题.二、重点、难点:重点:掌握含括号、分母的一元一次方程的解法,熟悉解方程的一般步骤.难点:去分母时的注意事项和一元一次方程的应用.三、考点分析:一元一次方程在中考中是必考内容,常与其他知识相结合.如果单独出题,一般考查较复杂的带分母、括号的一元一次方程的解法,或以应用题的形式出现,通常以选择题和填空题的形式进行考查.【知识点】1.去括号解方程的去括号和有理数运算中的去括号相似,主要依据的是乘法分配律.应注意,在去括号时,括号前边是负因数,去掉括号后所得各项的符号与原括号内相应各项的符号相反.2.去分母一个方程中如果含有分母,可以利用等式的性质2,在方程两边都乘所有分母的最小公倍数,将分母去掉.应注意:①分子如果是一个多项式,去掉分母后,要添上括号,防止出现符号错误;②整数项不要漏乘分母的最小公倍数.例题知识点一:一元一次方程的解法例1.解方程:(1)5x-(1-x)=-13;(2)2(y-6)=3-(4y+8).思路分析:题意分析:本题考查用去括号法则和移项法则解方程.解题思路:这两道题的解法是一样的,先去掉括号,再移项、合并同类项,最后把系数化为1,得到方程的解.解答过程:(1)去括号,得5x-1+x=-13移项,得5x+x=-13+1合并同类项,得6x =-12系数化为1,得x =-2.(2)去括号,得2y -12=3-4y -8移项,得2y +4y =3-8+12合并同类项,得6y =7系数化为1,得y =76. 解题后的思考:在求出方程的解之后,应自觉检查解的正误.把所求的解分别代入已知方程的左右两边,看左右两边是否相等.养成验根的习惯是非常必要的,可以帮助我们发现错误、避免错误.例2. 解方程:(1)7x -14=58;(2)16m -3=9m -23;(3)y -15-y -12=310. 思路分析:题意分析:本题中每个小题都含有分母,第(2)题去分母时应注意不要漏乘整数项.解题思路:解这三个方程都可以通过先去分母,然后去括号、移项、合并同类项、未知数系数化为1这五步完成.解答过程:(1)方程两边都乘8,得7x -14×8=58×8 去分母,整理得2(7x -1)=5去括号,得14x -2=5移项,得14x =5+2合并同类项,得14x =7系数化为1,得x =12. (2)方程两边都乘6,得16m ×6-3×6=9m -23×6 去分母,整理得m -18=2(9m -2)去括号,得m -18=18m -4移项,得m -18m =-4+18合并同类项,得-17m =14系数化为1,得m =-1417. (3)方程两边都乘10,得2(y -1)-5(y -1)=3去括号,得2y -2-5y +5=3合并同类项,得-3y +3=3移项,得-3y =3-3合并同类项,得-3y =0系数化为1,得y =0.解题后的思考:①解含有分母的方程去掉分母后,分子上的多项式要用括号括起来;②一般情况下,解一元一次方程主要有五个步骤,但并不是一定要经过这五个步骤.。

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计一. 教材分析《人教版数学七年级上册3.3解一元一次方程(二)——去括号与去分母》这一节主要是让学生掌握解一元一次方程中的一种方法——去括号与去分母。

在学习了解一元一次方程的基础知识之后,本节内容是对学生解题能力的进一步提升。

通过本节内容的学习,学生能够熟练掌握去括号与去分母的步骤和技巧,为后续的学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于解一元一次方程的基本步骤和方法已经有了一定的了解。

但是,学生在实际操作中可能会遇到去括号和去分母的困惑。

因此,在教学过程中,教师需要引导学生理解去括号和去分母的原理,并通过大量的练习让学生熟练掌握操作步骤。

三. 教学目标1.让学生掌握去括号与去分母的步骤和技巧。

2.培养学生解决实际问题的能力,提高学生的数学素养。

3.通过对本节内容的学习,使学生能够灵活运用所学的知识,解决更复杂的问题。

四. 教学重难点1.去括号与去分母的步骤和技巧。

2.在实际问题中,如何正确运用去括号与去分母的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题引导学生思考,提供典型案例让学生分析,小组讨论使学生相互学习,共同提高。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,让学生思考如何解决这类问题。

2.呈现(10分钟)呈现去括号与去分母的步骤和技巧,引导学生理解并掌握。

3.操练(10分钟)学生分组进行练习,教师巡回指导,及时解答学生的疑问。

4.巩固(10分钟)针对学生练习中出现的问题,进行讲解和总结,使学生加深对去括号与去分母方法的理解。

5.拓展(5分钟)提供一些拓展问题,让学生思考如何在实际问题中运用去括号与去分母的方法。

6.小结(5分钟)对本节内容进行总结,强调重点和难点,提醒学生注意事项。

7.家庭作业(5分钟)布置一些练习题,让学生巩固所学知识。

七年级数学第三章一元一次方程3.3解一元一次方程二去括号与去分母第1课时去括号导学案

七年级数学第三章一元一次方程3.3解一元一次方程二去括号与去分母第1课时去括号导学案

3。

3 解一元一次方程(二)——去括号与去分母第1课时去括号一、新课导入1。

课题导入:前面我们已经学习了运用移项、合并同类项的方法解一元一次方程.对于像2(x-3)+3(x-1)=5这样的方程,又该怎么办呢?今天我们来学习含有括号的一元一次方程的解法(板书课题).2.三维目标:(1)知识与技能①通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时省力。

②掌握去括号解方程的方法.(2)过程与方法培养学生分析问题、解决问题的能力。

(3)情感态度通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.3.学习重、难点:重点:用去括号的方法解一元一次方程。

难点:确定实际问题中的相等关系,设未知数列出一元一次方程。

二、分层学习1.自学指导:(1)自学内容:教材第93页的内容。

(2)自学时间:8分钟.(3)自学方法:认真阅读课本内容,体会课本中是如何设未知数、找相等关系列方程的,解方程有哪些步骤。

体会每步变形中的化归思想.(4)自学参考提纲:①回顾在“整式加减”中学过的去括号的法则,注意符号和系数的变化.②从课本框图中可知用去括号法解一元一次方程有哪些步骤?与上节学过的用移项法解一元一次方程相比较有何异同?先去括号,再移项,合并同类项,系数化为1;多了一个去括号的步骤,其他一致.③本题还有其他列方程的方法吗?你能解出你所列的方程吗?解:设去年上半年月平均用电x kW·h,则下半年共用电(150000—6x) kW·h.可列方程为x=15000066x+2000.④按框图中的具体步骤解下列方程。

a.2x—(x+10)=5x+2(x—1)b。

3x-7(x-1)=3-2(x+3)解:a.x=—43b。

x=52.自学:学生可结合自学指导进行自学。

3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况和存在的问题.②差异指导:根据学情有针对性地给予点拨和指导.(2)生助生:小组内同学间交流研讨,互助解疑难。

部审初中数学七年级上《去括号解一元一次方程》廖福兰教案教学设计 一等奖新名师优质公开课获奖比赛新课

部审初中数学七年级上《去括号解一元一次方程》廖福兰教案教学设计 一等奖新名师优质公开课获奖比赛新课

3.3解一元一次方程(二)——去括号与去分母教学设计一、教学目标:1.知识与技能:掌握解一元一次方程中“去括号”的方法,并能熟练求解一元二次方程的解;2.过程与方法:通过学生观察、独立思考,实践等过程、培养学生归纳、概括的能力3.情感、态度与价值观:让学生积极参与课堂,培养学生合作与竞争的能力,数学联系实际,培养学生“节能”、“逆水行舟,不进则退”意识二、教学重、难点:1.教学重点:(1)通过“去括号”解一元一次方程;(2)分析问题中的数量关系,找出能够表示问题全部含义的相等关系,?列出一元一次方程,并会解方程.2.教学难点:(1)用在去括号时括号内符号的变化过程;(2)用一元一次方程解决实际问题三、教学过程:1.简单复习(1)上节课学的解方程有哪些步骤?2、创设情境,导入新课(1)问题1:某学校加强节能措施,去年下半年与上半年相比,月平均用电量减少2000kW·h(千瓦·时),全年用电15万kW·h.这个工厂去年上半年每月平均用电是多少?师生活动:教师带领学生快速分析题目,设出未知数,列出方程6x+6(x-2000)=150000提出问题:这个方程有什么特点,和以前我们学过的方程有什么不同?怎样使这个方程向x=a转化?设计意图:学生通过观察,联系旧知,发现不同,把新问题转化为已解决过的问题,培养学生的转化思想。

教师活动:展示6x+6(x-2000)=150000解方程过程,对比6x-7=4x-1的解答过程设计意图:让学生初步了解有括号的方程的解法,为之后的具体讲解打下基础。

对比没有括号的方程的解法,突出本节课的重点。

(2)复习去括号法则、并口答简单的去括号练习设计意图:整式中去括号是基础,帮助学生复习知识,是学生易于接受新知识,新旧知识过渡自然。

(3)例题(1)2x-(x+10)=5x+2(x-1)(2)3x-7(x-1)=3-2(x+3)师生一起完成第(1)题,第(2)题学生口答设计意图:例题给学生的做示范作用,留一个题给学生口答,让学生参与课堂,并检查学生的学习效果。

人教版数学七上3.3解一元一次方程(二)——去括号与去分母

人教版数学七上3.3解一元一次方程(二)——去括号与去分母

3.3 一元一次方程的解法(去分母)学案一、学习目标1、会把实际问题建成数学模型,会用去分母的方法解一元一次方程.2、通过列方程解决实际问题,让学生逐步建立方程思想;通过去分母解方程,让学生了解数学中的“化归”思想.3、让学生了解数学的渊源及辉煌的历史,激发学生的学习热情3、让学生了解数学的渊源及辉煌的历史,激发学生的学习热情二、重点:会用去分母的方法解一元一次方程。

难点:弄清题意,用列方程解决实际问题。

三、学法指导:自主学习,动手动脑四、学习过程:(一)情景引入:1同学们,目前初中数学主要分成代数与几何两大部分,其中代数学的最大特点是引人了未知数,建立方程,对未知数加以运算.而最早提出这一思想并加以举例论述的,是古代数学名著《算术》一书,其作者是古希腊后期数学家—“代数学之父”丢番图.2、丢番图的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一又过十二分之一,两颊长胡.再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进人冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”请你列出方程算一算,丢番图去世时的年龄?分析:设丢番图去世时的年龄为x岁,由题意可列方程(学生独立做,老师再用去分母的方法做)(二)学生自主学习1 看教材2尝试练习 3x+213+x=3-312-x(做完后认真检查,再与书上对照)(1)221412=+-+x x (2)2233534--+=+-+y y y y (三) 反思提高1 如何去分母?2 去分母应注意什么?3 数学小诊所:小马虎的解法对吗?如果不对,应怎么改正?解方程 312-x =1-614-x 解:去分母 2(2x-1)=1-4x-1去括号 4x-1=1-4x-1移项 4x+4x=1-1+1合并 8x=1系数化为1 x=84 再练习 教科书练习(1)(2)(1) (2)(四)小结:问题1、去分母解一元一次方程时要注意什么?2、去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?总结 解一元一次方程的步骤有:(1)(2)(1) (2) (3) (4) (5) (五)作业: 必做题:第3题选做题:教科书习题3.3第15题(不能完成的学生抄一遍题) 3.3 一元一次方程的解法学案(第 课时) 一、学习目标1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.掌握用一元一次方程解决实际问题的方法,会用分配律去括号解含括号的一元一次方程;(重点)2.经历应用方程解决实际问题的过程,发展分析问题、解决问题的能力,进一步体会方程模型的作用.(难点)一、情境导入复习提问:1.解一元一次方程时,最终结果一般是化为哪种形式?2.我们学了哪几种一元一次方程的解法?3.移项,合并同类项,系数化为1,要注意什么?4.一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是______________.(2)根据题意可列方程为______________.你能解这个方程吗?二、合作探究探究点一:利用去括号解一元一次方程【类型一】用去括号的方法解方程解下列方程:(1)4x-3(5-x)=6;(2)5(x+8)-5=6(2x-7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)去括号得4x-15+3x=6,移项合并同类项得7x=21,系数化为1得x=3;(2)去括号得5x+40-5=12x-42,移项、合并得-7x=-77,系数化为1得x=11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.在具体解方程时,不论进行到哪一步,只要得出方程的解,下面的步骤就不用再进行了.【类型二】根据已知方程的解求字母系数的值已知关于x的方程3a-x=x2+3的解为2,求代数式(-a)2-2a+1的值.解析:此题可将x=2代入方程,得出关于a的一元一次方程,解方程即可求出a的值,再把a的值代入所求代数式计算即可.解:∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3,解得a=2,∴原式=a2-2a+1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x的值代入方程,求出a 的值,然后将a的值代入整式即可解决此类问题.探究点二:应用方程思想求值当x为何值时,代数式2(x2-1)-x2的值比代数式x2+3x-2的值大6.解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x2-1)-x2-(x2+3x-2)=6,去括号得2x2-2-x2-x2-3x+2=6,移项、合并得-3x=6,系数化为1得x=-2.方法总结:先按要求列出方程,然后按照去括号,移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:去括号解方程的应用题今年5月,在中国东莞举办了苏迪曼杯羽毛球团体赛.在17日的决赛中,中国队战胜日本队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?解析:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,根据题意建立方程,求出方程的解就可以得出结论.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计解一元一次方程——去括号:1.去括号的顺序:先去小括号,再去中括号,最后去大括号.简单地说,由内向外去括号,也可以由外向内去括号.2.去括号的规律:(1)将括号外的因数连同它前面的符号看成一个整体,利用分配律将它与括号内的项相乘,即a(b+c)=ab+ac;(2)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生探索新的解题方法.3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程教学目标:1.会解带有括号的方程.2.提高学生分析应用题、找相等关系的能力.教学重点:如何审题、解题,且达到对一个题目举一反三的程度,学会从不同的角度分析问题的能力.教学难点:分析数量关系、列方程.教学过程:一、提出问题当方程的形式较为复杂时,解方程的步骤也相信更多些,那么如何解带有括号的方程呢?二、分析问题1.出示课本P93问题1:引导学生探究、思考:(1)题目中涉及哪几个量?这几个量之间有什么关系?(2)以列表形式反映题意:(3)用未知数表示其中一个未知量,找出相等关系列方程,可以列出几个不同的方程?(4)小结:有两种设未知数的方法,列出两种不同的方程,以月平均用电量为未知数,则以总用电量为相等关系列方程;以上半年或下半年的总用电量为未知数,则以月平均用电量为相等关系列方程.(5)解列出的方程,并解答.2.合作探究:课本P94例1.3.合作探究:课本P94例2:(1)提供信息:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(2)设未知数,找相等关系,解答问题.4.课本P95练习,学生独立完成.三、课堂小结1.解含有括号的一元一次方程的方法.2.本节课中在用一元一次方程解决实际问题的一点收获.四、巩固练习1.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)2.杭州西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?3.学校团委组织65名团员为学校建花坛搬砖,七年级同学每人搬六块,其他年级同学每人搬8块,总共搬了400块,问七年级同学有多少人参加了搬砖?4.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?五、布置作业课本P98习题3.3第1、2、6、7、8题.第2课时利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16. 解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3,去分母得15x -3(x -2)=5(2x -5)-45, 去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76,把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x 6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可.解:1-2x 6+x +13=1-2x -142(1-2x )+4(x +1)=12-3(2x -1)2-4x +4x +4=12-6x +3 6x =9,x =32.把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0, 去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程:x40-x+4050=1,解得x=360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.3.3 解一元一次方程(二)——去括号与去分母第2课时利用去分母解一元一次方程教学目标:1.能够熟练地解含有分数系数的方程.2.进一步提高列一元一次方程解决实际问题的能力.教学重点:1.分析实际问题的方法.2.去分母时符号的处理.教学难点:分析实际问题中的数量关系、列方程.教学过程:一、创设情境,提出问题出示课本P95问题2:(1)小组合作探究,列出方程.(2)x+x+x+x=33的解法有几种方法?每种解法的依据是什么?解法1:将方程左边通分得:x=33,即x=33,x=33×,x=.解法2:将方程两边都乘42去掉分母,得:28x+21x+6x+42x=1386,x=.(3)比较两种解法.二、合作探究解方程:-2=-.(1)如何去分母?依据是什么?(2)方程两边都乘10的过程中有哪些注意事项?(3)交流解题过程,指出问题,并强调注意事项.(4)解一元一次方程的一般步骤:去分母—去括号—移项—合并同类项—系数化1.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天,”就因校长叫他听一个电话而离开教室.调皮的小刘说:“让我试一试”,上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来……请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法.举一反三:(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务.原计划一半同学参加制作,每天制作40面.而实际上,在完成了三分之一以后,全班同学一起参加制作,结果比原计划提前一天半完成任务.假设每人的制作效率相同,问共制作小旗多少面?(2)小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,便随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?(3)将上述两题加以比较,有否相通之处?可否一题多解?并探究设未知数的技巧性.三、课堂练习1.完成课本P97例3,解下列方程:(1)-1=2+;(2)3x+=3-.交流解题过程,强化注意事项.四、综合应用,巩固提高1.完成课本P98练习.2.解方程:(1)-=2;(2)-y+5=-.(3)=+1;(4){[x(+3)+5]+7}=1.4.一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?5.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每时可处理垃圾55吨,所需费用550元;乙厂每时可处理垃圾45吨,所需费用495元.甲、乙两厂的工作时间均不超过10时,请你设计一个问题,并请你的好朋友解答.五、课时小结可通过以下问题引导学生小结:1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?11。

3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)

3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)
分析:设上半年每月平均用电量xkW·h,
则下半年每月平均用电为(x-2000) kW·h.
上半年共用电为:6x kW·h;
上半年共用电为:6(x-2000) kW·h.
根据题意列出方程6x+6(x -2000)=150000
怎样解这个方
程呢?
探究新知
6x + 6 ( x-2000 ) = 150000系数化为1,得来自−6 = 84
=−
3
4
x=- .
3
例题讲解
(2)3 − 7( − 1) = 3 − 2( + 3)
解:去括号,得
− + = − −
移项,得
− + = − −
合并同类项,得
− = −
系数化为1,得
=
归纳总结
共得利息 0.36万元(不计利息税),求甲、乙两种存款各多少
万元?
解:解:设甲种存款 万元,乙种存款 万元.
根据题意,得1.5%x+2%(20-x)=0.36.
解得,x=8,所以20-8=12.
答:甲种存款8万元,乙种存款12万元.
中考链接
1.(2023·甘肃天水一模)解方程−2 2 + 1 = , ,以下去括号正
D. 2 6 3x 2
3.若 x 3 是一元一次方程2( + ) = 5(k 为实数)的解,则 k 的值是(
A.
1
2
1
B. 2
C.
11
2
D.
11
2
D)
分层作业
【基础达标作业】
4.去掉方程3( − 1) − 2( + 5) = 6中的括号,结果正确的是( B )

3.3解一元一次方程(二)-去括号与去分母(教案)

3.3解一元一次方程(二)-去括号与去分母(教案)
-难点三:在应用法则解决实际问题时,学生可能无法将问题抽象为方程,或者在列方程时出现错误。
举例:如果问题是“甲车比乙车快10km/h,甲车行驶100km的时间比乙车少2小时,求乙车的速度”,学生需要能够根据问题列出方程,如x + 10 = 100/(t + 2),其中x是乙车的速度,t是乙车行驶100km的时间。
2.设计更多具有实际情境的问题,让学生在实际问题中运用所学知识,提高他们解决问题的能力。
3.鼓励学生独立思考,培养他们的自主学习能力,减少对同题,提高教学效果。
其次,去分母部分,学生在寻找最小公倍数时感到困惑。这一方面是因为他们的数学基础不够扎实,另一方面也反映出他们在实际问题中运用知识的能力有待提高。针对这个问题,我在课堂上通过举例和引导,让学生们学会如何找到最小公倍数并应用到方程中。在以后的教学中,我计划增加一些关于最小公倍数的专项训练,以提高学生们的运算速度和准确性。
3.3解一元一次方程(二)-去括号与去分母(教案)
一、教学内容
本节课选自教材第三章第三节“3.3解一元一次方程(二)-去括号与去分母”。教学内容主要包括以下两部分:
1.去括号法则:掌握一元一次方程中括号外的数字因数乘括号内各项,以及括号外是“-”时,去括号后括号内各项改变符号的法则。
2.去分母法则:掌握一元一次方程中各分母的最小公倍数,并利用最小公倍数将方程两边乘以相应的数,使方程两边同时去掉分母的方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和方程的简化过程。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去括号与去分母在实际问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的

(D)
A. 4x-1-x-3=1
B. 4x-1-x +3=1
C. 4x-2-x-3=1
2
10 5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 4x
去括号 15x 5 20 3x 2 4x
移项
15x 3x 4x 2 5 20 合并同类项
16x 13
系数化为1
x 13 16
下列方程的解法对不对?如果不对,你能找出错在
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
1. 方程 3 5x 7 x 17 去分母正确的是
(C)
2
4
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
七年级数学上(RJ)
第三章 一元一次方程
3.3 解一元一次方程(二) ——去括号与去分母
第1课时 利用去括号解一元一次方程
化简下列各式: (1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.

初一数学上册解一元一次方程—去括号与去分母(课时合集)

初一数学上册解一元一次方程—去括号与去分母(课时合集)

18x+3( x-1)=18-2(2x-1).
去括号,得 18x+3x-3=18-4x+2
移项,得 18x+3x+4x=18+2+3
合并同类项,得 25x=23
系数化为1,得
x= 23 . 25
4.基础训练 应用拓展
练习:解下列方程:
(1)x+1-2= x ;
2
4
(2)5x-1= 3x+1- 2-x .
移项,得
10x+4x-35x-15x+9x=18+12+10
合并同类项,得
-27 x=40
系数化为1,得 x=- 40 . 27
(2) 3(2-3x)-3[3(2x-3)+3]=5.
解:去括号,得
6-9x-18x+27-9=5
移项,得
-9x-18x=5-6-7+9
合并同类项,得
-27 x=19
系数化为1,得
带括号的式子 时,去括号是
移项
常用的化简步
6x+6x=150 000+12 000 骤.
合1 x=13 500
(二)探究解法,归纳总结
问题1:某工厂加强节能措施,去年下半年与上半年 相比,月平均用电量减少2 000 kW·h(千瓦·时), 全年用电15 万kW·h.这个工厂去年上半年每月平均 用电是多少? 思考: 本题还有其他列方程的方法吗? 用其他方法列出的方程应怎样解?
设上半年平均每月用电x度
列方程 x+x-2000=150000 6
2x-2000=25000 2x=27000 x=13500
(二)探究解法,归纳总结
问题2:通过以上解方程的过程,你能总结出 含有括号的一元一次方程解法的一般步骤吗?
去括号
移项
合并同类项 系数化为1

七年级数学上册 第三章 3.3 解一元一次方程(二)—去括号与去分母(去括号)教案 (新版)

七年级数学上册 第三章 3.3 解一元一次方程(二)—去括号与去分母(去括号)教案 (新版)
——————————新学期新成绩新目标新方向——————————
解一元一次方程
课题:3.3解一元一次方程(去括号)
课时
1课时
教学设计
课标
要求
能解一元一次方程







本节课是人教版七年级上册第三章第三节《解一元一次方程——去括号》,去括号这一节是学生在学习了去括号法则和移项之后,进一步系统学习解一元一次方程的有关知识。它既是第三章知识的深化 ,又为我们以后学习一元一次方程的应用提供研究和学习的方法,同时也为含有分母的一元一次方程的计算做好准备,具体的说,本节课就是要通过对去括号的掌握和理 解,让学生形成系统的解一元一次方程的知识结构,学会解一元一次方程的方法,因此本节课的重要性是 不言而喻的。本节课的教材所具有的特点是所涉及到的方法和性质比较多,并且都是以题目的形式给出的,这就要求我们必须从学生的认知规律出发去暴露学生知识的发生和发展过程。
等量关系是:码头到乙码头的路程=乙码头到甲码头的路程,即顺航速度___顺航时间=逆航速度___逆航时间。
解:设船在静水中的平均速度是X千米/小时,则船在顺水中的速度是______千米/小时,船在逆水中的速度是_______千米/小时.
根据往返的路程相等得:
2(X+3)=2 .5( X-3)
去括号,得2x+6=2.5x-7.5
6x+6(x-2000)=150000
关于这个方程,你想怎么解?(先要去括号,引出去括号解方程的方法)
解:设上半年每月平均用电X度,则下半年每月平均用电x-2000度;上半年共用6x度,下半年共用电6(x-2000)度。根据全年用电15万度,列出方程:
2、归纳:解方程的一般步骤:

人教版七年级数学上册一元一次方程《解一元一次方程(二)——去括号与去分母(第1课时)》示范教学设计

人教版七年级数学上册一元一次方程《解一元一次方程(二)——去括号与去分母(第1课时)》示范教学设计

解一元一次方程(二)——去括号与去分母(第1课时)教学目标1.掌握利用去括号法则解含括号的一元一次方程的方法.2.掌握解含括号的一元一次方程的一般步骤.3.能够找出实际问题中的已知量和未知量,根据相等关系列出方程,能够利用一元一次方程解决实际问题,提高根据实际问题建立方程模型的能力.教学重点解含有括号的一元一次方程.教学难点选择合适的相等关系,用方程模型表示问题中的相等关系.教学过程知识回顾1.求出未知数并说明解题步骤.(1)若5x-4=-9+3x,则x=________.(2)若7x+6=16-3x,则x=_________.【师生活动】教师提问:如何解上面方程?学生回答:可以利用移项的方法解方程.教师追问:利用移项解一元一次方程的基本步骤是什么?学生回答:移项;合并同类项;系数化为1.【答案】(1)52(2)12.化简下列整式并说明你的依据.(1)2(6x+5)=_______________.(2)-3(7x-5)=_____________.【师生活动】教师提问:如何进行整式的化简?学生回答:(1)有括号,先去括号;(2)有同类项,再合并同类项,化简的最终结果不含同类项.【答案】(1)12x+10(2)-21x+15【设计意图】带领学生复习已学过的解方程和去括号知识,为引出本节课“利用去括号解一元一次方程”作铺垫.新知探究一、探究学习【问题】某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时),全年用电15万kW·h.这个工厂去年上半年每月平均用电量是多少?【师生活动】教师提问:问题中涉及了哪些量?学生回答:上半年月平均用电量,下半年月平均用电量,全年用电量.教师提问:这些量之间有怎样的关系?学生回答:6×上半年月平均用电量+6×下半年月平均用电量=全年用电量.教师总结:在列方程时,“总量=各部分量的和”是一个基本的相等关系.学生尝试作答.解:设上半年每月平均用电x kW·h,则下半年每月平均用电(x-2 000) kW·h;上半年共用电6x kW·h,下半年共用电6(x-2 000) kW·h.根据全年用电15万kW·h,列方程,得6x+6(x-2 000)=150 000.教师追问:如何解这个方程?教师提示:如果去括号,就能简化方程的形式.学生尝试作答.解:去括号,得6x+6x-12 000=150 000.移项,得6x+6x=150 000+12 000.合并同类项,得12x=162 000.系数化为1,得x=13 500.教师总结:方程中有带括号的式子时,去括号是常用的化简步骤.教师提问:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?学生回答:可以根据“表示同一个量的两个式子相等”来列方程.(1)下半年月平均用电量=上半年月平均用电量-2 000;(2)下半年月平均用电量=16(全年用电量-上半年用电量).【答案】解:设上半年每月平均用电x kW·h,由题意,得16(150 000-6x)=x-2 000.去括号,得25 000-x=x-2 000.移项,得-x-x=-25 000-2 000.合并同类项,得-2x=-27 000.系数化为1,得x=13 500.答:这个工厂去年上半年每月平均用电13 500 kW·h.【新知】利用去括号解一元一次方程的基本步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.【设计意图】从学生熟悉的列方程知识入手,提出问题“如何解方程”,激发学生的学习兴趣,学生通过观察、发现原方程与目标之间的差异,能分析、寻找消除差异的方法,初步体会转化的数学思想方法的应用.二、典例精讲【例1】解下列方程:(1)2x-(x+10)=5x+2(x-1);(2)3x-7(x-1)=3-2(x+3).【答案】解:(1)去括号,得2x-x-10=5x+2x-2.移项,得2x-x-5x-2x=-2+10.合并同类项,得-6x=8.系数化为1,得43x=-.(2)去括号,得3x-7x+7=3-2x-6.移项,得3x-7x+2x=3-6-7.合并同类项,得-2x=-10.系数化为1,得x=5.【例2】一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知水流的速度是3 km/h,求船在静水中的平均速度.【师生活动】教师提问:一般情况下可以认为这艘船往返的路程相等,由此填空:顺流速度____顺流时间____逆流速度____逆流时间.顺流速度=静水速度____水流速度.逆流速度=静水速度____水流速度.学生回答:顺流速度×顺流时间=逆流速度×逆流时间.顺流速度=静水速度+水流速度.逆流速度=静水速度-水流速度.【答案】解:设船在静水中的平均速度为x km/h,则顺流速度为(x+3) km/h,逆流速度为(x-3) km/h.根据往返路程相等,得2(x+3)=2.5(x-3).去括号,得2x+6=2.5x-7.5.移项及合并同类项,得0.5x=13.5.系数化为1,得x=27.答:船在静水中的平均速度为27 km/h.【设计意图】通过例题1、例题2的练习与讲解,巩固学生对已学知识的理解及应用.课堂小结板书设计一、利用去括号解一元一次方程二、列方程课后任务完成教材第95页练习(1)~(4)小题.。

去括号与去分母(1)

去括号与去分母(1)
教学内容提要
时间
教学操作流程
所需资源
设计意图
听课记录评价
学生学习事项
教师导控事项
环节(任务)一:
复习引入
环节(任务)二:
自主学习
环节(任务)三:
例题学习
环节(任务)四:
反馈练习
环节(任务)五:
总结反思:(针对学习目标)
环节(任务)六:
当堂检测
环节(任务)七:
布置作业
3分钟
15分钟
8分钟
8分钟
3分钟
8分钟
学生自主解决问题,通过去括号、移项等步骤把带有括号的一元一次方程解出来.
环节(任务)四:
1.独立思考、独立解题.
2.小组成员完成后相互对照。
3.派代表板演、讲解,其余同学认真倾听并提出质疑
环节(任务)五:
1.学生单独回答(其余同学认真倾听并作适当补充)
2.关注:去括号时要注意什么?
环节(任务)六:
1.查小组代表说出解题的思路
2.强调:
(1)当括号前是“-”号,去括号时,各项都要变号。
(2)括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号。
环节(任务)四:
1.巡视、指导
提醒:如何解有括号的一元一次方程,。
2.选取两名学生上台书写解答过程
环节(任务)五:
环节(任务)七:
通过课外作业,让学生的知识得到巩固
预设板书:
3.3解一元一次方程(二)
――去括号(1)
学习目标:1.……… 例题1: ………
2.……… 课堂小结:………
3.……… 课外作业:………
问题1:………
问题2:………
2.小组对照与小组展示

3 解一元一次方程(二)——去括号与去分母【优质一等奖创新教案】

3 解一元一次方程(二)——去括号与去分母【优质一等奖创新教案】

3 解一元一次方程(二)——去括号与去分母【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅3.3 解一元一次方程(二)——去括号与去分母第1课时教学目标1.知识与技能掌握用一元一次方程解决实际问题的方法,会用分配律,去括号解决关于含括号的一元一次方程.2.过程与方法.经历应用方程解决实际问题的过程,发展分析问题,解决问题的能力,进一步体会方程模型的作用.3.情感态度与价值观关注学生在建立方程和解方程过程中的表现,发展学生积极思考的学习态度以及合作交流的意识.重、难点与关键1.重点:列方程解决实际问题,会解含有括号的一元一次方程.2.难点:列方程解决实际问题.3.关键:建立等量关系.教具准备投影仪.教学过程一、引入新课我们已经学习了运用一元一次方程解决一些比较简单的实际问题.本节继续讨论如何列、解一元一次方程的问题.当问题中数量关系较复杂时,列出的方程的形式也会较复杂,解方程的步骤也相应更多些.问题:某工厂加强节能措施,•去年下半年与上半年相比,•月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?你会用方程解这道题吗?教师操作投影仪,提出问题,学生思考,并与同伴交流,探索列方程思路.在学生充分思考、交流后,教师引导学生作以下分析:1.本问题的等量关系是什么?2.如果设上半年每月平均用电x度,那么怎样表示下半年每月平均用电量、上半年共用电量和下半年共用电量.3.根据等量关系,列出方程.4.怎样解这个方程.思路点拨:本问题的等量关系是:上半年用电量(度)+下半年用电量(度)=150000设上半年每月平均用电x度,则下半年每月平均用电(x-2000)度,•上半年共用电6x度,下半年共用电6(x-2000)度,列方程6x+6(x-2000)=150000去括号,得6x+6x-12000=150000移项,得6x+6x=150000+12000合并同类项,得12x=162000系数化为1,得x=13500因此,这个工厂去年上半年平均每月用电13500度.思考:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?点拨:如果设去年下半年平均每月用电x度,那么怎样列方程呢?•这个方程的解是问题的答案吗?设去年下半年平均每月用电x度,则上半年平均每月用电(x+2000)度,列方程,6(x+2000)+6x=150000.解方程,得x=11500,那么上半年平均每月用电量为11500+2000=13500(度).方法一叫直接设元法,方程的解就是问题的答案;方法二是间接设元法,方程的解并不是问题答案,需要根据问题中的数量关系求出最后答案.方程中有带括号的式子时,利用分配律去括号是常用的化简步骤.二、范例学习例1.解方程:3x-7(x-1)=3-2(x+3).解法见课本强调去括号时,要注意的事项.三、巩固练习课本第95页练习,第98页习题3.3第5题.1.解:(2)去括号,得4x+6x-9=12-x-4移项,得4x+6x+x=12-4+9合并,得11x=17系数化为1,得x=(3)去括号,得3x-24+2x=7-x+1移项,得3x+2x+x=7+1+24合并,得5x=32系数化为1,得x=6思路点拨:用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号.方程中有多重括号时,一般应按先去小括号,再去中括号,再去大括号的顺序去括号.2.解:设甲用x分登山.由甲先出发30分钟,甲、乙同时到达山顶,则乙用_______•分登山;•甲每分登高10米,则这座山高表示为______米,乙每分登高15米,•那么这座山高又表示为______米,相等关系为________.列方程10x=15(x-30)去括号,得10x=15x-450移项,得10x-15x=-450合并,得-5x=-450系数化为1,得x=90把x=90代入10x=900答:甲用90分登山,这座山高为900米.四、课堂小结本节课我们继续讨论列方程解决实际问题,同时学习了如何解含有括号的方法,解此类方程,一般地先去括号,后移项,合并,系数化为1,•并且注意去括号时易出错的问题.五、作业布置1.课本第98页习题3.3第1、2、4、6题.2.选用课时作业设计.第2课时教学内容课本第94页至第95页.教学目标1.知识与技能进一步掌握列一元一次方程解应用题的方法步骤.2.过程与方法通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3.情感态度与价值观培养学生自主探究和合作交流意识和能力,体会数学的应用价值.重、难点与关键1.重点:分析问题中的数量关系,找出能够表示问题全部含义的相等关系,•列出一元一次方程,并会解方程.2.难点:找出能够表示问题全部含义的相等关系,列出方程.3.关键:找出能够表示问题全部含义的相等关系.教学过程一、复习提问1.行程问题中的基本数量关系是什么?路程=速度×时间可变形为:速度= "www./" EMBED Equation.DSMT4 .2.相遇问题或追及问题中所走路程的关系?相遇问题:双方所走的路程之和=全部路程+原来两者间的距离.(原来两者间的距离)追及问题:快速行进路程=慢速行进路程+原来两者间的距离或快速行进路程-慢速行进路程=原路程(原来两者间的距离).二、新授例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,求船在静水中的平均速度.分析:(1)顺流行驶的速度、逆流行驶的速度、水流速度,船在静水中的速度之间的关系如何?顺流行驶速度=船在静水中的速度+水流速度逆流行驶速度=船在静水中的速度-水流速度(2)设船在静水中的平均速度为x千米/时,由此填空(课本第97页).(3)问题中的相等关系是什么?解:一般情况下,船返回是按原路线行驶的,因此可以认为这船的往返路程相等,由此,列方程:2(x+3)=2.5(x-3)去括号,得2x+6=2.5x-7.5移项及合并,得-0.5x=-13.5系数化为1,得x=27答:船在静水中的平均速度为27千米/时.说明:课本中,移项及合并,得0.5x=13.5是把含x的项移到方程右边,常数项移到左边后合并,得13.5=0.5x,再根据a=b就是b=a,即把方程两边同时对调,这不是移项.例3:某车间22•名工人生产螺钉和螺母,•每人每天平均生产螺钉1200•个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,•应该分配多少名工人生产螺钉,多少名工人生产螺母?分析:已知条件:(1)分配生产螺钉和生产螺母人数共22名.(2)每人每天平均生产螺钉1200个,或螺母2000个.(3)一个螺钉要配两个螺母.(4)为使每天的产品刚好配套,应使生产的螺母数量与螺钉数量之间有什么样关系?螺母的数量应是螺钉数量的两倍,这正是相等关系.解:设分配x人生产螺钉,则(22-x)人生产螺母,由已知条件(2)得,每天共生产螺钉1200x个,生产螺母2000(22-x)个,由相等关系,列方程2×1200x=2000(22-x)去括号,得2400x=44000-2000x移项,合并,得4400x=44000x=10所以生产螺母的人数为22-x=12答:应分配10名工人生产螺钉,12名工人生产螺母.本题的关键是要使每天生产的螺钉、螺母配套,弄清螺钉与螺母之间的数量关系.三、巩固练习课本第99页第7题.解法1:本题求两个问题,若设无风时飞机的航速为x千米/时,那么与例1类似,可得顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,根据顺风飞行路程=逆风飞行路程,列方程:2(x+24)=3(x-24)去括号,得"www./" EMBED Equation.DSMT4 x+68=3x-72 移项,合并,得-x=-140系数化为1,得x=840两城之间的航程为3(x-24)=2448答:无风时飞机的航速为840千米/时,两城间的航程为2448千米.解法2:如果设两城之间的航程为x千米,你会列方程吗?这时相等关系是什么?分析:由两城间的航程x千米和顺风飞行需2小时,逆风飞行需要3小时,可得顺风飞行的速度为千米/时,逆风飞行的速度为千米/时.在这个问题( http: / / zk. / " \o "欢迎登陆全品中考网)中,飞机在无风时的速度是不变的,即飞机在顺风飞行和逆风飞行中,无风时的速度相等,根据这个相等关系,列方程:-24=+24化简,得x-24=+24移项,合并,得"www./" EMBED Equation.DSMT4 x=48系数化为1,得x=2448即两城之间航程为2448千米.无风时飞机的速度为=840(千米/时)比较两种方法,第一种方法容易列方程,所以正确设元也很关键.四、课堂小结通过以上问题( http: / / zk. / " \o "欢迎登陆全品中考网)的讨论,我们进一步体会到列方程解决实际问题( http: / / zk. / " \o "欢迎登陆全品中考网)的关键是正确地建立方程中的等量关系.另外在求出x值后,一定要检验它是否合理,•虽然不必写出检验过程,但这一步绝不是可有可无的.五、作业布置1.课本第99页习题( http: / / zk. / " \o "欢迎登陆全品中考网)3.3第6题( http: / / zk. / " \o "欢迎登陆全品中考网).2.选用课时作业设计.第二课时作业设计一、填空题( http: / / zk. / " \o "欢迎登陆全品中考网).1.行程问题( http: / / zk. / " \o "欢迎登陆全品中考网)有三个基本量分别是______,_______,_______,•它们之间的关系有_________,________,_________.2.A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走65千米.(1)两车同时开出,相向而行,x小时相遇,则列方程为________.(2)两车同时开出,•相背而行,•x•小时之后,•两车相距620•千米,•则列方程为__.(3)慢车先开出1小时,相背而行,慢车开出x小时后,两车相距620千米,则列方程为________.二、解答题( http: / / zk. / " \o "欢迎登陆全品中考网).3.一架飞机在两城市之间飞行,无风时飞机每小时飞行552千米,•在一次往返飞行中,飞机顺风飞行用去5小时,逆风飞行用了6小时,求这次飞行时的风速?4.2001年对甲、乙两所学校学生的身体素质进行测评,•结果两校学生达标人数共1500人,2002年甲校达标人数增加10%,乙校学生达标人数增加15%,•两校达标总人数比2001年增加12%,问2001年两校学生达标人数各多少?答案:一、1.略2.(1)60x+65x=480 (2)65x+60x+480=620 (3)60x+65(x-1)=620-480二、3.24千米/时,设这次飞行风速为x千米/时,5(552+x)=6(552-x)4.900人,600人,设甲校2001年学生达标x人,(1500-x)·15%+10%x=12%×1500.第3课时教学内容课本第95页至97页.教学目标1.知识与技能使学生掌握去分母解方程的方法,总结解方程的步骤.2.过程与方法经历去分母解方程的过程,体会把“复杂”转化为“简单”,把“新”转化为“旧”的转化的思想方法.3.情感态度与价值观培养学生自觉反思、检验方程的解是否正确的良好习惯.重、难点与关键1.重点:掌握去分母解方程的方法.2.难点:求各分母的最小公倍数,以及去分母时,有时要添括号.3.关键:正确利用等式性质,把方程去分母.教具准备投影仪.教学过程一、复习提问1.去括号时应该注意什么?2.等式的性质2是怎样叙述的?3.求12,4,9的最小公倍数.二、新授下面我们来讨论英国伦敦博物馆保存的一部极其珍贵的文物──纸莎草文书中的一个有关数学的问题.问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,你知道这个数是多少?用现在的数学符号表示,这道题就是方程:x+x+x+x=33当时的埃及人如果把问题写成这种形式,它一定是“最早”的方程.上面这个方程中有些系数是分数,如果能化去分母,把系数化成整数,则可使解方程中的计算更方便些.只要将方程两边同乘以42,就可化去方程中的分母.42×x+42×x+42×x+42x=42×33即28+21x+6x+42x=1386系数化为1,得x=为更全面地讨论问题,再以方程-2=为例,•看看解有分数系数的一元一次方程的步骤.我们知道,等式两边乘同一个数,结果仍相等,由此能否去掉这个方程的所有分母呢?要乘的这个数是多少比较合适呢?这个数就是方程中各分母的最小公倍数10,方程两边同乘以10.于是方程左边变为:10×(-2)=10×-10×2=5(3x+1)-10×2去了分母,方程右边变为什么?你算一算.下面的框图表示了解这个方程的具体过程.(见课本第100页)解:去分母,得5(3x+1)-10×2=(3x-2)-2(2x+3)去括号,得15x+5-20=3x-2-4x-6移项,得15x-3x+4x=-2-6-5+20合并,得16x=7系数化为1,得x=思路点拨:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏;(2)用分母的最小公倍数去乘方程的两边时,•不要漏掉等号两边不含分母的项,如上面方程中的“2”.(3)去掉分母以后,分数线也同时去掉,分子上的多项式用括号括起来.回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母──去括号──移项──合并──系数化为1等步骤,•就可以使一元一次方程逐步向着x=a的形式转化.这个过程主要依据等式的性质和运算律等.三、巩固练习课本第98页练习.(3)去分母,得3(5x-1)=6(3x+1)-4(2-x);去括号,得15x-3=18x+6-8+4x,移项,合并,得-7x=1,x=-.(4)去分母,得10(3x+2)-20=5(2x-1)-4(2x+1)去括号,得30x+20-20=10x-5-8-8x-4;移项,合并,得28x=-9,x=-.四、课堂小结1.解方程的思路:解一元一次方程实际上就是将一个方程利用等式性质和运算律进行一系列的变形,最终化为x=a,一般地,先去分母,然后移项、合并,最后系数化为1,当然这些步骤并不是一成不变的,要灵活运用这些步骤.2.去分母就是根据等式性质2,在方程两边都乘以分母的最小公倍数,常犯错误是漏乘不含有分母的项,再一个容易错误的地方是对分数线的理解不全面,分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.五、作业布置1.课本第98页习题3.3第3、9题.2.选用课时作业设计.第三课时作业设计一、下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?1.=-1解:去分母,得2x-1=x+2-1移项,合并,得x=22.解:去分母,得2x-1-x+2=12-x移项,合并,得2x=11系数化为1,得x=二、解方程.答案:一、1.错,改正略.2.错,改正略.二、3.(1)y= "www./" EMBED Equation.DSMT4 (2)x=-7 (3)x=-2 (4)x=-2.感谢您下载使用【班海】教学资源。

3.3_解一元一次方程(二)——去括号与去分母_第1课时

3.3_解一元一次方程(二)——去括号与去分母_第1课时
合并同类项,得 0.2 x 5 两边同除以-0.2得 x 25
5 x 3
1.计算(1) 4x + 3(2x-3) = 12- (x-2)
x=
23 11
(2) 6( 1 x - 4) + 2x = 7-( 1 x - 1) 3 2 x=6
2.(2010·黄冈中考)通信市场竞争日益激烈,某通信公 司的手机市话费标准按原标准每分钟降低a元后,再次 下调了20%,现在收费标准是每分钟b元,则原收费标准 每分钟是___元. 解析:设原收费标准每分钟是x元,根据题意得, 5 (x-a)(1-20%)=b,解得x= b+a, 4 5 答案: b+a . 4
去括号
移项 解一元一次方程 的步骤有: 合并同类项 系数化为1
人生的白纸全凭自己的笔去描绘.每个人
都用自己的经历填写人生价值的档案.
解方程:3(5x-1)- 2(3x+2)=6(x-1)+2 解:去括号,得 15x-3-6x-4 =6x-6+2 移项得
15x-6x-6x =-6+2+3+4
合并同类项得 3x =3
系数化为1,得 x =1
注:方程中有带括号的式子时,去括号是常用的化简步骤.
2、下列变形对吗?若不对,请说明理由,并改正:
1 解方程 3 2(0.2 x 1) x 5
去括号,得 3 0.4x 2 0.2x
去括号变形错,有一项 没变号,改正如下:
去括号,得3-0.4x-2=0.2x 移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1

移项,得 0.4x 0.2x 3 2
3.3
解一元一次方程(二) ---去括号与去分母
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点
在小学根深蒂固用算术方法解应用题的基础上,
让学生逐步树立列方程解应用题的思想。
教学环节
导学过程
学习过程
二次备课




同学们也许都读过俄国杰出短篇小说家契诃夫的作品《变色龙》、《套中人》、《小公务员之死》……可同学们是否还知道,在他的小说《家庭教师》中,居然写了一位教师为一道数学题大伤脑筋呢!让我们大家一起来看看这究竟是怎样的一道题:
2、形成性练习:
(1)解方程:




(1)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬六块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
(2)学校田径队的小刚在400米跑测试时,先以6米秒的)速度跑完了大部分路程,最后以8米秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?
(3)、拓展性练习:
编一道联系实际的数学问题,使所列的方程是
6x+8(65一x)=400
并将其与上题中的(2)、(3)相比较,有何感想?将你的想法和同学交流.
学生板演,同组学生给予评价,并鼓励学生在完成问题的基础上,讨论做题过程中的体会及遇到的问题。
作业布置

预习提纲
1、必做题:课本97页练习
课本102页复习巩固第2题
由上可知,买了75俄尺蓝布料和63俄尺黑布料。
去括号:在解方程的过程中,我们发现去括号是解方程时常用的变形,因而,要利用方程解决实际问题,当然必须掌握去括号解方程的能力。
1、探索性练习:
完成下列练习
去括号:-(2m-3)=
a+5(-b-1)=
并得出去括号法则:括号外的因数是正数,去括号后( )相同;括号外的因数是负数,去括号后( )相反
2、备选题
(1)解方程
3x-2[3(x-1)-2(x+2)]=3(18-x)
(2)郯城橡胶坝全面完工后,某班40名同学租车去旅游,一共租了8辆小车,其中有可坐4人的小车和可坐6人的小车,40名同学刚好坐满8辆小车,问这两种小车各租了几辆?
(3)某校初一年级共120名学生,在植树节那天要栽50棵树,其中有30棵小树,20棵大树,两位同学一起可以完成一棵小树的栽植,三位同学一起可以完成一棵大树的栽植,结果当天顺利地完成了全部任务.阅读上面的情景,编制适当的题目,利用数学知识求解.
3x+5(138-x)=540
教师展示问题,学生单独思考并尽可能解决教师提出的问题,针对学生解决问题所出现的算术及方程方法,教师引导学生比较两者的难易。
数学教学中分层教学必不可少,以防止部分学困生失去数学兴趣。
学习有困难的学生只解决必做题,其余的学生要在完成必做题的基础上去解决备选题。尝来自试应用
现在怎样使这个方程向x=a的形式转化呢?利用“分配律”先去括号,下面的框图表示了解这个方程的具体进程,你能说出每步的依据吗?
出示(买布问题):顾客用540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少?
1、如何解决这个问题呢?
2、算术方法?方程方法?两种都行吗?孰良孰莠?请同学们讨论交流·
3、较之算术方法,方程解法要简易得多,展示如下:(师生共同合作)
设买了蓝布料x俄尺,那么买黑布料(138-x)俄尺;因而买蓝布料花了3x卢布,买黑布料花了5(138-x)卢布,根据买两种布料共用540卢布,列得方程
3.3解一元一次方程
教学目标
1、通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时少力;掌握去括号解方程的方法.
2、培养学生分析问题,解决问题的能力.
3、通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心
重点
弄清列方程解应用题的思想方法;用去括号解一元一次方程。




充分考虑学科之间的相互渗透,利用新课程多元化的教学目标来设计教学,以教材现教学目标的载体,把培养学生的人文素质作为教学的最终目的.
相关文档
最新文档