【名校复习专用】黑龙江省齐齐哈尔市2020届高考数学一轮复习 第13讲 导数与导数运算课学案(无答案)理

合集下载

2020版高考数学一轮总复习 第三单元导数及其应用 教案全集 含解析

2020版高考数学一轮总复习  第三单元导数及其应用  教案全集 含解析

导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。

2024年高考数学一轮复习(新高考版)《利用导数研究函数的零点》课件

2024年高考数学一轮复习(新高考版)《利用导数研究函数的零点》课件

即x-y-3=0.
(2)若函数f(x)在(0,16]上有两个零点,求a的取值范围.
①当 a≤0 时,f′(x)=ax- 1x<0, 则f(x)在(0,+∞)上单调递减,不符合题意; ②当 a>0 时,由 f(x)=aln x-2 x=0 可得2a=lnxx, 令 g(x)=lnxx,其中 x>0,则直线 y=2a与曲线 y=g(x)的图象在(0,16] 内有两个交点,
即 g(x)在π2,π上单调递减,又 gπ2=1>0,g(π)=-π<0, 则存在 m∈π2,π,使得 g(m)=0, 且当 x∈π2,m时,g(x)>g(m)=0, 即 f′(x)>0,则 f(x)在π2,m上单调递增, 当x∈(m,π]时,有g(x)<g(m)=0,即f′(x)<0, 则f(x)在(m,π]上单调递减,
由图可知,当 ln 2≤2a<2e,
即 e<a≤ln22时, 直线 y=2a与曲线 y=g(x)的图象在(0,16]内有 两个交点,
即f(x)在(0,16]上有两个零点, 因此,实数 a 的取值范围是e,ln22.
题型三 构造函数法研究函数的零点
例3 (12分)(2022·新高考全国Ⅰ)已知函数 f(x)=ex-ax和g(x)=ax-ln x有相同的最小值. (1)求a; [切入点:求f(x),g(x)的最小值] (2)证明:存在直线y=b,其与两条曲线y= f(x)和y=g(x)共有三个不同的交点,并且从 左到右的三个交点的横坐标成等差数列.
又 f π2=π2-1>0,f(π)=-1<0, 所以f(x)在(m,π]上有且只有一个零点, 综上,函数y=f(x)在[0,π]上有2个零点.
思维升华

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。

2020届高考数学(理)一轮复习讲义 13.1 第1课时 坐标系

2020届高考数学(理)一轮复习讲义  13.1  第1课时 坐标系

§13.1 坐标系与参数方程第1课时 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x(x ≠0),这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程概念方法微思考1.平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也能建立一一对应关系吗?提示 不能,极径需和极角结合才能唯一确定一个点.2.由极坐标的意义可判断平面上点的极坐标唯一吗?提示 平面上的点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝⎛⎭⎫2,-π3.( √ ) (2)在极坐标系中,曲线的极坐标方程不是唯一的.( √ ) (3)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( × ) 题组二 教材改编2.若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4答案 A解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. 3.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝⎛⎭⎫1,π2 B.⎝⎛⎭⎫1,-π2 C .(1,0) D .(1,π) 答案 B解析 方法一 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎫1,-π2. 方法二 由ρ=-2sin θ=2cos ⎝⎛⎭⎫θ+π2,知圆心的极坐标为⎝⎛⎭⎫1,-π2,故选B.题组三 易错自纠4.在极坐标系中,已知点P ⎝⎛⎭⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A .ρsin θ=1 B .ρsin θ= 3 C .ρcos θ=1 D .ρcos θ= 3答案 A解析 先将极坐标化成直角坐标表示,P ⎝⎛⎭⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.5.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为 . 答案 x 2+y 2-2y =0解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0. 6.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.当△AOB 是等边三角形时,求a 的值.解 由ρ=4sin θ可得圆的直角坐标方程为x 2+y 2=4y , 即x 2+(y -2)2=4.由ρsin θ=a 可得直线的直角坐标方程为y =a (a >0).设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示.由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a , ∴B 点的坐标为⎝⎛⎭⎫33a ,a .又∵B 在x 2+y 2-4y =0上,∴⎝⎛⎭⎫33a 2+a 2-4a =0, 即43a 2-4a =0,解得a =0(舍去)或a =3.所以a =3.题型一极坐标与直角坐标的互化1.(1)化圆的直角坐标方程x2+y2=r2(r>0)为极坐标方程;(2)化曲线的极坐标方程ρ=8sin θ为直角坐标方程.解(1)将x=ρcos θ,y=ρsin θ代入x2+y2=r2(r>0),得ρ2cos2θ+ρ2sin2θ=r2,即ρ=r. 所以以极点为圆心,r为半径的圆的极坐标方程为ρ=r(0≤θ<2π).(2)方法一把ρ=x2+y2,sin θ=yρ代入ρ=8sin θ,得x2+y2=8·yx2+y2,化简得x2+y2-8y=0,即x2+(y-4)2=16.方法二方程ρ=8sin θ两边同时乘ρ,得ρ2=8ρsin θ,因为ρ2=x2+y2,ρsin θ=y,所以x2+y2-8y=0,即x2+(y-4)2=16.2.在极坐标系中,已知曲线C1:ρcos θ-3ρsin θ-1=0,C2:ρ=2cos θ.(1)求曲线C1,C2的直角坐标方程,并判断两曲线的形状;(2)若曲线C1,C2交于A,B两点,求两交点间的距离.解(1)∵C1:ρcos θ-3ρsin θ-1=0,∴x-3y-1=0表示一条直线.由C2:ρ=2cos θ,得ρ2=2ρcos θ,∴x2+y2=2x,即(x-1)2+y2=1.∴C2是圆心为(1,0),半径为1的圆.(2)由(1)知,点(1,0)在直线x-3y-1=0上,∴直线C1过圆C2的圆心.因此两交点A,B的连线是圆C2的直径.∴两交点A,B间的距离|AB|=2r=2.思维升华(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解决此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换. 题型二 求曲线的极坐标方程例1 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的标准方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线的斜率为k =12, 于是所求直线的方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.思维升华 求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.跟踪训练1 已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t(t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 解 (1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 圆C 的直角坐标方程为x 2+y 2+2x -2y =0, ∴ρ2+2ρcos θ-2ρsin θ=0,∴圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎫θ-π4. 又直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=1ρ.(2)当θ=3π4时,|OP |=22sin ⎝⎛⎭⎫3π4-π4=22, ∴点P 的极坐标为⎝⎛⎭⎫22,3π4,|OQ |=122+22=22, ∴点Q 的极坐标为⎝⎛⎭⎫22,3π4,故线段PQ 的长为322. 题型三 极坐标方程的应用例2 在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =2+sin α(α为参数),直线C 2的直角坐标方程为y =3x .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |.解 (1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =2+sin α(α为参数),得曲线C 1的普通方程为(x -2)2+(y -2)2=1,则C 1的极坐标方程为ρ2-4ρcos θ-4ρsin θ+7=0, 由于直线C 2过原点,且倾斜角为π3,故其极坐标方程为θ=π3(ρ∈R ).(2)由⎩⎪⎨⎪⎧ρ2-4ρcos θ-4ρsin θ+7=0,θ=π3,得ρ2-(23+2)ρ+7=0,设A ,B 对应的极径分别为ρ1,ρ2,则ρ1+ρ2=23+2,ρ1ρ2=7, ∴1|OA |+1|OB |=|OA |+|OB ||OA |·|OB |=ρ1+ρ2ρ1ρ2=23+27. 思维升华 极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正半轴重合;③取相同的长度单位.(2)若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题. (3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系.跟踪训练2 (2017·全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题意知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB=4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.1.在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)ρ=21-sin θ可化为ρ-ρsin θ=2,∵ρ=x 2+y 2,ρsin θ=y ,∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).2.已知曲线C 1的参数方程为⎩⎨⎧x =t +1t ,y =t -1t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4cos θ. (1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线θ=π6分别与曲线C 1,C 2交于A ,B 两点(异于极点),求|AB |的值.解(1)由⎩⎨⎧x =t +1t,y =t -1t⇒⎩⎪⎨⎪⎧x +y 2=t ,x -y 2=1t ,两式相乘得x 2-y 2=4.因为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,所以曲线C 1的极坐标方程为ρ2cos 2θ-ρ2sin 2θ=4, 即ρ2cos 2θ=4,因为ρ=4cos θ,所以ρ2=4ρcos θ, 则曲线C 2的直角坐标方程为x 2+y 2-4x =0.(2)联立⎩⎪⎨⎪⎧ρ2cos 2θ=4,θ=π6,得ρA =22,联立⎩⎪⎨⎪⎧ρ=4cos θ,θ=π6,得ρB =23,故|AB |=|ρB -ρA |=23-2 2.3.极坐标系与直角坐标系xOy 有相同的长度单位,以坐标原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=22sin ⎝⎛⎭⎫θ+π4,曲线C 2的极坐标方程为ρsin θ=a (a >0),射线θ=φ,θ=φ+π4,θ=φ-π4,θ=φ+π2与曲线C 1分别交异于极点O 的四点A ,B ,C ,D . (1)若曲线C 1关于曲线C 2对称,求a 的值,并把曲线C 1和C 2化成直角坐标方程;(2)求|OA |·|OC |+|OB |·|OD |的值.解 (1)C 1:ρ2=22ρ⎝⎛⎭⎫22sin θ+22cos θ=2ρsin θ+2ρcos θ, 化为直角坐标方程为(x -1)2+(y -1)2=2.把C 2的方程化为直角坐标方程为y =a ,因为曲线C 1关于曲线C 2对称,故直线y =a 经过圆心(1,1),解得a =1,故C 2的直角坐标方程为y =1. (2)由题意可得,|OA |=22sin ⎝⎛⎭⎫φ+π4, |OB |=22sin ⎝⎛⎭⎫φ+π2=22cos φ,|OC |=22sin φ, |OD |=22cos ⎝⎛⎭⎫φ+π4, 所以|OA |·|OC |+|OB |·|OD |=8sin ⎝⎛⎭⎫φ+π4sin φ+8cos ⎝⎛⎭⎫φ+π4cos φ =8cos π4=8×22=4 2. 4.在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为ρ(sin θ+3cos θ)= 3.(1)求C 的极坐标方程;(2)射线OM :θ=θ1⎝⎛⎭⎫π6≤θ1≤π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求|OP |·|OQ |的取值范围.解 (1)圆C 的普通方程是(x -2)2+y 2=4,又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程为ρ=4cos θ.(2)设P (ρ1,θ1),则有ρ1=4cos θ1,设Q (ρ2,θ1),且直线l 的极坐标方程是ρ(sin θ+3cos θ)=3,则有ρ2=3sin θ1+3cos θ1, 所以|OP ||OQ |=ρ1ρ2=43cos θ1sin θ1+3cos θ1=433+tan θ1⎝⎛⎭⎫π6≤θ1≤π3, 所以2≤|OP ||OQ |≤3.即|OP ||OQ |的取值范围是[2,3].5.如图,在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =2+7cos α,y =7sin α(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos θ,直线l 的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的极坐标方程与直线l 的直角坐标方程;(2)若直线l 与C 1,C 2在第一象限分别交于A ,B 两点,P 为C 2上的动点,求△P AB 面积的最大值.解 (1)依题意得,曲线C 1的普通方程为(x -2)2+y 2=7, 曲线C 1的极坐标方程为ρ2-4ρcos θ-3=0, 直线l 的直角坐标方程为y =3x .(2)曲线C 2的直角坐标方程为(x -4)2+y 2=16,设A ⎝⎛⎭⎫ρ1,π3,B ⎝⎛⎭⎫ρ2,π3,则ρ21-4ρ1cos π3-3=0,即ρ21-2ρ1-3=0,得ρ1=3或ρ1=-1(舍), ρ2=8cos π3=4,则|AB |=|ρ2-ρ1|=1, C 2(4,0)到l 的距离为d =|43|4=23,以AB 为底边的△P AB 的高的最大值为4+23, 则△P AB 的面积的最大值为12×1×(4+23)=2+ 3. 6.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2是圆心在极轴上,且经过极点的圆.已知曲线C 1上的点M ⎝⎛⎭⎫1,22对应的参数φ=π4,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫1,π3. (1)求曲线C 1,C 2的直角坐标方程;(2)若点A ,B 为曲线C 1上的两个点且OA ⊥OB ,求1|OA |2+1|OB |2的值. 解 (1)将M ⎝⎛⎭⎫1,22及对应的参数φ=π4,代入⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ, 得⎩⎨⎧ 1=a cos π4,22=b sin π4,即⎩⎪⎨⎪⎧a =2,b =1, 所以曲线C 1的方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,φ为参数, 所以曲线C 1的直角坐标方程为x 22+y 2=1. 设圆C 2的半径为R ,由题意,圆C 2的极坐标方程为ρ=2R cos θ(或(x -R )2+y 2=R 2),将点D ⎝⎛⎭⎫1,π3代入ρ=2R cos θ,得1=2R cos π3, 即R =1,所以曲线C 2的极坐标方程为ρ=2cos θ,所以曲线C 2的直角坐标方程为(x -1)2+y 2=1.(2)设A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2在曲线C 1上,所以ρ21cos 2θ2+ρ21sin 2θ=1,ρ22sin 2θ2+ρ22cos 2θ=1, 所以1|OA |2+1|OB |2=1ρ21+1ρ22=⎝⎛⎭⎫cos 2θ2+sin 2θ+⎝⎛⎭⎫sin 2θ2+cos 2θ=32.。

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)
人教A版数学(理科)一轮
2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例

2020届高三理科数学一轮复习讲义教师用书第14讲 导数与函数的单调性

2020届高三理科数学一轮复习讲义教师用书第14讲 导数与函数的单调性

第2讲导数与函数的单调性函数的单调性与导数的关系条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f(x)在(a,b)内是常数函数导师提醒1.关注两个易错点(1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接.2.理清三组关系(1)在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.(2)可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a ,b)上的任何子区间内都不恒为零.(3)对于可导函数f(x),f′(x0)=0是函数f (x)在x=x0处有极值的必要不充分条件.判断正误(正确的打“√”,错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.()答案:(1)×(2)√(3)√如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是() A.在区间(-3,1)上f(x)是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .在区间(3,5)上f (x )是增函数解析:选C.由图象可知,当x ∈(4,5)时,f ′(x )>0,故f (x )在(4,5)上是增函数. (教材习题改编)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数D .减函数解析:选D.因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.函数f (x )=x -ln x 的单调递减区间为________.解析:由f ′(x )=1-1x <0,得1x >1,即x <1,又x >0,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________. 解析:f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞),所以a ≤3,即a 的最大值是3. 答案:3不含参数函数的单调性(自主练透) 1.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞)B .(12,+∞)C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 解析:选B.由y =4x 2+1x ,得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,所以函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 故选B.2.已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上递增B .在(0,+∞)上递减C .在(0,1e )上递增D .在⎝⎛⎭⎫0,1e 上递减 解析:选D.因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为(1e,+∞);当f ′(x )<0时,解得0<x <1e,即函数的单调递减区间为(0,1e),故选D.3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________.解析:f ′(x )=sin x +x cos x -sin x =x cos x , 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2求函数单调区间的步骤(1)确定函数f (x )的定义域. (2)求f ′(x ).(3)在定义域内解不等式f ′(x )>0,得单调递增区间. (4)在定义域内解不等式f ′(x )<0,得单调递减区间.[提醒] 求函数的单调区间时,一定要先确定函数的定义域,否则极易出错.含参数函数的单调性(师生共研)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性. 【解】 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增, x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . (1)0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增. 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. (2)a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0, f (x )单调递增. (3)a >2时,0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增.解决含参数的函数单调性问题应注意的2点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解:f (x )的定义域为(0,+∞), f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1-a2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在⎝ ⎛⎭⎪⎫ 1-a2a ,+∞上单调递增.函数单调性的应用(多维探究) 角度一 比较大小或解不等式(1)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)(2)已知定义在⎝⎛⎭⎫0,π2上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则( )A.3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫π3>f (1) C.2f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π4D.3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3【解析】 (1)由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.(2)令g (x )=f (x )sin x,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x ,由已知g ′(x )<0在⎝⎛⎭⎫0,π2上恒成立, 所以g (x )在⎝⎛⎭⎫0,π2上单调递减, 所以g ⎝⎛⎭⎫π4>g ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π332,所以3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3. 【答案】 (1)B (2)A角度二 已知函数的单调性求参数已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解.即a >1x 2-2x 有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可. 而G (x )=(1x -1)2-1,所以G (x )min =-1. 所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=(1x -1)2-1,因为x ∈[1,4],所以1x ∈[14,1],所以G (x )max =-716(此时x =4), 所以a ≥-716,即a 的取值范围是[-716,+∞). [迁移探究1] (变问法)若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立,所以当x ∈[1,4]时,a ≤1x 2-2x 恒成立,又当x ∈[1,4]时,(1x 2-2x )min =-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].[迁移探究2] (变问法)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围.解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,(1x 2-2x)min =-1,所以a >-1,即a 的取值范围是(-1,+∞).[迁移探究3] (变条件)若函数h (x )=f (x )-g (x )在[1,4]上不单调,求a 的取值范围. 解:因为h (x )在[1,4]上不单调, 所以h ′(x )=0在(1,4)上有解, 即a =1x 2-2x有解,令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716, 所以实数a 的取值范围为⎝⎛⎭⎫-1,-716.(1)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(2)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式;②利用分离参数法或函数的性质求解恒成立问题;③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.[提醒] f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任意一个非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.1.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C.令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).2.已知函数f (x )=3xa-2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围.解:f ′(x )=3a -4x +1x ,若函数f (x )在区间[1,2]上为单调函数,即在[1,2]上,f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0, 即3a -4x +1x ≥0或3a -4x +1x ≤0在[1,2]上恒成立, 即3a ≥4x -1x 或3a ≤4x -1x. 令h (x )=4x -1x ,因为函数h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,解得a <0或0<a ≤25或a ≥1.分类与整合思想在研究函数单调性中的应用已知函数f (x )=(x -2)·e x +a (x -1)2.讨论f (x )的单调性. 【解】 f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). (1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. (2)设a <0,由f ′(x )=0,解得x =1或x =ln(-2a ). ①若a =-e2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)上单调递增, ②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0,所以f (x )在(-∞,ln(-2a ))和(1,+∞)上单调递增, 在(ln(-2a ),1)上单调递减. ③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0,所以f (x )在(-∞,1)和(ln(-2a ),+∞)上单调递增, 在(1,ln(-2a ))上单调递减.含参数的函数的单调性问题一般要分类讨论,常见有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2019·山东枣庄调研)已知函数f (x )=x e x -a ⎝⎛⎭⎫12x 2+x (a ∈R ). (1)若a =0,求曲线y =f (x )在点(1,e)处的切线方程; (2)当a >0时,求函数f (x )的单调区间.解:(1)a =0时,f ′(x )=(x +1)e x ,所以切线的斜率k =f ′(1)=2e.又f (1)=e ,所以y =f (x )在点(1,e)处的切线方程为y -e =2e(x -1),即2e x -y -e =0.(2)f ′(x )=(x +1)(e x -a ),令f ′(x )=0,得x =-1或x =ln a .①当a=1e时,f′(x)≥0恒成立,所以f(x)在R上单调递增.②当0<a<1e时,ln a<-1,由f′(x)>0,得x<ln a或x>-1;由f′(x)<0,得ln a<x<-1,所以单调递增区间为(-∞,ln a),(-1,+∞),单调递减区间为(ln a,-1).③当a>1e时,ln a>-1,由f′(x)>0,得x<-1或x>ln a;由f′(x)<0,得-1<x<ln a,所以单调递增区间为(-∞,-1),(ln a,+∞),单调递减区间为(-1,ln a).综上所述,当a=1e 时,f(x)在R上单调递增;当0<a<1e时,单调递增区间为(-∞,ln a),(-1,+∞),单调递减区间为(ln a,-1);当a>1e时,单调递增区间为(-∞,-1),(ln a,+∞),单调递减区间为(-1,ln a).[基础题组练]1.函数f(x)=1+x-sin x在(0,2π)上是()A.单调递增B.单调递减C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增解析:选A.f′(x)=1-cos x>0恒成立,所以f(x)在R上递增,在(0,2π)上单调递增.2.(2019·济南调研)已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是()A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(e)C.f(c)>f(b)>f(a)D.f(c)>f(e)>f(d)解析:选C.由题意得,当x∈(-∞,c)时,f′(x)>0,所以函数f(x)在(-∞,c)上是增函数,因为a<b<c,所以f(c)>f(b)>f(a),故选C.3.若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D.由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).4.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A.因为f (x )=12x 2-9ln x ,所以f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,所以f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],所以a -1>0且a +1≤3,解得1<a ≤2.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ), 所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C. 6.函数f (x )=x 4+54x -ln x 的单调递减区间是________.解析:因为f (x )=x 4+54x -ln x ,所以函数的定义域为(0,+∞),且f ′(x )=14-54x 2-1x =x 2-4x -54x 2,令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5). 答案:(0,5)7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)8.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为________.解析:由f (x )图象特征可得,f ′(x )在⎝⎛⎦⎤-∞,12和[2,+∞)上大于0,在⎝⎛⎭⎫12,2上小于0, 所以xf ′(x )≥0⇔⎩⎨⎧x ≥0,f ′(x )≥0或⎩⎨⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 9.已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -k e x ,又因为f ′(1)=1-ke=0,故k =1. (2)由(1)知,f ′(x )=1x-ln x -1e x ,设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞). 10.已知函数f (x )=x 3-ax -1.(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )在(-1,1)上为单调减函数,求实数a 的取值范围; (3)若函数f (x )的单调递减区间为(-1,1),求实数a 的值; (4)若函数f (x )在区间(-1,1)上不单调,求实数a 的取值范围. 解:(1)因为f (x )在(-∞,+∞)上是增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0, 所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0]. (2)由题意知f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 所以a ≥3x 2在(-1,1)上恒成立,因为当-1<x <1时,3x 2<3,所以a ≥3,所以a 的取值范围为[3,+∞). (3)由题意知f ′(x )=3x 2-a ,则f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3, 又f (x )的单调递减区间为(-1,1), 所以3a3=1,解得a =3. (4)由题意知:f ′(x )=3x 2-a ,当a ≤0时,f ′(x )≥0,此时f (x )在(-∞,+∞)上为增函数,不合题意,故a >0.令f ′(x )=0,解得x =±3a 3. 因为f (x )在区间(-1,1)上不单调,所以f ′(x )=0在(-1,1)上有解,需0<3a3<1,得0<a <3,所以实数a 的取值范围为(0,3).[综合题组练]1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( )A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D.由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )>0,即f (x )在⎝ ⎛⎭⎪⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),所以f (x )为偶函数,所以当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),所以|x 1|<|x 2|,x 21-x 22<0,故选D.2.(应用型)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0解析:选A.因为函数f (x )=e x +x -2在R 上单调递增,且f (0)=1-2<0,f (1)=e -1>0,所以f (a )=0时a ∈(0,1).又g (x )=ln x +x 2-3在(0,+∞)上单调递增,且g (1)=-2<0,所以g (a )<0.由g (2)=ln 2+1>0,g (b )=0得b ∈(1,2),又f (1)=e -1>0, 所以f (b )>0.综上可知,g (a )<0<f (b ).3.(应用型)已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________. 解析:由题可得函数定义域为(0,+∞),f ′(x )=1x +2x ln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.答案:(1,2)4.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________.解析:设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以 g ′(x )<0,所以 g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.因为 f (x )为奇函数,所以 g (x )为偶函数, 所以 g (x )的图象的示意图如图所示. 当x >0,g (x )>0时,f (x )>0,0<x <1, 当x <0,g (x )<0时,f (x )>0,x <-1,所以 使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1). 答案:(-∞,-1)∪(0,1) 5.(综合型)设函数f (x )=a ln x +x -1x +1,其中a 为常数. (1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞),此时f ′(x )=2(x +1)2,可得f ′(1)=12,又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增; 当a <0时,令g (x )=ax 2+(2a +2)x +a ,Δ=(2a +2)2-4a 2=4(2a +1).①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减. ②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0,设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a.由于x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a>0,所以当x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,当x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增,当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝⎛⎭⎪⎫0,-(a +1)+2a +1a, ⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增. 6.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m2在区间(t ,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的单调增区间为(0,1), 单调减区间为(1,+∞);当a <0时,f (x )的单调增区间为(1,+∞),单调减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,所以f (x )=-2ln x +2x -3,f ′(x )=2x -2x .所以g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , 所以g ′(x )=3x 2+(m +4)x -2.因为g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点. 由于g ′(0)=-2,所以⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373. 所以-373<m <-9. 即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。

2024年高考数学一轮复习课件(新高考版) 第3章 §3.1 导数的概念及其意义、导数的运算

2024年高考数学一轮复习课件(新高考版)  第3章 §3.1 导数的概念及其意义、导数的运算

2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.1 导数的概念及其意义、导数的运算考试要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数 (形如f(ax+b))的导数.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.导数的概念f′(x0)y′| (1)函数y=f(x)在x=x0处的导数记作或 .0x x=(2)函数y=f(x)的导函数(简称导数)2.导数的几何意义函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))斜率y-f(x0)=f′(x0)(x-x0)处的切线的,相应的切线方程为 .3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=__f (x )=x α(α∈R ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=_____f (x )=cos xf ′(x )=______f (x )=a x (a >0,且a ≠1)f ′(x )=______f (x )=e x f ′(x )=___0αx α-1cos x -sin x a x ln a e x知识梳理f(x)=log a x(a>0,且a≠1)f′(x)=_____ f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′= ;[cf (x )]′= .f ′(x )±g ′(x )f ′(x )g (x )+f (x )g ′(x )cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数与函数y=f(u),u=g(x)的导数间的关系为y u′·u x′y x′=,即y对x的导数等于y对u的导数与u对x的导数的乘积.常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)(cos 2x ) ′=-2sin 2x .( )×××√1.若函数f(x)=3x+sin 2x,则√因为函数f(x)=3x+sin 2x,所以f′(x)=3x ln 3+2cos 2x.y=(e-1)x+2又∵f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a= .由题意得f′(x)=1+ln x+2ax,第二部分√√√对于A,[(3x+5)3]′=3(3x+5)2(3x+5)′=9(3x+5)2,故A正确;对于B,(x3ln x)′=(x3)′ln x+x3(ln x)′=3x2ln x+x2,故B正确;对于D,(2x+cos x)′=(2x)′+(cos x)′=2x ln 2-sin x,故D正确.(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则f′(2)等于√A.1B.-9C.-6D.4因为f(x)=x3+x2f′(1)+2x-1,所以f′(x)=3x2+2xf′(1)+2,把x=1代入f′(x),得f′(1)=3×12+2f′(1)+2,解得f′(1)=-5,所以f′(x)=3x2-10x+2,所以f′(2)=-6.思维升华(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.√√√f(x)=sin(2x+3),f′(x)=cos(2x+3)·(2x+3)′=2cos(2x+3),故A 正确;f(x)=e-2x+1,则f′(x)=-2e-2x+1,故B错误;f(x)=x ln x,f′(x)=(x)′ln x+x(ln x)′=ln x+1,故D正确.命题点1 求切线方程例2 (1)(2023·大同模拟)已知函数f(x)=2e2ln x+x2,则曲线y=f(x)在点(e,f(e))处的切线方程为√A.4e x-y+e2=0B.4e x-y-e2=0C.4e x+y+e2=0D.4e x+y-e2=0所以f(e)=2e2ln e+e2=3e2,f′(e)=4e,所以曲线y=f(x)在点(e,f(e))处的切线方程为y-3e2=4e(x-e),即4e x-y-e2=0.(2)(2022·新高考全国Ⅱ)曲线y=ln|x|过坐标原点的两条切线的方程为_______,_________.先求当x>0时,曲线y=ln x过原点的切线方程,设切点为(x0,y0),解得y0=1,代入y=ln x,得x0=e,命题点2 求参数的值(范围)例3 (1)(2022·重庆模拟)已知a为非零实数,直线y=x+1与曲线y=ea ln(x+1)相切,则a=_____.(2)(2022·新高考全国Ⅰ)若曲线y=(x+a)e x有两条过坐标原点的切线,(-∞,-4)∪(0,+∞)则a的取值范围是 .因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a ) ),O 为坐标原点,0e x 0e x 0x x =000()ex x a x 因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).思维升华(1)处理与切线有关的问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P的切线”.跟踪训练2 (1)曲线f(x)=在(0,f(0))处的切线方程为√A.y=3x-2B.y=3x+2C.y=-3x-2D.y=-3x+2所以f′(0)=3,f(0)=-2,所以曲线f(x)在(0,f(0))处的切线方程为y-(-2)=3(x-0),即y=3x-2.√例4 (1)若直线l:y=kx+b(k>1)为曲线f(x)=e x-1与曲线g(x)=eln x的公切线,则l的纵截距b等于A.0B.1√C.eD.-e设l 与f (x )的切点为(x 1,y 1),则由f ′(x )=e x -1,得l :y = +(1-x 1) .同理,设l 与g (x )的切点为(x 2,y 2),11e x x -11e x -11e x -11e x -因为k >1,所以l :y =x 不成立,故b =-e.(2)(2023·晋中模拟)若两曲线y=ln x-1与y=ax2存在公切线,则正实数a 的取值范围是√设公切线与曲线y=ln x-1和y=ax2的切点分别为(x1,ln x1-1),(x2,ax),其中x1>0,令g (x )=2x 2-x 2ln x ,则g ′(x )=3x -2x ln x =x (3-2ln x ),令g ′(x )=0,得x = ,32e 当x ∈(0, )时,g ′(x )>0,g (x )单调递增;32e当x ∈(,+∞)时,g ′(x )<0,g (x )单调递减,32e 32e思维升华公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)已知定义在(0,+∞)上的函数f(x)=x2-m,h(x)=6ln x -4x,设两曲线y=f(x)与y=h(x)在公共点处的切线相同,则m等于A.-3 B.1√C.3D.5依题意,设曲线y=f(x)与y=h(x)在公共点(x0,y0)处的切线相同.∵f(x)=x2-m,h(x)=6ln x-4x,∵x0>0,∴x0=1,m=5.(2)已知f(x)=e x-1,g(x)=ln x+1,则f(x)与g(x)的公切线有A.0条B.1条√C.2条D.3条根据题意,设直线l与f(x)=e x-1相切于点(m,e m-1) ,与g(x)相切于点(n,ln n+1)(n>0),对于f(x)=e x-1,f′(x)=e x,则k1=e m,则直线l的方程为y+1-e m=e m(x-m) ,即y=e m x+e m(1-m)-1,可得(1-m)(e m-1)=0,即m=0或m=1,则切线方程为y=e x-1 或y=x,故f(x)与g(x)的公切线有两条.第三部分1.(2023·广州模拟)曲线y=x3+1在点(-1,a)处的切线方程为√A.y=3x+3B.y=3x+1C.y=-3x-1D.y=-3x-3因为f′(x)=3x2,所以f′(-1)=3,又当x=-1时,a=(-1)3+1=0,所以y=x3+1在点(-1,a)处的切线方程为y=3(x+1),即y=3x+3.2.记函数f(x)的导函数为f′(x).若f(x)=e x sin 2x,则f′(0)等于√A.2B.1C.0D.-1因为f(x)=e x sin 2x,则f′(x)=e x(sin 2x+2cos 2x),所以f′(0)=e0(sin 0+2cos 0)=2.3.(2022·广西三市联考)设函数f(x)在R上存在导函数f′(x),f(x)的图象在点M(1,f(1))处的切线方程为y=+2,那么f(1)+f′(1)等于√A.1B.2C.3D.44.已知函数f(x)=x ln x,若直线l过点(0,-e),且与曲线y=f(x)相切,则直线l的斜率为√A.-2B.2C.-eD.e设切点坐标为(t,t ln t),∵f(x)=x ln x,∴f′(x)=ln x+1,直线l的斜率为f′(t)=ln t+1,∴直线l的方程为y-t ln t=(ln t+1)(x-t),将点(0,-e)的坐标代入直线l的方程得-e-t ln t=-t(ln t+1),解得t=e,∴直线l的斜率为f′(e)=2.。

利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)

利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)

3.5 利用导数证明不等式【题型解读】【知识储备】1.导数证明不等式方法:(1)构造单函数求最值证明不等式; (2)构造双函数比较最值证明不等式; (3)参变分离转化为具体函数最值证明不等式; (4)不等式放缩证明不等式;(5)双变量不等式证明转化为单变量不等式证明。

2.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. (1)生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m my x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e1e xmm x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m=时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥. 设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n -=-,即11ln y x n n=-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln ex x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数. 生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.【题型精讲】【题型一 构造单函数证明不等式】方法技巧 构造单函数证明不等式待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证. 例1 (2022·山东济南历城二中高三月考)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 【解析】(1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x .当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减. (2)第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a +2≤0.由(1)知,当a <0时,f (x )max =f ⎝⎛⎭⎫-12a .即证ln ⎝⎛⎭⎫-12a +12a+1≤0 不妨设t =-12a >0,则证ln t -t +1≤0,令h (t )=ln t -t +1,求导得h ′(t )=1t -1.h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a -2.【题型精练】1.(2022·天津·崇化中学期末)已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x bx f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x=>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x=>-.综上所述,当0x >,且1x ≠时,()ln 1xf x x >-. 2. (2022·山东济南高三期末)设函数()f x alnx x=,a R ∈.(1)讨论函数()f x 的单调性;(2)当1a =且1x >时,证明:213()2x x f x -+>.【解析】解:(1)函数()f x alnx x=+,定义域为(0,)+∞,1()a x f x x x-'=,① 当a ≤0时,()0f x '<,则()f x 在(0,)+∞上单调递减; ②当0a >时,令()0f x '=,解得21x a =, 当21(0,)x a ∈时,()0f x '<, 当21(x a∈,)+∞时,()0f x '>, 所以()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . 综上所述,当a ≤0时,()f x 的单调递减区间为(0,)+∞; 当0a >时,()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . (2)证明:当1a =时,令21()3(1)2h x lnx x x x x =+-+->, 则2211(1)(1)()1x x x x xx x x x h x x x x xx xx x--+---'=--+==,因为1x >,则()0h x '<,所以()h x 在(1,)+∞上单调递减, 故()h x h <(1)102=-<,则21302lnx x x x +-+-<,故213()2x x f x -+>. 【题型二 构造双函数比较最值证明不等式】方法技巧 构造双函数比较最值证明不等式若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.例2(2022·山东青岛高三期末)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(I )求,;a b (II )证明:() 1.f x >【解析】(1)因为()1e f '=,()12f =,而()()12e e e ln x x a x bx bf x a x x-+-'=+,所以()()1e e 12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =.(2)由(1)知,()12e e ln x xf x x x -=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e ex x x x +>. 令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1e x >,由()0m x '<可得10ex <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =,则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞上递减,所以()()max11en x n ⎡⎤==⎣⎦. 两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln e e xx x x +>. 【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=a ln x +x . (1)讨论f (x )的单调性; (2)当a =1时,证明:xf (x )<e x .【解析】(1) f (x )的定义域为(0,+∞), f ′(x )=ax +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0; 若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. 综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. (2)当a =1时,要证xf (x )<e x , 即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x,则g ′(x )=1-ln xx 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以g (x )max =g (e)=1+1e ,令函数h (x )=e xx 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证.2. (2022·安徽省江淮名校期末)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞上单调递减. (2)因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e.设g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e.故不等式xf (x )-e x +2e x ≤0得证. 【题型三 放缩法证明不等式】方法技巧 放缩法证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号. 例3 (2022·河南高三期末)已知函数f (x )=a e x -1-ln x -1. (1)若a =1,求f (x )在(1,f (1))处的切线方程; (2)证明:当a ≥1时,f (x )≥0.【解析】(1)当a =1时,f (x )=e x -1-ln x -1(x >0), f ′(x )=e x -1-1x,k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0. (2)∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1. 方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x ,令h (x )=e x -1-1x ,∴h ′(x )=e x -1+1x 2>0,∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0. 方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0; 当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”), 由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”), ∴e x -1≥x ≥ln x +1, 即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0. 【题型精练】1.(2022·广东·高三期末)已知函数1()1x e f x lnx-=+.(1)求函数()f x 的单调区间; (2)解关于x 的不等式11()()2f x x x>+【解析】(1)函数1()1x e f x lnx -=+.定义域为:11(0,)(,)ee+∞. 121(1)()(1)x e lnx x f x lnx -+-'=+,f '(1)0=. 令1()1g x lnx x =+-,211()0g x x x'=+>, ∴函数()g x 在定义域上单调递增. ∴10x e <<,11x e<<.()0f x '<,函数()f x 单调递减.1x >时,()0f x '>,函数()f x 单调递增. (2)不等式11()()2f x x x>+,即111()12x e x lnx x ->++.10x e <<,()0f x <,舍去.当1x =时,不等式的左边=右边,舍去.1x e∴>,且1x ≠.①11x e <<时,由1x e x ->,要证不等式111()12x e x lnx x ->++.可以证明:11()12x x lnx x >++.等价于证明:22211x lnx x >++.令222()(1)1x F x lnx x =-++. 2222(1)()0(1)x F x x x --'=<+,∴函数()F x 在1(,1)e上单调递减,()F x F ∴>(1)0=. ②当1x >时,不等式⇔12211x e lnxx x -+>+. 令122()1x e h x x -=+,1()lnxu x x+=. 12222(1)()0(1)x e x h x x --'=>+,函数()h x 在(1,)+∞上单调递增, ()h x h ∴>(1)1=.由1lnx x <-,()1u x ∴<.∴不等式12211x e lnxx x-+>+成立. 综上可得:不等式11()()2f x x x >+的解集为:1(,1)(1,)e +∞.【题型四 双变量不等式证明】方法技巧 双变量不等式证明对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()222111a x ax f x x x x -+'=--+=-. ①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>2244a a a a x --+-<,由()0f x '<,可得240a a x --<<或24a a x +->,所以()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x =+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则2214x x a --,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()22111122122*********ln ln ln14124a a x x x x a x x a a x x x x a a x x x x x x a -----++-=--+=----,于是()()22212222124ln44222444a a a f x f x a a a a a a a x x a a a ---+-+-<-⇔-<-⇔----- 22222444ln 4ln 222a a a a a a ⎛-+--⇔-< ⎪⎝⎭.设242a t -=,则244a t +,构造函数())2ln1t t t tϕ=-+,0t >,则()22212111011t t t t t ϕ++'==->+++,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以1212121121212122211212ln ln ln ln 1ln ln ln x x x x x x xx x x x x x x x x x x x x --<⇔⇔->⇔>--令()120,1x t x =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=ln x -2(x -1)x +1,g (x )=x ln x -m (x 2-1)(m ∈R ). (1)若函数f (x ),g (x )在区间(0,1)上均单调且单调性相反,求实数m 的取值范围; (2)若0<a <b ,证明:ab <a -b ln a -ln b<a +b2.【解析】 (1)f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2>0,所以f (x )在(0,1)上单调递增.由已知f (x ),g (x )在(0,1)上均单调且单调性相反,得g (x )在(0,1)上单调递减. 所以g ′(x )=ln x +1-2mx ≤0在(0,1)上恒成立,即2m ≥ln x +1x,令φ(x )=ln x +1x (x ∈(0,1)),φ′(x )=-ln xx 2>0,所以φ(x )在(0,1)上单调递增,φ(x )<φ(1)=1,所以2m ≥1,即m ≥12.(2)由(1)f (x )=ln x -2(x -1)x +1在(0,1)上单调递增,f (x )=ln x -2(x -1)x +1<f (1)=0,即ln x <2(x -1)x +1,令x =a b ∈(0,1)得ln a b <2⎝⎛⎭⎫a b -1a b +1=2(a -b )a +b ,∵ln ab <0,∴a -b ln a -ln b<a +b 2.在(1)中,令m =12,由g (x )在(0,1)上均单调递减得g (x )>g (1)=0,所以x ln x -12(x 2-1)>0,即ln x >12⎝⎛⎭⎫x -1x , 取x =ab∈(0,1)得ln a b >12⎝⎛⎭⎫a b-b a ,即ln a -ln b >a -b ab, 由ln a -ln b <0得:ab <a -b ln a -ln b ,综上:ab <a -b ln a -ln b <a +b2.总结提升 两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2. (2022·全国高三课时练习)已知函数f (x )=ax 2-x -ln 1x.(1)若f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,求f (x )的图象在点(1,f (1))处的切线方程; (2)若函数f (x )在定义域内有两个极值点x 1,x 2,求证:f (x 1)+f (x 2)<2ln2-3.【解析】(1)∵f (x )=ax 2-x -ln 1x =ax 2-x +ln x ,x ∈(0,+∞),∴f ′(x )=2ax -1+1x ,∴k =f ′(1)=2a .∵f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,∴2a =2,即a =1. ∴f (1)=0,故切点坐标为(1,0).∴切线方程为y =2x -2. (2)∵f ′(x )=2ax -1+1x =2ax 2-x +1x,∴由题意知方程2ax 2-x +1=0在(0,+∞)上有两个不等实根x 1,x 2, ∴Δ=1-8a >0,x 1+x 2=12a >0,x 1x 2=12a >0,∴0<a <18.f (x 1)+f (x 2)=ax 21+ax 22-(x 1+x 2)+ln x 1+ln x 2=a (x 21+x 22)-(x 1+x 2)+ln(x 1x 2)=a [(x 1+x 2)2-2x 1x 2]-(x 1+x 2)+ln(x 1x 2)=ln 12a -14a-1,令t =12a ,g (t )=ln t -t 2-1,则t ∈(4,+∞),g ′(t )=1t -12=2-t 2t<0,∴g (t )在(4,+∞)上单调递减.∴g (t )<ln4-3=2ln2-3,即f (x 1)+f (x 2)<2ln2-3. 【题型五 数列不等式证明】例5 (2022·辽宁省实验中学分校高三期末)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞. ①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x -+'=,令()1ln 1k x x x=-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111lim lim 11ln x x x x x++→→-==,所以1a ≤. ③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x x x--→→-==,所以1a ≥. 综上所述,1a =. (2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122k k ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n+++=-<,所以2111111e222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3.【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数. (1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.【解析】(1)()11f x x '=+,所以()1xg x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a Fx g x x++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01xG x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增. 由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11axh x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞. (2)()()()1212231ng g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证. 法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11tF t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1.。

高考数学-2020一轮-导数

高考数学-2020一轮-导数

总结:
等级(SR)
【例 2.2】 若函数 f ( x) = x − 13 sin 2x + a sin x 在 (−∞, +∞) 单调递增,则 a
发现点:
等级(SR)
【例
5.2.4】已知函数
f
(x)
=
x

1 x

a
ln
x
,讨论
f
(x)
的单调性
等级(SR)
【例
5.3.1】已知
f
(x)
=a(x

ln
x)
+
2x −1 x2

a

R
讨论
f
(x)
的单调性;
总结:
2020高考数学一轮
69
2020 高考数学一轮
数学一轮复习讲义(上)
发现点:
等级 (R)
【例 5.4.1】 已知函数 f ( x)= ae2x + (a − 2) ex − x ,讨论 f ( x) 的单调性
y = xex
y = x ln x
y=
x ex
y
=
lnx x
y
=
ex x
y
=
x lnx
新浪微博 @ 凉学长高考数学 老师 QQ:406454352
发现点:
四、无参证明题
等级(R)
【例 4.1】 x > 0 时, g ( x) =
ex

1 2
x2

x
−1 恒大于
0
总结:
2020高考数学一轮
(ln
x) '
=
1 x

函数的单调性与最值-2025高考数学复习

函数的单调性与最值-2025高考数学复习

第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
归纳拓展 1.复合函数的单调性 函 数 y= f(u) , u = φ(x) , 在 函 数 y= f[φ(x)] 的 定 义 域 上 , 如 果 y= f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u= φ(x)的单调性相反,则y=f[φ(x)]单调递减.
返回导航
(2)解法一:设 1<x1<x2,
x1
x2
ax2-x1
则 f(x1)-f(x2)=x1-a-x2-a=x1-ax2-a.
因为 a>0,x2-x1>0,所以要使 f(x1)-f(x2)>0,
只需(x1-a)(x2-a)>0 恒成立, 所以 a≤1.综上所述,a 的取值范围是(0,1].
-a 解法二:f′(x)=x-a2<0,
数 f(x)=x2+1在区间[1,2]上的最大值与最小值分别是 f(
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
题组三 走向高考 6.(2021·全国甲,4)下列函数中是增函数的为( D ) A.f(x)=-x B.f(x)=23x C.f(x)=x2
f(x)=-x2-2x+3x<0, -x-12+4x≥0,
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
双基自测 题组一 走出误区 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)因为 f(-3)<f(2),则 f(x)在[-3,2]上是增函数.( × ) (2)函数 f(x)在(-2,3)上单调递增,则函数的单调递增区间为(- 2,3).( × )

2024年高考数学一轮复习+ppt+利用导数研究函数的零点问题

2024年高考数学一轮复习+ppt+利用导数研究函数的零点问题

增,在(1,+∞)上单调递减.借助函数f(x)的单调性解决下列问题.
(1)设x1,x2是两个不相等的正数,且x1(1-ln x1)=x2(1-ln x2),证明: 2<x1+x2<e;
(2)设a,b为两个不相等的正数,且bln a-aln b=a-b,证明:2<1a+1b
<e.
证明 (1)因为f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以 f(x)max=f(1)=1,且f(e)=0.

利用导数确定函数零点或方程根的个数的常用方法
(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化为确定g(x)的 零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义域 区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函 数零点的个数.
(2)利用函数零点存在定理:先用该定理判断函数在某区间上有零点, 然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判 断函数在该区间上零点的个数.
解析
(2)解法一:当a≤0时,f′(x)=ex-a>0恒成立,f(x)在(-∞,+∞)上
单调递增,不符合题意;
当a>0时,令f′(x)=0,解得x=ln a,
当x∈(-∞,ln a)时,f′(x)<0,f(x)单调递减,
当x∈(ln a,+∞)时,f′(x)>0,f(x)单调递增.
所以f(x)的极小值也是最小值为f(ln a)=a-a(ln a+2)=-a(1+ln a).
证明
只要证x2(1-ln x2)+x2<e, 即证2x2-x2ln x2<e,x2∈(1,e). 设g(x)=2x-xln x,x∈(1,e), 则g′(x)=1-ln x>0. ∴g(x)在(1,e)上单调递增. ∴g(x)<g(e)=2e-e=e. ∴2x2-x2ln x2<e成立. ∴原命题成立,即x1+x2<e. 综上知,2<x1+x2<e.

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1x,y=x的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(ax+b))的导数;6.会使用导数公式表.知识梳理1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率limx∆→f(x0+Δx)-f(x0)Δx=0limx∆→ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limx∆→ΔyΔx=0limx∆→f(x0+Δx)-f(x0)Δx.(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).~2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx称为函数y=f(x)在开区间内的导函数.3.导数公式表基本初等函数导函数f(x)=c(c为常数)f′(x)=0f (x )=x α(α∈Q *) 】f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e x f ′(x )=e xf (x )=a x (a >0) ~f ′(x )=a x ln af (x )=ln x f ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x );~(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. [微点提醒]′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0. ′=-f ′(x )[f (x )]2.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.—4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( )】解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.(选修2-2P19B2改编)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9.&答案 C3.(选修2-2P3例题改编)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-++10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-+,a =v ′(t )=-. 答案 -+ -4.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( )2解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .)由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________. 解析 由题意得f ′(x )=e x ln x +e x ·1x ,则f ′(1)=e. 答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________. 解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,?所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算多维探究角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ;;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x x =e x ⎝ ⎛⎭⎪⎫ln x +1x . (2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3.(3)因为y =ln 1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( )》A.-eC.-2解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B规律方法 1.求函数的导数要准确地把函数分割成基本初等函数的和、差、积、商,再利用运算法则求导.2.复合函数求导,应由外到内逐层求导,必要时要进行换元.3.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________.<解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4 考点二 导数的几何意义 多维探究角度1 求切线方程'【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) =-2x =-x =2x=x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ):(2)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析 (1)设切点的横坐标为x 0(x 0>0), ∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,;由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1. 又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.]解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎨⎧1-a =2,2a +b =5,解得⎩⎨⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8[规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0) B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________. 解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,、可列方程组⎩⎨⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎨⎧x 0=1,a =-2或⎩⎨⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1, 当x 0=-1时,f (x 0)=1.∴点P 的坐标为(1,-1)或(-1,1).(2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x,[思维升华]1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解. [易错防范]1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′= sin x ;③复合函数求导分不清内、外层函数.2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.?基础巩固题组 (建议用时:35分钟)一、选择题1.下列求导数的运算中错误的是( ) A.(3x )′=3x ln 3 B.(x 2ln x )′=2x ln x +x x,x )))′=x sin x -cos xx 2—D.(sin x ·cos x )′=cos 2x解析 因为⎝ ⎛⎭⎪⎫cos x x ′=-x sin x -cos x x 2,C 项错误. 答案 C2.(2019·日照质检)已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )2,2)2解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e. 答案 B3.函数y =x 3的图象在原点处的切线方程为( )$=x =0=0D.不存在解析 函数y =x 3的导数为y ′=3x 2,则在原点处的切线斜率为0,所以在原点处的切线方程为y -0=0(x -0),即y =0. 答案 C4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( ) 秒末秒末和2秒末秒末秒末和4秒末解析s′(t)=t2-6t+8,由导数的定义知v=s′(t),'令s′(t)=0,得t=2或4,即2秒末和4秒末的速度为零.答案D5.(2019·南阳一模)函数f(x)=x-g(x)的图象在点x=2处的切线方程是y=-x-1,则g(2)+g′(2)=()D.-4解析∵f(x)=x-g(x),∴f′(x)=1-g′(x),又由题意知f(2)=-3,f′(2)=-1,∴g(2)+g′(2)=2-f(2)+1-f′(2)=7.答案A,6.已知e为自然对数的底数,曲线y=a e x+x在点(1,a e+1)处的切线与直线2e x -y-1=0平行,则实数a=()=a e+1,又切线解析∵y′=a e x+1,∴在点(1,a e+1)处的切线的斜率为y′|x=1与直线2e x-y-1=0平行,∴a e+1=2e,解得a=2e-1e.答案B7.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()]解析 由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上是单调递减的,说明函数y =f (x )的切线的斜率在(0,+∞)上也是单调递减的,故可排除A ,C ;又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.答案 D8.(2019·广州调研)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为( ) 2-ln 2 +ln 2解析 由y =x ln x 得y ′=ln x +1,设切点为(x 0,y 0),则k =ln x 0+1,∵切点(x 0,y 0)(x 0>0)既在曲线y =x ln x 上又在直线y =kx -2上,∴⎩⎨⎧y 0=kx 0-2,y 0=x 0ln x 0,∴kx 0-2=x 0ln x 0,∴k =ln x 0+2x 0,则ln x 0+2x 0=ln x 0+1,∴x 0=2,∴k =ln 2+1. 答案 D?二、填空题9.已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为________.解析 由题意得f ′(x )=4x ,令4x 0=-8,则x 0=-2,∴f (x 0)=9,∴点M 的坐标是(-2,9).答案 (-2,9)10.(2017·天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析 f (1)=a ,切点为(1,a ).f ′(x )=a -1x ,则切线的斜率为f ′(1)=a -1,切线方程为:y -a =(a -1)(x -1),令x =0得出y =1,故l 在y 轴上的截距为1.答案 1—11.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)=________.解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=4+3f ′(2)+12=3f ′(2)+92,所以f ′(2)=-94.答案 -9412.已知函数y =f (x )的图象在点(2,f (2))处的切线方程为y =2x -1,则曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为________________.解析 由题意,知f (2)=2×2-1=3,∴g (2)=4+3=7,"∵g ′(x )=2x +f ′(x ),f ′(2)=2,∴g ′(2)=2×2+2=6,∴曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为y -7=6(x -2),即6x -y -5=0.答案 6x -y -5=0能力提升题组(建议用时:15分钟)13.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( )C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝ ⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b =⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2.答案 D14.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________.解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时,由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎨⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1].答案 [-2,-1]15.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________.解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0), ∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 22 16.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)新高考创新预测17.(新定义题型)定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x )=[f ′(x )]′. 定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x )在区间D 上为凹函数.已知函数f (x )=x 3-32x 2+1在区间D 上为凹函数,则x 的取值范围是________.解析 因为f (x )=x 3-32x 2+1,因为f ′(x )=3x 2-3x ,f ″(x )=6x -3,令f ″(x )>0,解得x >12,故x 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 答案 ⎝ ⎛⎭⎪⎫12,+∞。

专题13 导数与函数的极(最)值--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题13  导数与函数的极(最)值--《2023年高考数学命题热点聚焦与扩展》【原卷版】

【热点聚焦】新课程及新高考对极值(最值)的基本要求是:了解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大值、极小值,会求闭区间上函数的最大值、最小值,会用导数解决某些实际问题.从高考命题看,往往以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象等相结合,且有综合化更强的趋势.【重点知识回眸】(一)函数的极值1.函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点4.极值点的作用:(1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点5.()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点⇒()0'0f x = 说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点⇒导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③上述结论告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 6.求极值点的步骤:(1)筛选: 令()'0f x =求出()'f x 的零点(此时求出的点有可能是极值点) (2)精选:判断函数通过()'fx 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题.但要注意检验零点能否成为极值点. 8、极值点与函数奇偶性的联系:(1)若()f x 为奇函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极小(极大)值点(2)若()f x 为偶函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极大(极小)值点 (二)函数的最值1.在闭区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值.2.若函数f(x)在[a ,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3.最大值与最小值在图像中体现为函数的最高点和最低点4.最值为函数值域的元素,即必须是某个自变量的函数值.例如:()[)ln ,1,4f x x x =∈,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到.()f x 没有最大值.5.一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z ππ=+∈,有无穷多个.6.“最值”与“极值”的区别和联系如图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.7.结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.8.最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点. 9.利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: (1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值. 10.最值(点)的作用 (1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ≥=,即不等式ln 1x x ≤-.x 3x 2x 1baxOy【典型考题解析】热点一 函数极值的辨析【典例1】(重庆·高考真题(理))设函数()f x 在R 上可导,其导函数为 ()'f x ,且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值 (2)f 和极小值(1)fB .函数()f x 有极大值 (2)f -和极小值(1)fC .函数()f x 有极大值 (2)f 和极小值(2)f -D .函数()f x 有极大值 (2)f -和极小值(2)f【典例2】【多选题】(2022·江苏·常熟市尚湖高级中学高二期中)已知函数221()e 4x f x x x x =---,则( )A .12-和0是函数()f x 的极值点B .()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增C .()f x 的极大值为12e-D .()f x 的极小值为14-【总结提升】1.函数极值的辨析问题,特别是有关给出图象研究函数性质的题目,要分清给的是f (x )的图象还是f ′(x )的图象,若给的是f (x )的图象,应先找出f (x )的单调区间及极(最)值点,如果给的是f ′(x )的图象,应先找出f ′(x )的正负区间及由正变负还是由负变正,然后结合题目特点分析求解.2.f (x )在x =x 0处有极值时,一定有f ′(x 0)=0,f (x 0)可能为极大值,也可能为极小值,应检验f (x )在x =x 0两侧的符号后才可下结论;若f ′(x 0)=0,则f (x )未必在x =x 0处取得极值,只有确认x 1<x 0<x 2时,f (x 1)·f (x 2)<0,才可确定f (x )在x =x 0处取得极值.3.易错提醒:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.热点二 已知函数(图象),求极值点的个数【典例3】(2022·北京·北师大二附中高二阶段练习)已知函数()f x 的定义域为(a ,b ),导函数()'f x 在(a ,b )上的图象如图所示,则函数()f x 在(a ,b )上的极大值点的个数为( )A .1B .2C .3D .4【典例4】【多选题】(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线【易错提醒】极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号. 热点三 已知函数(图象),求极值(点)【典例5】(陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .是的零点 B .1是的极值点 C .3是的极值D .点在曲线上【典例6】(2017·全国·高考真题(理))若是函数的极值点,则的极小值为( ). A .B .C .D .【典例7】(2022·陕西·宝鸡市渭滨区教研室高二期末(理))函数21()ln 2f x x x =-的极值点是_________. 【方法总结】一般地,有两种类型,即根据函数图象和已知函数求极值(点)问题,已知函数求极值(点)3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =2x =-21()(1)x f x x ax e -=+-()f x 1-32e --35e -1问题,求已知函数的极值,要注意f ′(x)=0的根是否在定义域内. 热点四 已知极值(点),求参数的值或取值范围【典例8】(2021·全国·高考真题(理))设,若为函数的极大值点,则( ) A .B .C .D .【典例9】(广东·高考真题(文))设,若函数,,有大于零的极值点,则( ) A .B .C .D . 【典例10】(2023·全国·高三专题练习)若函数3()3f x x bx b =-+在区间(0,1)内有极小值,则b 的取值范围是( ) A .(,1)-∞B .(0,1)C .(1,)+∞D .(1,0)-【典例11】(2022·全国·高考真题(理))已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【典例12】(2022·河南·邓州市第一高级中学校高二期末(理))若函数()2x f x e ax =+无极值点,则a 的取值范围是______. 【规律方法】1.已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. (2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.由函数极值(个数)求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号. 热点五 利用导数求函数的最值【典例13】(2022·湖北武汉·高三开学考试)已知正三棱锥的各顶点都在同一球面上,若该球的表面积为36π,则该正三棱锥体积的最大值为___________.【典例14】(2022·安徽滁州·高二期末)已知函数()()cos ,R f x ax b x a b =++∈,若()f x 在点()()0,0f 处的切线方程为122y x =+. (1)求a ,b 的值;(2)求函数()f x 在[]0,2π上的最大值.0a ≠x a =()()()2f x a x a x b =--a b <a b >2ab a <2ab a >a R ∈e x y ax =+x ∈R 1a <-1a >-1a e<-1a e>-【典例15】(2021·北京高考真题)已知函数()232xf x x a-=+. (1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值. 【规律方法】1.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.2.当导函数y =f ′(x )无法判断正负时,可令g (x )=f ′(x )再求g ′(x ),先判断g (x )=f ′(x )的单调性,再根据单调性确定y =f ′(x )的正负号. 热点六 函数的最值求参数值(范围)【典例16】(2021·全国高三二模)已知直线y kx =与曲线()ln y x b =+相切,当b 取得最大值时,k 的值为_______________________.【典例17】(2022·福建·莆田一中高二期末)已知函数()()3231312f x x k x kx =-+++,其中R k ∈.(1)当3k =时,求函数()f x 在()0,3内的极值点;(2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围. 【易错提醒】1.由于参数的取值范围不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化,故含参数时,需注意是否分类讨论.2.已知函数最值求参数,可先求出函数在给定区间上的极值及函数在区间端点处的函数值,通过比较它们的大小,判断出哪个是最大值,哪个是最小值,结合已知求出参数,进而使问题得以解决.热点七 利用导数解决生活中的优化问题【典例18】](2020·江苏高考)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO ′的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(k >0),问O ′E 为多少米时,桥墩CD 与EF 的总造价最低? 【易错提醒】1.利用导数解决生活中的优化问题的四个步骤(1)分析实际问题中各量之间的关系,建立实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ).(2)求函数的导数f ′(x ),解方程f ′(x )=0.(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值. (4)回归实际问题,结合实际问题作答.2.实际生活中用料最省、费用最低、损耗最小、最节省时间等一般都需要利用导数求解相应函数的最小值,此时根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,若函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.【精选精练】一、单选题 1.(2023·全国·高三专题练习)函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点2.(2022·新疆·新和县实验中学高二期末(文))已知函数()f x 的导函数()'f x 的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点 ②()'f x 在1x =-处取得极小值 ③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0 正确的序号是( ) A .①④B .②③④C .②③D .①②④3.(2022·重庆巴蜀中学高三阶段练习)设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=+的图象如图所示,则下列结论中正确的是( )A .函数()f x 有极大值()3f -和()3fB .函数()f x 有极小值()3f -和()3fC .函数()f x 有极小值()3f 和极大值()3f -D .函数()f x 有极小值()3f -和极大值()3f4.(2023·全国·高三专题练习)设直线x t =与函数()22f x x =,()ln g x x =的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( ) A .1B .12C 5D 2 5.(2022·陕西·宝鸡市渭滨区教研室高二期末(理))已知函数()f x 321132x x cx d =+--有极值,则c 的取值范围为( ) A .14c <-B .14c ≤-C .14c ≥-D .14c >-6.(2021·青海·西宁市海湖中学高三开学考试(理))若函数()2ln f x x x=-,满足() f x a x ≥-恒成立,则a 的最大值为( ) A .3B .4C .3ln 2-D .3ln 2+7.(2022·江苏·扬中市第二高级中学高三开学考试)若函数2()()2f x x x c x =-=在处有极大值,则常数c 的值为( ) A .4B .26或C .2D .68.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππB .22ππC .-1D .09.(河南省部分名校2021-2022学年高三上学期8月数学(理)开学考试巩固试题)已知函数()sin f x x x =-,12,0()e ,0x x x g x x -+≤⎧=⎨>⎩,若关于x 的方程(())0f g x m +=有两个不等实根1x ,2x ,且12x x <,则12x x +的最大值是( )A .0B .2C .1ln2+D .42ln 2+10.(2022·福建·泉州市城东中学高二期中)已知1x ,2x 是函数()222ln f x x ax x =-+的两个极值点,且12x x <,当52a ≥时,不等式()12f x mx ≥恒成立,则实数m 的取值范围( ) A .8ln 2,09⎡⎤--⎢⎥⎣⎦B .8,ln 29⎛⎤-∞-- ⎥⎝⎦C .8ln 2,09⎡⎫--⎪⎢⎣⎭D .8ln 2,9⎡⎫--+∞⎪⎢⎣⎭二、多选题11.(2022·江西·丰城九中高二期末(理))函数32()132ax ax f x x =-++在区间1,33⎛⎫ ⎪⎝⎭内仅有唯一极值点的一个充分不必要条件为( )A .9,2a ⎡⎫∈+∞⎪⎢⎣⎭B .9,2a ⎛⎫∈+∞ ⎪⎝⎭C .1,06a ⎛⎫∈- ⎪⎝⎭D .19,62a ⎛⎫∈- ⎪⎝⎭12.(2022·辽宁葫芦岛·高二期末)设函数()()24143e x f x ax a x a ⎡⎤=-+++⎣⎦.若()f x 在2x =处取得极大值,a 的值可能为( )A .-2B .14C .1D .2 三、填空题13.(2019·浙江·杭州四中高三开学考试)已知函数()4f x a x a x=-++在区间[]1,4上的最大值是5,则实数a 的取值范围是________.14.(2022·广东广州·高二期末)已知函数()()2ln 21f x x a x =++有两个不同的极值点1x 、2x ,且12x x <,则实数a 的取值范围是___________.15.(2022·黑龙江·大庆实验中学高二期末)已知关于x 不等式e x a x b ≥+对任意R x ∈和正数b 恒成立,则a b的最小值为______.16.(2021·山东·临沂市兰山区教学研究室高三开学考试)若1x =-是函数()()221e -=-+x f x x ax 的极值点,则=a ______;()f x 的极大值为______.三、解答题17.(2023·全国·高三专题练习)已知函数f (x )=ax ﹣1﹣ln x (a ∈R ).(1)讨论函数f (x )的定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx ﹣2恒成立,求实数b 的最大值.18.(2018·北京高考真题(文))设函数f(x)=[ax 2−(3a +1)x +3a +2]e x . (Ⅰ)若曲线y =f(x)在点(2,f(2))处的切线斜率为0,求a ;(Ⅱ)若f(x)在x =1处取得极小值,求a 的取值范围.。

高考数学一轮总复习解答大题专项训练六大专题

高考数学一轮总复习解答大题专项训练六大专题

高考大题专项(一) 导数的综合应用突破1导数与函数的单调性1.已知函数f(x)=x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)略.2.已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)略.3.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)略.4.(2019山东潍坊三模,21)已知函数f(x)=x2+a ln x-2x(a∈R).(1)求f(x)的单调递增区间;(2)略.5.设函数f(x)=(x-1)e x-x2(其中k∈R).(1)求函数f(x)的单调区间;(2)略.6.(2019河北衡水同卷联考,21)已知函数f(x)=x2e ax-1.(1)讨论函数f(x)的单调性;(2)略.突破2利用导数研究函数的极值、最值1.已知函数f(x)=ln x-ax(a∈R).(1)当a=时,求f(x)的极值;(2)略.2.(2019河北衡水深州中学测试)讨论函数f(x)=ln x-ax(a∈R)在定义域内的极值点的个数.3.设函数f(x)=2ln x-x2+ax+2.(1)当a=3时,求f(x)的单调区间和极值;(2)略.4.已知函数f(x)=.(1)当a=1时,判断f(x)有没有极值点?若有,求出它的极值点;若没有,请说明理由;(2)略.5.(2019湖北八校联考二,21)已知函数f(x)=ln x+ax2+bx.(1)函数f(x)在点(1,f(1))处的切线的方程为2x+y=0,求a,b的值,并求函数f(x)的最大值;(2)略.6.(2019广东广雅中学模拟)已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.突破3导数在不等式中的应用1.(2019湖南三湘名校大联考一,21)已知函数f(x)=x ln x.(1)略;(2)当x≥时,f(x)≤ax2-x+a-1,求实数a的取值范围.2.已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.3.已知函数f(x)=e x+ax+ln(x+1)-1.(1)若x≥0,f(x)≥0恒成立,求实数a的取值范围.(2)略.4.函数f(x)=(x-2)e x+ax2-ax.(1)略;(2)设a=1,当x≥0时,f(x)≥kx-2,求k的取值范围.5.已知函数f(x)=.(1)略;(2)若f(x)<x+1在定义域上恒成立,求a的取值范围.6.已知x1,x2(x1<x2)是函数f(x)=e x+ln(x+1)-ax(a∈R)的两个极值点.(1)求a的取值范围;(2)求证:f(x2)-f(x1)<2ln a.突破4导数与函数的零点1.已知函数f(x)=x2-m ln x.若m≥1,令F(x)=f(x)-x2+(m+1)x,试讨论函数F(x)的零点个数.2.(2019河北唐山三模,21)已知函数f(x)=x ln x-a(x2-x)+1,函数g(x)=f'(x).(1)若a=1,求f(x)的极大值;(2)当0<x<1时,g(x)有两个零点,求a的取值范围.3.(2019河南开封一模,21)已知函数f(x)=.(1)略;(2)若f(1)=1,且方程f(x)=1在区间(0,1)内有解,求实数a的取值范围.4.已知函数f(x)=ln x,g(x)=x3+2(1-a)x2-8x+8a+7.(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)=若函数y=h(x)有三个零点,求实数a的取值范围.5.已知f(x)=x ln x.(1)求f(x)的极值;(2)若f(x)-ax x=0有两个不同解,求实数a的取值范围.6.(2019河北唐山三模,21)已知函数f(x)=x ln x-x2-ax+1,a>0,函数g(x)=f'(x).(1)若a=ln 2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.参考答案高考大题专项(一) 导数的综合应用突破1导数与函数的单调性1.解(1)当a=3时,f(x)=x3-3x2-3x-3,f'(x)=x2-6x-3.令f'(x)=0,解得x=3-2或x=3+2当x∈(-∞,3-2)∪(3+2,+∞)时,f'(x)>0;当x∈(3-2,3+2)时,f'(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.2.证明(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g'(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g'(x)<0,所以g(x)在(0,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.3.解(1)由题意知f'(x)=(x-k+1)e x.令f'(x)=0,得x=k-1.当x∈(-∞,k-1)时,f'(x)<0,当x∈(k-1,+∞)时,f'(x)>0.所以f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+∞).4.解(1)函数f(x)的定义域为(0,+∞),f'(x)=2x+-2=,令2x2-2x+a=0,Δ=4-8a=4(1-2a),若a,则Δ≤0,f'(x)≥0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递增;若a<,则Δ>0,方程2x2-2x+a=0,两根为x1=,x2=,当a≤0时,x2>0,x∈(x2,+∞),f'(x)>0,f(x)单调递增;当0<a<时,x1>0,x2>0,x∈(0,x1),f'(x)>0,f(x)单调递增,x∈(x2,+∞),f'(x)>0,f(x)单调递增.综上,当a时,函数f(x)单调递增区间为(0,+∞),当a≤0时,函数f(x)单调递增区间为,+∞,当0<a<时,函数f(x)单调递增区间为0,,,+∞.5.解(1)函数f(x)的定义域为(-∞,+∞),f'(x)=e x+(x-1)e x-kx=x e x-kx=x(e x-k),①当k≤0时,令f'(x)>0,解得x>0,∴f(x)的单调递减区间是(-∞,0),单调递增区间是(0,+∞).②∵当0<k<1时,令f'(x)>0,解得x<ln k或x>0,∴f(x)在(-∞,ln k)和(0,+∞)上单调递增,在(ln k,0)上单调递减.③当k=1时,f'(x)≥0,f(x)在(-∞,+∞)上单调递增.④当k>1时,令f'(x)>0,解得x<0或x>ln k,所以f(x)在(-∞,0)和(ln k,+∞)上单调递增,在(0,ln k)上单调递减.6.解(1)函数f(x)的定义域为R.f'(x)=2x e ax+x2·a e ax=x(ax+2)e ax.当a=0时,f(x)=x2-1,则f(x)在区间(0,+∞)内单调递增,在区间(-∞,0)内单调递减;当a>0时,f'(x)=ax x+e ax,令f'(x)>0得x<-或x>0,令f'(x)<0得-<x<0,所以f(x)在区间-∞,-内单调递增,在区间-,0内单调递减,在区间(0,+∞)内单调递增;当a<0时,f'(x)=ax x+e ax,令f'(x)>0得0<x<-,令f'(x)<0得x>-或x<0,所以f(x)在区间(-∞,0)内单调递减,在区间0,-内单调递增,在区间-,+∞内单调递减.突破2利用导数研究函数的极值、最值1.解(1)当a=时,f(x)=ln x-x,函数的定义域为(0,+∞),f'(x)=,令f'(x)=0,得x=2,于是当x变化时,f'(x),f(x)的变化情况如下表:x(0,2) 2 (2,+∞)f'(x) +0 -lnf(x) ↗↘2-1故f(x)的极大值为ln2-1,无极小值.2.解函数的定义域为(0,+∞),f'(x)=-a=(x>0).当a≤0时,f'(x)>0在(0,+∞)上恒成立,故函数f(x)在(0,+∞)上单调递增,此时函数f(x)在定义域上无极值点;当a>0时,若x∈0,,则f'(x)>0,若x∈,+∞,则f'(x)<0,故函数f(x)在x=处取极大值.综上可知,当a≤0时,函数f(x)无极值点,当a>0时,函数f(x)有一个极大值点.3.解(1)f(x)的定义域为(0,+∞).当a=3时,f(x)=2ln x-x2+3x+2,所以f'(x)=-2x+3=,令f'(x)==0,得-2x2+3x+2=0,因为x>0,所以x=2.f(x)与f'(x)在区间(0,+∞)上的变化情况如下:x(0,2) 2 (2,+∞)f'(x) +0 -2lnf(x) ↗↘2+4所以f(x)的单调递增区间为(0,2),单调递减区间为(2,+∞).f(x)的极大值为2ln2+4,无极小值.4.解(1)函数f(x)=,则x>0且x≠1,即函数的定义域为(0,1)∪(1,+∞).当a=1时,f(x)=,则f'(x)=,令g(x)=x-ln x-1,则g'(x)=1-,①当x∈(0,1)时,g'(x)<0,g(x)单调递减,g(x)>g(1)=0,∴f'(x)>0,f(x)在区间(0,1)上单调递增,所以无极值点;②当x∈(1,+∞)时,g'(x)>0,g(x)单调递增,g(x)>g(1)=0,∴f'(x)>0,f(x)在区间(1,+∞)上单调递增,所以无极值点.综上,当a=1时,f(x)无极值点.5.解(1)因为f(x)=ln x+ax2+bx,所以f'(x)=+2ax+b,则在点(1,f(1))处的切线的斜率为f'(1)=1+2a+b,由题意可得,1+2a+b=-2,且a+b=-2,解得a=b=-1.所以f'(x)=-2x-1==-,由f'(x)=0,可得x=(x=-1舍去),当0<x<时,f'(x)>0,f(x)单调递增;当x>时,f'(x)<0,f(x)单调递减,故当x=时,f(x)取得极大值,且为最大值,f=-ln2-故f(x)的最大值为-ln2-6.解(1)易知f(x)的定义域为(0,+∞),当a=-1时,f(x)=-x+ln x,f'(x)=-1+,令f'(x)=0,得x=1.当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴f(x)max=f(1)=-1.∴当a=-1时,函数f(x)的最大值为-1.(2)f'(x)=a+,x∈(0,e],则,+∞.①若a≥-,则f'(x)≥0,从而f(x)在(0,e]上单调递增,∴f(x)max=f(e)=a e+1≥0,不合题意.②若a<-,令f'(x)>0得,a+>0,又x∈(0,e],解得0<x<-;令f'(x)<0得,a+<0,又x∈(0,e],解得-<x≤e.从而f(x)在0,-上单调递增,在-,e上单调递减,∴f(x)max=f-=-1+ln-.令-1+ln-=-3,得ln-=-2,即a=-e2.∵-e2<-,∴a=-e2符合题意.故实数a的值为-e2.突破3导数在不等式中的应用1.解(2)由已知得a,设h(x)=,则h'(x)=∵y=x ln x+ln x+2是增函数,且x,∴y≥--1+2>0,∴当x∈,1时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0,∴h(x)在x=1处取得最大值,h(1)=1,∴a≥1.故a的取值范围为[1,+∞).2.(1)解f(x)的定义域为(0,+∞),f'(x)=a e x-由题设知,f'(2)=0,所以a=从而f(x)=e x-ln x-1,f'(x)=e x-当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明当a时,f(x)-ln x-1.设g(x)=-ln x-1,则g'(x)=当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a时,f(x)≥0.3.解(1)若x≥0,则f'(x)=e x++a,令g(x)=e x++a,则g'(x)=e x-,g'(x)在[0,+∞)上单调递增,则g'(x)≥g'(0)=0,则f'(x)在[0,+∞)上单调递增,f'(x)≥f'(0)=a+2.①当a+2≥0,即a≥-2时,f'(x)≥0,则f(x)在[0,+∞)上单调递增,此时f(x)≥f(0)=0,满足题意.②当a<-2时,因为f'(x)在[0,+∞)上单调递增,f'(0)=2+a<0,当x→+∞时,f'(x)>0.所以∃x0∈(0,+∞),使得f'(x0)=0.则当0<x<x0时,f'(x)<f'(x0)=0,∴函数f(x)在(0,x0)上单调递减.∴f(x0)<f(0)=0,不合题意,舍去.综上所述,实数a的取值范围是[-2,+∞).4.解(2)令g(x)=f(x)-kx+2=(x-2)e x+x2-x-kx+2,则g'(x)=(x-1)e x+x-1-k,令h(x)=(x-1)e x+x-1-k,则h'(x)=x e x+1,当x≥0时,h'(x)=x e x+1>0,h(x)单调递增.∴h(x)≥h(0)=-2-k,即g'(x)≥-2-k.当-2-k≥0,即k≤-2时,g'(x)≥0,g(x)在(0,+∞)上单调递增,g(x)≥g(0)=0,不等式f(x)≥kx-2恒成立.当-2-k<0,即k>-2时,g'(x)=0有一个解,设为x0,∴当x∈(0,x0)时,g'(x)<0,g(x)为单调递减;当x∈(x0,+∞)时,g'(x)>0,g(x)单调递增,则g(x0)<g(0)=0,∴当x≥0时,f(x)≥kx-2不恒成立.综上所述,k的取值范围是(-∞,-2].5.解(2)由f(x)<x+1,得<x+1(x>0且x≠1),即a ln x-x+<0.令h(x)=a ln x-x+,则h'(x)=-1-令g(x)=x2-ax+1.①当Δ=a2-4≤0,即-2≤a≤2时,x2-ax+1≥0.∴当x∈(0,1)时,h'(x)≤0,h(x)单调递减,h(x)>h(1)=0,a ln x-x+<0成立.当x∈(1,+∞)时,h'(x)≤0,h(x)单调递减,h(x)<h(1)=0,a ln x-x+<0成立.故-2≤a≤2符合题意.②当Δ=a2-4>0,即a<-2或a>2时,设g(x)=x2-ax+1=0的两根为x1,x2(x1<x2).当a>2时,x1+x2=a>0,x1x2=1,∴0<x1<1<x2.由h'(x)>0,得x2-ax+1<0,解集为(x1,1)∪(1,x2),∴h(x)在(x1,1)上单调递增,h(x1)<h(1)=0,a ln x1-x1+>0,∴a>2不合题意.当a<-2时,g(x)的图象的对称轴x=<-1,g(x)在(0,+∞)上单调递增,g(x)>g(0)=1>0, ∴当x∈(0,1)时,h'(x)≤0,h(x)单调递减,h(x)>h(1)=0,a ln x-x+<0成立.当x∈(1,+∞)时,h'(x)≤0,h(x)单调递减,h(x)<h(1)=0,a ln x-x+<0成立.综上,a的取值范围是(-∞,2].6.(1)解由题意得f'(x)=e x+-a,x>-1,令g(x)=e x+-a,x>-1,则g'(x)=e x-,令h(x)=e x-,x>-1,则h'(x)=e x+>0,∴h(x)在(-1,+∞)上单调递增,且h(0)=0.当x∈(-1,0)时,g'(x)=h(x)<0,g(x)单调递减,当x∈(0,+∞)时,g'(x)=h(x)>0,g(x)单调递增.∴g(x)≥g(0)=2-a.①当a≤2时,f'(x)=g(x)>g(0)=2-a≥0.f(x)在(-1,+∞)上单调递增,此时无极值;②当a>2时,∵g-1=>0,g(0)=2-a<0,∴∃x1∈-1,0,g(x1)=0,当x∈(-1,x1)时,f'(x)=g(x)>0,f(x)单调递增;当x∈(x1,0)时,f'(x)=g(x)<0,f(x)单调递减,∴x=x1是f(x)的极大值点.∵g(ln a)=>0,g(0)=2-a<0,∴∃x2∈(0,ln a),g(x2)=0,当x∈(0,x2)时,f'(x)=g(x)<0,f(x)单调递减;当x∈(x2,+∞)时,f'(x)=g(x)>0,f(x)单调递增,∴x=x2是f(x)的极小值点.综上所述,a的取值范围为(2,+∞).(2)证明由(1)得a∈(2,+∞),-1<x1<0<x2<ln a,且g(x1)=g(x2)=0,∴x2-x1>0,<x1+1<1,1<x2+1<1+ln a,,-a<0,1<<a(1+ln a)<a2,∴f(x2)-f(x1)=+ln-a(x2-x1)=(x2-x1)-a+ln<ln a2=2ln a.突破4导数与函数的零点1.解F(x)=f(x)-x2+(m+1)x=-x2+(m+1)x-m ln x(x>0).易得F'(x)=-x+m+1-=-①若m=1,则F'(x)≤0,函数F(x)为减函数,∵F(1)=>0,F(4)=-ln4<0,∴F(x)有唯一零点;②若m>1,则当0<x<1或x>m时,F'(x)<0,当1<x<m时,F'(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增, ∵F(1)=m+>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,当m≥1时,函数F(x)有唯一零点.2.解(1)f(x)=x ln x-x2+x+1(x>0),g(x)=f'(x)=ln x-2x+2,g'(x)=-2=,当x∈0,时,g'(x)>0,g(x)单调递增;当x∈,+∞时,g'(x)<0,g(x)单调递减.又g(1)=f'(1)=0,则当x∈,1时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.故当x=1时,f(x)取得极大值f(1)=1.(2)g(x)=f'(x)=ln x+1-2ax+a,g'(x)=-2a=,①若a≤0,则g'(x)>0,g(x)单调递增,至多有一个零点,不合题意.②若a>0,则当x∈0,时,g'(x)>0,g(x)单调递增;当x∈,+∞时,g'(x)<0,g(x)单调递减.则g≥g=ln+1=ln>0.不妨设g(x1)=g(x2),x1<x2,则0<x1<<x2<1.一方面,需要g(1)<0,得a>1.另一方面,由(1)得,当x>1时,ln x<x-1<x,则x<e x,进而,有2a<e2a,则e-2a<,且g(e-2a)=-2a e-2a+1-a<0,故存在x1,使得0<e-2a<x1<综上,a的取值范围是(1,+∞).3.解(2)由f(1)=1得b=e-1-a,由f(x)=1得e x=ax2+bx+1,设g(x)=e x-ax2-bx-1,则g(x)在(0,1)内有零点,设x0为g(x)在(0,1)内的一个零点, 由g(0)=g(1)=0知g(x)在(0,x0)和(x0,1)上不单调.设h(x)=g'(x),则h(x)在(0,x0)和(x0,1)上均存在零点,即h(x)在(0,1)上至少有两个零点.g'(x)=e x-2ax-b,h'(x)=e x-2a,当a时,h'(x)>0,h(x)在(0,1)上单调递增,h(x)不可能有两个及以上零点,当a时,h'(x)<0,h(x)在(0,1)上单调递减,h(x)不可能有两个及以上零点,当<a<时,令h'(x)=0得x=ln(2a)∈(0,1),∴h(x)在(0,ln(2a))上单调递减,在(ln(2a),1)上单调递增,h(x)在(0,1)上存在最小值h(ln(2a)),若h(x)有两个零点,则有h(ln(2a))<0,h(0)>0,h(1)>0,h(ln(2a))=3a-2a ln(2a)+1-e<a<,设φ(x)=x-x ln x+1-e(1<x<e),则φ'(x)=-ln x,令φ'(x)=0,得x=,当1<x<时,φ'(x)>0,φ(x)单调递增;当<x<e时,φ'(x)<0,φ(x)单调递减.∴φmax(x)=φ()=+1-e<0,∴h(ln(2a))<0恒成立.由h(0)=1-b=a-e+2>0,h(1)=e-2a-b>0,得e-2<a<1.综上,a的取值范围为(e-2,1).4.解(1)因为g(x)=x3+2(1-a)x2-8x+8a+7,所以g'(x)=2ax2+4(1-a)x-8,所以g'(2)=0.所以a=0,即g(x)=2x2-8x+7.g(0)=7,g(3)=1,g(2)=-1.所以g(x)在[0,3]上的值域为[-1,7].(2)当a=0时,g(x)=2x2-8x+7,由g(x)=0,得x=2±(1,+∞),此时函数y=h(x)有三个零点,符合题意.当a>0时,g'(x)=2ax2+4(1-a)x-8=2a(x-2)x+.由g'(x)=0,得x=2.当x∈(0,2)时,g'(x)<0;当x∈(2,+∞)时,g'(x)>0.若函数y=h(x)有三个零点,则需满足g(1)>0且g(2)<0,解得0<a<当a<0时,g'(x)=2ax2+4(1-a)x-8=2a(x-2)x+.由g'(x)=0,得x1=2,x2=-①当-<2,即a<-1时,因为g(x)极大值=g(2)=a-1<0,此时函数y=h(x)至多有一个零点,不符合题意;②当-=2,即a=-1时,因为g'(x)≤0,此时函数y=h(x)至多有两个零点,不符合题意;③当->2,即-1<a<0时.若g(1)<0,则函数y=h(x)至多有两个零点,不符合题意;若g(1)=0,则a=-,因为g-=8a3+7a2+8a+,所以g->0,此时函数y=h(x)有三个零点,符合题意;若g(1)>0,则-<a<0,由g-=8a3+7a2+8a+.记φ(a)=8a3+7a2+8a+,则φ'(a)>0,所以φ(α)>φ->0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-∪0,.5.解(1)f(x)的定义域是(0,+∞),f'(x)=ln x+1,令f'(x)>0,解得x>,令f'(x)<0,解得0<x<,故f(x)在0,上单调递减,在,+∞上单调递增,故x=时,f(x)极小值=f=-(2)记t=x ln x,t≥-,则e t=e x ln x=(e ln x)x=x x,故f(x)-ax x=0,即t-a e t=0,a=,令g(t)=,g'(t)=,令g'(t)>0,解得-t<1,令g'(t)<0,解得t>1,故g(t)在-,1上单调递增,在(1,+∞)上单调递减,故g(t)max=g(1)=,由t=x ln x,t≥-,a=g(t)=的图象和性质有:①0<a<,y=a和g(t)有两个不同交点(t1,a),(t2,a),且0<t1<1<t2,t1=x ln x,t2=x ln x各有一解,即f(x)-ax x=0有2个不同解.②-<a<0,y=a和g(t)=仅有1个交点(t3,a),且-<t3<0,t3=x ln x有2个不同的解,即f(x)-ax x=0有两个不同解.③a取其他值时,f(x)-ax x=0最多1个解.综上,a的范围是-,0∪0,.6.(1)解g(x)=f'(x)=ln x+1-x-a,g'(x)=,当x∈(0,2)时,g'(x)>0,g(x)单调递增;当x∈(2,+∞)时,g'(x)<0,g(x)单调递减.故当x=2时,g(x)的最大值为g(2)=ln2-a.若a=ln2,g(x)取得最大值g(2)=0.(2)证明①若a=ln2,由(1)知,当x∈(0,+∞)时,f'(x)≤0,且仅当x=2时,f'(x)=0.此时f(x)单调递减,且f(2)=0,故f(x)只有一个零点x0=2.②若a>ln2,由(1)知,当x∈(0,+∞)时,f'(x)=g(x)<0,f(x)单调递减.此时,f(2)=2(ln2-a)<0,注意到x1=<1,(x ln x)'=ln x+1,故x ln x≥-,f(x1)=x1ln x1->->0,故f(x)仅存在一个零点x0∈(x1,2).③若0<a<ln2,则g(x)的最大值g(2)=ln2-a>0,即f'(2)>0,注意到f'=--a<0,f'(8)=ln8-3-a<0,故存在x2∈,2,x3∈(2,8),使得f'(x2)=f'(x3)=0.则当x∈(0,x2)时,f'(x)<0,f(x)单调递减;当x∈(x2,x3)时,f'(x)>0,f(x)单调递增;当x∈(x3,+∞)时,f'(x)<0,f(x)单调递减.故f(x)有极小值f(x2),有极大值f(x3).由f'(x2)=0得ln x2+1-x2-a=0,故f(x2)=x2-12>0,则f(x3)>0.存在实数t∈(4,16),使得ln t-t=0,且当x>t时,ln x-x<0,记x4=max,则f(x4)=x4ln x4-x4-ax4+1≤0,故f(x)仅存在一个零点x0∈(x3,x4].综上,f(x)有且仅有一个零点.高考大题专项(二) 三角函数与解三角形1.(2019浙江杭州检测)如图是f(x)=2sin(ωx+φ)0<ω<2π,-<φ<的图象,A,B,D为函数图象与坐标轴的交点,直线AB与f(x)交于C,|AO|=1,2|AD|2+2|CD|2=4+|AC|2.(1)求φ的值;(2)求tan∠DAC的值.2.(2019天津和平区二模)已知函数f(x)=cos x(sin x-cos x),x∈R.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在区间上的单调性.3.(2019湖南株洲二模)如图,在四边形ABCD中,∠ADC=,AD=3,sin∠BCD=,连接BD,3BD=4BC.(1)求∠BDC的值;(2)若BD=,∠AEB=,求△ABE面积的最大值.4.在△ABC中,AB=6,AC=4.(1)若sin B=,求△ABC的面积;(2)若点D在BC边上且BD=2DC,AD=BD,求BC的长.5.(2019河北石家庄三模)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若10cos B cos C=-1,a=,求△ABC的周长.6.(2019上海杨浦区二模)已知函数f(x)=(1+tan x)·sin 2x.(1)求f(x)的定义域;(2)求函数F(x)=f(x)-2在区间(0,π)内的零点.参考答案高考大题专项(二) 三角函数与解三角形1.解(1)由f(x)=2sin(ωx+φ)0<ω<2π,-<φ<的图象,A,B,D为函数图象与坐标轴的交点,直线AB与f(x)交于C,|AO|=1,可得1=2sinφ,所以φ=(2)如图,由三角函数图形的性质,可知四边形AECD是平行四边形,可得2|AD|2+2|CD|2=4+|AC|2=|ED|2+|AC|2,解得|ED|=2,所以T=2,则ω=π,所以f(x)=2sinπx+,所以B,0,D,0,k AC=-,k AD=-,所以tan∠DAC=2.解(1)由题意,得f(x)=cos x sin x-cos2x=sin2x-(1+cos2x)=sin2x-cos2x-=sin2x--所以f(x)的最小正周期T==π,其最大值为1-(2)令z=2x-,则函数y=2sin z的单调递增区间是-+2kπ,+2kπ,k∈Z.由-+2kπ≤2x-+2kπ,得-+kπ≤x+kπ,k∈Z.设A=,B=x-+kπ≤x+kπ,k∈Z,易知A∩B=.所以,当x∈时,f(x)在区间上单调递增;在区间上单调递减.3.解(1)在△BCD中,由正弦定理得,∴sin∠BDC=∵3BD=4BC,∴BD>BC,∴∠BDC为锐角,∴∠BDC=(2)在△ABD中,AD=3,BD=,∠ADB=,∴AB==2在△ABE中,由余弦定理得AB2=AE2+BE2-2AE·BE·cos,∴12=AE2+BE2-AE·BE≥2AE·BE-AE·BE=AE·BE,当且仅当AE=BE时等号成立, ∴AE·BE≤12,∴S△ABE=AE·BE·sin12=3,即△ABE面积的最大值为34.解(1)由正弦定理得,所以sin C=1,∠C=,所以BC==2,所以S=2×4=4(2)设DC=x,则BD=2x,由余弦定理可得=-,解得x=,所以BD=3DC=55.解(1)由三角形的面积公式可得S△ABC=ac sin B=,∴2c sin B sin A=a,由正弦定理可得2sin C sin B sin A=sin A,∵sin A≠0,∴sin B sin C=;(2)∵10cos B cos C=-1,∴cos B cos C=-,∴cos(B+C)=cos B cos C-sin B sin C=-,∴cos A=,sin A=,则由bc sin A=,可得bc=,由b2+c2-a2=2bc cos A,可得b2+c2=,∴(b+c)2==7,可得b+c=,经检验符合题意,∴三角形的周长a+b+c=6.解(1)由正切函数的性质可求f(x)的定义域为(2)∵f(x)=1+·2sin x cos x=sin2x+2sin2x=sin2x-cos2x+1=sin2x-+1,∴F(x)=f(x)-2=sin2x--1=0,解得2x-=2kπ+,或2x-=2kπ+,k∈Z,即x=kπ+,或x=kπ+,k∈Z,又x∈(0,π),∴k=0时,x=,或x=,故F(x)在(0,π)内的零点为x=,或x=高考大题专项(三) 数列1.(2019河南新乡三模,17)在数列{a n}中,a1=1,且a n,2n,a n+1成等比数列.(1)求a2,a3,a4;(2)求数列{a2n}的前n项和S n.2.在等比数列{a n}中,a1=1,a5=4a3.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,若S m=63,求m.3.若数列{a n}的前n项和为S n,且a1=1,a2=2.(S n+1)·(S n+2+1)=(S n+1+1)2.(1)求S n;(2)记数列的前n项和为T n,证明:1≤T n≤2.4.设数列{a n}满足a1=2,-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.5.已知数列{a n}中,a1=5且a n=2a n-1+2n-1(n≥2且n∈N*).(1)求a2,a3的值;(2)是否存在实数λ,使得数列为等差数列?若存在,求出λ的值;若不存在,请说明理由.6.(2019天津,文18)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.(1)求{a n}和{b n}的通项公式;(2)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n(n∈N*).参考答案高考大题专项(三) 数列1.解(1)∵a n,2n,a n+1成等比数列,∴a n a n+1=(2n)2=4n.∵a1=1,∴a2==4,同理得a3=4,a4=16.(2)∵a n a n+1=(2n)2=4n,=4,则数列{a2n}是首项为4,公比为4的等比数列.故S n=2.解(1)设数列{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n=(-2)n-1,则S n=由S m=63得(-2)m=-188,此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上可得m=6.3.(1)解由题意有=…=,所以数列{S n+1}是等比数列.又S1+1=a1+1=2,S2+1=a1+a2+1=4,所以=2,数列{S n+1}是首项为2,公比为2的等比数列.所以S n+1=2×2n-1=2n,所以S n=2n-1.(2)证明由(1)知,n≥2时,S n=2n-1,S n-1=2n-1-1,两式相减得a n=2n-1.n=1时,a1=1也满足a n=2n-1,所以数列{a n}的通项公式为a n=2n-1(n∈N*).所以(n∈N*).所以T n=+…+=1++…+=2-因为n∈N*,所以0<1, 所以-1≤-<0.所以1≤2-<2.4.解(1)由已知a n+1-a n=3·22n-1,所以a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.当n=1时,a1=2也满足上式,所以数列{a n}的通项公式a n=22n-1.(2)由b n=na n=n·22n-1知,S n=1·2+2·23+3·25+…+n·22n-1. ①22·S n=1·23+2·25+3·27+…+n·22n+1. ②①-②得(1-22)S n=2+23+25+…+22n-1-n·22n+1.即S n=[(3n-1)22n+1+2].5.解(1)∵a1=5,∴a2=2a1+22-1=13,a3=2a2+23-1=33.(2)假设存在实数λ,使得数列为等差数列.设b n=,由{b n}为等差数列,则有2b n+1=b n+b n+2(n∈N*).∴2∴λ=4a n+1-4a n-a n+2=2(a n+1-2a n)-(a n+2-2a n+1)=2(2n+1-1)-(2n+2-1)=-1.综上可知,当λ=-1时,数列为首项是2,公差是1的等差数列.6.解(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.依题意,得解得故a n=3+3(n-1)=3n,b n=3×3n-1=3n.所以{a n}的通项公式为a n=3n,{b n}的通项公式为b n=3n.(2)a1c1+a2c2+…+a2n c2n=(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2n b n)=n×3+6+(6×31+12×32+18×33+…+6n×3n)=3n2+6(1×31+2×32+…+n×3n).记T n=1×31+2×32+…+n×3n,①则3T n=1×32+2×33+…+n×3n+1,②②-①得,2T n=-3-32-33-…-3n+n×3n+1=-+n×3n+1=所以a1c1+a2c2+…+a2n c2n=3n2+6T n=3n2+3(n∈N*).高考大题专项(四) 立体几何突破1空间中的平行与空间角1.(2019山东潍坊三模,18)如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(1)证明:GH∥平面ACD;(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.2.(2019湖北八校联考一,18)如图所示,四棱锥P-ABCD中,面PAD⊥面ABCD,PA=PD=,四边形ABCD为等腰梯形,BC∥AD,BC=CD=AD=1,E为PA的中点.(1)求证:EB∥平面PCD.(2)求面PAD与平面PCD所成的二面角θ的正弦值.3.(2019安徽“江南十校”二模,18)已知多面体ABC-DEF,四边形BCDE为矩形,△ADE与△BCF为边长为2的等边三角形,AB=AC=CD=DF=EF=2.(1)证明:平面ADE∥平面BCF.(2)求BD与平面BCF所成角的正弦值.4.(2019四川宜宾二模,19)如图,四边形ABCD是菱形,EA⊥平面ABCD,EF∥AC,CF∥平面BDE,G是AB中点.(1)求证:EG∥平面BCF;(2)若AE=AB,∠BAD=60°,求二面角A-BE-D的余弦值.5.(2017全国2,理19)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.6.(2014课标全国Ⅱ,理18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.突破2空间中的垂直与空间角1.(2018全国卷3,理19)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.2.(2019河北唐山一模,18)如图,△ABC中,AB=BC=4,∠ABC=90°,E,F分别为AB,AC边的中点,以EF为折痕把△AEF折起,使点A到达点P的位置,且PB=BE.(1)证明:BC⊥平面PBE;(2)求平面PBE与平面PCF所成锐二面角的余弦值.3.(2019河北武邑中学调研二,19)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.4.(2019山西太原二模,18)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥AD,AD=2AB=2BC=2,△PCD是正三角形,PC⊥AC,E是PA的中点.(1)证明:AC⊥BE;(2)求直线BP与平面BDE所成角的正弦值.5.(2019山东实验等四校联考,18)如图,在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC 的中点,将△AEF沿EF折起,使点A到达点D的位置,连接BD,CD,M为CD的中点.(1)证明:MF⊥面BCD;(2)若DE⊥BE,求二面角E-MF-C的余弦值.。

2020版高考数学一轮复习第二章函数、导数及其应用高端引领微搏1有关ex,lnx与x的组合函数课件文新人教A版

2020版高考数学一轮复习第二章函数、导数及其应用高端引领微搏1有关ex,lnx与x的组合函数课件文新人教A版

支招一 分离参数、设而不求 【例 1】 (2019·湖南省名校联考)已知函数 f (x)=lnx,h(x)=ax(a∈R)。 (1)若函数 f (x)的图象与 h(x)的图象无公共点,求实数 a 的取值范围;
(2)是否存在实数 m,使得对任意的 x∈12,+∞,都有 y=f (x)+mx 的图 象在 g(x)=exx的图象下方?若存在,请求出整数 m 的最大值;若不存在,请 说明理由。
(2)若 a=e,要证 f (x)<xex+1e,只需证 ex-lnx<ex+e1x,即 ex-ex<lnx+e1x。 令 h(x)=lnx+e1x(x>0),则 h′(x)=exe-x21,
易知 h(x)在0,1e上单调递减,在1e,+∞上单调递增,则 h(x)min=h1e= 0, 所以 lnx+e1x≥0。
【思路点拨】 (1)函数 f (x)的图象与 h(x)的图象无公共点,等价于方程 lnxx=a 在(0,+∞)上无解;(2)将不等式恒成立问题转化为函数的最值问题, 通过求导判断函数的单调性,进而得到参数的值。
【解】 (1)函数 f (x)的图象与 h(x)的图象无公共点,等价于方程lnxx=a 在(0,
【变式训练 1】 若对于任意的正实数 x,y 都有2x-ye·lnyx≤mxe成立,
则实数 m 的取值范围为( )
A.1e,1
B.e12,1
C.e12,e
D.0,1e
解析 因为 x>0,y>0,2x-ey·lnyx≤mxe,所以两边同时乘以ex,可得
【解】 (1)由题意知,f ′(x)=2ax-lnx-1。 因为函数 f (x)在(0,+∞)上单调递增,所以当 x>0 时,f ′(x)≥0,即 2a≥lnxx+1 恒成立。 令 g(x)=lnxx+1(x>0),则 g′(x)=-lxn2x, 易知 g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,则 g(x)max=g(1)=1, 所以 2a≥1,即 a≥12。 故实数 a 的取值范围是12,+∞。

2024年高考数学一轮复习大题专练13导数任意存在性问题1

2024年高考数学一轮复习大题专练13导数任意存在性问题1

一轮大题专练13—导数(任意、存在性问题1)1.已知e 是自然对数的底数,()1x f x xe =-,()()()F x f x a lnx x =-+. (1)当0a 时,求证:()F x 在(0,)+∞上单调递增;(2)是否存在实数a ,对任何(0,)x ∈+∞,都有()0F x ?若存在,求出a 的所有值;若不存在,请说明理由.解:(1)证明:()()()()1x F x f x a lnx x xe a lnx x =-+=-+-, ()(1)(1)()............2x x a aF x x e a x e x x∴'=+--=+-分 0a ,(0,)x ∈+∞,()0F x ∴'>,∴当0a 时,()F x 在(0,)+∞上单调递增;(2)解:由(1)知,当0a 时,()F x 在(0,)+∞上单调递增,此时,11()1(2)22F a ln =--10<,1202ln -<, 1()02F ∴<,与题意不符;...................6分当0a >时,设()x ag x e x=-,则()g x 在(0,)+∞上单调递增, 根据函数x y e =与a y x =的性质得x y e =与ay x=的图象在第一象限有唯一的交点,设交点的横坐标为0x ,则0()0g x =,即00x x e a =,00()x ln x e lna ∴=,即00x x lna +=, 00000()()11x F x x e a x x a alna ∴=-+-=--,当00x x <<时,()0g x <,故()0F x '<,所以()F x 在0(0,)x 上是减函数; 当0x x >时,()0g x >,()0F x '>,所以()F x 在0(x ,)+∞上是增函数, ∴当0x x =时,()F x 取得最小值,且()F x 的最小值为0()1F x a alna =--, ∴对(0,)x ∀∈+∞,都有0()0()()10min F x F x F x a alna ⇔==--,........9分设h (a )1(0)a alna a =-->,则h '(a )lna =-,∴当01a <<时,h '(a )0>,所以h (a )在(0,1)上是增函数;当1a >时,h '(a )0<,所以h (a )在(1,)+∞上是减函数;∴当1a =时,h (a )取得最大值,且h (a )的最大值为h (1)0=;∴当0a >时,h (a )0,即10a alna --,且“=”成立1a ⇔=,由10a alna --得10a alna --=, 1a ∴=,综上所述,存在唯一的实数a ,且1a =,(0,)x ∀∈+∞,都有()0F x .........12分 2.设函数2()f x ax a lnx =--,其中a R ∈. (1)讨论()f x 的单调性;(2)若不等式()1f x a -恒成立,求实数a 的取值范围;(3)求证:对于任意0a >,存在实数0x ,当0x x >时,()0f x >恒成立. 解:(1)2121()2ax f x ax x x-'=-=,0x >,①当0a 时,()0f x '<恒成立,所以()f x 在(0,)+∞上为减函数;②当0a >时,由()0f x '=,得x =()0f x '>,得x >由()0f x '<,得0x <<所以()f x 在上为减函数,在)+∞上为增函数;(2)由()1f x a -得,21ax lnx +,即不等式21lnx ax +,0x >恒成立, 记21()lnx g x x+=,则321()lnx g x x --'=,由()0g x '=得,12x e -=; 由()0g x '>得,120x e -<<;由()0g x '<得,12x e->.所以()g x 在12(0,)e -为增函数,在12(,)e -+∞上为减函数, 所以12()()2max e g x g e -==,所以2e a ;(3)证明:由(1)知,当0a >时,()f x 在上为减函数,在)+∞上为增函数.1a ,即12a 时,因为()f x 在)+∞上为增函数, 又f (1)0=,所以,当1x >时,()0f x >,此时取01x =;1>,即102a <<时,因为111)0a -=>,所以11a->111(1)2(1)f ln a a a-=---, 令11t a=-,1t >,则上式1t lnt =--, 记()1h t t lnt =--,1t >,则1()10h t t'=->,所以()h t 在(1,)+∞上为增函数, 所以()h t h >(1)0=,即1(1)0f a->,因为()f x 在)+∞上为增函数,且11a -> 所以当11x a >-时,1()(1)0f x f a>->,此时取011x a =-. 综上,对于任意0a >,存在实数0x ,当0x x >时,()0f x >恒成立. 3.已知函数()1(0)f x mlnx kx m =++>. (1)讨论()f x 的单调性;(2)若存在实数k ,使得()mx xf x e '恒成立的m 值有且只有一个,求k m +的值. 解:(1)()1(0)f x mlnx kx m =++>,()f x 的定义域是(0,)+∞, ()m kx mf x k x x+'=+=, 当0k 时,()0f x '>,()f x 在(0,)+∞上单调递增, 当0k <时,令()0f x '=,解得:mx k=-, 当(0,)mx k∈-时,()0f x '>,当(m x k ∈-,)+∞时,()0f x '<,()f x ∴在(0,)mk-上单调递增,在(m k -,)+∞上单调递减;综上:当0k 时,()f x 在(0,)+∞上单调递增,当0k <时,()f x 在(0,)mk-上单调递增,在(m k -,)+∞上单调递减;(2)()mx xf x e '恒成立,即0mx e kx m --恒成立, 令()mx g x e kx m =--,则()mx g x me k '=-, ①当0k 时,()0g x '>,()g x 单调递增,要使()0g x 在(0,)+∞上恒成立, 只需(0)10g m =-,01m ∴<,此时m 不唯一,不合题意;②当0k m <时,令()0g x '=,解得:0lnk lnmx m-=,()g x 在(0,)+∞上单调递增,要使()0g x 在(0,)+∞上恒成立,只需(0)10g m =-,01m ∴<,此时m 不唯一,不合题意;③当k m >时,令()0g x '=,解得:0lnk lnmx m-=>, 当(0,)lnk lnmx m-∈时,()0g x '<,()g x 单调递减, 当(lnk lnmx m-∈,)+∞时,()0g x '>,()g x 单调递增, ()()()lnk lnm min lnk lnm kg x g e lnk lnm m m m--∴==---, 要使()0g x 在(0,)+∞上恒成立,且m 的值唯一,只需()0lnk lnmg m-=, 整理得210m lnm lnk k-+-=, 令2()1m h m lnm lnk k=-+-,则22()k m h m mk -'=,令()0h m '=,解得:m =当m ∈时,()0h m '>,()h m 单调递增,当m ∈)+∞时,()0h m '<,()h m 单调递减,1()2min h m h ∴==+,要使m 的值唯一,只需1()02max h m ==,解得:2ek =,m =,k m ∴+=.4.已知函数()f x (1)设()()()1xg x f x f x =+-,求函数()g x 的最小值;(2)设1()()h x f x=,对任意1x ,2(0,)x ∈+∞,121212()()()()h x h x h x x k x x ++++恒成立,求k 的最大值. 解:(1)11()lnx f x ln x x x-==, 令1t x=,则()()(1)(1)F t g x tlnt t ln t ==+--,(0,1)t ∈, 则()1[(1)1]1tF t lnt ln t lnt'=+--+=-, 当1(0,)2t ∈时,()0F t '<,()F t 单调递减,当1(2t ∈,1)时,()0F t '>,()F t 单调递增,故()F t 的最小值是1()22F ln =-,即()g x 的最小值是2ln -; (2)1()()h x f xlnx x==,则1212()()()h x h x h x x +-+ 11221212()()x lnx x lnx x x ln x x =+-++12121212x x x lnx lnx x x x =+++ 11221212121212()[]x x x x x x ln ln x x x x x x x x =++++++ 12121212()[()()]x xx x h h x x x x =++++, 由(1)知121121212()()()2x x xh h F ln x x x x x x +=-+++, 故121212()()()()2h x h x h x x x x ln +-+-+⋅, 故2k ln -,故k 的最大值是2ln -.5.已知函数3()23f x ax =-0).(1)若对任意给定的0[x ∈-1[x ∈-,使得10()()f x g x =成立,求实数a 的取值范围;(2)若对任意给定的0[x ∈-,在区间[-上总存在两个不同的(1,2)i x i =,使得120()()()f x f x g x ==成立,求实数a 的取值范围.解:(1)由题意知,()6(1)f x ax x '=-, 因为514x-,所以由()0f x '<,解得10x -<或514x <,由()0f x '>,解得01x <<,故()f x 的单调递增区间为(0,1),单调递减区间为[1-,0)和(1,5]4,(1)15f a -=-,(0)1f =,f (1)1a =-,525()1432af =-, 所以()f x 的值域为[1,15]a -, 又因为()g x 在[1-,5]4上单调递增,所以()g x 的值域为3[24a +,35]216a-,问题转化为直线y t =,3[24at ∈+,35]216a -和曲线()([1y f x x =∈-,5])4的图象只有一个交点,结合图象,有31243515216aa a a ⎧-<+⎪⎪⎨⎪--⎪⎩,解得a 的取值范围是2(5-,8]75-. (2)由(1)可知,问题转化为y t =,3[24at ∈+,35]216a -和曲线()([1y f x x =∈-,5])4二者的图象有两个不同的交点,结合图象,有31242535132216aa a⎧<+⎪⎪⎨⎪->-⎪⎩,解得a 的取值范围是16(2,)15--.6.已知函数21()12f x x kx =++,()(1)(1)g x x ln x =++,()()()h x f x g x '=+.(1)若()h x 在[0,2]上单调递减,求实数k 的取值范围;(2)若对于1]t ∀∈,总存在1x ,2(1,4)x ∈-,且12x x ≠满()()(1i f x g t i ==,2),其中e 为自然对数的底数,求实数k 的取值范围. 解:(1)()(1)1g x ln x '=++, 21()()()2(1)2h x f x g x x kx ln x '∴=+=++++,1()1h x x k x '=+++ 令1()1x x k x ϕ=+++,因为221(2)()10(1)(1)x x x x x ϕ+'=-=++对[0x ∈,2]恒成立, ∴1()1x x k x ϕ=+++,即()h x '在[0,2]上为增函数, ∴7()(2)3max h x h k ''==+, ()h x 在[0,2]上单调递减,()0h x '∴对[0x ∈,2]恒成立,即7()03max h x k '=+ ∴73k -, 即实数k 的取值范围是(-∞,7]3-.(2)当1]x ∈时,()(1)10g x ln x '=++>, ()(1)(1)g x x ln x ∴=++在区间1]上为增函数,∴1]x ∈时,10()2g x e , 21()12f x x kx =++的对称轴为x k =-, 由题意可得14k -<-<,此时21()()12min f x f k k =-=-,()f x 的值恒小于(1)f -和f (4)中最大的一个对于1]t ∀∈,总存在1x ,2(1,4)x ∈-,且12x x ≠满足()()(1i f x g t i ==,2),[0∴(()min f x ⊆,{(1)min f -,f (4)}),∴14()0(4)(1)min k f x f f -<-<⎧⎪<⎪-⇒24111024932k k k k -<<⎧⎪⎪-<⎪+-,∴94k <<即实数k 的取值范围是9,4-.。

【高考冲刺】2020年高考数学(理数) 函数与导数 大题(含答案解析)

【高考冲刺】2020年高考数学(理数) 函数与导数 大题(含答案解析)

【高考复习】2020年高考数学(理数)函数与导数 大题1.已知函数f(x)=ln xx +a (a∈R),曲线y=f(x)在点(1,f(x))处的切线与直线x +y +1=0垂直.(1)试比较2 0172 018与2 0182 017的大小,并说明理由;(2)若函数g(x)=f(x)-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.2.已知函数f(x)=kx-ln x-1(k>0).(1)若函数f(x)有且只有一个零点,求实数k 的值;(2)证明:当n∈N *时,1+12+13+ (1)>ln(n +1).3.已知函数f(x)=ax-ln x ,F(x)=e x+ax ,其中x>0,a<0.(1)若f(x)和F(x)在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a∈⎝⎛⎦⎥⎤-∞,-1e 2,且函数g(x)=xe ax-1-2ax +f(x)的最小值为M ,求M 的最小值.4.已知函数f(x)=ln x +tx-s(s ,t∈R).(1)讨论f(x)的单调性及最值;(2)当t=2时,若函数f(x)恰有两个零点x 1,x 2(0<x 1<x 2),求证:x 1+x 2>4.5.已知函数f(x)=(2+x +ax 2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a.6.已知函数f(x)=ln x +2ax +1(a∈R).(1)求函数f(x)的单调区间;(2)当a=1时,求证:f(x)≤x +12.7.已知函数f(x)=ln x-a(x +1),a∈R 的图象在(1,f(1))处的切线与x 轴平行.(1)求f(x)的单调区间;(2)若存在x 0>1,当x∈(1,x 0)时,恒有f(x)-x 22+2x +12>k(x-1)成立,求k 的取值范围.8.已知函数f(x)=xe x-a 3x 2-a 2x ,a≤e,其中e 为自然对数的底数.(1)当a=0,x>0时,证明:f(x)≥ex 2; (2)讨论函数f(x)极值点的个数.9.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:⎝ ⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).10.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a=2时,求函数f(x)的单调区间;(2) 若方程f(-x)+f(x)=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m-n|≥1,使得f(m)=f(n),求证:1≤ae -1≤e.答案解析1.解:(1) 20172 018>2 0182 017.理由如下:依题意得,f′(x)=x +ax-ln x +2,因为函数f(x)在x=1处有意义,所以a≠-1.所以f′(1)=1+a +2=11+a, 又由过点(1,f(1))的切线与直线x +y +1=0垂直可得,f′(1)=1,即11+a=1,解得a=0.此时f(x)=ln x x ,f′(x)=1-ln xx2, 令f′(x)>0,即1-ln x>0,解得0<x<e ; 令f′(x)<0,即1-ln x<0,解得x>e.所以f(x)的单调递增区间为(0,e),单调递减区间为(e ,+∞).所以f(2 017)>f(2 018),即ln 2 0172 017>ln 2 0182 018,则2 018ln 2 017>2 017ln 2 018,所以2 0172 018>2 0182 017.(2)证明:不妨设x 1>x 2>0,因为g(x 1)=g(x 2)=0, 所以ln x 1-kx 1=0,ln x 2-kx 2=0.可得ln x 1+ln x 2=k(x 1+x 2),ln x 1-ln x 2=k(x 1-x 2),要证x 1x 2>e 2,即证ln x 1+ln x 2>2,也就是k(x 1+x 2)>2,因为k=ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>1-x 2x 1+x 2,令x 1x 2=t ,则t>1,即证ln t>-t +1.令h(t)=ln t--t +1(t>1).由h′(t)=1t -4+2=-2+2>0得函数h(t)在(1,+∞)上是增函数,所以h(t)>h(1)=0,即ln t>-t +1.所以x 1x 2>e 2. 2.解:(1) f(x)=kx-ln x-1,f′(x)=k-1x =kx -1x(x>0,k>0),当x=1k 时,f′(x)=0;当0<x<1k 时,f′(x)<0;当x>1k时,f′(x)>0.∴f(x)在⎝ ⎛⎭⎪⎫0,1k 上单调递减,在⎝ ⎛⎭⎪⎫1k ,+∞上单调递增, ∴f(x)min =f ⎝ ⎛⎭⎪⎫1k =ln k , ∵f(x)有且只有一个零点, ∴ln k=0,∴k=1.(2)证明:由(1)知x-ln x-1≥0,即x-1≥ln x,当且仅当x=1时取等号,∵n∈N *,令x=n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).3.解:(1)由题意得f′(x)=a-1x =ax -1x,F′(x)=e x+a ,x>0,∵a<0,∴f′(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上单调递减, 当-1≤a<0时,F′(x)>0,即F(x)在(0,+∞)上单调递增,不合题意, 当a<-1时,由F′(x)>0,得x>ln(-a),由F′(x)<0,得0<x<ln(-a), ∴F(x)的单调递减区间为(0,ln(-a)),单调递增区间为(ln(-a),+∞). ∵f(x)和F(x)在区间(0,ln 3)上具有相同的单调性, ∴ln(-a)≥ln 3,解得a≤-3, 综上,a 的取值范围是(-∞,-3].(2)g′(x)=e ax-1+axe ax-1-a-1x =(ax +1)⎝⎛⎭⎪⎫e ax -1-1x ,由e ax-1-1x =0,解得a=1-ln x x ,设p(x)=1-ln x x ,则p′(x)=ln x -2x 2, 当x>e 2时,p′(x)>0,当0<x<e 2时,p′(x)<0,从而p(x)在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,p(x)min =p(e 2)=-1e2,当a≤-1e 2时,a≤1-ln x x ,即e ax-1-1x≤0,当x∈⎝ ⎛⎭⎪⎫0,-1a 时,ax +1>0,g′(x)≤0,g(x)单调递减, 当x∈⎝ ⎛⎭⎪⎫-1a ,+∞时,ax +1<0,g′(x)≥0,g(x)单调递增,∴g(x)min =g ⎝ ⎛⎭⎪⎫-1a =M , 设t=-1a ∈(0,e 2],M=h(t)=t e2-ln t +1(0<t≤e 2),则h′(t)=1e 2-1t ≤0,h(t)在(0,e 2]上单调递减,∴h(t)≥h(e 2)=0,即M≥0, ∴M 的最小值为0. 4.解:(1)f′(x)=x -tx2(x>0),当t≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增,f(x)无最值; 当t>0时,由f′(x)<0,得x<t ,由f′(x)>0,得x>t , f(x)在(0,t)上单调递减,在(t ,+∞)上单调递增,故f(x)在x=t 处取得最小值,最小值为f(t)=ln t +1-s ,无最大值. (2)∵f(x)恰有两个零点x 1,x 2(0<x 1<x 2),∴f(x 1)=ln x 1+2x 1-s=0,f(x 2)=ln x 2+2x 2-s=0,得s=2x 1+ln x 1=2x 2+ln x 2,∴2-x 1x 1x 2=ln x 2x 1,设t=x 2x 1>1,则ln t=-tx 1,x 1=-tln t,故x 1+x 2=x 1(t +1)=2-tln t ,∴x 1+x 2-4=2⎝ ⎛⎭⎪⎫t 2-1t -2ln t ln t,记函数h(t)=t 2-1t-2ln t ,∵h′(t)=-2t2>0,∴h(t)在(1,+∞)上单调递增, ∵t>1,∴h(t)>h(1)=0,又t=x 2x 1>1,ln t>0,故x 1+x 2>4成立.5.解:(1)证明:当a=0时,f(x)=(2+x)ln(1+x)-2x ,f′(x)=ln(1+x)-x1+x. 设函数g(x)=ln(1+x)-x 1+x ,则g′(x)=x+2. 当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0, 故当x>-1时,g(x)≥g(0)=0, 且仅当x=0时,g(x)=0,从而f′(x)≥0,且仅当x=0时,f′(x)=0. 所以f(x)在(-1,+∞)上单调递增. 又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0. (2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0), 这与x=0是f(x)的极大值点矛盾. ②若a<0,设函数h(x)=2+x +ax 2=ln(1+x)-2x2+x +ax2.由于当|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,2+x +ax 2>0, 故h(x)与f(x)符号相同. 又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点.h′(x)=11+x -+x +ax 2-++x +ax 22=x 22x 2+4ax +6a ++2+x +2.若6a +1>0,则当0<x<-6a +14a, 且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)>0, 故x=0不是h(x)的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x∈(x 1,0),且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)<0,所以x=0不是h(x)的极大值点.若6a +1=0,则h′(x)=x 3-+2-6x -2,则当x∈(-1,0)时,h′(x)>0; 当x∈(0,1)时,h′(x)<0. 所以x=0是h(x)的极大值点, 从而x=0是f(x)的极大值点.综上,a=-16.6.解:(1)f(x)的定义域为(0,+∞),f′(x)=x 2+-+1+2.考虑y=x 2+2(1-a)x +1,x>0.①当Δ≤0,即0≤a≤2时,f′(x)≥0,f(x)在(0,+∞)上单调递增. ②当Δ>0,即a>2或a<0时,由x 2+2(1-a)x +1=0,得x=a-1±a 2-2a.若a<0,则f′(x)>0恒成立,此时f(x)在(0,+∞)上单调递增;若a>2,则a-1+a 2-2a>a-1-a 2-2a>0,由f′(x)>0,得0<x<a-1-a 2-2a 或x>a-1+a 2-2a ,则f(x)在(0,a-1-a 2-2a)和(a-1+a 2-2a ,+∞)上单调递增.由f′(x)<0,得a-1-a 2-2a<x<a-1+a 2-2a ,则f(x)在(a-1-a 2-2a ,a-1+a 2-2a)上单调递减.综上,当a≤2时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>2时,f(x)的单调递增区间为(0,a-1-a 2-2a),(a-1+a 2-2a ,+∞),单调递减区间为(a-1-a 2-2a ,a-1+a 2-2a).(2)证明:当a=1时,f(x)=ln x +2x +1.令g(x)=f(x)-x +12=ln x +2x +1-x +12(x>0), 则g′(x)=1x -2+2-12=2-x -x 3+2=--2+x ++2. 当x>1时,g′(x)<0,当0<x<1时,g′(x)>0,∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 即当x=1时,g(x)取得最大值,故g(x)≤g(1)=0,即f(x)≤x +12成立,得证.7.解:(1)由已知可得f(x)的定义域为(0,+∞).∵f′(x)=1x -a ,∴f′(1)=1-a=0,∴a=1,∴f′(x)=1x -1=1-xx,令f′(x)>0得0<x<1,令f′(x)<0得x>1,∴f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f(x)-x 22+2x +12>k(x-1)可化为ln x-x 22+x-12>k(x-1),令g(x)=ln x-x 22+x-12-k(x-1),则g′(x)=1x -x +1-k=-x 2+-+1x,令h(x)=-x 2+(1-k)x +1,则h(x)的对称轴为直线x=1-k 2,①当1-k 2≤1,即k≥-1时,易知h(x)在(1,+∞)上单调递减,∴x∈(1,+∞)时,h(x)<h(1)=1-k , 若k≥1,则h(x)<0,∴g′(x)<0, ∴g(x)在(1,+∞)上单调递减, ∴g(x)<g(1)=0,不符合题意. 若-1≤k<1,则h(1)>0,∴存在x 0>1,使得x∈(1,x 0)时,h(x)>0,即g′(x)>0, ∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意.②当1-k 2>1,即k<-1时,易知存在x 0>1,使得h(x)在(1,x 0)上单调递增,∴h(x)>h(1)=1-k>0, ∴g′(x)>0,∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意. 综上,k 的取值范围是(-∞,1). 8.解:(1)证明:依题意,f(x)=xe x ,故原不等式可化为xe x ≥ex 2,因为x>0,所以只要证e x-ex≥0即可,记g(x)=e x-ex(x>0),则g′(x)=e x-e(x>0),当0<x<1时,g′(x)<0,g(x)单调递减; 当x>1时,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=0,即f(x)≥ex 2,原不等式成立.(2)f′(x)=e x -13ax 2-12ax +xe x -23ax -12a=(x +1)e x -ax(x +1)=(x +1)(e x-ax),记h(x)=e x -ax ,h′(x)=e x-a.(ⅰ)当a<0时,h′(x)=e x-a>0,h(x)在R 上单调递增,h(0)=1>0,h 1a =e 1a-1<0,所以存在唯一的x 0∈1a,0,使h(x 0)=0,且当x<x 0时,h(x)<0;当x>x 0,h(x)>0.①当x 0=-1,即a=-1e时,对任意x≠-1,f′(x)>0,此时f(x)在R 上单调递增,无极值点;②若x 0<-1,即-1e<a<0时,此时当x<x 0或x>-1时,f′(x)>0,即f(x)在(-∞,x 0),(-1,+∞)上单调递增;当x 0<x<-1时,f′(x)<0,即f(x)在(x 0,-1)上单调递减, 此时f(x)有一个极大值点x 0和一个极小值点-1.③若-1<x 0<0,即a<-1e时,此时当x<-1或x>x 0时,f′(x)>0,即f(x)在(-∞,-1),(x 0,+∞)上单调递增;当-1<x<x 0时,f′(x)<0,即f(x)在(-1,x 0)上单调递减,此时f(x)有一个极大值点-1和一个极小值点x 0.(ⅱ)当a=0时,f(x)=xe x ,所以f′(x)=(x +1)e x ,显然f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅲ)当0<a<e 时,由(1)可知,对任意x≥0,h(x)=e x -ax>e x -ex≥0,从而h(x)>0,而对任意x<0,h(x)=e x -ax>e x >0,所以对任意x ∈R ,h(x)>0,此时令f′(x)<0,得x<-1,令f′(x)>0,得x>-1,所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅳ)当a=e 时,由(1)可知,对任意x ∈R ,h(x)=e x -ax=e x -ex≥0(当且仅当x=1时,取等号),此时令f′(x)<0,得x<-1,令f′(x)≥0,得x≥-1,所以f(x)在(-∞,-1)上单调递减,在[-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.综上所述,①当a<-1e 或-1e<a<0时,f(x)有两个极值点; ②当a=-1e时,f(x)无极值点; ③当0≤a≤e 时,f(x)有一个极值点.9.解:(1) f ′(x)=1-a x =x -a x(x>0), 当a ≤0时,f ′(x)=1-a x =x -a x>0,所以f(x)在(0,+∞)上是增函数; 当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a).(2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数,当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna ,则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0,所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+1n n <e<1+1nn +1, 两边取对数后,只要证nln1+1n <1<(n +1)ln1+1n ,即只要证1n +1<ln1+1n <1n,令x=1+1n ,则只要证1-1x<lnx<x-1(1<x ≤2). 由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增,因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +1x -1(1<x ≤2),则φ′(x)=x -1x 2>0, 所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +1x -1>0,所以1-1x<lnx(1<x ≤2). 综上,原命题得证.10.解:(1) 当a=2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x -2x ,x ≥0. ①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln2]上递减,在[ln2,+∞)上递增.因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln2],单调递增区间是[ln2,+∞).(2) 当x>0时,f(x)=e x -ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a=x 2+x +3x在区间(0,+∞)上有实数解. 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x 2. 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞. 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(3) 当x ∈[0,2]时,f(x)=e x -ax ,有f ′(x)=e x -a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.所以1<a<e 2,此时可得f(x)在[0,lna]上递减,在[lna ,2]上递增.不妨设0≤m<lna<n ≤2,则f(0)≥f(m)>f(lna),且f(lna)<f(n)≤f(2).由m ,n ∈[0,2],n-m ≥1,可得0≤m ≤1≤n ≤2.(12分)因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,即e-1≤a ≤e 2-e ,所以1≤a e -1≤e.。

高考一轮复习第2章函数导数及其应用第10二讲第1课时导数与函数的单调性

高考一轮复习第2章函数导数及其应用第10二讲第1课时导数与函数的单调性
[解析]根据题意,已知导函数的图象有三个零点,且每个零点的两边导函数值的符号相反,因此函数f(x)在这些零点处取得极值,排除A,B;记导函数f′(x)的零点从左到右分别为x1,x2,x3,又在(-∞,x1)上f′(x)<0,在(x1,x2)上f′(x)>0,所以函数f(x)在(-∞,x1)上单调递减,排除C,选D.
(3)f(x)的定义域为{x|x≤1},
f′(x)=1- .令f′(x)=0,得x=0.
当0<x<1时,f′(x)<0.当x<0时,f′(x)>0.
∴f(x)的单调递增区间为(-∞,0),单调递减区间为(0,1).
(4)f′(x)=sin x+xcos x-sin x=xcos x.
令f′(x)=xcos x>0,
(3)当不等式f′(x)>0或f′(x)<0及方程f′(x)=0均不可解时,对f′(x)化简,根据f′(x)的结构特征,选择相应的基本初等函数,利用其图象与性质确定f′(x)的符号,得单调区间.
考向2 含参数的函数的单调性——师生共研
例2 已知函数f(x)= (x-1)2-x+ln x(a>0).讨论f(x)的单调性.
注:文科(sin 2x)′=(2sin xcos x)′=2[(sin x)′·cos x+sin x·(cos x)′]=2(cos2x-sin2x)=2cos 2x.
考点突破·互动探究
考点 函数的单调性
考向1 不含参数的函数的单调性——自主练透
例1 (1)函数f(x)=x2-2ln x的单调递减区间是( A )
当x∈ 时,f′(x)>0,f(x)是增函数.
③若a>1,则0< <1,
当x∈ 时,f′(x)>0,f(x)是增函数,

2025高考数学一轮复习不等式恒(能)成立问题

2025高考数学一轮复习不等式恒(能)成立问题
1234
2.(2023·榆林模拟)已知函数 f(x)=x-12x2ln x+12k+14x2-(k+1)x,k∈R. (1)若 k>0,求 f(x)的单调区间;
f(x)的定义域为(0,+∞), f′(x)=(1-x)ln x+1-12x+k+12x-(k+1)=(1-x)(ln x-k), 由f′(x)=0,得x=1或x=ek, 若k>0,则ek>1,当x∈(0,1)∪(ek,+∞)时,f′(x)<0, 当x∈(1,ek)时,f′(x)>0, 故f(x)的单调递减区间为(0,1)和(ek,+∞),单调递增区间为(1,ek).
(2)若存在x1∈[1,3],对任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,求实 数a的取值范围.(e3≈20.09)
由(1)知f(x)在[1,3]上单调递减, 所以当x∈[1,3]时,f(x)min=f(3)=9-e3, 于是若存在x1∈[1,3],对任意的x2∈[e2,e3], 使得不等式g(x2)>f(x1)成立,则ln x-(a+1)x>9-e3(a>-1)在[e2,e3]上恒 成立, 即 a+1<ln x-x9+e3在[e2,e3]上恒成立,
所以g(x)≥g(1)=0,
从而xln x-a(x2-1)≥0,不符合题意;
②若 a>0,令 h′(x)=0,得 x=21a. (ⅰ)若 0<a<21,则21a>1, 当 x∈1,21a时,h′(x)>0,g′(x)在1,21a上单调递增, 从而 g′(x)≥g′(1)=1-2a>0,所以 g(x)在1,21a上单调递增,
使得∀x∈(0,x0),总有g′(x)>0, 故g(x)在(0,x0)上单调递增, 故g(x)>g(0)=0, 故h(x)在(0,x0)上单调递增, 故h(x)>h(0)=0,与题设矛盾. 若 0<a≤12,则 h′(x)=(1+ax)eax-ex=eax+ln(1+ax)-ex, 下证:对任意x>0,总有ln(1+x)<x成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13讲变化率与导数、导数的运算
考试
说明
1.了解导数概念的实际背景.
2.通过函数图像直观理解导数的几何意义.
3.能根据导数定义求函数y c
=(c为常数),23
1
,,,,
y x y y x y x y x
x
=====的导数.
4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函
数求导法则,能求简单的复合函数(仅限于形如()
f ax b
+的复合函数)的导数.
考情
分析
考点考查方向考例
导数的定义利用定义求导数
导数的运算计算导数、求某点导数值等所有导数试题
导数的几何意义
求切线斜率、方程、根据切线求
参数值、导数几何意义的应用等
几乎所有导数试题
【重温教材】选修2-2 第1页至第18页
【相关知识点回顾】
1.变化率与导数
(1)平均变化率:
概念
对于函数y=f(x),=叫作函数y=f(x)从x1到x2的变化率几何
意义
函数y=f(x)图像上两点(x1,f(x1)),(x2,f(x2))连线的
物理
意义
若函数y=f(x)表示变速运动的质点的运动方程,则就是该质点在[x1,x2]上的速

(2)导数:
概念点x0处
=,我们称它为函数y=f(x)在处的导数,记为f'(x0)或y',即f'(x0)==
区间
(a,b) 当x∈(a,b)时,f'(x)==叫作函数在区间(a,b)内的导数
几何
意义
函数y=f(x)在点x=x0处的导数f'(x0)就是函数图像在该点处切线的.曲线y=f(x)在点(x0,f(x0))处的切线方程是
物理
意义
函数y=f(x)表示变速运动的质点的运动方程,则函数在x=x0处的导数就是质点在x=x0时的速度,在(a,b)内的导数就是质点在(a,b)内的方程
2.导数的运算
常用
导数
公式
原函数导函数特例或推广
常数函数C'=0(C为常数)
幂函数(x n)'= (n∈Z)
'=-
三角函数
(sin x)'= ,
(cos x)'=
偶(奇)函数的导数是奇(偶)函数,周期函数的
导数是周期函数
指数函数(a x)'= (a>0且a≠1) (e x)'=e x
对数
函数
(log a x)'= (a>0且a≠
1)
(ln x)'=,
(ln|x|)'=
四则
运算
法则
加减[f(x)±g(x)]'=
'=
f'i(x)
乘法
[f(x)·g(x)]'=
[Cf(x)]'=Cf'(x)
除法'=
(g(x)≠0)
'=-
复合
函数
导数
复合函数y=f[g(x)]的导数与函数y=f(u),u=g(x)的导数之间具有关系y'x= ,这个关系用语言表达就是“y对x的导数等于y对u的导数与u对x的导数的乘积”
【知识回顾反馈练习】完成练习册第33页【对点演练】
题组一常识题
1.判断下列结论是否正确(打“√”或“×”)
⑴()0
f x
'是函数()
y f x
=在
x x
=附近的平均变化率;
⑵曲线的切线不一定与曲线只有一个公共点;
⑶与曲线只有一个公共点的直线一定是曲线的切线;
⑷函数()()
sin
f x x
=-的导数是()cos
f x x
'=;
⑸若()32
2
f x a ax x
=+-,则()232
f x a x
'=+
2. [教材改编] 向气球中充入空气,当气球中空气的体积V (单位:L)从1 L 增加到2 L 时,气球半径r (单位:dm)的平均变化率约为 .
3.[教材改编] y=sin(πx+φ)的导数是y'= .
4.[教材改编] 曲线x
y xe 在点(1,1)处切线的斜率等于 . 题组二 常错题
5.函数f (x )=x 2
在区间[1,2]上的平均变化率为 ,在x=2处的导数为 . 6.已知函数y=sin 2x ,则y'= . 7.已知f (x )=x 2+3xf'(2),则f (2)= .
【探究点一】导数的运算:【练习册】034页
探究点一 导数的运算
1 (1)函数f (x )的导函数为f'(x ),且满足关系式f (x )=x 2
+3xf'(2)-ln x ,则f'(2)的值为 ( ) A . B .- C . D .-
(2)已知f (x )=-sin ,则f'= .
[总结反思] (1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.
(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆. 式题 (1)函数y=的导数为y'= .
(2)已知f (x )=(x+1)(x+2)(x+a ),若f'(-1)=2,则f'(1)= . 【探究点二】
探究点二 导数的几何意义 考向1 求切线方程
2 函数f (x )=e x
·sin x 的图像在点(0,f (0))处的切线方程是 .
[总结反思] (1)曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y-f (x 0)=f'(x 0)(x-x 0);(2)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(3)注意过某点的切线和曲线上某点处的切线的区别.
考向2 求切点坐标
3 设a ∈R,函数f (x )=e x +a ·e -x
的导函数是f'(x ),且f'(x )是奇函数.若曲线y=f (x )的一条切线的斜率是,则切点的横坐标为 ( ) A .ln 2 B .-ln 2
C .
D .-
[总结反思] f'(x )=k (k 为切线斜率)的解即为切点的横坐标.
考向3 求参数的值
4 已知曲线C 在动点P (a ,a 2+2a )与动点Q (b ,b 2
+2b )(a<b<0)处的切线互相垂直,则b-a 的最小值为
( )
A .1
B .2
C .
D .-
[总结反思] (1)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围. (2)注意:①曲线上横坐标的取值范围;②切点既在切线上又在曲线上.
强化演练
1.【考向1】 已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y=f (x )相切,则直线l 的方程为 ( )
A .x+y-1=0
B .x-y-1=0
C .x+y+1=0
D .x-y+1=0
2.【考向3】直线y=kx+1与曲线y=x 3
+ax+b 相切于点A (1,3),则2a+b 的值等于 ( ) A .2 B .-1 C .1 D .-2
3.【考向2】已知在平面直角坐标系中,f (x )=a ln x+x 的图像在x=a 处的切线过原点,则a= ( ) A .1 B .e C . D .0
4.【考向2】若曲线y=x ln x 在点P 处的切线平行于直线2x-y+1=0,则点P 的坐标是 .
5.【考向1】 函数f (x )=x e x
的图像在点P (1,e)处的切线与坐标轴围成的三角形面积为 .
1.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= ( ) A .0 B .1 C .2 D .3
2.曲线2
1
y x x
=+在点(1,2)处的切线方程为 .
3.已知f (x )为偶函数,当x<0时,()ln()3f x x x =-+,则曲线y=f (x )在点(1,-3)处的切线方程是 .
4.已知函数3
1
()4
f x x ax =++,当a= 时,x 轴为曲线y=f (x )的切线.
5.设函数1
()ln x x
be f x ae x x
-=+,曲线()y f x =在点(1,f (1))处的切线方程为y=e(x-1)+2,求a ,b.。

相关文档
最新文档