平行四边形01
平行四边形的认识PPT
周长的几何意义
周长计算的应用
在几何学中,周长计算是研究形状大 小的基础,也是解决实际问题的重要 工具。
周长代表平行四边形边界的总长度, 是衡量形状外部轮廓的重要指标。
面积与周长的关系
01
面积与周长的关系
在平行四边形中,面积和周长之间没有直接的关系,它们分别代表了形
状内部空间大小和外部轮廓长度。
02
角度互补
在平行四边形中,相对两角的度数之和为180度, 即角度互补。
角度与对角线
平行四边形的内角和与其对角线长度有关,可以 通过对角线长度计算内角的度数。
谢谢观看
平行四边形的外角性质
外角等于内角
平行四边形的外角等于与之不相 邻的两个内角的和。
外角和为360度
平行四边形的所有外角之和为 360度。
外角与邻接三角形
平行四边形的外角等于与之不相 邻的两条边的夹角,这个夹角所
对的三角形是等腰三角形。
平行四边形的内角和性质
内角和为360度
平行四边形的内角和为360度。
性质
01
02
03
对角线互相平分
平行四边形的对角线互相 平分,将平行四边形分成 两个相等的三角形。
对角相等
平行四边形的对角相等, 即相对的两个角的角度和 为180度。
对边平行且等长
平行四边形的对边平行且 等长,这是平行四边形定 义所决定的。
分类
矩形
当平行四边形的所有角都是直角 时,它被称为矩形。
菱形
通过学习平行四边形的性质和特点,学生可以深入理解几何学中的一些基本概念和 原理,如对角线、中位线等。
平行四边形在数学教育中的应用,有助于培养学生的逻辑思维和空间想象能力,为 进一步学习其他几何图形打下基础。
平行四边形的ppt课件
VS
外角和定理的证明
通过平移、旋转等几何变换,将平行四边 形转化为三角形,再利用三角形外角和定 理进行证明。
谢谢
THANKS
平行四边形的性质课件
目录
CONTENTS
• 平行四边形的基本概念 • 平行四边形的特殊形式 • 平行四边形与生活中的应用 • 平行四边形的证明实例 • 平行四边形的探究与拓展
01 平行四边形的基本概念
CHAPTER
平行四边形的定义
平行四边形定义
平行四边形是两组对边分别平行的四 边形。
平行四边形的符号表示
05 平行四边形的探究与拓展
CHAPTER
平行四边形的面积计算
面积计算公式
平行四边形的面积可以通过底乘高的方式进行计算,其中底为平行四边形的底边,高为该边上的垂直 距离。
面积计算的实际应用
面积计算在日常生活和数学领域中都有广泛的应用,如几何图形面积的求解、土地面积的测量等。
平行四边形的内角和
内角和定理
采光
平行四边形的窗户设计能够更好地利用自然光线 ,提高室内采光效果。
交通标志
方向性
平行四边形形状的交通标志具有明显的方向性,能够清晰地指示 车辆前行方向。
易识别性
平行四边形的简单形状和鲜明的颜色使得交通标志易于识别,有助 于提高交通安全。
规范性
平行四边形的交通标志符合道路交通规范,能够确保交通秩序和安 全。
矩形的四个角都是直角, 对角线相等。
判定
如果一个平行四边形有一 个角是直角,那么它是矩 形。
菱形
定义
有一组邻边相等的平行四 边形是菱形。
性质
菱形的四条边都相等,对 角线互相垂直平分。
判定
认识平行四边形ppt课件
根据对角线是否相等,平行四边形 可以分为对称和非对称两种类型。
02 平行四边形的性质
对角线性质
01
02
03
对角线互相平分
平行四边形的对角线互相 平分,将平行四边形分成 两个面积相等的三角形。
对角线互相垂直
在特定的平行四边形中, 如矩形和正方形,对角线 互相垂直。
对角线长度关系
平行四边形的对角线长度 相等,即对角线互相平分 。
02
01
应用
当已知一个四边形的一组对边平行且等长时 ,可以判定该四边形为平行四边形。
04
03
04 平行四边形与生活的联系
建筑中的应用
桥梁设计
平行四边形结构在桥梁设计中广 泛应用,如斜拉桥的拉索和主梁 ,利用平行四边形的特性来承受
重力。
房屋结构
建筑物的某些结构,如屋顶、窗 户和门,采用平行四边形形状以
平行四边形的对角与邻角有一定的关 系,如邻角和等于180度,对角和等 于360度等。
在平行四边形中,相对的两个角是互 补的,即它们的角度和为180度。
03 平行四边形的判定
根据定义判定
总结词
根据平行四边形的定义 ,两组相对边平行是其 基本特征。
详细描述
在四边形中,如果两组 相对边分别平行,则该 四边形是平行四边形。
举例
在四边形ABCD中,如 果AB平行于CD且AD 平行于BC,则ABCD是 平行四边形。
应用
在证明或判断一个四边 形是否为平行四边形时 ,首先检查其两组边 形的一个重要判定依据 。
详细描述
在四边形中,如果其对 角线互相平分,则该四 边形是平行四边形。
01
对边平行
平行四边形的两组对边分别平行。
平行四边形的性质(第一课时 对边和对角的关系)(课件)
生活中常见的平行四边形
说一些生活中常见的平行四边形的例子
平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“▱”表示,
下图记作“▱ABCD”。
A
D
几何描述:
∵AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
B
C
探索平行四边形对边、对角的关系
根据平行四边形的定义,尝试画一个平行四边形,通过直尺和量角器测量,你
【详解】
∵四边形ABCD是平行四边形,
∴∠A=∠C,∠A+∠D=180°,
又∵∠A-∠D=40°,
∴∠A=110°,∠D=70°,
∴∠C=∠A=110°.
故选:C.
)
利用平行四边形的性质求解
如图,在▱ABCD中,CE⊥AB,E为垂足.如果∠A=120°,∠BCE的度数为(
A.20° B.30° C.40° D.60°
求证:AC、GH、BC之间的关系
∵ DA、GH、CB垂直于 a
D
H
A
G
C
b
∴ DA // GH // CB 而a // b
∴ ▱AGHD, ▱ABCD, ▱HGBC
∴ AD = GH = BC
B
a
如果两条直线平行,那么一条直线上的所有点到另一条直线的距离都相等,
即两条直线之间的距离相等。
利用平行四边形的性质求解
在平行四边形中,∠与∠的度数之比为: ,则∠C的度数是( )
A.°
B.°
【详解】
解:∵四边形ABCD是平行四边形
∴∠A+∠B=180°,∠A=∠C
∵∠A:∠B=5:4∴∠A=100°
∴∠C=100°
平行四边形ppt课件
性质
总结词
平行四边形具有一些独特的性质 。
详细描述
平行四边形有一些重要的性质, 包括对角线互相平分、对角相等 、对边相等和邻角互补。这些性 质在解决几何问题时非常有用。
分类
总结词
平行四边形可以根据不同的标准进行分类。
详细描述
根据不同的分类标准,平行四边形可以分为不同的类型。例如,根据角度的大小 ,可以分为锐角、直角和钝角平行四边形;根据边的长度,可以分为等腰和不等 腰平行四边形。不同类型的平行四边形具有不同的性质和特点。
05练习题和答案源自基础练习题0102
03
04
基础练习题1
请描述平行四边形的定义和性 质。
基础练习题2
请列举平行四边形的几个应用 实例。
基础练习题3
请判断以下哪些图形是平行四 边形,哪些不是,并说明理由
。
基础练习题4
请计算平行四边形的面积和周 长。
进阶练习题
进阶练习题1
请证明平行四边形的对 角线互相平分。
平行四边形结构在桥梁和建筑 物的设计中可以提供更好的支 撑和稳定性。
平行四边形在光学中也有应用, 如在透镜和反射镜的设计中。
数学教育应用
在数学教育中,平行四边形是几 何学的基本概念之一,用于学习
几何定理和性质。
通过平行四边形的性质和定理, 学生可以深入理解空间几何的基
本原理。
平行四边形在解决数学问题中也 有广泛应用,如代数方程、解析 几何和微积分等领域的解题技巧。
推论法
总结词
通过其他几何定理推导出平行四边形。
详细描述
有些几何定理可以推导出四边形是平行四边形,例如,如果一个四边形的对角线互相平分,则它是平行四边形。 此外,还有其他的推论方法可以用来判定平行四边形。
八年级数学上册第五章平行四边形1平行四边形的性质第1课时平行四边形的边角性质习题课件鲁教版五四制
6
7
8
9
10
11
12
13
14
15
16
(2)若 BC =2 AB ,∠ BCD =100°,求∠ ABE 的度数.
【解】由(1)易得 BF =2 AB , EF = EC .
∵ CD ∥ AB ,∴∠ FBC +∠ BCD =180°.
∵∠ BCD =100°,∴∠ FBC =180°-100°=80°.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
【证明】∵四边形 ABCD 是平行四边形,∴ AB = CD ,
∠ B =∠ D ,∠ BAD =∠ BCD . ∵ AE 平分∠ BAD , CF
平分∠ BCD ,∴∠ BAE = ∠ BAD ,∠ DCF = ∠ BCD ,
∴∠ BAE =∠ DCF .
∴∠ DAC =∠ C ,∴ AD = CD . ∵ AD = AE = BF ,
∴ BF = CD ,∴ BD = CF .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
14. 如图,在▱ ABCD 中,点 E , F 在对角线 AC 上,∠ CBE
=∠ ADF . 求证:
(1) AE = CF ;
平行四边形及其性质详解
平行四边形的定 义:两组对角分 别相等的四边形
判定方法:通过 测量对角线长度, 判断两组对角是 否相等
应用:在几何证 明、图形识别等 领域有广泛应用
注意事项:测量 误差可能导致判 断不准确,需要 多次测量确认
平行四边形的面积
04
和周长计算
面积计算公式
平行四边形的面积可以通过底和高 的乘积来计算 底和高的长度可以通过测量得到
矩形的性质
对边平行且相等
对角线互相平分且相等
内角均为直角
面积等于长乘宽
等腰梯形的性质
性质一:等腰梯形是特殊的平行四边形,具有平行四边形的所有性质 性质二:等腰梯形具有两个对角线相等的性质 性质三:等腰梯形的面积可以通过对角线乘积的一半来计算 性质四:等腰梯形的周长可以通过对角线之和来计算
平行四边形的实际
面积计算公式为:面积 = 底 x 高
平行四边形的周长可以通过四条边 的长度之和来计算
周长计算公式为:周长 = 4 x 边长
周长计算公式
平行四边形的周长等于相邻两边之和的2倍 平行四边形的周长等于对角线之和的一半 平行四边形的周长等于任意一边的2倍加上任意一边的2倍 平行四边形的周长等于任意一边的2倍加上对角线之和的一半
平行四边形的 判定方法:一 组对边平行且
相等
平行四边形的 性质:两组对 边分别平行且
相等
平行四边形的 判定方法:一 组对边平行且 相等,另一组 对边也平行且
相等
两组对边分别平行
平行四边形的定 义:两组对边分 别平行的四边形
平行四边形的判 定方法:两组对 边分别平行的四 边形是平行四边 形
平行四边形的性 质:两组对边分 别平行的四边形 具有平行四边形 的性质
平行四边形的性质课件
04
平行四边形与其他数学知 识的联系
与三角形的关系
三角形中位线定理
平行四边形的对边平行且相等, 这与三角形中位线定理相关。
三角形面积公式
平行四边形的面积计算与三角形 面积公式有关。
与梯形的关系
梯形与平行四边形
梯形可以看作由两个平行四边形组合而成。
梯形与平行四边形的性质
梯形和平行四边形具有一些共同的性质。
两组对边分别平行的四边形是平行四边形
总结词
两组对边分别平行的四边形是平行四边形。
详细描述
这也是平行四边形的一种判定方法。如果一个四边形的两组对边分别平行,那么 这个四边形就是平行四边形。这种判定方法同样很直观,易于理解。
两组对边分别相等的四边形是平行四边形
总结词
两组对边分别相等的四边形是平行四边形。
平行四边形的对边相等
平行四边形的对边平行且相等,这是 平行四边形的一个重要性质
利用这个性质,我们可以判断一个四 边形是否为平行四边形
平行四边形的对角相等Fra bibliotek平行四边形的对角相等,这是平行四边形的另一个重要性质
利用这个性质,我们可以证明两个角是否相等,或者找到两 个角之间的数量关系
平行四边形的对角线互相平分
平行四边形的对角线互相平分,这是平行四边形的又一个 重要性质
利用这个性质,我们可以判断一个四边形是否为平行四边 形,或者找到两条线段之间的数量关系
02
平行四边形的判定方法
一组对边平行且相等的四边形是平行四边形
总结词
一组对边平行且相等的四边形是平行 四边形。
详细描述
这是平行四边形的一种判定方法。如 果一个四边形的一组对边平行且相等 ,那么这个四边形就是平行四边形。 这种判定方法很直观,易于理解。
平行四边形的概念与性质
在日常生活中的应用
建筑设计:平行四边形的稳定性使其在建筑设计中广泛应用,如房屋的框架、桥梁的支 撑等。
机械设计:平行四边形的稳定性和可伸缩性使其在机械设计中广泛应用,如起重机的吊 臂、汽车的悬挂系统等。
艺术设计:平行四边形的简洁性和对称性使其在艺术设计中广泛应用,如海报设计、服 装设计等。
体育用品:平行四边形的稳定性和可伸缩性使其在体育用品设计中广泛应用,如篮球架、 足球门等。
本性质之一
对边平行可以 推导出平行四 边形的其他性 质,如对角相 等、对角线互
相平分等
对边平行可以 用于证明平行 四边形的性质, 如证明平行四 边形的对角线
互相平分等
对角相等
平行四边形的对角线互相 平分
平行四边形的对角线互相 垂直
平行四边形的对角线长度 相等
平行四边形的对角线是互 相平行的
对边相等
平行四边形的性质,如对边相等、 对角相等、对角线互相平分等,在 几何图形的证明和计算中具有重要 作用。
添加标题
添加标题
添加标题
添加标题
平行四边形的性质,如对边相等、 对角相等、对角线互相平分等,在 几何图形的证明和计算中具有重要 作用。
平行四边形的性质,如对边相等、 对角相等、对角线互相平分等,在 几何图形的证明和计算中具有重要 作用。
平行四边形的面积与周长
第五章
面积计算公式
平行四边形的 面积可以通过 底和高的乘积
来计算
底和高的长度 单位可以是厘
米、米等
面积计算公式 为:面积 = 底
×高
周长可以通过 四边的长度之
和来计算
周长计算公式 为:周长 = 4
× 边长
周长计算公式
平行四边形的周长等于相邻两边之和的2倍 平行四边形的周长等于对角线之和的一半 平行四边形的周长等于任意一边的2倍加上任意一边的2倍 平行四边形的周长等于任意一边的2倍加上对角线之和的一半
平行四边形及其性质课件
04 平行四边形的面积计算
面积公式推导
底乘高
通过将平行四边形的一条底边与对应 的高相乘,可以得出面积。这是平行 四边形面积计算的基本公式。
转化思想
将平行四边形转化为矩形或三角形, 利用已知的矩形或三角形面积公式推 导出平行四边形的面积公式。
面积计算方法
01
02
03
直接计算
根据平行四边形的底和高 ,直接使用面积公式进行 计算。
理等。
代数方程
在代数方程中,平行四边形也常 被用于解决各种问题,如解线性
方程组、求矩阵的逆等。
微积分
在微积分中,平行四边形可用于 计算面积和体积,如在计算曲边 梯形和曲顶柱体的面积和体积时 ,可以利用平行四边形的性质进
行简化计算。
THANKS FOR WATCHING
感谢您的观看
平行四边形及其性质课件
目录
• 平行四边形的基本概念 • 平行四边形的性质 • 平行四边形的判定方法 • 平行四边形的面积计算 • 平行四边形的应用举例
01 平行四边形的基本概念
定义与分类
定义
两组对边分别平行的四边形叫做 平行四边形。
分类
根据对边是否相等或平行,平行 四边形可分为两组对边相等且平 行和一组对边平行且相等的两种 类型。
VS
证明
假设四边形ABCD中,AB平行于CD且BC 平行于AD。由于AB平行于CD且BC平行 于AD,所以∠ABC+∠BCD=180°且 ∠ADC+∠BCD=180°。因此, ∠ABC=∠ADC。由于AB平行于CD且BC 平行于AD,根据平行线的性质,BC是AB 和CD的中线。因此,四边形ABCD是平 行四边形。
对角线互相平分
定义
平行四边形ppt课件
02
平行四边形在生活中的应 用
建筑设计中的应用
稳定性
平行四边形结构在建筑设 计中具有稳定性,能够承 受较大的压力和拉力。
空间利用率
平行四边形结构可以有效 地利用空间,提高建筑物 的使用效率。
美学价值
平行四边形在建筑立面上 的运用,可以增强建筑物 的立体感和现代感。
机械制造中的应用
平行四边形机构
理,即a²=b²+c²-2bc×cosA,其中A为夹角。
02
边长与高度关系
平行四边形的高h与底边长a及夹角θ有关,即h=a×sinθ。同时,高度
与面积之间满足的高度与夹角θ有关,当θ为90°时,高h即为直角边,此时
平行四边形为矩形。当θ小于90°时,高h在平行四边形内部;当θ大于
在机械制造中,平行四边形机构 常用于实现物体的平移、升降和
支撑等功能。
精度控制
平行四边形机构的运动轨迹较为稳 定,可以实现较高的精度控制。
传递力量
平行四边形机构可以有效地传递力 量,实现力的放大或减小。
美术与图案设计中的应用
图案构成
创意发挥
平行四边形可以作为美术和图案设计 中的基本元素,通过重复、旋转和对 称等方式构成各种图案。
梯形
平行四边形的一组对边可以看作梯形的上底和下底,而另一组对边则是梯形的 腰。通过作高可以将梯形划分为一个矩形和两个三角形,从而推导出梯形的面 积公式。
04
平行四边形的计算问题
周长、面积、对角线长度计算
周长计算
平行四边形的周长等于其四边之和,即P=2(a+b),其中a、b为相 邻两边长。
面积计算
平行四边形面积计算公式为S=ah,其中a为底边长,h为高。
人教版八年级数学下册第01课 平行四边形的性质与判定
初中数学试卷第01课平行四边形的性质与判定【例1】如图,在□ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.【例2】如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.【例3】如图,已知□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N 分别是DE、BF的中点. 求证:四边形ENFM是平行四边形。【例4】如图,已知四边形ABCD的对角线AC与BD相交于点O,且AC=BD,M、N分别是AB、CD的中点,MN 分别交BD、AC于点E、F.你能说出OE与OF的大小关系并加以证明吗?【例5】如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).课堂同步练习题一、选择题:1、平行四边形的对角线一定具有的性质是( )A.相等B.互相平分C.互相垂直D.互相垂直且相等2、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可能是()A.1:2:3:4B.1:2:2:1C.2:2:1:1D.2:1:2:13、平行四边形是一个不稳定的几何图形,现有一个平行四边形的对角线长是8cm和12cm,那么下列数据中符合一个平行四边形要求的边长()A.2cmB.9cmC.10cmD.20cm4、在平面直角坐标系中,□ABCD的顶点A(0,0),B(5,0),D(2, 3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)5、如图,在□ABCD中,点E、F在AC上,且AE=CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对第5题图第6题图第7题图6、如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE度数为( )A.53°B.37°C.47°D.123°7、如图,□ABCD中,E,F是对角线BD上两点,若添加一个条件,使△ABE≌△CDF,则添加条件不能为()A.BE=DFB.BF=DEC.AE=CFD.∠1=∠28、如图,点P为□ABCD的边CD上一点,若⊿PAB、⊿PCD、⊿PBC的面积分别为S1、S2和S3,则它们之间的大小关系是()A.S3=S1+S2B.2S3=S1+S2C.S3>S1+S2D.S3<S1+S2第8题图第9题图9、如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cmB.9cmC.3cmD.12cm10、平行四边形ABCD周长为2a,两条对角线相交于O,△AOB周长比△BOC周长大b,则AB长为()A. B. C. D.11、如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F.AE=4,AF=6,且□ABCD周长为30,则ABCD面积为()A.24B.36C.40D.48第11题图第12题图12、如图,在□ABCD中,AB=9,AD=6,∠ADC的平分线交AB于点E,交CB的延长线于点F,AG⊥DE,垂足为G.若4,则△BEF的面积是( )AG=2A. B. C. D.二、填空题:13、平行四边形ABCD中,∠A+∠C=100°,则∠B= 度.14、如图,在□ABCO中,C在x轴上,点A为(2,2),□ABCO的面积为8,则B的坐标为.第14题图第15题图第16题图15、如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点),点B′恰好落在BC边上,则∠C=16、如图,直线EF过平行四边形ABCD对角线的交点O,分别交AB、CD于E、F,若平行四边形的面积是12,则△AOE与△DOF的面积之和为.17、如图,若□ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,□ABCD的面积为cm2.第17题图第18题图第19题图18、如图,在□ABCD中,AC=21cm,BE⊥AC于E,且BE=5cm,AD=7cm,则两条平行线AD与BC间的距离为.19、如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.20、一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_________.三、简答题:21、如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.22、如图,已知□ABCD中,DM⊥AC于M,BN⊥AC于N.求证:四边形DMBN为平行四边形.23、如图.四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.24、如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.25、如图,△ABC的中线BE,CF相交于点G,P,Q分别是BG,CG的中点.(1)求证:四边形EFPQ是平行四边形;(2)请直接写出BG与GE的数量关系:.平行四边形性质与判定同步测试题一、选择题:1、若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是( )A.30°B.45°C.60°D.75°2、四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①∠ABC =∠ADC,AD//BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB//CD,AD=BC,其中一定能判定这个四边形是平行四边形的条件有()A.4组B.3组C.2组D.1组3、如图,在□ABCD中,BM是∠ABC的平分线,交CD于点M,且DM=2,□ABCD的周长是14,则BC长等于( )A.2B. 2. 5C.3D. 3. 5第3题图第4题图第5题图4、如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD周长是14,则DM等于()A.1B.2C.3D.45、四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A .AB∥DC,AD∥BC B. AB=DC,AD=BC C .AO=CO,BO=DO D.AB∥DC,AD=BC6、如图,在□ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cmB.5cmC.6cmD.8cm第6题图第7题图第8题图7、如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.108、如图,平行四边形ABCD的周长为20,AE平分∠BAD,若CE=2,则AB的长度是()A.10B.8C.6D.49、如图,E为□ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°第9题图第10题图10、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C 移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定二、填空题:11、如图,将□ABCD的一边BC延长至E,若∠A=110°,则∠1= .第11题图第12题图第13题图12、如图,□ABCD中,AE平分∠DAB,∠B=100°,则∠DAE等于.13、如图,在□ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是______________.14、如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,平行四边形ABCD的周长是14,则DM等于.第14题图第15题图第16题图15、如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN.若AB=5,BC=8,则MN= .16、如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.17、如图,BD是□ABCD的一条对角线,AE⊥BD,CF⊥BD,试猜想AE和CF的数量关系,并对称的猜想进行证明.18、如图,在□ABCD中,AE⊥BC于E,在AD边上取一点G,使GD=AB,过点G作GF⊥CD于点F.求证:AE=GF.19、如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.参考答案例题答案详解【例1】试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;(2)∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,∵∠BAN=∠DCM,AB=CD,∠ABN=∠CDM,∴△ABN≌△CDM (ASA).【例2】略【例3】略;【例4】OE=OF;【例5】【解答】解:(1)DE+DF=AB.理由如下:如图1.∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF.∵DF∥AC,∴∠FDB=∠C,∵AB=AC,∴∠C=∠B,∴∠FDB=∠B,∴DF=FB,∴DE+DF=AF+FB=AB;(2)当点D在直线BC上时,分三种情况:①当点D在CB延长线上时,如图2①,AB=DE﹣DF;②当点D在线段BC上时,如图1,AB=DE+DF;③当点D在BC的延长线上时,如图2②,AB=DF﹣DE;(3)如图3,AB=DE+DG+DF.课堂同步参考答案1、B2、D3、B4、C5、C6、B7、C.8、A9、A 10、B 11、B 12、B13、130 度.14、(6,2)15、105_度.16、 3 .17、40 18、15cm.19、3.20、平行四边形;21、【解答】(1)证明:如图,在平行四边形ABCD中,∵AD∥BC∴∠1=∠3又∵∠1=∠2,∴∠2=∠3,∴CD=CE;(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,又∵CD=CE,BE=CE,∴AB=BE,∴∠BAE=∠BEA.∵∠B=80°,∴∠BAE=50°,∴∠DAE=180°﹣50°﹣80°=50°.22、【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAM=∠BCN,∵DM⊥AC,BN⊥AC,∴DM∥BN,∠AMD=∠CNB=90°,在△ADM和△CBN中,,∴△ADM≌△CBN(AAS),∴DM=BN,∴四边形DMBN为平行四边形.23、【解答】证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.24、【解答】证明:∵AF∥BC,∴∠AFE=∠EBD.在△AEF和△DEB中∵,∴△AEF≌△DEB(AAS).∴AF=BD.∴AF=DC.又∵AF∥BC,∴四边形ADCF为平行四边形.25、(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵P,Q分别是BG,CG的中点,∴PQ是△BCG的中位线,∴PQ∥BC且PQ=BC,∴EF∥PQ且EF=PQ.∴四边形EFPQ是平行四边形.(2)BG=2GE.同步测试题参考答案1、C2、C3、B4、C;5、D6、A7、C8、D9、C 10、C11、故答案为:70°.12、答案为:40°.13、x大于3且小于11 14、答案为:3.15、1.5;16、1.5;17、【解答】解:CF=AE,理由:∵四边形ABCD平行四边形,∴AD=BC,AB∥DC,∴∠ABE=∠DCF,∵CF⊥BD,AE⊥BD,∴∠DEA=∠AFC=90°,在△AED和△CFB中∵,∴△AED≌△CFB(AAS),∴CF=AE.18、证明:在ABCD中,∠B=∠D,GD=AB,AE⊥BC,GF⊥CD,∴△ABE≌△GDF.∴AE=GF.19、(1)∵△ABC是等边三角形,∴∠ABC=60°.—————————— 唐玲制作仅供学习交流 ——————————唐玲 ∵∠EFB=60°,∴∠ABC=∠EFB.∴EF ∥DC(内错角相等,两直线平行).∵DC=EF ,∴四边形EFCD 是平行四边形.(2)连接BE.∵BF=EF ,∠EFB=60°,∴△EFB 是等边三角形.∴EB=EF ,∠EBF=60°. ∵DC=EF ,∴EB=DC.∵△ABC 是等边三角形,∴∠ACB=60°,AB=AC.∴∠EBF=∠ACB.∴△AEB ≌△ADC(SAS).∴AE=AD.。
人教版四年级数学上册平行四边形的认识-图文
∠2 = ∠4
(三)验证平行四边形的特征
②角的特点
二、探究特征
两组对边分别平行的四边形叫做平行四边形。
平行四边形的特点: 两组对边分别平行, 两组对边分别相等, 两组对角分别相等。
(四)概括平行四边形的特点
画平行四边形
10厘米
5厘米
10厘米
5厘米
三、精讲点拨
平行四边形的两组对边分别平行。( )
长方形是特殊的平行四边形。( )
√
√
√
×
我是公正小裁判。
9个
3个
6.数一数下图中有多少个平行四边形。
四、布置作业
作业:第67页练习十一,第1题。
单击此处添加副标题
哪条高是这条底上的高?
高
底
同一组底和高必须是互相垂直的关系。
两组对边分别平行的四边形叫做平行四边形。( )
平行四边形可以画出两条不同的高。( √ )
两条线段互相平行,它们也一定相等。( )
在同一平面内两条平行线延长后可以相交。( )
√
×
×
平行四边形和三角形都具有稳定性。( )
平行四边形的对边相等。( )
平行四边形的认识
单击添加文本具体内容简明扼要地阐述你的观点
单击此处添加副标题
1、它们都是什么图形?
2、你能找到平行四边形吗?
(四边形)
01
单击添加标题
单击此处添加正文
02
单击添加标题
单击此处添加正文
一、复习导入。
观察这些图形:
二、探究特征
(一)感受生活中“平行四边形”的存在 问题:从图中你能发现平行四边形吗?
四、巩固练习
底
平行四边形的认识PPT课件
总结词
在机械设计中应用平行四边形。
03
总结词
在艺术设计中应用平行四边形。
05
04
详细描述
在机械设计中,平行四边形可以用来 设计各种机构和零件,如连杆机构、 齿轮等,以提高机械的稳定性和效率。
06
详细描述
在艺术设计中,平行四边形可以用来设计图案、 装饰等元素,以增加艺术作品的视觉效果和美 感。
THANKS FOR WATCHING
总结词
通过给定的三个点,使用直尺和圆规作一个平行四边形。
详细描述
首先,使用直尺和圆规连接给定的三个点,然后,使用同 样的方法连接另外两个点,最后得到的四边形即为平行四 边形。
在实际问题中应用平行四边形
总结词
在建筑设计中应用平行四边形。
01
02
详细描述
在建筑设计时,常常需要使用平行四边形来 设计窗户、门等部件,以满足建筑的美观和 功能性需求。
平行四边形的定义是 “两组相对边平行”, 这是平行四边形的基 本性质。
平行四边形的特点
01
02
03
对边相等
平行四边形的对边相等, 这是平行四边形的一个重 要性质。
对角相等
平行四边形的对角相等, 这也是平行四边形的一个 重要性质。
对角线互相平分
平行四边形的对角线互相 平分,这也是平行四边形 的一个重要性质。
平行四边形的分类
矩形
矩形是特殊的平行四边 形,它的四个角都是直
角。
菱形
菱形也是特殊的平行四 边形,它的四条边都相
等。
斜矩形
斜矩形是相对两边平行 的四边形,但不一定是
矩形或菱形。
斜菱形
斜菱形也是相对两边平 行的四边形,但不一定
平行四边形性质及定理PPT课件
的平衡和美感。
图案设计
02
平行四边形在图案设计中也有广泛应用,如纺织品、壁纸、地
毯等的设计。
舞台布景和道具设计
03
在舞台布景和道具设计中,平行四边形也常被用于创造视觉效
果和空间感。
THANKS FOR WATCHING
感谢您的观看
一组对边平行
总结词
如果一个四边形中有一组对边平 行,则该四边形是平行四边形。
详细描述
这是平行四边形的一个基本判定 定理。如果一个四边形的对边平 行,则这个四边形必然是平行四 边形。
一组对边相等
总结词
如果一个四边形中有一组对边相等, 则该四边形是平行四边形。
详细描述
这也是平行四边形的一个基本判定定 理。如果一个四边形的对边相等,则 这个四边形必然是平行四边形。
窗户和门的形状设计
平行四边形因其独特的对边平行和相 对边相等的特性,常被用于创造空间 感和视觉效果。
窗户和门的形状设计经常采用平行四 边形,以实现采光和通风的最佳效果。
建筑结构的稳定性
平行四边形的对角线互相平分,这使 得它在建筑结构设计中具有稳定性, 如桥梁、房屋的支撑结构等。
机械设计中的应用
机械零件的形状设计
平行四边形性质及定理ppt课件
contents
目录
• 平行四边形的基本性质 • 平行四边形的判定定理 • 特殊平行四边形 • 平行四边形在实际生活中的应用
01 平行四边形的基本性质
对边平行
总结词
平行四边形的对边是平行的。
详细描述
这是平行四边形的基本性质之一,即相对的两条边是平行的,不会相交于一点。
直角三角形斜边中线定 理,矩形的对角线相等
且互相平分。
平行四边形ppt课件
高难度练习题及解析
总结词:综合拓展
具体题目示例及解析:在平行四边形ABCD中,E 、F分别为AB、CD上的点,且AE=CF。求证:四 边形AFCE是平行四边形。
详细描述:高难度练习题不仅要求学员掌握平行 四边形的性质和判定方法,还要求学员能够综合 运用知识,进行深度思考和分析。这类题目旨在 培养学员的思维能力和解决问题的能力。
家居用品中的平行四边形
总结词
实用、常见
详细描述
在家居用品中,平行四边形是一种非常实用的形状,常见于各种物品设计。例如,家具的桌面或床垫 的床框,通常采用平行四边形形状,因为这种形状可以方便地拼接或组合,同时也能节省空间。
平行四边形在机械中的应用
总结词
精密、高效
详细描述
在机械领域,平行四边形具有精密和高效的特点。例如,某些机器的传动系统或支撑结构,以及一些精密仪器的 框架或底座,都采用平行四边形设计。这种设计能够提高机器的精度和稳定性,同时也能使机器更加高效地运转 。
定义
有一组邻边相等且有一个 角是直角的平行四边形是 正方形。
性质
正方形的四个角都是直角 ,四条边都相等,对角线 相等且互相垂直平分。
判定
有一个角是直角的菱形是 正方形;对角线相等的菱 形是正方形。
03
平行四边形与生活中的应用
建筑中的平行四边形
总结词
引人注目、富有创意
详细描述
在建筑设计中,平行四边形具有独特的美学特质,常常被用来创造引人注目的 视觉效果。例如,某些建筑物的斜撑或屋顶结构,以及一些装饰性元素,如百 叶窗或格子窗,都采用平行四边形设计。
VS
详细描述
在平行四边形ABCD中,AB和CD是一组 对边,它们不仅平行而且相等。根据平行 四边形的定义,两组对边分别平行,即 AB // CD。此外,两组对边分别相等, 即AB = CD。这是平行四边形的一个核心 特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形》说课稿
尊敬的评委老师:
下午好!今天我的说课的课题是《平行四边形》,
对于本节课的内容,我将从教材分析、学情分析、教学目标、教法学法、教学过程、板书设计这六个方面依次进行阐述。
这部分内容是在学生已经掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。
通过这节课深入的学习,是学生为今后进一步学习平行四边形的面积计算打下基础,让学生充分感受平行四边形的基本特征,感受高与底的意义。
四年级学生思维活跃,求知欲强,喜欢动手、动脑。
有很强的好奇心和探索欲望。
因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。
基于以上对教材的分析,结合学情。
我制定了三维教学目标:知识与技能:1、理解平行四边形的概念及其特征,认识平行四边形的底和高,会画高。
2、培养学生观察、分析、操作和实践能力。
过程与方法:让学生通过动手操作、动眼观察、动口表达、动脑思考等方式是学生在活动中进一步积累认识图形学习经验,能正确判断一个平面图形是不是平行四边形,能画出平行四边形的高。
情感态度与价值观:让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展“空间与图形”的学习兴趣,在探索中感受成功的乐趣。
本节课的重点是让学生认识平行四边形,能够发现平行四边形的特征,能测量或画出平行四边形的底和高。
本节课的难点是让学生在学平行四边形的过程中体会其特征。
如何突出重点突破难点,完成上述三维目标呢?
这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。
学生动手操作、观察分析、讨论归纳等方法来完成教学,使学生在轻松愉快中获得新知。
全课分为以下四个环节,创设情境,引发问题,分析特征,探究新知,巩固练习,实践应用,共同总结,导学归纳。
这里我利用学生之前所学的四边形来引出今天所学的课题平行四边形。
让学生通过自己动手操作得到平行四边形的定义及特征,并让学生认识平行四边形的底和高,会画高。
让学生通过动脑思考了解长方形和正方形是特殊的平行四边形。
及其平行四边形、长方形和正方形的关系。
巩固练习,实践应用,我会通过不同层次的练习题来加深学生对本节课的学习。
共同总结,导学归纳,我引导学生一起复习一下这节课所学的内容。
这节课我们首先初步认识了平行四边形:两组对边分别平行的四边形叫做平行四边形。
了解了平行四边形的高和底。
并学会了画高。
知道了平行四边形的特性:两组对边平行且相等,对角相等。
在板书设计上着重体现知识要点及其联系,有利于突出本节课的重点和难点,完善本节课的全部学习。
板书设计
平行四边形
以上就是我说课的全部内容。