平方差公式和完全平方公式复习和拓展ppt课件
完全平方公式ppt课件
想一想:
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? 为什么?
∵ (a+b)2=a2+2ab+b2 (-a-b)2=(-a)2+2(-a)(-b)+(-b) 2=a2+2ab+b2 ∴ (a+b)2= (-a-b)2 ∵ (a-b)2=a2-2ab+b2 (b-a)2=b2-2ba+a2=a2-2ab+b2 ∴ (a-b)2=(b-a)2
x· 2y+(2y)2 解: (x+2y)2=x2+2· =x2+4xy+4y2 2 2 2 (a - b ) =a - 2 a b + b
2 2· x· 2y +( 2y ) (x - 2y =x2 - 4xy+4y2 22 x )=
运用完全平方公式计算:
2 (1)(4m+n)
解: (4m+n)2= (4m)2+2•(4m) •n +n2 (a
=10000-200+1=9801 利用完全平方公式计算: 1、先选择公式; 2、准确代入公式; 3、化简.
小结:
1、完全平方公式:(a+b)2= a2 +2ab+b2
(a-b)2= a2 - 2ab+b2
2 、两数和(或差)的平方,等于它们的平
方和,加(或减)它们的积的2倍。
3、注意:项数、符号、字母及其指数; 4、切勿把此公式与公式(ab)2= a2b2混淆, 而随意写成(a+b)2 =a2 +b2
平方差公式与完全平方公式PPT教学课件
宋陵文官石像
宋陵武将石像
宋朝设置“中书门下”
元世祖忽必烈
忽必烈建立元朝后,废除三省, 实行一省制,只设中书省。中书省的长 官为左、右丞相和平章政事,是元代的 宰相。六部也归入中书省。
丞相制度的废除
朱元璋
朱元璋明孝陵神道石兽 (位于南京)
南京皇城午朝门
南京皇城午朝门,即午门,是传达圣旨的地方,也是 对大臣施“廷杖”的地方。原有城楼已毁。
自秦始置丞相,不旋踵而亡。汉唐宋因之,虽有贤相,然其间 所用者,多有小人,专权乱政。今我朝罢丞相,设五府、六部、都察 院、通政司、大理寺等衙门,分理天下庶务,彼此颉颃,不敢相压。 事皆朝廷总之,所以稳当。以后子孙做皇帝时,并不许立丞相。
——《皇明祖训》
明朝中央集权表
明朝之中央机构分布图
明朝的内阁与清朝的军机处
总面积=a2+
ab+ab+b2.
法二 求
a
b
图1—6
公式: (a+b)2= a2+ 2 ab + b2.
动脑筋 完全平方公式 的证明
想一想
(a+b)2=a2+2ab+b2 ; (a−b)2= a2 −2ab+b2.
你能用多项式的乘法法则来说明它成立吗?
推证 (a+b)2 =(a+b)(a+b) =a2+ab+ ab+b2 =a2+2ab+ b2 ;
=( 4a2 – 12ab + 9b2 )
例2、利用乘法公式计算:
(1) ( x+3 ) ( x- 3 ) (x2-9 )
解:( x+3 ) ( x- 3 ) (x2-9 )
完全平方公式与平方差公式课件
(7)(a+b+c+d)(a+b-c-d)
12
2 2 2 特别注意:(a+b) ≠a +b
2 2 2 (a-b) ≠a -b
巩固练习:下列计算是否正确.
2 2 2 ⑴(2x+y) =4x +y 2 2 2 ⑵(3a-2b) =9a -4b
(
×
)
× (
)
13
2 × ) ⑶(1-3m)(1+3m)=1-3m(
9
交流3
a
b
=
a
b
2 a
+
2 (a-b) =
-2ab
+
2 b
10
◆找出平方差公式与完全平方公的不同之处
• ( a + b)( a – b )= a2 – b2平方差公式 • ①( a + b )2 = a2 + 2 a b + b2
②( a - b )2 = a2 -2 a b + b2
完全平方公式
◆公式中的a、b可以表示什么?能否举出
例子?
11
巩固练习:以下各式能否运用平方差公式进行 计算?若能,请指出各式中的a、b?
⑴(2x+1)(x-1)
⑵(2a+5b)(2a-5b)
⑶(-x+y)(-x-y)
⑸(x2+9)(x2-9)
⑷ (y-2x)(-2x-y)
(6)(2a+b+1)(2a+b-1)
观察
( a + b)( a – b )=
并说出这个算式的特点.
2 a –
2 b
总结:这个算式是两个数的和与这两个
沪科版七年级下册数学:8.3 完全平方公式与平方差公式 (共17张PPT)
=9998.01
4、比较下列各式之间的关系:
(1) (-a -b)2 与(a+b)2 相等 (2) (a - b)2 与 (b - a)2 相等 (3) (-b +a)2 与(-a +b)2 相等
5 计算:
(1)
2 3
间的符号相同。首平方,尾平方,首
尾两倍放中央,符号
4、公式中的
放前方!
字母a,b可以表示数,单项式和多项式。
例1 运用完全平方公式计算:
(x+2y)2 解: (x+2y)2= x2 +2•x •2y +(2y)2
(a +b)2= a2 + 2 ab + b2 =x2+4xy +4y2
例2、运用完全平方公式计算:
一项不慎被污染了,这一项应是( )
A 10xy B 20xy C±10xy D±20xy
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出路 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去,曾经的辉煌,仅仅是是曾经。其实 在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服今天,懦夫哀叹昨天,懒汉坐等明天 只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。人们总是在努力珍惜未得到的,而遗忘 告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是个变数。勤奋的人无穷多,懒惰的人无穷少。手莫伸,伸手必被捉。党与人民在监督,万目睽睽难逃脱。汝 不伸能自觉,其实想伸不敢伸,人民咫尺手自缩。思考是一件最辛苦的工作,这可能是为什么很少人愿意思考的原因。我们不能成为贵族的后代,但我们可以成为贵族的祖先 年后的自己。自信!开朗!豁达!�
平方差公式和完全平方公式复习和拓展-2022年学习资料
2、运用完全平方公式计算:-13x-229x2-12x+42-2n-5216y2-1-35m2+n2-49 2-25m4+10m2n+1n2-9409-3、填空题:-13a-2b3a+2b=9a2-4b2-2x-6 =x2+-12x+36-3x2.4x+4=X-22
4、选择题-1下列各式中,是完全平方公式的是-C-AX2-X+1-B4x2+1-CX2+2X+1-Dx2+ x-1-2如y2+ay+9是完全平方公式,则a的值等于D-A3-B-6-C6-D6或-6-3下列计算正确的 C-A.X-2y2y-x)=4y2-x2-B.-x-1X+1=x2.1-C.m-n-m-n)=-m2+n2 D.x2+2y-2y=x3-4y2
小试牛刀-2.下列计算中正确的是(D-A.(x+22=x2+2x+4-B.(-3-x(3+x=9-x2-C (-3-x3+x=-x2-9+6x-D.(2x-3y2=4x2+9y2-12xy
小试牛刀-3.x2+kx+81是一个完全平方式,则k是(D-A.9-B.-9-C.±9-D.±18
小试牛刀-15+3q2;-25+30q+9q1-2-2a-52.4a2+20a+25-32x+32(2x2;16x4-72x2+81-4x+y-4x+y+4;x2+2xy+y2-16-5a-1a+1a2-1.a -2a2+1
5.完全平方式-1已知,x2+ax+16是完全平方式,-则a=8-己知,4x2-ky+25y2是完全平方式 -则k=-±20-3x2+12x+m是完全平方式,则m=36-4请把4x4+1添加一项后是完全平方式,-可 添加-±4x2或-1或-4x4或4x8或
平方差公式和完全平方公式复习和拓展PPT课件
(10) (x+2y-z)2
x2 4y2 z2 4xy 2xz 4yz
当堂检测
1、运用平方差公式计算
(1)(4y+1)(4y-1)
16 y2 1
(2)(a+9b)(-9b+a)
a2 81b2
(3)(y-x)(-x-y)
x2 y2
1
1
(5) (a- 2 )(a+ 2)
a2 1
4
(4) (m2+2)(m2- 2)
4、计算
1 9 9 72
1997 1 9 9 81 9 9 6
1997
19972 19981996
19972
1997 (1997 1)(1997
1)
1997
19972 (19972 1)
1997
5、已知x2-y2=8,x+y=4,求x与y的值。
x2 y2 8
x yx y 8
x y 4
(3)x2-4x+__4__=(x-__2__)2
4、选择题
c (1)下列各式中,是完全平方公式的是( )
(A)x2-x+1
(B)4x2+1
(C)x2+2x+1
(D)x2+2x-1
(2)如y2+ay+9是完全平方公式,则a的值等于( D )
(A) 3
(B)-6
(C) 6
(D)6或-6
(3)下列计算正确的是( C )
(5)(x-4)2
1 2m m2
(4)(2-y)2
44y y2
(6) (2 x 3)2
x2 8x 16 4x2 12x 9
(7) (2x + y)2
沪科版数学七年级下完全平方公式与平方差公式(第1课时)课件
探究新知
完全平方公式
(a+b)2= a2+2ab+b2 . (a–b)2= a2–2ab+b2 .
也就是说,两个数的和(或差)的平方,等于它们的平方和, 加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平 方公式.
(3)(–3a+b)2=9a2–6ab+b2.
探究新知
素养考点 2 利用完全平方公式进行简便计算
例2 运用完全平方公式计算:
(1) 1022;
(2) 992.
解: 1022 = (100+2)2 =10000+400+4 =10404.
992 = (100 –1)2 =10000 –200+1
=9801.
∵x–y=4, ∴(x–y)2=16,即x2+y2–2xy=16②; 由①–②得4xy=48 ∴xy=12.
课堂小结
法则
完全 平方 公式
注意
(a±b)2= a2±2ab+b2
1.项数、符号、字母及其指数
2.不能直接应用公式进行计算的式子,可能需要先添括号变形成符 合公式的要求才行
3.弄清完全平方公式和平方差公式不同(从公式结构特点及结果两 方面)
(4) (2x+y)2 =4x2 +2xy +y2 × (2x +y)2 =4x2+4xy +y2
探究新知
素养考点 1 利用完全平方公式进行计算
例1 运用完全平方公式计算:
(1)(4m+n)2;
平方差公式和完全平方公式复习和拓展
平方差公式和完全平方公式复习和拓展一、平方差公式在代数中,我们常常需要将一个数分解成两个数的平方差,或是将两个数的平方差合并成一个数。
平方差公式就提供了一个简单的方法。
例如,如果我们需要将16分解成两个数的平方差,我们可以设一个数为x,则另一个数为16/x。
根据平方差公式,我们有(x+16/x)(x-16/x)=x^2-(16/x)^2=x^2-256、这样我们就将16分解成了两个数的平方差x^2-256除了在分解数的平方差时使用平方差公式,它还可以用来简化代数表达式。
例如,我们有一个代数表达式(x+2)(x-2),我们可以根据平方差公式简化它为x^2-4二、完全平方公式完全平方公式用于求解一个二次多项式的平方。
设a和b为任意实数,则完全平方公式可以表示为:a^2+2ab+b^2=(a+b)^2完全平方公式可以用来求解一些常见的问题,如求一个数的平方、求解二次方程等。
例如,如果我们需要求解x^2+6x+9=0的根,我们可以利用完全平方公式写成(x+3)^2=0。
从中我们可以得到x=-3,即方程的根为-3完全平方公式也可以用来展开一个二次多项式。
例如,如果我们需要展开(x+1)^2,我们可以利用完全平方公式得到x^2+2x+1三、平方差公式和完全平方公式的拓展除了基本的平方差公式和完全平方公式之外,还有一些相关的公式和技巧可以帮助我们更好地理解和应用这两个公式。
1. 平方差公式的展开形式:有时候,我们需要展开一个平方差的其他形式,例如(a+b)^2 - 4ab。
根据平方差公式,我们可以得到:(a+b)^2 - 4ab = a^2 + 2ab + b^2 - 4ab = a^2 - 2ab + b^22.完全平方公式的逆运算:有时候,我们需要根据一个完全平方公式的结果反推出原始的二次多项式,例如(x+3)^2=x^2+6x+9、根据完全平方公式的逆运算,我们可以得到x^2+6x+9=(x+3)^23.平方差公式的应用:平方差公式不仅可以用于分解数的平方差,还可以用于简化代数表达式。
平方差公式、完全平方公式复习课
c
5、化简求值: (a+2b)2-(a+2b)(a-2b),其中a=
-2,b=
1 2
1、平方差公式、完全平方公式的内容是什么? 、平方差公式、完全平方公式的内容是什么? (a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 2、请同学们掌握平方差、完全平方公式的结构 、请同学们掌握平方差、 特征。 特征。 3、我们要正确理解公式中字母的广泛含义:它 、我们要正确理解公式中字母的广泛含义: 可以是数字、字母或其他代数式, 可以是数字、字母或其他代数式,只要符合公 式的结构特征,就可以运用这一公式. 式的结构特征,就可以运用这一公式
(2)(a+9b)(-9b+a) (4) (m2+2)(m2- 2)
1 ) 2
)(a+
(6)105×95 ) ×
完全平方公式:两数和(或差)的平方, 完全平方公式:两数和(或差)的平方,等 于它们的平方和, 或减)它们的积的2 于它们的平方和,加(或减)它们的积的 倍.
用符号怎么表述呢? 用符号怎么表述呢? (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
复习
平方差公式 完全平方公式
先找a、 两数即 两数即相同项与相反 平方差公式 :先找 、b两数即相同项与相反 数项,结果为相同项的平方减去相反数项的平 相同项的平方减去 数项,结果为相同项的平方减去相反数项的平 方.
用符号怎么表述呢? 用符号怎么表述呢?
(a+b)(a-b)=a2-b2
当堂练习
1、运用平方差公式计算 、 (1)(4y+1)(4y-1) (3)(y-x)(-x-y) (5) (a1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)9x+7 -2 (2)2ab -2
.
7.证明:x, y不论是什么有理数, 多项式x2+y2 4x8y25的值 总是正数。并求出它的最小值。
x2y24x8y25 (x22x222)(y22y442)5 (x2)2(y4)25
.
小试牛刀
D
.
小试牛刀
D
.
小试牛刀
D
.
小试牛刀
2530q9q2
则 a 2 b 2 _ _5_ _ _ _ _ _ 。
( 2) 已 知 x y 9, xy 8,
则 x 2 y 2 _ _97_ _ _ _ _ _ 。
( 3) 已 知 (x y)2 25,(x y)2 16,
则
xy
_
_
9
_4_
_
_
_
_
。
.
5.完全平方式 ( 1) 已 知 , x2 ax 16是 完 全 平 方 式 ,
m4 4
(6)105×95
9975
.
2、 运用完全平方公式计算:
(1) (3x-2)2 9x212x4(2) (-2n-5)2 16y2 1
(3)(5m2 +n)2
(4) 972
2m 5 41m 0 2nn2
9409
3、填空题:
(1)(3a-2b)(_3_a_+2b)=9a2-4b2
(2) (x-6)2=x2+_(-_1_2_x_) +36
12mm2
(4)(2-y)2
44yy2
(6) (2x 3)2
x28x16 4x212x9
(7) (2x + y)2
4x24xyy2
(9)1032 10609
(8) (a -2b)2
a24a b4b2
.
2.利用公式进行计算:
(1) ( x 2 y ) ( x 2 y ) x2 4y2 ( 2 ) ( a 2 b ) ( 2 b a ) 4b2 a2 ( 3 ) ( 2 a 3 b ) 2 4a21a 2 b9b2 ( 4 ) ( 2 x y ) 2 4x24xyy2
4a220a25
16 x472 x281
x22xyy216 a42a21
.
(6) 2x52 2x52
10x
(7) (x+1)2(x-1)2(x2+1)2(x4+1)2 x162x81
(8) (a-2b+c)(a+2b-c) a24b24b cc2 (9) (x+5)2-(x-2)(x-3) 15x19
4 x 4 4 x 2 1 2 x 2 1 2 2 x 42 4 x 4 1 2 x 4 1 2
4x41116x4 2x241x22
4x4 11 4x4 4x4 14x4 1
.
6、化简求值:
(1)(x3)2 (x1)(x2),其中x1 (2)(ab)2 (ab)(ab)2b2 其中添上适当的代数式,使等 式成立
(1)a2 b2 (ab)2 _2_a_b__ (2)a2 b2 (ab)2 _2_ab___ (3)(ab)2 (ab)2 _4_a_b____
.
4.公式变形的应用:(a+b)2 = a2+b2+2ab (a-b)2 = a2+b2-2ab
( 1) 已 知 a b 1, ab 2,
平方差公式和完全平 方公式复习和拓展
.
平方差公式:
(a+b)(a−b)= a2−b2
两数和与这两数差的积,
等于 这两数的平方差.
公式变形:
1、(a – b ) ( a + b) = a2 - b2 2、(b + a )( -b + a ) = a2 - b2
.
1、对应练习
1.下面各式的计算对不对?如果不对,应当怎样改正? (1)(x+3)(x-3)=x2-3; (2)(-3a-5)(3a-5)=9a2-25.
(2)(x-2y)(x+2y);
x2 4y2
(3)(-m+n)(-m-n).
m2 .
n2
完全平方公式:
(a+b)2 = a2+2ab+b2 (a-b)2 = a2-2ab+b2
首平方, 尾平方, 2倍乘积在中央
.
完全平方公式 的几何意义
和的完全平方公式:
b ab b²
(a+b)²
a a² ab
ab
2、下列多项式乘法中,能用平方差公式计算的是( ):
(1)(x+1)(1+x);
(2)(a+b)(b-a) ;√
(3)(-a+b)(a-b);
(4)(x2-y)(x+y2);
(5)(-a-b)(a-b);√ (6)(c2-d2)(d2+c2). √
3、利用平方差公式计算:
(1)(5+6x)(5-6x)2; 536x2
则 a _±__8____ 。
(2) 已 知 ,4 x 2 kxy 25 y 2是 完 全 平 方 式 , 则 k __±__2_0______ 。
(3)x 2 12 x m是 完 全 平 方 式 , 则 m 3_6____
(4)请 把 4 x 4 1添 加 一 项 后 是 完 全 平 方 式 , 可 以 添 加 _ _4 _x_2或 _ _-1_或 _-_4x _.4_或 _4.x8或 11 x6 4
(ab)2 a 2+2ab+b 2
.
完全平方公式 的几何意义
差的完全平方公式:
b ab b²
a
a² ab
(a-b)²
ab
(ab)2 a 2 ababb2
a2 . 2abb2
1、对应练习:
(1)(2x+1)2
(2)(1-m)2
4x24x1
(3)( y 1 ) 2
y2 23 y 1 39
(5)(x-4)2
A.(x-2y)(2y-x) =4y2-x2 B.(-x-1)(x+1)=x2-1
C.(m-n)(-m-n) =-m2+n2
D.(x2+2y)(x-2y)=x3-4y2 .
(3)x2-4x+__4__=(x-__2__)2
.
4、选择题
c (1)下列各式中,是完全平方公式的是( )
(A)x2-x+1
(B)4x2+1
(C)x2+2x+1
(D)x2+2x-1
(2)如y2+ay+9是完全平方公式,则a的值等于( D )
(A) 3
(B)-6
(C) 6
(D)6或-6
(3)下列计算正确的是( C )
(10) (x+2y-z)2
x2 4y2z2 4 x y 2 x z4yz
.
当堂检测
1、运用平方差公式计算
(1)(4y+1)(4y-1)
16y2 1
(3)(y-x)(-x-y)
x2 y2
1
1
(5) (a- 2 )(a+ 2 )
a2 1
4
(2)(a+9b)(-9b+a)
a2 81b2
(4) (m2+2)(m2- 2)