郑州市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
濮阳市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
濮阳市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 命题“∃x 0∈R ,x 02+2x 0+2≤0”的否定是( )A .∀x ∈R ,x 2+2x+2>0B .∀x ∈R ,x 2+2x+2≥0C .∃x 0∈R ,x 02+2x 0+2<0D .∃x ∈R ,x 02+2x 0+2>0 2. 不等式≤0的解集是()A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]3. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( )A .10B .9C .8D .54. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么()A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点5. “x ≠0”是“x >0”是的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A∈7. 设,为正实数,,则=()a b 11a b+≤23()4()a b ab -=log a b A.B. C.D.或01-11-0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.8. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .9. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为()A .﹣2B .±2C .0D .210.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( )A .f (2)<f (π)<f (5)B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)11.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]12.等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( )A .6B .5C .3D .4二、填空题13.log 3+lg25+lg4﹣7﹣(﹣9.8)0= .14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 15.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .16.设函数f (x )=若f[f (a )],则a 的取值范围是 .17.已知点E 、F 分别在正方体的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .18.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .三、解答题19.已知f (x )=log 3(1+x )﹣log 3(1﹣x ).(1)判断函数f (x )的奇偶性,并加以证明;(2)已知函数g (x )=log,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.20.(本题满分12分)在中,已知角所对的边分别是,边,且ABC ∆,,A B C ,,a b c 72c =,又的面积为,求的值.tan tan tan A B A B +=-g ABC ∆ABC S ∆=a b +21.已知函数f (x )=log a (1﹣x )+log a (x+3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为﹣4,求a 的值.22.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD ,平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.23.函数f (x )是R 上的奇函数,且当x >0时,函数的解析式为f (x )=﹣1.(1)用定义证明f (x )在(0,+∞)上是减函数;(2)求函数f (x )的解析式.24.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x a -=)cos sin ,(cos x x x b +=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆濮阳市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:因为特称命题的否定是全称命题,所以,命题“∃x0∈R,x02+2x0+2≤0”的否定是:∀x∈R,x2+2x+2>0.故选:A.【点评】本题考查命题的否定全称命题与特称命题的否定关系,基本知识的考查.2.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.3.【答案】D【解析】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cosA,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选D4.【答案】B【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.5. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立.当x >0时,一定有x ≠0成立,∴“x ≠0”是“x >0”是的必要不充分条件.故选:B . 6. 【答案】A 【解析】试题分析:因为{}|5A x N x =∈< ,而,即B 、C 正确,又因为且,1.5,1,.5,1N N A A ∉-∉∴∉-∉0N ∈05<所以,即D 正确,故选A. 10A ∈考点:集合与元素的关系.7. 【答案】B.【解析】,故2323()4()()44()a b ab a b ab ab -=⇒+=+11a ba b ab++≤⇒≤,而事实上,2322()44()1184(82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤12ab ab +≥=∴,∴,故选B.1ab =log 1a b =-8. 【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C .【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题. 9. 【答案】C【解析】解:∵复数(2+ai )2=4﹣a 2+4ai 是实数,∴4a=0,解得a=0.故选:C .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题. 10.【答案】B【解析】解:∵函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,∴f (π)=f (6﹣π),f (5)=f (1),∵f (6﹣π)<f (2)<f (1),∴f (π)<f (2)<f (5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档. 11.【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选D. 1()12201620162=⨯⨯=考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称()311533212f x x x x =-+-性和的.第Ⅱ卷(非选择题共90分)12.【答案】D【解析】解:∵等比数列{a n }中a 4=2,a 5=5,∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8=lg (a 1•a 2…a 8)=lg (a 4•a 5)4=4lg (a 4•a 5)=4lg10=4故选:D .【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查. 二、填空题13.【答案】 .【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=,故选:【点评】本题考查了对数的运算性质,属于基础题.14.【答案】2【解析】15.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题. 16.【答案】 或a=1 .【解析】解:当时,.∵,由,解得:,所以;当,f(a)=2(1﹣a),∵0≤2(1﹣a)≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a)]=4a﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.17.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
郑州市外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
郑州市外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259B .2516C .6116D .31152. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .43. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A.该几何体体积为 B.该几何体体积可能为 C.该几何体表面积应为+ D .该几何体唯一4. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个5. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x 6. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 7. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .y=(x 2﹣2x )e xD .y=8. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β9. 一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 10.设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D . 11.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥β D .若α⊥β,m ⊥β,m ⊄α,则m ∥α12.已知二次曲线+=1,则当m ∈[﹣2,﹣1]时,该曲线的离心率e 的取值范围是( )A .[,]B .[,]C .[,]D .[,]二、填空题13.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件 (4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p:.其中叙述正确的是 .(填上所有正确命题的序号) 14.满足tan (x+)≥﹣的x 的集合是 .15.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .16.设R m ∈,实数x ,y 满足23603260y mx y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.17.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 . 18.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .三、解答题19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (Ⅰ)求A 的大小; (Ⅱ)如果cosB=,b=2,求a 的值.20.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .21.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.22.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.(Ⅰ)求棱AA1的长;(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.23.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.24.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.郑州市外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C 【解析】试题分析:由2123n a a a a n =,则21231(1)n a a a a n -=-,两式作商,可得22(1)n n a n =-,所以22352235612416a a +=+=,故选C .考点:数列的通项公式.2. 【答案】A【解析】解:方程|x 2+3x ﹣3|=a 的解的个数可化为函数y=|x 2+3x ﹣3|与y=a 的图象的交点的个数,作函数y=|x 2+3x ﹣3|与y=a 的图象如下,,结合图象可知, m 的可能值有2,3,4; 故选A .3. 【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C .【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.4.【答案】C【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;③由p:x(x﹣2)≤0,得0≤x≤2,由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.∴正确的命题有3个.故选:C.5.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A.6.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.7.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.8.【答案】D【解析】解:对于A,α∥β,l⊂α,n⊂β,l,n平行或异面,所以错误;对于B,α∥β,l⊂α,l 与β可能相交可能平行,所以错误;对于C,l⊥n,m⊥n,在空间,l与m还可能异面或相交,所以错误.故选D.9.【答案】C.【解析】10.【答案】A【解析】考点:二元一次不等式所表示的平面区域.11.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.12.【答案】C【解析】解:由当m∈[﹣2,﹣1]时,二次曲线为双曲线,双曲线+=1即为﹣=1,且a2=4,b2=﹣m,则c2=4﹣m,即有,故选C.【点评】本题考查双曲线的方程和性质,主要考查离心率的范围,属于基础题.二、填空题13.【答案】(4)【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.14.【答案】[kπ,+kπ),k∈Z.【解析】解:由tan(x+)≥﹣得+kπ≤x+<+kπ,解得kπ≤x<+kπ,故不等式的解集为[kπ,+kπ),k∈Z,故答案为:[kπ,+kπ),k∈Z,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.15.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题. .16.【答案】[3,6]【解析】17.【答案】.【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a 和b ,基本事件的总个数是6×6=36,即(a ,b )的情况有36种, 事件“a+b 为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6), (3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个, “在a+b 为偶数的条件下,|a ﹣b|>2”包含基本事件: (1,5),(2,6),(5,1),(6,2)共4个,故在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.18.【答案】9 【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离.三、解答题19.【答案】【解析】解:(Ⅰ)∵b 2+c 2=a 2+bc ,即b 2+c 2﹣a 2=bc ,∴cosA==,又∵A ∈(0,π),∴A=;(Ⅱ)∵cosB=,B ∈(0,π), ∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.20.【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++. 【解析】试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-+211()a a a +-+求得.试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵1222n n b b ++=+,又121224b a a +=-+=,∴2312(21)(2222)22222221nn n n a n n n +-=++++-+=-+=--.∴224(12)(22)2(4)122n n n n n S n n +-+=-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 21.【答案】 【解析】解:(1)∵=,∴数列{b n}是以为首项,3为公差的等差数列.(2)由(1)可知,∴①②①﹣②得:,∴.【点评】本题主要考查数列通项公式和前n项和的求解,利用定义法和错位相减法是解决本题的关键.22.【答案】【解析】解:(Ⅰ)设AA1=h,由题设=﹣=10,∴即,解得h=3.故A1A的长为3.(Ⅱ)∵在长方体中,A1D1∥BC,∴∠O1BC为异面直线BO1与A1D1所成的角(或其补角).在△O1BC中,AB=BC=2,A1A=3,∴AA1=BC1=,=,∴,则cos∠O1BC===.∴异面直线BO1与A1D1所成角的余弦值为.【点评】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离.23.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.下面证明之:∵E为PC的中点,O是AC的中点,∴EO∥平面PA,又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,∴,∴所求AM的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.24.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.。
濮阳市第三中学2018-2019学年高三上学期11月月考数学试卷含答案
濮阳市第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数2.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:13. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 4. 某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π5. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 数列中,若,,则这个数列的第10项( ) A .19 B .21C .D .7. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]8. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 9. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=10.已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)11.在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .212.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈二、填空题13.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆外接圆的标准方程为_________.14.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.15.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值. 16.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .17.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .18.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.三、解答题19.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5A B 两班中各随机抽5名学生进行抽查,其成绩记录如下:x <y ,且A 和B 两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B 班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率; (Ⅱ)从被抽查的10名任取3名,X 表示抽取的学生中获得荣誉证书的人数,求X 的期望.20.已知函数y=3﹣4cos (2x+),x ∈[﹣,],求该函数的最大值,最小值及相应的x 值.21.已知椭圆C :+=1(a >b >0)的一个长轴顶点为A (2,0),离心率为,直线y=k (x ﹣1)与椭圆C 交于不同的两点M ,N , (Ⅰ)求椭圆C 的方程;(Ⅱ)当△AMN 的面积为时,求k 的值.22.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.23.已知椭圆:+=1(a >b >0)的一个顶点为A (2,0),且焦距为2,直线l 交椭圆于E 、F 两点(E 、F 与A 点不重合),且满足AE ⊥AF . (Ⅰ)求椭圆的标准方程;(Ⅱ)O 为坐标原点,若点P 满足2=+,求直线AP 的斜率的取值范围.24.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.濮阳市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.2.【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则πr2=×4πR2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为:=1:3.故选:D.3.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=310.4.【答案】C【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.5.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.6.【答案】C【解析】因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C7.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.8.【答案】A.【解析】9.【答案】C【解析】解:A.在定义域内没有单调性,∴该选项错误;B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C .y=﹣x|x|的定义域为R ,且﹣(﹣x )|﹣x|=x|x|=﹣(﹣x|x|); ∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R 上为减函数,∴该选项正确;D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R 上不是减函数,∴该选项错误. 故选:C .【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.10.【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .11.【答案】C 【解析】解:∵b=,c=3,B=30°,∴由余弦定理b 2=a 2+c 2﹣2accosB ,可得:3=9+a 2﹣3,整理可得:a 2﹣3a+6=0,∴解得:a=或2.故选:C .12.【答案】A【解析】试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且05<,所以0A ∈,即D 正确,故选A. 1考点:集合与元素的关系.二、填空题13.【答案】()2212x y -+=或()2212x y ++=【解析】试题分析:由题意知()0,1F ,设2001,4P x x ⎛⎫⎪⎝⎭,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2212x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()2212x y ++=.1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质.14.【答案】 :①②③【解析】解:对于①函数y=2x 3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x 0,y 0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x 0,2﹣y 0)也满足函数的解析式,则①正确; 对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;对于③若实数x ,y 满足x 2+y 2=1,则=,可以看作是圆x 2+y 2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC 为锐角三角形,则A ,B ,π﹣A ﹣B 都是锐角,即π﹣A ﹣B <,即A+B >,B >﹣A ,则cosB <cos (﹣A ),即cosB <sinA ,故④不正确.对于⑤在△ABC 中,G ,O 分别为△ABC 的重心和外心,取BC 的中点为D ,连接AD 、OD 、GD ,如图:则OD ⊥BC ,GD=AD ,∵=|,由则,即则又BC=5则有由余弦定理可得cosC <0, 即有C 为钝角.则三角形ABC 为钝角三角形;⑤不正确. 故答案为:①②③ 15.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.16.【答案】 .【解析】解:∵f (x )=cos 2x+sinx=1﹣sin 2x+sinx=﹣+,故当sinx=时,函数f (x )取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.17.【答案】﹣2≤a ≤2 【解析】解:原命题的否定为“∀x ∈R ,2x 2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a 2﹣4×2×9≤0,解得:﹣2≤a ≤2.故答案为:﹣2≤a ≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.18.【答案】D 【解析】三、解答题19.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),∵,∴x+y=17,①∵,=,∵,得(x﹣8)2+(y﹣8)2=1,②由①②解得或,∵x<y,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,∴P(C)=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X所有可能的取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.20.【答案】【解析】解:函数y=3﹣4cos(2x+),由于x∈[﹣,],所以:当x=0时,函数y min=﹣1当x=﹣π时,函数y max=7【点评】本题考查的知识要点:利用余弦函数的定义域求函数的值域.属于基础题型.21.【答案】【解析】解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为,∴∴b=∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2=,∴|MN|==∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S=∵△AMN的面积为,∴∴k=±1.【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.22.【答案】【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.由|2|21x m ≤+,得1122m x m --≤≤+,……………………2分 所以,由122m +=,解得32m =.……………………4分(2)不等式()2|23|2y y a f x x ≤+++等价于|21||23|22yy a x x --+≤+,由题意知max (|21||23|)22yy a x x --+≤+.……………………6分23.【答案】【解析】解:(Ⅰ)由题意可得a=2,2c=2,即c=1,b==,则椭圆的标准方程为+=1;(Ⅱ)设直线AE 的方程为y=k (x ﹣2),代入椭圆方程,可得(3+4k 2)x 2﹣16k 2x+16k 2﹣12=0,由2+x E =,可得x E =,y E =k (x E ﹣2)=,由于AE ⊥AF ,只要将上式的k 换为﹣,可得x F =,y F =,由2=+,可得P 为EF 的中点,即有P (,),则直线AP 的斜率为t==,当k=0时,t=0;当k≠0时,t=,再令s=﹣k,可得t=,当s=0时,t=0;当s>0时,t=≤=,当且仅当4s=时,取得最大值;当s<0时,t=≥﹣,综上可得直线AP的斜率的取值范围是[﹣,].【点评】本题考查椭圆的方程的求法,考查直线和椭圆方程联立,运用韦达定理,考查直线的斜率的取值范围的求法,注意运用基本不等式,考查运算能力,属于中档题.24.【答案】【解析】证明:(Ⅰ)由b n=,且a n+1=a n+,得,∴,下面用数学归纳法证明:0<b n<1.①由a1=∈(0,1),知0<b1<1,②假设0<b k<1,则,∵0<b k<1,∴,则0<b k+1<1.综上,当n∈N*时,b n∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题.。
郑州市实验中学2018-2019学年高三上学期11月月考数学试卷含答案
3. 已知函数 f(x)=31+|x|﹣ A. B.
4. 设偶函数 f(x)在[0,+∞)单调递增,则使得 f(x)>f(2x﹣1)成立的 x 的取值范围是( A.( ,1) B.(﹣∞, )∪(1,+∞) C.(﹣ , ) D.(﹣∞,﹣ )∪( ,+∞)
5. 如图, 四面体 OABC 的三条棱 OA, OB, OC 两两垂直, OA=OB=2, OC=3, D 为四面体 OABC 外一点. 给 出下列命题. ①不存在点 D,使四面体 ABCD 有三个面是直角三角形 ②不存在点 D,使四面体 ABCD 是正三棱锥 ③存在点 D,使 CD 与 AB 垂直并且相等 ④存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上 其中真命题的序号是( )
)
x | 2 x 1
D.
x | 2 x 2
【命题意图】本题主要考查集合的概念与运算,属容易题. “今有五人分五钱,令上二人所得与下三人等.问 8. 《九章算术》是我国古代的数学名著,书中有如下问题 : 各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分 5 钱,甲、乙两人所得与丙、丁、戊三人所得相同,且 甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题 中,甲所得为( ) A. 钱 B. 钱 C. 钱 D. 钱 9. 集合 S 0,1,2,3,4,5, A 是 S 的一个子集,当 x A 时,若有 x 1 A且x 1 A ,则称 x 为 A 的一个“孤立
关于 y=x 分离”.已知函数 f(x)=ax 与 g(x)=logax(a>0,且 a≠1)关于 y=x 分离,则 a 的取值范围是
根据上表,y 关于 t 的线性回归方程为
西安区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(1)
西安区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在函数y=中,若f (x )=1,则x 的值是()A .1B .1或C .±1D .2. 十进制数25对应的二进制数是( )A .11001B .10011C .10101D .100013. 已知等差数列的前项和为,且,在区间内任取一个实数作为数列{}n a n S 120a =-()3,5{}n a 的公差,则的最小值仅为的概率为( )n S 6S A .B .C .D .1516314134. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C.2D .45. 如图所示,程序执行后的输出结果为( )A .﹣1B .0C .1D .26. 下列说法正确的是()A .类比推理是由特殊到一般的推理B .演绎推理是特殊到一般的推理C .归纳推理是个别到一般的推理D .合情推理可以作为证明的步骤7. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( )A .B .20C .21D .318. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .a <b <cB .c <b <aC .b <a <cD .a <c <b 9. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( )A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定10.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到D .向左右平移个单位得到11.已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A .B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð12.命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤1二、填空题13.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-14.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .15.设α为锐角,若sin (α﹣)=,则cos2α= .16.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .17.定义为与中值的较小者,则函数的取值范围是 )}(),(min{x g x f )(x f )(x g },2min{)(2x x x f -=18.(﹣2)7的展开式中,x 2的系数是 .三、解答题19.已知函数f (x )=x ﹣1+(a ∈R ,e 为自然对数的底数).(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(Ⅱ)求函数f (x )的极值;(Ⅲ)当a=1的值时,若直线l :y=kx ﹣1与曲线y=f (x )没有公共点,求k 的最大值.20..已知定义域为R 的函数f (x )=是奇函数.(1)求a 的值;(2)判断f (x )在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.21.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.22.已知函数().()()xf x x k e =-k R ∈(1)求的单调区间和极值;()f x (2)求在上的最小值.()f x []1,2x ∈(3)设,若对及有恒成立,求实数的取值范围.()()'()g x f x f x =+35,22k ⎡⎤∀∈⎢⎥⎣⎦[]0,1x ∀∈()g x λ≥λ23.(本小题满分12分)已知函数,数列满足:,().21()x f x x +={}n a 12a =11n n a f a +⎛⎫= ⎪⎝⎭N n *∈(1)求数列的通项公式;{}n a (2)设数列的前项和为,求数列的前项和.{}n a n n S 1n S ⎧⎫⎨⎬⎩⎭n n T 【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.24.已知数列{a n }的前n 项和为S n ,且满足a n =3S n ﹣2(n ∈N *).(1)求数列{a n }的通项公式;(2)求数列{na n }的前n 项和T n .西安区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x≥2时,2x=1,解得x=(舍).综上得x=±1故选:C.2.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A.【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.3.【答案】D【解析】考点:等差数列.4.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.5.【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件s<15,s=5,n=4满足条件s<15,s=9,n=3满足条件s<15,s=12,n=2满足条件s<15,s=14,n=1满足条件s<15,s=15,n=0不满足条件s<15,退出循环,输出n的值为0.故选:B.【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.6.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.7.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.8.【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,∴y=sinx在(0,90°)单调递增,∴sin35°<sin38°<sin90°=1,∴a<b<c故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.9.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x 1<a <x 2,f '(a )=0,∴,∴,解得a=,假设x 1,x 2在a 的邻域内,即x 2﹣x 1≈0.∵,∴,∴f (x )的图象在a 的邻域内的斜率不断减少小,斜率的导数为正,∴x 0>a ,又∵x >x 0,又∵x >x 0时,f ''(x )递减,∴.故选:A .【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用. 10.【答案】C【解析】解:y=sin2x+cos2x=sin (2x+),y=sin2x ﹣cos2x=sin (2x ﹣)=sin[2(x ﹣)+)],∴由函数y=sin2x ﹣cos2x 的图象向左平移个单位得到y=sin (2x+),故选:C .【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键. 11.【答案】A【解析】解析:本题考查集合的关系与运算,,,∵,∴,选A .3(log 2,2]A =(0,2]B =3log 20>A ØB 12.【答案】C【解析】解:∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C 二、填空题13.【答案】()0,1【解析】14.【答案】 1 .【解析】解:在△ABC中,A=60°,|AB|=2,且△ABC的面积为,所以,则|AC|=1.故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查.15.【答案】 ﹣ .【解析】解:∵α为锐角,若sin(α﹣)=,∴cos(α﹣)=,∴sin=[sin(α﹣)+cos(α﹣)]=,∴cos2α=1﹣2sin2α=﹣.故答案为:﹣.【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题. 16.【答案】 [] .【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p ,∵0≤p ≤1,∴,故答案为:[].17.【答案】(],1-∞【解析】试题分析:函数的图象如下图:(){}2min 2,f x x x =-观察上图可知:的取值范围是。
城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( )A .1+iB .﹣1﹣iC .﹣1+iD .1﹣i2. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y轴上,则的值为()A .B .C .D .3. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是()A .B .C .D .4. 已知实数x ,y 满足,则z=2x+y 的最大值为()A .﹣2B .﹣1C .0D .45. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.6. 命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤17. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α8. 若函数则函数的零点个数为( )21,1,()ln ,1,x x fx x x ⎧-≤=⎨>⎩1()2y f x x =+班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .2C .3D .49. 已知、、的球面上,且,,球心到平面的距离为A B C AC BC ⊥30ABC ∠=oO ABC 1,点是线段的中点,过点作球的截面,则截面面积的最小值为( )M BC MO A B .CD .34π3π10.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种11.设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c12.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( )A .①④B .①⑤C .②⑤D .③⑤二、填空题13.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.14.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .15.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 16.已知函数f (x )=有3个零点,则实数a 的取值范围是 .17.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 18.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .三、解答题19.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.A D OCB20.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.21.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.22.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.23.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.24.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.2.【答案】C【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.4.【答案】D【解析】解:画出满足条件的平面区域,如图示:,将z=2x+y转化为:y=﹣2x+z,由图象得:y=﹣2x+z过(1,2)时,z最大,Z最大值=4,故选:D.【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.5.【答案】B【解析】6.【答案】C【解析】解:∵命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”故选C7.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.8.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.9. 【答案】B【解析】∵,∴,AC BC ⊥90ACB ∠=o∴圆心在平面的射影为D 的中点,O AB∴,∴.112AB ==2AB =∴,cos30BC AC ==o当线段为截面圆的直径时,面积最小,BC∴截面面积的最小值为.234ππ⨯=10.【答案】A【解析】人可以分为和两种结果,所以每所大学至少保送一人的不同保送的方法数为51,1,31,2,2种,故选A .223335353322150C C C A A A ⋅⋅+⋅=11.【答案】A 【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a <c <b .故选:A . 12.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用. 二、填空题13.【答案】【解析】(2a+b)·a=(2,-2+t)·(1,-1)=2×1+(-2+t)·(-1)=4-t=2,∴t=2.答案:214.【答案】 A<G .【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.15.【答案】 .【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.16.【答案】 (,1) .【解析】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).17.【答案】 .【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an的关系,属于中档题.18.【答案】 64 .【解析】解:由图可知甲的得分共有9个,中位数为28∴甲的中位数为28乙的得分共有9个,中位数为36∴乙的中位数为36则甲乙两人比赛得分的中位数之和是64故答案为:64.【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.三、解答题19.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.20.【答案】【解析】解:(Ⅰ)f(x)=ax++b≥2+b=b+2当且仅当ax=1(x=)时,f(x)的最小值为b+2(Ⅱ)由题意,曲线y=f(x)在点(1,f(1))处的切线方程为y=,可得:f(1)=,∴a++b=①f'(x)=a﹣,∴f′(1)=a﹣=②由①②得:a=2,b=﹣121.【答案】【解析】解:(Ⅰ)已知等式2bcosC=2a﹣c,利用正弦定理化简得:2sinBcosC=2sinA﹣sinC=2sin(B+C)﹣sinC=2sinBcosC+2cosBsinC﹣sinC,整理得:2cosBsinC﹣sinC=0,∵sinC≠0,∴cosB=,则B=60°;(Ⅱ)∵△ABC的面积为=acsinB=ac,解得:ac=4,①又∵b=2,由余弦定理可得:22=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,∴解得:a+c=4,②∴联立①②解得:a=c=2.22.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.23.【答案】【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;故全为女生的概率为=.…(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…P(X=0)==;P(X=1)==;P(X=2)==;P(X=3)==;P(X=4)==.…故X的分布列为X01234PEX=0×+1×+2×+3×+4×=.…【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.24.【答案】【解析】(I)证明:由题意,因为ABB1A1是矩形,D为AA1中点,AB=2,AA1=2,AD=,所以在直角三角形ABB1中,tan∠AB1B==,在直角三角形ABD中,tan∠ABD==,所以∠AB1B=∠ABD,又∠BAB1+∠AB1B=90°,∠BAB1+∠ABD=90°,所以在直角三角形ABO中,故∠BOA=90°,即BD⊥AB1,又因为CO⊥侧面ABB1A1,AB1⊂侧面ABB1A1,所以CO⊥AB1所以,AB1⊥面BCD,因为BC⊂面BCD,所以BC⊥AB1.(Ⅱ)解:如图,分别以OD,OB1,OC所在的直线为x,y,z轴,以O为原点,建立空间直角坐标系,则A (0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0),又因为=2,所以所以=(﹣,,0),=(0,,),=(,,),=(,0,﹣),设平面ABC的法向量为=(x,y,z),则根据可得=(1,,﹣)是平面ABC的一个法向量,设直线CD与平面ABC所成角为α,则sinα=,所以直线CD与平面ABC所成角的正弦值为.…【点评】本题考查了直线与平面垂直的性质,考查线面角,考查向量方法的运用,属于中档题.。
郑州市二中2018-2019学年高三上学期11月月考数学试卷含答案
第 1 页,共 14 页
A.
B.
C.
D.
7. 如图,空间四边形 ABCD 中,M、G 分别是 BC、CD 的中点,则 等( )
A.
B.
o o
C.
D. )
8. 在 ABC 中,若 A 60 , B 45 , BC 3 2 ,则 AC ( A. 4 3 B. 2 3 C.
3
D. )
2 2
D. x 2 y 1 16
2 2
ቤተ መጻሕፍቲ ባይዱ
10 . 在平面直角坐标系 ( A. ) B.
中,向量 C.
= ( 1 , 2) , D. )
= (2 , m) ,若 O , A , B 三点能构成三角形,则
11.下列函数中,既是奇函数又是减函数的为( A.y=x+1 B.y=﹣x2 C. ) D.y=﹣x|x|
9. 若圆心坐标为 2, 1 的圆在直线 x y 1 0 上截得的弦长为 2 2 ,则这个圆的方程是( A. x 2 y 1 0
2 2
3 2
B. x 2 y 1 4
2 2
C. x 2 y 1 8
第 3 页,共 14 页
22.已知 f(x)=x3+3ax2+bx 在 x=﹣1 时有极值为 0. (1)求常数 a,b 的值; (2)求 f(x)在[﹣2,﹣ ]的最值.
23.已知函数 f(x)=(log2x﹣2)(log4x﹣ ) (1)当 x∈[2,4]时,求该函数的值域; (2)若 f(x)>mlog2x 对于 x∈[4,16]恒成立,求 m 的取值范围.
A. 1 2 2 5. 已知椭圆 C:
郑州市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
郑州市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1 D .﹣13. 若x ,y满足且z=y ﹣x 的最小值为﹣2,则k 的值为( ) A .1B .﹣1C .2D .﹣24. 执行如图所示的程序,若输入的3x ,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________5. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.6. 利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )P (K 2>k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.7081.3232.072 2.7063.8415.0246.6357.879 10.828A .25%B .75%C .2.5%D .97.5%7. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.8. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .9. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .10.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤< 11.下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α12.在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°二、填空题13.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .14.在(1+x )(x 2+)6的展开式中,x 3的系数是 . 15.下图是某算法的程序框图,则程序运行后输出的结果是____. 16.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .17.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .18.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________. 三、解答题19.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.20.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.21.已知函数f (x )=|x ﹣a|.(1)若f (x )≤m 的解集为{x|﹣1≤x ≤5},求实数a ,m 的值. (2)当a=2且0≤t <2时,解关于x 的不等式f (x )+t ≥f (x+2).22.已知数列{a n }的前n 项和为S n ,且满足a n =3S n ﹣2(n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{na n }的前n 项和T n .23.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;(2)求数列{a n}的通项公式a n;(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.24.已知函数.(1)求f(x)的周期.(2)当时,求f(x)的最大值、最小值及对应的x值.郑州市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:1<log23<2,0<8﹣0.4=2﹣1.2,sinπ=sinπ,∴a>c>b,故选:B.【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.2.【答案】D【解析】解:由zi=1+i,得,∴z的虚部为﹣1.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.【答案】B【解析】解:由z=y﹣x得y=x+z,作出不等式组对应的平面区域如图:平移直线y=x+z由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最小,此时最小值为﹣2,即y﹣x=﹣2,则x﹣y﹣2=0,当y=0时,x=2,即A(2,0),同时A也在直线kx﹣y+2=0上,代入解得k=﹣1,故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段.4. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .5. 【答案】B6. 【答案】D【解析】解:∵k >5、024,而在观测值表中对应于5.024的是0.025, ∴有1﹣0.025=97.5%的把握认为“X 和Y 有关系”,故选D . 【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目.7. 【答案】D第Ⅱ卷(共100分)[.Com]8. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.9.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.10.【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 11.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.12.【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF和BC1所成的角是60°.故选:A.【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.二、填空题13.【答案】③④.【解析】解:函数f(x)=cosxsinx=sin2x,对于①,当f(x1)=﹣f(x2)时,sin2x1=﹣sin2x2=sin(﹣2x2)∴2x1=﹣2x2+2kπ,即x1+x2=kπ,k∈Z,故①错误;对于②,由函数f(x)=sin2x知最小正周期T=π,故②错误;对于③,令﹣+2π≤2x≤+2kπ,k∈Z得﹣+kπ≤x≤+kπ,k∈Z当k=0时,x∈[﹣,],f(x)是增函数,故③正确;对于④,将x=代入函数f(x)得,f()=﹣为最小值,故f(x)的图象关于直线x=对称,④正确.综上,正确的命题是③④.故答案为:③④.14.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.15.【答案】27【解析】由程序框图可知:43符合,跳出循环.16.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.故答案为:10.17.【答案】﹣6.【解析】解:由约束条件,得可行域如图,使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.故答案为:﹣6.18.【答案】56 27【解析】三、解答题19.【答案】【解析】(I)证明:由S n=2a n﹣n2+3n+2(n∈N*),∴当n≥2时,,a n=S n﹣S n﹣1=2a n﹣2a n﹣1﹣2n+4,变形为a n+2n=2[a n﹣1+2(n﹣1)],当n=1时,a1=S1=2a1﹣1+3+2,解得a1=﹣4,∴a1+2=﹣2,∴数列{a n+2n}是等比数列,首项为﹣2,公比为2;(II)解:由(I)可得a n=﹣2×2n﹣1﹣2n=﹣2n﹣2n.∴b n=a n sinπ=﹣(2n+2n),∵==(﹣1)n,∴b n=(﹣1)n+1(2n+2n).设数列{b n}的前n项和为T n.当n=2k(k∈N*)时,T2k=(2﹣22+23﹣24+…+22k﹣1﹣22k)+2(1﹣2+3﹣4+…+2k﹣1﹣2k)=﹣2k=﹣n.当n=2k﹣1时,T2k﹣1=﹣2k﹣(﹣22k﹣4k)=+n+1+2n+1=+n+1.(III)证明:C n=﹣=,当n≥2时,c n.∴数列{C n }的前n 项和为P n <==,当n=1时,c 1=成立.综上可得:∀n ∈N *,.【点评】本题考查了等差数列与等比数列的通项公式及其前n 项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.20.【答案】(1)0.3a =;(2)3.6万;(3)2.9. 【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.21.【答案】【解析】解:(1)∵f (x )≤m , ∴|x ﹣a|≤m , 即a ﹣m ≤x ≤a+m ,∵f (x )≤m 的解集为{x|﹣1≤x ≤5},∴,解得a=2,m=3.(2)当a=2时,函数f(x)=|x﹣2|,则不等式f(x)+t≥f(x+2)等价为|x﹣2|+t≥|x|.当x≥2时,x﹣2+t≥x,即t≥2与条件0≤t<2矛盾.当0≤x<2时,2﹣x+t≥x,即0,成立.当x<0时,2﹣x+t≥﹣x,即t≥﹣2恒成立.综上不等式的解集为(﹣∞,].【点评】本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧.22.【答案】【解析】解:(1)∵a n=3S n﹣2,∴a n﹣1=3S n﹣1﹣2(n≥2),两式相减得:a n﹣a n﹣1=3a n,整理得:a n=﹣a n﹣1(n≥2),又∵a1=3S1﹣2,即a1=1,∴数列{a n}是首项为1、公比为﹣的等比数列,∴其通项公式a n=(﹣1)n﹣1•;(2)由(1)可知na n=(﹣1)n﹣1•,∴T n=1•1+(﹣1)•2•+…+(﹣1)n﹣2•(n﹣1)•+(﹣1)n﹣1•,∴﹣T n=1•(﹣1)•+2•+…+(﹣1)n﹣1•(n﹣1)•+(﹣1)n•n•,错位相减得:T n=1+[﹣+﹣+…+(﹣1)n﹣1•]﹣(﹣1)n•n•=1+﹣(﹣1)n•n•=+(﹣1)n﹣1••,∴T n=[+(﹣1)n﹣1••]=+(﹣1)n﹣1••.【点评】本题考查数列的通项及前n项和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.23.【答案】【解析】解:(1)当n=1时,2S1=2a1=a2+2,∴a2=4…1;(2)当n≥2时,2a n=2s n﹣2s n﹣1=a n+1+2n﹣a n﹣2(n﹣1)=a n+1﹣a n+2,∴a n+1=3a n﹣2,∴a n+1﹣1=3(a n﹣1)…4,∴,∴{a n﹣1}从第二项起是公比为3的等比数列…5,∵,∴,∴;(3)∴ (8)∴① (9)∴②①﹣②得:,=,=(2﹣2n)×3n﹣4, (11)∴ (12)【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.24.【答案】【解析】解:(1)∵函数.∴函数f(x)=2sin(2x+).∴f(x)的周期T==π即T=π(2)∵∴,∴﹣1≤sin(2x+)≤2最大值2,2x=,此时,最小值﹣1,2x=此时【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可.。
郑州市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
郑州市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=()A .2B .4C .8D .162. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 303. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .104. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差5. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )A .0<a ≤B .0≤a ≤C .0<a <D .a >6. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是()A .B .1﹣C .D .1﹣7. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( )A .(﹣∞,﹣1)∪(0,1)B .(﹣∞,﹣1)(∪1,+∞)C .(﹣1,0)∪(0,1)D .(﹣1,0)∪(1,+∞)8. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x 9. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )A .B .C .D .10.等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B 2=AC B .A+C=2B C .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )11.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16B .﹣16C .8D .﹣812.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数()1e ex x f x =-e 的底数,则不等式的解集为________.()()2240f x f x -+-<14.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .15.已知各项都不相等的等差数列,满足,且,则数列项中{}n a 223n n a a =-26121a a a =∙12n n S -⎧⎫⎨⎬⎩⎭的最大值为_________.16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx - (m ∈R )在区间[1,e]上取得mx最小值4,则m =________.17.已知||=1,||=2,与的夹角为,那么|+||﹣|= .18.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为 .三、解答题19.(选做题)已知f (x )=|x+1|+|x ﹣1|,不等式f (x )<4的解集为M .(1)求M ;(2)当a ,b ∈M 时,证明:2|a+b|<|4+ab|.20.已知四棱锥P ﹣ABCD ,底面ABCD 是∠A=60°、边长为a 的菱形,又PD ⊥底ABCD ,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN ∥平面PMB ;(2)证明:平面PMB ⊥平面PAD ;(3)求点A 到平面PMB 的距离.21.设数列{a n }的前n 项和为S n ,a 1=1,S n =na n ﹣n (n ﹣1).(1)求证:数列{a n }为等差数列,并分别求出a n 的表达式;(2)设数列的前n 项和为P n ,求证:P n <;(3)设C n =,T n =C 1+C 2+…+C n ,试比较T n 与的大小.22.(本小题满分12分)设曲线:在点处的切线与轴交与点,函数.C ln (0)y a x a =≠00(,ln )T x a x x 0((),0)A f x 2()1xg x x=+(1)求,并求函数在上的极值;0()f x ()f x (0,)+∞(2)设在区间上,方程的实数解为,的实数解为,比较与的大小.(0,1)()f x k =1x ()g x k =2x 1x 2x23.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C丄侧面ABB1A1,AC=AA1=AB,∠AA1C1=60°,AB⊥AA1,H为棱CC1的中点,D在棱BB1上,且A1D丄平面AB1H.(Ⅰ)求证:D为BB1的中点;(Ⅱ)求二面角C1﹣A1D﹣A的余弦值.24.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.郑州市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.2.【答案】C【解析】解:a n==1+,该函数在(0,)和(,+∞)上都是递减的,图象如图,∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a10,a9.故选:C.【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.3.【答案】B【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n﹣5r ,令2n﹣5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 4.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.5.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.6.【答案】B【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型公式可得该点取自阴影部分的概率是;故选:B.【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.7.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.8.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.9.【答案】B【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.10.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n=,B=S2n=,C=S3n=,B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);故B(B﹣A)=A(C﹣A);故选:C.【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力. 11.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B .【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力. 12.【答案】 D【解析】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D .二、填空题13.【答案】()32-,【解析】∵,∴,即函数为奇函数,()1e ,e x x f x x R =-∈()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭()f x 又∵恒成立,故函数在上单调递增,不等式可转化为()0xxf x e e-=+>'()f x R ()()2240f x f x -+-<,即,解得:,即不等式的解集为()()224f x f x -<-224x x -<-32x -<<()()2240f x f x -+-<,故答案为.()32-,()32-,14.【答案】 m ≥2 .【解析】解:集合A={x|x+m ≥0}={x|x ≥﹣m},全集U=R ,所以C U A={x|x <﹣m},又B={x|﹣2<x <4},且(∁U A )∩B=∅,所以有﹣m ≤﹣2,所以m ≥2.故答案为m ≥2. 15.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公1,,,,n n a a d n S 式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.1,a d 16.【答案】-3e 【解析】f ′(x )=+=,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递1x 2m x 2x m x 减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3 (-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-,令1-=4,得m =-3e ,符合题意.综上所述,m e mem =-3e.17.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.18.【答案】 【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.三、解答题19.【答案】【解析】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.20.【答案】【解析】解:(1)证明:取PB中点Q,连接MQ、NQ,因为M、N分别是棱AD、PC中点,所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.⇒DN∥平面PMB.(2)⇒PD⊥MB又因为底面ABCD是∠A=60°、边长为a的菱形,且M为AD中点,所以MB⊥AD.又AD∩PD=D,所以MB⊥平面PAD.⇒平面PMB⊥平面PAD.(3)因为M是AD中点,所以点A与D到平面PMB等距离.过点D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB.故DH是点D到平面PMB的距离..∴点A到平面PMB的距离为.【点评】本题主要考查空间线面的位置关系,空间角的计算等基本知识,考查空间想象能力、逻辑思维能力、运算求解能力和探究能力,同时考查学生灵活利用图形,借助向量工具解决问题的能力,考查数形结合思想. 21.【答案】【解析】解:(1)证明:∵S n=na n﹣n(n﹣1)∴S n+1=(n+1)a n+1﹣(n+1)n…∴a n+1=S n+1﹣S n=(n+1)a n+1﹣na n﹣2n…∴na n+1﹣na n﹣2n=0∴a n+1﹣a n=2,∴{a n}是以首项为a1=1,公差为2的等差数列…由等差数列的通项公式可知:a n=1+(n﹣1)×2=2n﹣1,数列{a n }通项公式a n =2n ﹣1;…(2)证明:由(1)可得,…=…(3)∴,=,两式相减得…=,=,=,=,∴…∴…∵n ∈N *,∴2n >1,∴,∴… 22.【答案】【解析】(1)∵,∴.ln y a x =a y x'=∴曲线在点处的切线斜率,C T 0a k x =∴切线方程为.000()a y y x x x -=-令,得,0y =000()x y a x x -=-∵,∴,∴.00ln y a x =000ln ()x a x a x x -=-000ln x x x x =-∴.∴..0000()ln f x x x x =-()ln f x x x x =-()ln f x x '=-当时,,单调递增,当时,,单调递减,01x <<()0f x '>()f x 1x >()0f x '<()f x ∴当时,取得极大值,无极小值.1x =()f x (1)1f = (2)由题设知,,故,解得.1()f x k =2()g x k =2221x k x =+22k x k=- 将代入上式得,1()f x k =121()2()f x x f x =-∴,111121111()(1)()22()2()f x x f x x x x x f x f x +--=-=--11111(1)2[(1ln )2()1x x x f x x +=---+ ∵,由(1)知,∴,1(0,1)x ∈1()1f x <12()0f x -> ∵,∴.11(1)0x x +>111(1)02()x x f x +>- 令,则,2()(1ln ),(0,1)1h x x x x=--∈+222121()0(1)(1)x h x x x x x --'=-+=<++∴在上单调递减,∴,即,()h x (0,1)()(1)0h x h >=112(1ln )01x x -->+∴,从而.210x x ->21x x >选做题:请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.23.【答案】【解析】(Ⅰ)证明:连接AC 1,∵AC=AA 1,∠AA 1C 1=60°,∴三角形ACC 1是正三角形,∵H 是CC 1的中点,∴AH ⊥CC 1,从而AH ⊥AA 1,∵侧面AA 1C 1C 丄侧面ABB 1A 1,面AA 1C 1C ∩侧面ABB 1A 1=AA 1,AH ⊂平面AA 1C 1C ,∴AH ⊥ABB 1A 1,以A 为原点,建立空间直角坐标系如图,设AB=,则AA 1=2,则A (0,2,0),B 1(,2,0),D (,t ,0),则=(,2,0),=(,t ﹣2,0),∵A 1D 丄平面AB 1H .AB 1⊂丄平面AB 1H .∴A 1D 丄AB 1,则•=(,2,0)•(,t ﹣2,0)=2+2(t ﹣2)=2t ﹣2=0,得t=1,即D (,1,0),∴D 为BB 1的中点;(2)C 1(0,1,),=(,﹣1,0),=(0,﹣1,),设平面C1A1D的法向量为=(x,y,z),则由•=x﹣y=0),•=﹣y+z=0,得,令x=3,则y=3,z=,=(3,3,),显然平面A1DA的法向量为==(0,0,),则cos<,>===,即二面角C1﹣A1D﹣A的余弦值是.【点评】本题主要考查空间直线和平面位置关系的判断以及二面角的求解,建立坐标系,求出平面的法向量,利用向量法是解二面角的常用方法.综合性较强,运算量较大.24.【答案】【解析】解:(1)∵﹣1,1是函数y=f(x)的零点,∴,解得b=0,c=﹣1.(2)∵f(1)=1+2b+c=0,所以c=﹣1﹣2b.令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x﹣b﹣1,∵关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,∴,即.解得<b<,即实数b的取值范围为(,).【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题.。
郑州市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
郑州市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若a >b ,则下列不等式正确的是( )A.B .a 3>b 3C .a 2>b 2D .a >|b|2. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.3. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22 上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.4. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 5. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④B .①⑤C .②⑤D .③⑤6. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( ) A .①④B .②③C .③④D .②④7. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( ) A .(﹣∞,1) B .(﹣∞,1] C .(﹣∞,0) D .(﹣∞,0]8. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( ) A.() B.(,]C.() D.(]9. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个11.数列中,若,,则这个数列的第10项( ) A .19B .21C .D . 12.已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+4二、填空题13.1785与840的最大约数为 . 14.若x ,y满足线性约束条件,则z=2x+4y 的最大值为 .15.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .16.设椭圆E:+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 . 17.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn是向量与i的夹角,则++…+= .18.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A. B.C.D.三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21X(I)求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望Eξ.22.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.23.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12(1)求a ,b 的值.(2)当x ∈[1,2]时,求f (x )的最大值.(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x﹣m 的图象恒有两个交点.24.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.郑州市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.105.14.38.15.64.16..17..18.三、解答题19.20.21.22.证明见解析.23.24.。
郑州市第三中学2018-2019学年高三上学期11月月考数学试卷含答案
2 ,设 AF x ,则 2 x 1 x 2 ,
2 2 3 2 ,即菱形 BED1 F 的边长为 2 ,则 BED1 F 在底面 ABCD 上的投影四边形是底边 4 4 4 3 3 为 ,高为的平行四边形,其面积为 ,故选 B. 4 4
考点:平面图形的投影及其作法. 2. 【答案】C 【解析】解:∵ ∴ 故选:C. 【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力. 3. 【答案】 C 【解析】解:设椭圆的长半轴为 a,双曲线的实半轴为 a1,(a>a1),半焦距为 c, 由椭圆和双曲线的定义可知, 设|MF1|=r1,|MF2|=r2,|F1F2|=2c, 椭圆和双曲线的离心率分别为 e1,e2 ∵∠F1MF2= , ,① = , =(﹣3,﹣5).
6
B、
8. 已知函数 f(x)满足:x≥4,则 f(x)= ( A. ) ) B. C. D.
;当 x<4 时 f(x)=f(x+1),则 f(2+log23)=
9. 向高为 H 的水瓶中注水,注满为止.如果注水量 V 与水深 h 的函数关系式如图所示,那么水瓶的形状是(
第 1 页,共 16 页
第 7 页,共 16 页
当且仅当 e1= 故选 C.
,e2=
时取等号.即取得最大值且为
.
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大 . 4. 【答案】D 【解析】解:i2015=i503×4+3=i3=﹣i, 故选:D 【点评】本题主要考查复数的基本运算,比较基础. 5. 【答案】B 【解析】解:已知抛物线 y2=4 则双曲线的焦点坐标为( 即 c= , x 的焦点和双曲线的焦点重合, ,0),
贵阳市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
贵阳市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知a >0,实数x ,y满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C.D.2. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 3. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .B .12+C .122+ D .122+ 4.已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B.C.tan35°D .tan35°5. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π6. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .2037. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=()A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4} 8. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2B .C .D .39. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±= 10.已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5C .7D .811.已知F 1、F 2分别是双曲线﹣=1(a >0,b >0)的左、右焦点,过点F 2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆外,则双曲线离心率的取值范围是( )A .(1,)B .(,+∞) C .(,2)D .(2,+∞)12.如图框内的输出结果是( )A .2401B .2500C .2601D .2704二、填空题13.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .14.求函数在区间[]上的最大值 .15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.16.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为.17.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x2+1的图象可由y=3x2的图象向上平移1个单位得到;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是.(填上所有正确命题的序号)18.已知一个算法,其流程图如图,则输出结果是.三、解答题19.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.20.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.21.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。
郑州市高中2018-2019学年高三上学期11月月考数学试卷含答案
∴AC•BC= .由余弦定理 AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC, ∴(AC+BC)2﹣3AC•BC=3, ∴(AC+BC)2=11. ∴AC+BC= 故选:D 【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题. 10.【答案】B 【解析】解:集合 A 中的不等式,当 x>0 时,解得:x> ;当 x<0 时,解得:x< , 集合 B 中的解集为 x> ,
考点:球的表面积和体积. 6. 【答案】B 【解析】本题考查了对数的计算、列举思想 a=- 时,不符;a=0 时,y=log2x 过点( ,-1),(1,0),此时 b=0,b=1 符合; a= 时,y=log2(x+ )过点(0,-1),( ,0),此时 b=0,b=1 符合; a=1 时,y=log2(x+1)过点(- ,-1),(0,0),(1,1),此时 b=-1,b=1 符合;共 6 个 7. 【答案】B
2. 函数 f(x)=( A.(﹣∞,0)
)x2﹣9 的单调递减区间为( C.(﹣9,+∞)
B.(0,+∞)
3. 已知集合 A={y|y=x2+2x﹣3}, A.A⊆B 4. 不等式 A.{x| ≤x≤2} A. 144 ,144 6. 设函数的集合 B.B⊆A 的解集是( B.{x| ≤x<2} B. 144 ,36
5. 直径为 6 的球的表面积和体积分别是(
,平面上点的集合 ,则在同一直角坐标系中,P 中函数 的图象恰好经过 Q 中
两个点的函数的个数是 A4 B6 C8 D10
7. 一个几何体的三视图如图所示,如果该几何体的侧面面积为 12π,则该几何体的体积是( )
郑州市一中2018-2019学年高三上学期11月月考数学试卷含答案
郑州市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知集合,则下列式子表示正确的有(){}2|10A x x =-=①;②;③;④.1A ∈{}1A -∈A ∅⊆{}1,1A -⊆A .1个B .2个C .3个D .4个2. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是()A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}3. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >4. 记,那么AB C D5. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C.52D .566. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线7. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A8. 函数f (x )=()x2﹣9的单调递减区间为( )A .(﹣∞,0)B .(0,+∞)C .(﹣9,+∞)D .(﹣∞,﹣9)9. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( )A .{x|﹣1<x <1}B .{x|﹣2<x <1}C .{x|﹣2<x <2}D .{x|0<x <1}10.在下面程序框图中,输入,则输出的的值是( )44N =S 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.11.已知全集为,且集合,,则等于( )R }2)1(log |{2<+=x x A }012|{≥--=x x x B )(B C A R A . B . C . D .)1,1(-]1,1(-)2,1[]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.12.下列图象中,不能作为函数y=f (x )的图象的是( )A .B .C .D .二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .14.将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的()0,2()4,0()7,3(),m n m n +值是 .15.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).16.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).17.已知三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,ABC D -O ABC ∆DBC ∆3=AB ,,则球的表面积为 .3=AC 32===BD CD BC O 18.已知,则不等式的解集为________.,0()1,0x e x f x x ì³ï=í<ïî2(2)()f x f x ->【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.三、解答题19.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.20.已知函数f(x)=(log2x﹣2)(log4x﹣)(1)当x∈[2,4]时,求该函数的值域;(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.21.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.22.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.23.已知函数f(x)=+lnx﹣1(a是常数,e≈=2.71828).(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a=1时,方程f(x)=m在x∈[,e2]上有两解,求实数m的取值范围;(3)求证:n∈N*,ln(en)>1+.24.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y(单位:微克)的统计表:x i12345y i5753403010(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x,有下列数据处理信息:=11,=38,2iωy(ωi-)(y i-)=-811,(ωi-)2=374,ωyω对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)郑州市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C B B B B D B D B 题号1112答案CB二、填空题13. [﹣1,﹣) .14.34 515.BC 16.17.1618.(-三、解答题19.20.21.22.23.24.。
新郑市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
新郑市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 2. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)3. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()4. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数D .标准差5. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .137. 若函数()()22f x x πϕϕ⎛⎫+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB .2D .48. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)9. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.10.设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )A .﹣B .﹣C .D .11.已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )A .B .C .2D .412.已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)-二、填空题13.下图是某算法的程序框图,则程序运行后输出的结果是____.14.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=.15.用描述法表示图中阴影部分的点(含边界)的坐标的集合为.16.已知函数f(x)=cosxsinx,给出下列四个结论:①若f(x1)=﹣f(x2),则x1=﹣x2;②f(x)的最小正周期是2π;③f(x)在区间[﹣,]上是增函数;④f(x)的图象关于直线x=对称.其中正确的结论是.17.若x,y满足线性约束条件,则z=2x+4y的最大值为.18.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.三、解答题19.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.20.如图,已知AB 为⊙O 的直径,CE ⊥AB 于点H ,与⊙O 交于点C 、D ,且AB=10,CD=8,DE=4,EF 与⊙O 切于点F ,BF 与HD 交于点G . (Ⅰ)证明:EF=EG ; (Ⅱ)求GH 的长.21.解不等式|3x ﹣1|<x+2.22.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.(Ⅰ)求函数f (x )的解析式;(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.24.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.新郑市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.2714..15.{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.16.③④.17.38.18.(1,±2).三、解答题19.20.21.22.23.24.。
郑州市二中2018-2019学年高三上学期11月月考数学试卷含答案
郑州市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .52. 设x ,y ∈R,且满足,则x+y=( )A .1B .2C .3D .43.如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±x B .y=±3x C .y=±x D .y=±x4. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A.1+ B.4- C.5- D.3+ 5. 已知椭圆C:+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B两点,若△AF 1B 的周长为4,则C 的方程为( )A.+=1B.+y 2=1C.+=1D.+=16. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .7. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .8. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C.D .29. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为,则这个圆的方程是( ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 10.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .11.下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|12.下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=二、填空题13.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .14.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.15.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .16.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .17.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .18.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .三、解答题19.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.20.根据下列条件求方程.(1)若抛物线y 2=2px 的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.21.已知在四棱锥P ﹣ABCD 中,底面ABCD 是边长为4的正方形,△PAD 是正三角形,平面PAD ⊥平面ABCD ,E 、F 、G 分别是PA 、PB 、BC 的中点. (I )求证:EF ⊥平面PAD ;(II )求平面EFG 与平面ABCD 所成锐二面角的大小.22.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f (x )在[﹣2,﹣]的最值.23.已知函数f (x )=(log 2x ﹣2)(log 4x﹣) (1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.24.本小题满分10分选修41-:几何证明选讲如图,ABC ∆是⊙O 的内接三角形,PA 是⊙O 的切线,切点为A ,PB 交AC 于点E ,交⊙O 于点D ,PE PA =,︒=∠45ABC ,1=PD ,8=DB .Ⅰ求ABP ∆的面积; Ⅱ求弦AC 的长.郑州市二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,∵a2014,a2016是函数f(x)=+6x﹣1的极值点,∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.数列{a n}中,满足a n+2=2a n+1﹣a n,可知{a n}为等差数列,∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4.故选:C.【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.2.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.3.【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m ﹣1=n ,② 由①②解得a=1, 由|F 1F 2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x ,即有渐近线方程为y=x .故选D .【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.4. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m -+-=,解得4a =,所以212AF m ⎛=- ⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 5. 【答案】A【解析】解:∵△AF1B 的周长为4,∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a+2a=4a ,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.6.【答案】B【解析】解:∵y=f(|x|)是偶函数,∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,x<0部分的图象关于y轴对称而得到的.故选B.【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.7.【答案】C【解析】解:∵M、G分别是BC、CD的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.8.【答案】B【解析】考点:正弦定理的应用.9.【答案】B【解析】考点:圆的方程.1111]10.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
郑州市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
郑州市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列函数中,a ∀∈R ,都有得()()1f a f a +-=成立的是( ) A.())f x x = B .2()cos ()4f x x π=-C .2()1x f x x =+D .11()212xf x =+- 2. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 3. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( ) A .x 2﹣=1 B.﹣=1 C.﹣=1 D.﹣=14. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}5. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M},则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2} 6. 在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .7. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±38. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=09. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75° 10.若变量x ,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t<﹣ B .﹣2<t ≤﹣ C .﹣2≤t ≤﹣ D .﹣2≤t<﹣11.已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .312.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β二、填空题13.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
郑州市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
郑州市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列判断正确的是()A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台2. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是()A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]3. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A . B.15+C .D.15+15+【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.4. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+15. 已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)6. 若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y y x 31++x y y x +A . B . C . D .1-3-3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 不等式组在坐标平面内表示的图形的面积等于( )A .B .C .D .8. 某一简单几何体的三视图如所示,该几何体的外接球的表面积是()A .13πB .16πC .25πD .27π9. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.下列正方体或四面体中,、、、分别是所在棱的中点,这四个点不共面的一个图形是P Q R S ()11.设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )A .{﹣2}B .{2}C .{﹣2,2}D .∅12.如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111]P ABC A .2对B .3对C .4对D .6对二、填空题13.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.14.函数f (x )=(x >3)的最小值为 .15.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 . 16.方程22x ﹣1=的解x= .17.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.18.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .三、解答题19.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0.(1)求常数 a ,b 的值; (2)求f (x )在[﹣2,﹣]的最值.20.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.21.(本题满分15分)正项数列满足,.}{n a 121223+++=+n n n n a a a a 11=a (1)证明:对任意的,;*N n ∈12+≤n n a a (2)记数列的前项和为,证明:对任意的,.}{n a n n S *N n ∈32121<≤--n n S 【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.22.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),求f(B)的值.23.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.24.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;(2)求数列{a n}的通项公式a n;(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.郑州市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C . 2. 【答案】D【解析】解:∵函数f (x )=﹣x 2+2ax 的对称轴为x=a ,开口向下,∴单调间区间为[a ,+∞)又∵f (x )在区间[1,2]上是减函数,∴a ≤1∵函数g (x )=在区间(﹣∞,﹣a )和(﹣a ,+∞)上均为减函数,∵g (x )=在区间[1,2]上是减函数,∴﹣a >2,或﹣a <1,即a <﹣2,或a >﹣1,综上得a ∈(﹣∞,﹣2)∪(﹣1,1],故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围. 3. 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,且平面62VE ^,如图所示,所以此四棱锥表面积为ABCD 1S =262´´´1123+22622´´´´´,故选C.15=+4646101011326E VD CBA4. 【答案】D【解析】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D5.【答案】B【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.6.【答案】D【解析】考点:简单线性规划.7.【答案】B【解析】解:作出不等式组对应的平面区域,则对应的平面区域为矩形OABC,则B(3,0),由,解得,即C(,),∴矩形OABC的面积S=2S△0BC=2×=,故选:B【点评】本题主要考查二元一次不等式组表示平面区,利用数形结合是解决本题的关键.8.【答案】C【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.9.【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数.由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.故选:A.10.【答案】D【解析】考点:平面的基本公理与推论.11.【答案】A【解析】解:由A 中的方程x+2=0,解得x=﹣2,即A={﹣2};由B 中的方程x 2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A ∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 12.【答案】B 【解析】试题分析:三棱锥中,则与、与、与都是异面直线,所以共有三对,故选P ABC PA BC PC AB PB AC B .考点:异面直线的判定.二、填空题13.【答案】【解析】解:∵f (x )=a x g (x )(a >0且a ≠1),∴=a x ,又∵f ′(x )g (x )>f (x )g ′(x ),∴()′=>0,∴=a x 是增函数,∴a >1,∵+=.∴a 1+a ﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.14.【答案】 12 .【解析】解:因为x>3,所以f(x)>0由题意知:=﹣令t=∈(0,),h(t)==t﹣3t2因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)∈(0,]由h(t)=⇒f(x)=≥12故答案为:1215.【答案】 0 .【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,其图象开口向上,对称抽为:x=1,所以函数f(x)在[2,4]上单调递增,所以f(x)的最小值为:f(2)=22﹣2×2=0.故答案为:0.【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.16.【答案】 ﹣ .【解析】解:22x﹣1==2﹣2,∴2x﹣1=﹣2,解得x=﹣,故答案为:﹣【点评】本题考查了指数方程的解法,属于基础题.17.【答案】1【解析】18.【答案】 ﹣ .【解析】解:∵f(x)=﹣2ax+2a+1,∴求导数,得f′(x)=a(x﹣1)(x+2).①a=0时,f(x)=1,不符合题意;②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.三、解答题19.【答案】【解析】解:(1)∵f(x)=x3+3ax2+bx,∴f'(x)=3x2+6ax+b,又∵f(x)在x=﹣1时有极值0,∴f'(﹣1)=0且f(﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.20.【答案】【解析】解:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程可得,4x2+(4﹣2p)x+1=0则,,y1﹣y2=2(x1﹣x2)====解得p=6或p=﹣2∴抛物线的方程为y2=12x或y2=﹣4x【点评】本题主要考查了抛物线的标准方程.解题的关键是对抛物线基本性质和标准方程的熟练应用 21.【答案】(1)详见解析;(2)详见解析.22.【答案】【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2x﹣cos2x+3=2sin2x﹣+3=2sin2x+2cos2x=4sin(2x+).∵x∈[0,],∴2x+∈[,],∴f(x)∈[﹣2,4].(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,故解得:A=,B=,C=,∴f(B)=f()=4sin=2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.23.【答案】【解析】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.24.【答案】【解析】解:(1)当n=1时,2S1=2a1=a2+2,∴a2=4…1;(2)当n≥2时,2a n=2s n﹣2s n﹣1=a n+1+2n﹣a n﹣2(n﹣1)=a n+1﹣a n+2,∴a n+1=3a n﹣2,∴a n+1﹣1=3(a n﹣1)…4,∴,∴{a n﹣1}从第二项起是公比为3的等比数列…5,∵,∴,∴;(3)∴ (8)∴① (9)∴②①﹣②得:,=,=(2﹣2n)×3n﹣4, (11)∴ (12)【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.。
郑州市第二中学2018-2019学年高三上学期11月月考数学试卷含答案
郑州市第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .302. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( )A .①B .②C .③D .④3. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4. 设函数对一切实数都满足,且方程恰有6个不同的实根,则这()y f x =x (3)(3)f x f x +=-()0f x =6个实根的和为( )A. B. C.D.181290【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.5. 若等边三角形的边长为2,为的中点,且上一点满足,ABC N AB AB M CM xCA yCB =+u u u u r u u u r u u u r 则当取最小值时,( )14x y+CM CN ⋅=u u u u r u u u r A .6 B .5C .4D .36. 己知x 0=是函数f (x )=sin (2x+φ)的一个极大值点,则f (x )的一个单调递减区间是( )A .(,)B .(,)C .(,π)D .(,π)7. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()A .i >4?B .i >5?C .i >6?D .i >7?班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是()A.0B.1C.2D.39.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是()A.0B.1C.2D.310.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()A.0.1B.0.2C.0.3D.0.411.点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是()A.B.C.D.12.“”是“一元二次方程x2+x+m=0有实数解”的()A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件二、填空题13.已知圆O:x2+y2=1和双曲线C:﹣=1(a>0,b>0).若对双曲线C上任意一点A(点A在圆O 外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则﹣= .14.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.15.设等差数列{a n}的前n项和为S n,若﹣1<a3<1,0<a6<3,则S9的取值范围是 .16.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全19.0校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.17.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为 .18.设函数,若用表示不超过实数m的最大整数,则函数的值域为 .三、解答题19.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.20.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.21.(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点C 22221(0)x y a b a b+=>>1F 2F :1l x my =-1F C ,点在轴的上方.当时,.M M x0m =1||MF =(Ⅰ)求椭圆的方程;C (Ⅱ)若点是椭圆上位于轴上方的一点, ,且,求直线的方程.N C x 12//MF NF 12123MF F NF F S S ∆∆=l 22.设锐角三角形的内角所对的边分别为.ABC ,,A B C ,,a b c 2sin a b A =(1)求角的大小;B (2)若,,求.a =5c =23.已知等比数列{a n }的前n 项和为S n ,a n >0,a 1=,且﹣,,成等差数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列{b n }满足b n •log 3(1﹣S n+1)=1,求适合方程b 1b 2+b 2b 3+…+b n b n+1=的正整数n的值.24.设M 是焦距为2的椭圆E : +=1(a >b >0)上一点,A 、B 是椭圆E 的左、右顶点,直线MA与MB 的斜率分别为k 1,k 2,且k 1k 2=﹣.(1)求椭圆E 的方程;(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.郑州市第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 2.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.3.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.4. 【答案】A.【解析】,∴的图象关于直线对称,(3)(3)()(6)f x f x f x f x +=-⇔=-()f x 3x =∴个实根的和为,故选A.63618⋅=5. 【答案】D 【解析】试题分析:由题知,;设,则(1)CB BM CM CB xCA y =-=+-s u u r u u u u v u u u u v u u u v u u u v BA CA CB =-u uu v u u u v u u u v BM k BA =u u u u v u u u v ,可得,当取最小值时,,最小值在,1x k y k =-=-1x y +=14x y +()141445x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭时取到,此时,将代入,则4y x x y =21,33y x ==()1,CN 2CM xCA yCB CA CB =+=+u u u u v u u u v u u u v u u u v u u u v u u u v .故本题答案选D.()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭u u u u r u u u r u u u v u u u v u u u v u u u v 考点:1.向量的线性运算;2.基本不等式.6. 【答案】B 【解析】解:∵x 0=是函数f (x )=sin (2x+φ)的一个极大值点,∴sin (2×+φ)=1,∴2×+φ=2k π+,解得φ=2k π﹣,k ∈Z ,不妨取φ=﹣,此时f (x )=sin (2x ﹣)令2k π+<2x ﹣<2k π+可得k π+<x <k π+,∴函数f (x )的单调递减区间为(k π+,k π+)k ∈Z ,结合选项可知当k=0时,函数的一个单调递减区间为(,),故选:B .【点评】本题考查正弦函数的图象和单调性,数形结合是解决问题的关键,属基础题.7. 【答案】 C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S 的值为126,故判断框中的①可以是i >6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.8.【答案】C【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;对于②,设有一个回归方程y=3﹣5x,变量x增加一个单位时,y应平均减少5个单位,②错误;对于③,线性回归方程y=bx+a必过样本中心点,正确;对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病,错误;综上,其中错误的个数是2.故选:C.9.【答案】C【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.10.【答案】A【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,∵P(﹣3≤ξ≤﹣1)=∴∴P(ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.11.【答案】A【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.由图可得面积S==+=+2.故选:A.【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.12.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系. 二、填空题13.【答案】 1 .【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(﹣1,t),则B(﹣1,﹣t),C(1,﹣t),D(1,t),由直线和圆相切的条件可得,t=1.将A(﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.14.【答案】 75 【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.15.【答案】 (﹣3,21) .【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.16.【答案】25【解析】考点:分层抽样方法.17.【答案】 3 .【解析】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.18.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.三、解答题19.【答案】【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.20.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC 体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO ⊥平面ABC ,∴=(),设,则,且0<t <1,∴,∴当时,V'PABC >0,当时,V'PABC <0,∴当时,V PABC 取得最大值,∴四面体PABC 体积的最大值为.法三:设PO=x ,则BO=x ,,(0<x <2)又PO ⊥平面ABC ,∴,∵,当且仅当x 2=8﹣2x 2,即时取等号,∴四面体PABC 体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养. 21.【答案】【解析】解:(Ⅰ)由直线经过点得,:1l x my =-1F 1c =当时,直线与轴垂直,,0m =lx 21||b MF a ==由解得的方程为. (4分)21c b a=⎧⎪⎨=⎪⎩1a b ⎧=⎪⎨=⎪⎩C 2212x y +=(Ⅱ)设,,由知.1122(,),(,)M x y N x y 120,0y y >>12//MF NF 12121122||3||MF F NF F S MF y S NF y ∆∆===联立方程,消去得,解得22112xmy x y =-⎧⎪⎨+=⎪⎩x 22(2)210m y my +--=y =∴,同样可求得 (11分)1y =2y=由得,解得,123y y =123y y =3=1m =直线的方程为. (13分)l 10x y -+=22.【答案】(1);(2).6B π=b =【解析】1111](2)根据余弦定理,得,2222cos 2725457b a c ac B =+-=+-=所以.b =考点:正弦定理与余弦定理.23.【答案】【解析】解:(Ⅰ)设数列{a n }的公比q ,由﹣,,,成等差数列,得,解得或q=﹣1(舍去),∴;(Ⅱ)∵,∴=﹣n﹣1,∴,,==,解得:n=100.【点评】本题考查等比数列和等差数列的概念与性质,以及等比数列的前n项和公式和裂项相消法求和,属于中档题.24.【答案】【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则+=1,即n2=b2•,由k1k2=﹣,即•=﹣,即有=﹣,即为a2=2b2,又c2=a2﹣b2=1,解得a2=2,b2=1.即有椭圆E的方程为+y2=1;(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),则两切线方程PC,PD分别为:+y1y=1,+y2y=1,由于P点在切线PC,PD上,故P(2,t)满足+y1y=1,+y2y=1,得:x1+y1t=1,x2+y2t=1,故C(x1,y1),D(x2,y2)均满足方程x+ty=1,即x+ty=1为CD的直线方程.令y=0,则x=1,故CD过定点(1,0).【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( ) A .(﹣∞,0) B. C .[0,+∞) D.2. 已知x ,y ∈R,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( ) A .4﹣B .4﹣C.D.+3. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .34. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 5. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个6.函数是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数7. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )13 ( B ) 49 (C ) 23 (D ) 898. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 9.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}10.已知等差数列{a n }中,a n =4n ﹣3,则首项a 1和公差d 的值分别为( )A .1,3B .﹣3,4C .1,4D .1,211.若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )A .5B .4C .3D .2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)二、填空题13.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .15.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .16.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .17.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.18.若tan θ+=4,则sin2θ= .三、解答题19.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.20.设函数f(x)=a(x+1)2ln(x+1)+bx(x>﹣1),曲线y=f(x)过点(e﹣1,e2﹣e+1),且在点(0,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥0时,f(x)≥x2;(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.21.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.22.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?23.已知{}{}22,1,3,3,31,1A a a B a a a =+-=--+,若{}3AB =-,求实数的值.24.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.郑州市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:y=|x|(1﹣x)=,再结合二次函数图象可知函数y=|x|(1﹣x)的单调递增区间是:.故选:B.2.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P (x ,y )构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.3. 【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2. 故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题.4. 【答案】C 【解析】考点:等差数列的通项公式. 5. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
6. 【答案】B【解析】解:因为==cos (2x+)=﹣sin2x .所以函数的周期为: =π. 因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.故选B .【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.7. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.8. 【答案】C【解析】由已知,圆1O 的标准方程为222(1)()(4)x y a a ++-=+,圆2O 的标准方程为222()()(2)x a y a a ++-=+,∵2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或135-≤≤-a ,故答案选C9. 【答案】B【解析】解:要使函数有意义,只须,即,解得1<x ≤4且x ≠2,∴函数f (x )的定义域为{x|1<x ≤4且x ≠2}. 故选B10.【答案】C【解析】解:∵等差数列{a n }中,a n =4n ﹣3, ∴a 1=4×1﹣3=1,a 2=4×2﹣3=5. ∴公差d=a 2﹣a 1=5﹣1=4.∴首项a 1和公差d 的值分别为1,4.故选:C .【点评】本题考查了等差数列的通项公式及其首项a1和公差d的求法,属于基础题.11.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.12.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B二、填空题13.【答案】[,1].【解析】解:设两个向量的夹角为θ,因为|2﹣|=1,|﹣2|=1,所以,,所以,=所以5=1,所以,所以5a2﹣1∈[],[,1],所以;故答案为:[,1].【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.14.【答案】①④.【解析】解:由所给的正方体知,△PAC在该正方体上下面上的射影是①,△PAC在该正方体左右面上的射影是④,△PAC在该正方体前后面上的射影是④故答案为:①④15.【答案】+=1.【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.816.【答案】9【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 17.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 18.【答案】.【解析】解:若tan θ+=4,则sin2θ=2sin θcos θ=====,故答案为.【点评】本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于中档题.三、解答题19.【答案】【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体, ∴B 1C 1⊥平面ABB 1A 1; ∵A 1B ⊂平面ABB 1A 1, ∴B 1C 1⊥A 1B .又∵A1B⊥AB1,B1C1∩AB1=B1,∴A1B⊥平面ADC1B1,∵A1B⊂平面A1BE,∴平面ADC1B1⊥平面A1BE;(Ⅱ)证明:连接EF,EF∥,且EF=,设AB1∩A1B=O,则B1O∥C1D,且,∴EF∥B1O,且EF=B1O,∴四边形B1OEF为平行四边形.∴B1F∥OE.又∵B1F⊄平面A1BE,OE⊂平面A1BE,∴B1F∥平面A1BE,(Ⅲ)解:====.20.【答案】【解析】解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e﹣1)=ae2+b(e﹣1)=a(e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2.…(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m<0即时,h′(x)=2(x+1)ln(x+1)+(1﹣2m)x,h′′(x)=2ln(x+1)+3﹣2m,令h′′(x)=0,得,当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,∴h(x)<h(0)=0,不成立.综上,.…21.【答案】【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,∴DF∥BC1,∵BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD;…(2)解:由(1)可得∠A1DF或其补角为异面直线BC1和A1D所成角.DF=BC1==1,A1D==,A1F=A1C=1.在△A1DF中,由余弦定理可得:cos∠A1DF==,∵∠A1DF∈(0,π),∴∠A1DF=,∴异面直线BC1和A1D所成角的大小;…(3)解:∵AC=BC,D为AB的中点,∴CD⊥AB,∵平面ABB1A1∩平面ABC=AB,∴CD⊥平面ABB1A1,CD==1.∴=﹣S△BDE﹣﹣=∴三棱锥C﹣A1DE的体积V=…【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.22.【答案】【解析】解:(1)男、女同学各2名的选法有C42×C52=6×10=60种;(2)“男、女同学分别至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,故选人种数为C41×C53+C42×C52+C43×C51=40+60+20=120.男同学甲与女同学乙同时选出的种数,由于已有两人,故再选两人即可,此两人可能是两男,一男一女,两女,故总的选法有C32+C41×C31+C42=21,故有120﹣21=99.23.【答案】23 a=-.【解析】考点:集合的运算. 24.【答案】(1)6B π=;(2)7b =.【解析】1111](2)根据余弦定理,得2222cos 2725457b a c ac B =+-=+-=,所以7b =考点:正弦定理与余弦定理.。