因式分解2
07第七讲 因式分解2
代数(六)因式分解(二)——十字相乘、分组分解【知识要点】1.十字相乘法(1)二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且ba +等于一次项系数中p ,那么它就可以分解成()()()b x a x ab x b a x q px x ++=+++=++22 (2)二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。
2.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的。
例如:22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。
(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。
【典型例题】例1 把下列各式分解因式(1)2914x x ++= (2)212x x --=(3)2812x x ++= (4)2710x x -+=(5)228x x --= (6)2922x x --=(7)2295x x +-= (8)2376x x --=(9)28103x x ++= (10)210275x x ++=例2 把下列各式分解因式(1)bc ac ab a -+-2 (2)bx by ay ax -+-5102(3)n mn m m 552+-- (4)bx ay by ax 3443+++(5)22144a ab b --- (6)223443ax ay bx cy cx by +-++-例3 把下列各式分解因式(1)22421x xy y --; (2)()()267a b a b +-+-;(3)()()22524x x -+-+ (4)()()()()22310a b a b a b a b -+-+-+;(5)()()2224221x y x y y y +-+- (6)222()14()24x x x x +-++例4 把下列各式分解因式(1)()()z y y z x x +-+ (2)()()b a x ab x 34322-+-(3)()()cd b a dc ab 2222--- (4)()()y a bx by b y ax 2233+++思考题(5)()()()()2222d b d c c a b a +-+-+++【练 习】A 组给下列各式分解因式1.221x x +-= 2.2352x x ++=3.232x x +-= 4.221315x x ++=5.2122512x x -+= 6.2310x x +-=7.ax +ay -bx -by = 8.x 2-xy -ax +ay =9.x 2+6y -xy -6x = 10.a 2-b 2-a +b =11.4x 2-y 2+2x +y = 12.a 2-2ab +b 2-c 2 =13.1-x 2-2xy -y 2= 14.x 2-9a 2+12a -4=15.x 2y +3xy 2-x -3y= 16.na 2-2ba 2+mn -2bm=17.x 3+3x 2+3x +9= 18.20ax 2+5xy -8axy -2y 2=19.bx +ax +by +bz +ay +az= 20.2ax -3bx +x -2a +3b -1=B 组一、分解因式1.2249y x -3、2a 4-324、a 2(3a +1)-b 2(3a +1)5、x 2-8x +166、a 2b 2-10ab +257、-x 4+2x 2y 2-y 48、(2x 2+1)2+2(2x 2+1)+1二、分解因式1、9222+--a b ab 2.x 3+3x 2-4x -123.x 2-b x -a 2+a b4.m -m 3-mn 2+2m 2n5.9ax 2+9bx 2-a -b 6.a 2-2a +4b -4b 2C 组三、分解因式1、(a2+b2)2-4a2b22、a4(x-y)+b4(y-x)3、(a2+1)2-4a(a2+1)+4a2 4.a2+2ab+b2-ac-bc 5.m2+2mn+n2-p2-2pq-q2 6.(x2-3)2-4x27. (x2-3)2+(x2-3)-28.(x2-2x)2-4(x2-2x)-5 9.a4-2a2b2-8b4 10.x4-6x3+9x2-16。
因式分解(二)四中
北京四中编稿:史卫红审稿:谷丹责编:赵云洁因式分解(二)一、学习指导1.代数中常用的乘法公式有:平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b22.因式分解的公式:将上述乘法公式反过来得到的关于因式公解的公式来分解因式的方法,主要有以下三个公式:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2±2ab+b2=(a±b)23.①应用公式来分解因式的关键是要弄清各个公式的形式和特点,也就是要从它们的项数系数,符号等方面掌握它们的特征。
②明确公式中字母可以表示任何数,单项式或多项式。
③同时对相似的公式要避免发生混淆,只有牢记公式,才能灵活运用公式。
④运用公式法进行因式分解有一定的局限性,只有符合其公式特点的多项式才能用公式法来分解。
二、因式分解公式的结构特征。
1.平方差公式:a2-b2=(a+b)(a-b)的结构特征1)公式的左边是一个两项式的多项式,且为两个数的平方差。
2)公式的右边是两个二项式的积,在这两个二项式中有一项a是完全相同的,即为左边式子中被减数a2的底数,另一项b和-b是互为相反数,即b是左边式子中减数b2的底数。
3)要熟记1——20的数的平方。
2、完全平方公式:a2±2ab+b2=(a±b)2的结构特征.1)公式的左边是一个三项式,首末两项总是平方和的形式,中间项的符号有正有负,当为正号(负号)时右边的两项式中间符号为正(为负),2ab中的“2”是一个固定的常数。
2)公式的右边是两数和或差的平方形式。
3)要确定能不能应用完全平方公式来分解,先要看两个平方项,确定公式中的a和b在这里是什么,然后看中间一项是不是相当于+2ab或-2ab,如果是的,才可以分解为两数和或差的平方形式。
初学时中间的过渡性步骤不要省掉。
三、例题分析:例1.分解因式:(1)4a2-9b2(2)-25a2y4+16b16分析:①∵4a2=(2a)2,9b2=(3b)2,那么只要把2a和3b看作平方差公式中的a和b 即可。
因式分解2
因 式 分 解(2) 利用公式法一、利用公式分解因式:1、利用平方差公式因式分解:()()b a b a b a -+=-22 注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。
例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x 典型例题:1、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。
2、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。
3、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4.4、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4.5、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
因式分解(二)
因式分解(二)一、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22 例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-二、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x 例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+(2)8622+-ax x a综合练习题 分解因式:(1)17836--x x(2)22151112y xy x --(3)10)(3)(2-+-+y x y x(4)344)(2+--+b a b a(5)222265x y x y x --(6)2634422++-+-n m n mn m。
专题14 因式分解(2)八年级数学下册强化巩固专题知识(北师大版)
专题14 因式分解(2)教师讲义64x6-1=(8x3)2-1=(8x3+1)(8x3-1)=[(2x)3+1][(2x)3-1]=(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二64x6-1=(4x2)3-1=(4x2-1)(16x4+4x2+1)=(2x+1)(2x-1)(16x4+8x2+1-4x2)=(2x+1)(2x-1)[(4x2+1)2-(2x)2]=(2x+1)(2x-1)(4x2+2x+1)(4x2-2x+1)例5 解 (x+y)2-6(x+y)+9=(x+y)2-2×3×(x+y)+32=(x+y-3)2.例6 解方法一x2+6x-7=x2+6x+9-9-7=(x+3)2-16=(x+3+4)(x+3-4)=(x+7)(x-1)方法二 x2+6x-7=(x+7)(x-1)例7 解方法一方法二 3x2-7x-6=(3x+2)(x-3).例8 解 2ax-10ay+5by-bx=2ax-10ay-bx+5by=(2ax-10ay)-(bx-5by)=2a(x-5y)-b(x-5y)=(x-5y)(2a-b).例9 解(1)x2-2xy+y2-1=(x2-2xy+y2)-1=(x-y)2-1=(x-y+1)(x-y-1)(2)x2-2y-y2-1=x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1)例10 解 x2+4xy+3y2+x+3y=(x2+4xy+3y2)+(x+3y)=(x+y)(x+3y)+(x+3y)=(x+3y)(x+y+1).例11 解(1)a2+2ab+b2+2a+2b+1=(a2+2ab+b2)+(2a+2b)+1=(a+b)2+2(a+b)+1=(a+b+1)2.(2)a2+2ab+b2+2a+2b-3=(a2+2ab+b2)+(2a+2b)-3=(a+b)2+2(a+b)-3=(a+b+3)(a+b-1).(3)a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3=(a+b)(a+2b)+(2a+b)-3=(a+b-1)(a+2b+3).例12 证明因为4x2+4xy+y2-4x-2y+1=0,所以(2x+y)2-2(2x+y)+1=0,(2x+y-1)2=0.所以2x+y-1=0.又因为2x2+3xy+y2-x-y=(x+y)(2x+y-1).而2x+y-1=0,所以2x2+3xy+y2-x-y=0.例13 解设3x2-4xy-7y2+13x-37y+m=[(3x-7y)+a][(x+y)+b]=3x2-4xy-7y2+(a+3b)x+(a-7b)y+ab.对应项系数相等,所以由(1)(2)解得a=-2,b=5.将a=-2,b=5代入(3),得m=-10,所以 3x2-4xy-7y2+13x-37y+m=3x2-4xy-7y2+13x-37y-10=(3x-7y+a)(x+y+b)=(3x-7y-2)(x+y+5).例14 解因为|x-3y-1|+x2+4y2=4xy,所以|x-3y-1|+x2-4xy+4y2=0即|x-3y-1|+(x-2y)2=0所以解这个方程组,得x=-2,y=-1.例15 解(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2xy+2y2)(x2-2xy+2y2).(2)x3+5x-6=x3-x+6x-6=(x3-x)+(6x-6)=x(x+1)(x-1)+6(x-1)=(x-1)(x2+x+6)例16 解因为x2-2xy-3y2=5,所以(x-3y)(x+y)=5.依题意x,y为整数,所以x-3y和x+y都是整数,于是有:解上述方程组得:例17 证明因为A=(x+2)(x-3)(x+4)(x-5)+49=(x2-x-6)(x2-x-20)+49=(x2-x)2-26(x2-x)+169=(x2-x-13)2所以A是一个完全平方数.五、课堂练习A卷:基础题A、选择题1.下列各式从左到右的变形是分解因式的是()A.a(a-b)=a2-ab B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1) D.xy2-x2y=x(y2-xy)2.(x-5)(x-3)是多项式x2-px+15分解因式的结果,则p的值是()1-2004 = 100123456689。
《因式分解 (2)》课件 (同课异构)2022年精品课件
2 3 5
2; 5
3
4 3 9 9.
例3 x-2 的平方根是±2,2x+y+7的立方根是3, 求x2+y2的算术平方根.
解: ∵ x-2的平方根是±2, ∴ x-2=4,∴x=6. ∵ 2x+y+7的立方根是3, ∴ 2x+y+7=27. 把x=6代入,解得 y=8. ∵ x2+y2=68+82=100,
探究3 求以下各式的值: (1) 3 0.008 ; -
(2) 3 0.008
-
3 a ___3 _a__
体会: (1)求一个负数的立方根,可以先求出这个负数绝对 值的立方根,然后再取它的相反数. (2)负号可从“根号内〞 直接移到“根号外〞 .
练一练
求以下各数的值:
13 0.125;
23 64;
因为(
1 2
)3 =0.125,所以的立方是〔
1
〕;2
因为( 0)3 =0,所以0的立方根是〔0 〕;
因为 (-2 )3 =-8,所以-8的立方根是〔-2 〕;
因为(
2 3
)3
=
8 27
,所以 8
27
的立方(
2 3
).
知识要点
立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
• 他们的课程,无论是在内容和形式上,都是经过认真 研判,把各学科的核心素养作为教学主线。既涵盖城市中 小学、又包括乡村大局部学校的教学模式。適合全國大局 部教學大區。本課件就是從全國一等獎作品中,优选出的 具有代表性的作品。示范性强,有很大的推广价值。
第四章
八年级数学下〔BS〕 教学课件
因式分解
第6章
实
数
因式分解(2)——公式法(人教版)八年级数学上册PPT课件
13. 分解因式:n2(m-2)+(2-m).
解:原式=(m-2)(n+1)(n-1).
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)
;
(2)4b2-a2=
(2b+a)(2b-a)
;
(3)9b2-4a2=
5. 分解因式:
(1)x2-25=
(x+5)(x-5)Biblioteka ;(2)x2-36=
(x+6)(x-6)
.
6. (例 2)分解因式:
(1)4x2-25=
(2x+5)(2x-5)
;
(2)9x2-16y2=
(3x+4y)(3x-4y)
.
7. 分解因式:
(1)16x2-1=
(4x+1)(4x-1)
;
(2)36x2-25y2=
)2.
知识点.公式法(平方差公式)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2
;
分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)
;
(2)x2-9=
(x+3)(x-3)
.
总结:能用平方差公式分解因式的条件: ①二项式;②能化成两个平方相减.
(1)设 S1,S2 分别是图 1,图 2 的面积,若用
含 a,b 的代数式表示它们的面积,则
S1=
a2-b2
15.4.2公式法因式分解(二)
a 2ab b
2
2
我们把” 平方, “首” “尾” 两倍中间放.
2 2 首 2首尾 尾
判别下列各式是不是完全平方式
1x 2 xy y 是 2 2 2A 2 AB B 是 2 2 是 3甲 2 甲乙 乙 2 2 4 2 是
小结: (1)掌握常用公式
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2 a2-b2=(a+b)(a-b)
(2)灵活运用完全平方公式分解因式 (3) 因式分解的步骤: “一提” :有公因式,先提公因式; “二套”:提公因式后,括号内(套)用 公式法分解; “三查”:检查每个括号能否继续分解。
A.
2 2
2
D.
x y 6 xy 9 (3 xy )
2 2
2
例1 分解因式: (1) 16x2+24x+9;
(2) –x2+4xy–4y2.
分析:在(1)中,16x2=(4x)2,9=32, 24x=2· 4x · 3,所以16x2+24x+9是一个完全 平方式,即 16x2+24x+9=(4x)2+2· 4x· 3+32 a· a2 +2 · b + b2
小结:
完全平方式的特点:
分解有怎样的过程?
(1) “一提” :有公因式,先提公因式;
(2) “二套”:提公因式后,括号内(套) 用公式法分解。
(3) “三查”:检查每个括号能否继续分 解。
3 4 3 4 1. 计算(107 )2+(92 )2+(107 )×(92 )×2 7 7 7 7
初中数学竞赛专题培训(2):因式分解(2)
初中数学竞赛专题培训第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;=(x-5y+3)(x-3y-1) =(x-1)(x-y+3) (3)3x2-11xy+6y2-xz-4yz-2z2.=(3x-2y+2z)(x-3y-z)2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;=(x-3)(x^2+4x+2) =(x+2)(x-2)(x^2+3x+1)(3)4x4+4x3-9x2-x+2.=(x-1)(2x+1)(2x-1)(x+2)3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.= (2x-3y+4)(x+3y+5) =(x^2+3)(x^2+5x-3)。
九年级数学因式分解法2
第9课 因式分解(2)
第9课 因式分解(2)【知识要点】因式分解是中学数学中最重要的恒等变形之一,具有一定的灵活性和技巧性,下面我们在初中教材已经介绍过基本方法的基础上,结合竞赛再补充介绍添项、拆项法,待定系数法、换元法、因式定理分解等有关内容和方法。
【例题选讲】1.添项.拆项分组法添项、拆项的目的是把某些在乘法过程中被合并的项复原,以便在各项间制造公因式或便于利用公式分解因式。
十字相乘法其实是一种拆项法,配方法其实是一种添项法。
例1、分解因式(1) 4323-+x x (2) 444b a + (3)4224y y x x ++例2、分解因式(1)2426923+++x x x (2)abc c b a 3333-++例3、已知a 、b 、c 都是非零整数,且a 2+b 2+c 2=1,3)11()11()11(-=+++++ba c a cbc b a ,求a+b+c 的值。
2.待定系数法若两多项式f (x )=g (x ),则它们同次的对应项系数一定相等,利用这条结论可将某些因式分解的问题转化为解方程组的问题来解决.例4、分解因式3x 2+5xy -2y 2+x +9y -4分析:观察该式子的前3项,发现3x 2+5xy -2y 2=(x +2y )(3x -y ),因此想到设3x 2+5xy -2y 2+x +9y -4=( x +2y +a )( 3x-y+b ),两边算出来以后,比较两边的系数即可得到a 、b .例5、已知多项式x 3+bx 2+cx +d 的系数都是整数,若bd+cd 是奇数,,证明这个多项式不能分解为两个整系数多项式的乘积.3、换元法把式子中的某些比较复杂的部分看作一个整体,并用一个字母暂时代替,称为换元法,换元以后能使得整个式子得到简化,各项之间的关系更加清晰。
如何换元,则需要仔细观察。
例6、分解因式 (x 2+x +1)(x 2+x +2)-12例7、证明: 若a 为整数a (a +1)(a +2)(a +3)+1必为完全平方数。
因式分解 (2)
第四章因式分解1.因式分解江西省九江市同文中学贾朝霞总体说明因式分解是代数的重要内容,它与整式和它在分式有密切联系,因式分解是在学习有理数和整式四则运算上进行的,它为今后学习分式运算,解方程及方程组及代数式和三角函数式恒等变形提供必要的基础。
因此学好因式分解对于代数知识的后继学习具有相当重要的意义.本节是因式分解的第1小节,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,分解的思想,逆向思考的作用,体会数学思维之间的整体联系。
一、学生知识状况分析学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.二、教学任务分析基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。
因此,本课时的教学目标是:1.使学生了解因式分解的意义,理解因式分解的概念.2.认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能运用这种关系寻求因式分解的方法.3.通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识。
4.通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.情感与态度:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
重点:因式分解的概念难点:难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法三、教学过程分析本节课设计了六个教学环节:复习回顾,比较探究(数→形→式)概念,引出概念(确认概念属性),类比练习,反馈练习,小结第一环节复习回顾:活动内容:下题简便运算怎样进行问题1:736×95+736×52,-2.67× 132+25×2.67+7×2.67设计意图:观察实例,分析共同属性:解决问题的关键是把一个数式化成了几个数的积的形式,此时学生对因式分解还相当陌生的,但学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在设计问题情景,复习知识点与计算,引入新课,让学生通过回顾用简便方法计算——因数分解这一特殊算法,通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握和理解打一个台阶。
人教版-数学-八年级上册--第十四章 因式分解(2)含答案解析
因式分解2一.选择题(共9小题)1.若把多项式x2+px+q分解因式可以分解成(x﹣3)(x+5),则p的值是()A.2 B.﹣2 C.15 D.﹣152.下列各式中,能用完全平方公式分解因式的是()A.16x2+1 B.x2+2x﹣1 C.a2+2ab+4b2D.,3.把代数式ab2﹣6ab+9a分解因式,下列结果中正确的是()A.a(b+3)2B.a(b+3)(b﹣3)C.a(b﹣4)2D.a(b﹣3)24.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)25.把a3﹣9a分解因式,结果正确的是()A.a(a+3)(a﹣3)B.a(a2﹣9)C.a(a﹣3)2D.a(a+3)26.已知a、b是实数,x=a2+b2+20,y=4(2b﹣a).则x、y的大小关系是()A.x≤y B.x≥y C.x<y D.x>y7.化简:,结果是()A.B.C.D.8.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形;D.等腰直角三角形9.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B.x2C.(x+1)2D.(x﹣2)2二.填空题(共7小题)10.因式分解:x2﹣1=_________.11.分解因式:(2a+1)2﹣a2=_________.12.当a=9时,代数式a2+2a+1的值为_________.13.分解因式:9a2﹣30a+25=_________.14.若x2﹣9=(x﹣3)(x+a),则a=_________.15.分解因式:a3﹣4a2+4a=_________.16.分解因式:a2b﹣b3=_________.三.解答题(共7小题)17.分解因式:﹣x3+2x2﹣x.18.已知a、b、c是△ABC的三边且满足a2﹣b2+ac﹣bc=0,请判断△ABC的形状.19.分解因式:2x3y﹣2xy3.20.给出三个单项式:a2,b2,2a B.(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2010,b=2009时,求代数式a2+b2﹣2ab的值.21.求多项式的和,并把结果因式分解.22.已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b223.给定一列代数式:a3b2,ab4,a4b3,a2b5,a5b4,a3b6,(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.参考答案与试题解析一.选择题(共9小题)1.若把多项式x2+px+q分解因式可以分解成(x﹣3)(x+5),则p的值是()A. 2 B.﹣2 C.15 D.﹣15考点:因式分解的意义.专题:计算题.分析:根据多项式乘多项式法则计算(x﹣3)(x+5),根据多项式相等的条件即可求出p的值.解答:解:∵x2+px+q=(x﹣3)(x+5)=x2+2x﹣15,∴p=2,q=﹣15.故选A点评:此题考查了因式分解的意义,熟练掌握多项式乘多项式法则是解本题的关键.2.下列各式中,能用完全平方公式分解因式的是()A.16x2+1 B.x2+2x﹣1 C.a2+2ab+4b2D.,考点:因式分解-运用公式法.分析:根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各选项分析判断后利用排除法求解.解答:解:A、16x2+1只有两项,不符合完全平方公式;B、x2+2x﹣1其中有两项x2、﹣1不能写成平方和的形式,不符合完全平方公式;C、a2+2ab+4b2另一项不是a、2b的积的2倍,不符合完全平方公式;D、符合完全平方公式.故选D.点评:本题主要考查了完全平方公式,熟记公式结构是解题的关键.完全平方公式:a2±2ab+b2=(a±b)2;3.把代数式ab2﹣6ab+9a分解因式,下列结果中正确的是()A.a(b+3)2B.a(b+3)(b﹣3)C.a(b﹣4)2 D.a(b﹣3)2考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解答:解:ab2﹣6ab+9a,=a(b2﹣6b+9),=a(b﹣3)2.故选D.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.4.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6) B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D. 4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.5.把a3﹣9a分解因式,结果正确的是()A.a(a+3)(a﹣3)B.a(a2﹣9) C.a(a﹣3)2D.a(a+3)2考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3﹣9a=a(a2﹣9)=a(a+3)(a﹣3).故选A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6.已知a、b是实数,x=a2+b2+20,y=4(2b﹣a).则x、y的大小关系是()A.x≤y B.x≥y C.x<y D.x>y考点:因式分解的应用.专题:因式分解.分析:判断x、y的大小关系,把x﹣y进行整理,判断结果的符号可得x、y的大小关系.解答:解:x﹣y=a2+b2+20﹣8b+4a=(a+2)2+(b﹣4)2,∵(a+2)2≥0,(b﹣4)2≥0,∴x﹣y≥0,∴x≥y,故选B.点评:考查比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.7.化简:,结果是()A.B.C.D.考点:因式分解的应用.专题:计算题.分析:将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果.解答:解:原式====.故选A.点评:此题考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.8.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形考点:因式分解的应用.专题:压轴题;因式分解.分析:把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.解答:解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形或等腰直角三角形.故选C.点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.9.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B.x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法.分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.二.填空题(共7小题)10.因式分解:x2﹣1=(x+1)(x﹣1).考点:因式分解-运用公式法.专题:因式分解.分析:方程利用平方差公式分解即可.解答:解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).点评:此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.11.分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.专题:因式分解.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.当a=9时,代数式a2+2a+1的值为100.考点:因式分解-运用公式法;代数式求值.专题:计算题.分析:直接利用完全平方公式分解因式进而将已知代入求出即可.解答:解:∵a2+2a+1=(a+1)2,∴当a=9时,原式=(9+1)2=100.故答案为:100.点评:此题主要考查了因式分解法以及代数式求值,正确分解因式是解题关键.13.分解因式:9a2﹣30a+25=(3a﹣5)2.考点:因式分解-运用公式法.专题:计算题.分析:原式利用完全平方公式分解即可.解答:解:原式=(3a)2﹣2×3a×5+52=(3a﹣5)2.故答案为:(3a﹣5)2点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.14.若x2﹣9=(x﹣3)(x+a),则a=3.考点:因式分解-运用公式法.专题:计算题.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.15.分解因式:a3﹣4a2+4a=a(a﹣2)2.考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.解答:解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.故答案为:a(a﹣2)2.点评:本题考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(完全平方公式).要求灵活运用各种方法进行因式分解.16.分解因式:a2b﹣b3=b(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).解答:解:a2b﹣b3,=b(a2﹣b2),(提取公因式)=b(a+b)(a﹣b).(平方差公式)故答案为:b(a+b)(a﹣b).点评:本题考查提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解因式要彻底.三.解答题(共7小题)17.分解因式:﹣x3+2x2﹣x.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣x,再根据完全平方公式进行二次分解即可.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解答:解:﹣x3+2x2﹣x,=﹣x(x2﹣2x+1),=﹣x(x﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.18.已知a、b、c是△ABC的三边且满足a2﹣b2+ac﹣bc=0,请判断△ABC的形状.考点:因式分解的应用.分析:由a、b、c是△ABC的三边可知,三边都大于0,解其方程得到a=b,从而知道三角形一定是等腰三角形.解答:解:a2﹣b2+ac﹣bc=0,由平方差公式得:(a+b)(a﹣b)+c(a﹣b)=0,(a﹣b)(a+b+c)=0,∵a、b、c三边是三角形的边,∴a、b、c都大于0,∴本方程解为a=b,∴△ABC一定是等腰三角形.点评:本题考查了因式分解的应用,利用三角形三边都大于0这一条件,解其方程而判定为等腰三角形.19.分解因式:2x3y﹣2xy3.考点:提公因式法与公式法的综合运用.分析:先提取公因式2xy,再对余下的多项式利用平方差公式继续分解.解答:解:2x3y﹣2xy3,=2xy(x2﹣y2),=2xy(x+y)(x﹣y).点评:此题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.给出三个单项式:a2,b2,2a B.(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2010,b=2009时,求代数式a2+b2﹣2ab的值.考点:因式分解-提公因式法;整式的加减—化简求值.专题:开放型.分析:本题要灵活运用整式的加减运算、平方差公式和完全平方公式.解答:解:(1)a2﹣b2=(a+b)(a﹣b),b2﹣a2=(b+a)(b﹣a),a2﹣2ab=a(a﹣2b),2ab﹣a2=a(2b﹣a),b2﹣2ab+b(b﹣2a),2ab﹣b2=b(2a﹣b);(写对任何一个式子给五分)(2)a2+b2﹣2ab=(a﹣b)2,当a=2010,b=2009时,原式=(a﹣b)2=(2010﹣2009)2=1.点评:本题考查了提公因式法,平方差公式,完全平方公式分解因式,关键是熟记并会灵活运用,注意结果能进行因式分解.21.求多项式的和,并把结果因式分解.考点:因式分解-运用公式法;整式的加减.分析:可以先相加,然后合并同类项,再利用平方差公式进行因式分解.解答:解:x2+2x﹣2+x2﹣2x+1=(+)x2+(2﹣2)x+(﹣2+1)=x2﹣1=(x+1)(x﹣1).点评:本题考查整式的加减,公式法分解因式,对于因式分解有公因式的一定先提公因式,没有公因式的再考虑用平方差公式或完全平方公式等.22.已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b2考点:因式分解-提公因式法;完全平方公式.专题:计算题.分析:(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.解答:解:(1)a2b+ab2=ab(a+b)=2×3=6;初中-数学-打印版(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5.点评:本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.23.给定一列代数式:a3b2,ab4,a4b3,a2b5,a5b4,a3b6,….(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.考点:提公因式法与公式法的综合运用.专题:规律型.分析:(1)先提取公因式ab2,再根据平方差公式进行二次分解;(2)观察归纳,即可求得:那列代数式中的第100个代数式为a50b53.解答:解:(1)ab4﹣a3b2=ab2(b+a)(b﹣a);(3分)(未分解彻底扣1分)(2)a50b53(3分)(若a或b的指数只写对一个,可得1分).点评:此题考查了提公因式法,公式法分解因式与规律的知识.解题的关键时注意仔细观察,找到规律.还要注意分解要彻底.初中-数学-打印版。
因式分解(二)
因式分解(二)一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 熟练使用提公因式法、公式法、十字相乘法、分组分解法进行多项式的因式分解;● 熟练使用因式分解进行简便运算;● 了解使用配方法、添项(拆项)法、待定系数法来分解因式;● 会利用因式分解解决有关的综合题目。
重点难点:● 重点:熟练运用十字相乘法、分组分解法、配方法进行多项式的因式分解;● 难点:利用因式分解解决有关的综合题目。
学习策略:● 在因式分解最基本的两种方法:提公因式法和公式法的基础上,继续学习根据多项式的特点,选择适当的方法进行因式分解,培养逆向思维的意识。
二、学习与应用(一)把一个多项式化成几个的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式 .(二)把多项式ma mb mc ++分解成两个因式的 的形式,其中一个因式是各项的公因式 ,另一个因式是 ,即 ,而()a b c ++正好是 除以 所得的商,这种因式分解的方法叫提取公因式法.(三)公式法因式分解(1)用平方差公式因式分解:“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?两个数的等于这两个数的与这两个数的的乘积.如:22____________a b-=;(2)用完全平方公式因式分解:两个数(整式)的加上(减去)这两个数(整式)的的倍,等于这两个数(整式)的和(差)的平方.如:2222()a ab b a b±+=±.知识点一:十字相乘法在二次三项式ax2+bx+c(a≠0)中,如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式ax2+bx+c的一次项系数,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式__________与__________之积,即ax2+bx+c=_______________________.要点诠释:(1)正确的十字相乘必须满足以下条件:在上式中,竖向的两个数必须满足关系,;斜向的两个数必须满足关系a1c2+a2c1=b,分解思路为“看两端,凑中间.”(2)二次项系数a一般都化为正数,如果是负数,则提出,分解括号里面的二次三项式,最后结果不要忘记把提出的添上.(3)形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式.这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,x2+2x-15______________.知识点二:分组分解法知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
第10讲:因式分解(二)
第十讲 因式分解(二)七.中级方法1.添项、拆项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原 式适合于提公因式法、运用公式法或分组分解法进行分解。
要注意,必须在与原多项式相等的原则下进行变形。
1.1拆开中项前面已经说过,在分组分解时,常常将项数平均分配,但是,像443x x -+这样的式子,只有三项,怎么才能平均分成两组呢?方法是先将一项拆为两项,如果这个整式是按某一字母的升幂或降幂排列的,那么以拆开中项为宜。
例1:分解因式:443x x -+ 解:443x x -+433x x x =--+[拆开中项] 2(1)(1)3(1)x x x x x =-++-- [分组分解]32(1)(3)x x x x =-++-[提公因式]注:在这道题中,分解的结果有一个因式为x 的一次多项式,在后面的因式定理中将讨论求一次因式的一般方法。
1.2旧事重提在很早以前,我们就学习过了关于配方的方法,在添项、拆项时它的应用比较广泛。
比如4224a ab b ++,12324+-x x ,148++x x 等都是采用配方法进行因式分解。
例2:分解因式:4224a ab b ++ 解:首先注意到42242a a b b ++是一个完全平方和公式,为了把4224a ab b ++配成完全平方,可以把22a b 拆成两项的代数和,即2222222a b a b a b =-于是4224a a b b ++4224222a a b b a b =++-[拆项] 2222()()a b ab =+-[完全平方和]2222()()a b ab a b ab =+++-[平方差公式]1.3 无中生有例3:证明:在m n 、都是大于1的整数时,444m n +是合数。
证明: 这个问题的实质是将444m n +因式分解,仍然采用例2中的配方法。
可是,发现444m n +只有两项,所以要配成完全平方就得在中间添上一个交叉项224m n ,然后在后面再减去224m n ,即444m n +422422444m m n n m n =++-2222(2)(2)m n mn =+-2222(22)(22)m n mn m n mn =+++-由于在m n 、都是大于1时,两个因数中较小的那个2222m n mn +-222()1m n n n =-+≥>即两个因数都是444m n +的真因数,所以444m n +是合数。
因式分解(2)
因式分解(二)一、因式分解的意义:因式分解是把一个多项式化成几个整式的乘积形式对因式分解理解应注意:(1)分解因式与因式分解是同义词;(2)结果应是整式乘积,而不能是分式或者是n 个整式的积与某项的和差形式;(3)多项式变形注意符号;(4)分解结果到每个因式不能再分解为止.因式分解的方法:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法;(5)添、拆项法. 十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab=q ,a+b=p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足 2,1,2,112212121,,c c a a b c a c a c c c a a a 的=+==,如有,则).)((22112c x a c x a c bx ax ++=++分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.【典型例题分析】例1 分解因式:⑴ 652+-a a ; ⑵ 1032-+m m . ⑶ 22-+x x ; ⑷ 1522--x x .练习:36152+-y y 601124+--x x 22273q pq p +-()()xx x x 222322372+-++22(52)(53)12x x x x ++++-=22224954y y x y x --1522--x x ; 2265y xy x +-; x x x 4335-+; 48)4)(3)(2)(1(-----x x x x ;142222---+xy y x y x ; 26)(11)(222--+-x x x x ;例2 选择题:对n np mp m 22+++运用分组分解法分解因式,分组正确的是( )(A )mp np n m +++)22((B ))2()2(mp n np m +++ (C ))()22(np mp n m +++(D )np mp n m +++)22(例3 因式分解:(1)y b x b y a x a 2222+++; (2)nx n mx mx --+2例4 分解因式:(1)22441y xy x -+-; (2)2222b ab a x -+-; ⑶ b a b a 2422---例5 分解因式:⑴ 315523+--x x x ⑵ x xy y x 21372-+-例6 把下列各式分解因式:(1)222z yz y xz xy -+--; (2)122222+----a bc c b a ;(3)1424422+--++y x y xy x .例7 分解因式:(1)6)2)(1(---x x x ; (2))()1(222b a x x ab +++例8 分解因式:⑴ q p q pq p 36522++++; ⑵ c c bc b a b a --+++-222424.例9 分解因式:(1)4)(5)(2++++b a b a ; (2)22127q pq p +-.【题组1】1.下列因式分解中,正确的是( )(A) 1- 14 x 2= 14(x + 2) (x- 2) (B)4x -2 x 2 - 2 = - 2(x- 1)2 (C) ( x- y )3 + (y- x) = (x - y) (x - y + 1) ( x - y +1 )(D) x 2 + y 2 - x + y = ( x + y) (x + y - 1)2.下列各等式从左到右是因式分解的个数为( )(1) a 2- b 2 = (a + b) (a-b ),(2) x 2+3x +2 = x(x+3) + 2 ()()()()222221214,113⎪⎭⎫ ⎝⎛-=-+-+=-x x x x y x y x y x (A) 1 个 (B) 2个 (C) 3 个 (D) 4个3.若x 2+mx +25 是一个完全平方式,则m 的值是( )(1) 20 (B) 10 (C) ± 20 (D) ±104.若x 2+mx +n 能分解成( x+2 ) (x + 5),则m = ,n = ;5.若二次三项式2x 2+x+5m 在实数范围内能因式分解,则m ;6.若x 2+kx -6有一个因式是(x -2),则k 的值是 ;7.把下列因式因式分解:(1)a 3-a 2-2a (2)4m 2-9n 2-4m+1 (3)3a 2+bc -3ac-ab (4)9-x 2+2xy -y 28.在实数范围内因式分解:(1)2x 2-3x -1 (2)-2x 2+5xy+2y 2【题组2】1.分解下列因式:(1)10a(x -y)2-5b(y -x) (2)an+1-4a n +4a n-1 (3).x 2(2x -y)-2x +y(4)x(6x -1)-1 (5).2ax-10ay +5by-bx (6)1-a 2-ab -14 b 2(7)a 4+4 (8).(x2+x)(x 2+x -3)+2 (9)x 5y -9xy 5(10)4y 2+4y -5 (11)3X2-7X+21.多项式x 2-y 2, x 2-2xy +y 2的公因式是 。
因式分解二
因式分解(二)【内容介绍】本次资料主要包含数学科目,重点指导学生了解因式分解,掌握因式分解的解题方法;主要是通过要点梳理,帮助大家综合掌握因式分解的解题方法,再通过典型例题的分析,帮助大家了解常考题型。
建议大家深入学习掌握要点梳理,认真研读例题,并在日常学习中注重练习,实现对学习目标的综合把握。
【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:++x bx c 2⎩+=⎨⎧=p q bpq c ++=++x bx c x p x q 2)()(++x bx c 2c >c 0、p q <c 0、p q b 、p q ++x bx c 2、b c c b ++ax bx c 2a a =a a a 12c =c c c 12,,,a a c c 1212按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、+a c a c 1221++ax bx c 2b +=a c a c b 1221+a x c 11+a x c 22++=++ax bx c a x c a x c 11222)()(a公式法或分组分解法进行分解要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法. 【典型例题】 类型一、十字相乘法1、将下列各式分解因式: (1); (2); (3)【答案与解析】解:(1)因为所以:原式= (2)因为所以:原式=(3)【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.2、将下列各式分解因式: (1); (2) −+x x 10162−−x x 1032−=−x x x 78+−x x 78)()(−−=−x x x 2810−−x x 28)()(−−=−+−=−+−x x x x x x 1033105222)()()(+−x x 55232++x x 66512(3); (4).【思路点拨】(3)题可看成常数项,.(4)题可将看成一个整体来分解因式. 【答案与解析】 解:(1);(2).(3);(4)因为所以:原式【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,注意观察式子结构,能够看作整体的看作整体.3、将下列各式分解因式: (1);(2)【答案与解析】 解:(1)因为−−x xy y 61622−y 162−=−⨯−+=−y y y y y y 1682,8262+x 2)(+−=x x 55232⎝⎭ ⎪+−⎛⎫x x 513)(⎝⎭⎝⎭⎪⎪++=++⎛⎫⎛⎫x x x x 662351112−−=−+x xy y x y x y 6168222)()(−+−+=−+x x x 25242292)()()(⎣⎦⎣⎦⎡⎤⎡⎤=+−+−x x 225522)()(=−+x x 2158)()(+=y y y 91019所以:原式= (2)因为所以:原式=【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 类型二、分组分解法4、先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等. 如“2+2”分法:ax+ay+bx+by =(ax+ay )+(bx+by ) =a (x+y )+b (x+y ) =(x+y )(a+b ) 如“3+1”分法: 2xy+y 2-1+x 2 =x 2+2xy+y 2-1 =(x+y )2-1 =(x+y+1)(x+y-1)请你仿照以上方法,探索并解决下列问题: (1)分解因式:x 2-y 2-x-y ;++y y 2335)()(−=x x x 21183+−x x 2379)()((2)分解因式:45am2-20ax2+20axy-5ay2;(3)分解因式:4a2+4a-4a2b-b-4ab+1.【思路点拨】(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可;(3)重新分组利用完全平方公式分解因式得出即可.【答案与解析】解:(1)x2-y2-x-y=(x+y)(x-y)-(x+y)=(x+y)(x-y-1);(2)45am2-20ax2+20axy-5ay2=45am2-5a(4x2-4xy+y2)=5a[9m2-(2x-y)2]=5a(3m-2x+y)(3m+2x-y);(3)4a2+4a-4a2b-b-4ab+1=(4a2+4a+1)-b(4a2+4a+1)=(2a+1)2(1-b).【总结升华】此题主要考查了提取公因式法分解因式以及分组分解法分解因式,正确分组是解题关键.【考点精讲】考点1:利用因式分解进行简便计算典例:计算:①2032-203×206+1032②20192-2018×2020. 【答案】①10000;②1.【解析】解:①原式=2032-2×203×103+1032 =(203-103)2 =1002 =10000;②原式=20192-(2019-1)×(2019+1) =20192-(20192-1) =20192-20192+1 =1.方法或规律点拨本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:+−=−a b a b a b 22)()(.完全平方公式:±=±+a b a ab b 2222)(.巩固练习1.(2020·广西兴宾·初一期中)计算:−⨯−⨯−⨯⨯−⨯−56799100(1)(1)(1)...(1)(1)1111122222的结果是( )A .200101B .125101C .100101D .1001 【答案】B 【解析】解:原式=⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⨯+⨯−⨯+⨯−⨯+⨯⨯−⨯+⨯−⨯+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫556677999910010011111111111111111111 =⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯55667799991001004657689810099101=⨯51004101 =125101. 故选:B .2.(2020·全国初二课时练习)计算:1252-50×125+252=( ) A .100 B .150C .10000D .22500【答案】C【解析】1252-2×25×125+252=(125-25)2=1002=10000. 故选C .3.(2020·全国初二课时练习)计算:752-252=( ) A .50 B .500C .5000D .7100【答案】C【解析】原式=(75+25)×(75-25)=100×50=5000, 故选C .4.(2020·河南初二期末)已知−=⨯⨯x 2010201020102009201120212019,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】解:−2010201020212019=⨯⨯=⨯−⨯+⨯−⨯−20102009201120102010120101=201020101=2010201020102019201920192201922019)()()(∴⨯⨯=⨯⨯x 2010200920112010200920112019 ∴x=2019故选:B .5.(2020·河北定兴·初一期末)利用因式分解计算−=2522481000222__________. 【答案】500【解析】解:−+−⨯===⨯252248252248252248500450010001000100010002222)()(. 故答案为:500.考点2:利用十字相乘法进行因式分解 典例:阅读与思考x 2+(p+q )x+pq 型式子的因式分解x 2+(p+q )x+pq 型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p )(x+q )=x 2+(p+q )x+pq ,因式分解是整式乘法相反方向的变形,利用这种关系可得x 2+(p+q )x+pq =(x+p )(x+q ).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x 2-x-6分解因式.这个式子的二次项系数是1,常数项-6=2×(-3),一次项系数-1=2+(-3),因此这是一个x 2+(p+q )x+pq 型的式子.所以x 2-x-6=(x+2)(x-3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x 2-x-6=(x+2)(x-3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题: (1)分解因式:y 2-2y-24.(2)若x 2+mx-12(m 为常数)可分解为两个一次因式的积,请直接写出整数m 的所有可能值.【答案】(1)(y+4)(y-6);(2)-1,1,-4,4,11,-11 【解析】解:(1)y 2-2y-24=(y+4)(y-6);(2)若+−=−+x mx x x 12(3)(4)2,此时=m 1 若+−=+−x mx x x 12(3)(4)2,此时=−m 1 若+−=−+x mx x x 12(1)(12)2,此时=m 11若+−=+−x mx x x 12(1)(12)2,此时=−m 11 若+−=−+x mx x x 12(2)(6)2,此时=m 4 若+−=+−x mx x x 12(2)(6)2,此时=−m 4综上所述,若x 2+mx-12(m 为常数)可分解为两个一次因式的积, m 的值可能是-1,1,-4,4,11,-11. 方法或规律点拨本题主要考查了十字相乘法分解因式,读懂题意,理解题中给出的例子是解题的关键. 巩固练习1.(2020·四川成都实外开学考试)计算结果为a 2-5a-6的是( ) A .(a-6)(a+1) B .(a-2)(a+3) C .(a+6)(a-1) D .(a+2)(a-3)【答案】A【解析】解:a 2-5a-6=(a-6)(a+1). 故选:A .2.(2020·湖南鹤城·初一期末)将下列多项式因式分解,结果中不含有因式+a 1的是( )A .−a 12B .++a a 212C .+a a 2D .+−a a 22【答案】D【解析】解:−=+−a a a 1(1)(1)2,+++a a a 21=122)(+=+a a a a (1)2,+−=+−a a a a 2(2)(1)2,∴结果中不含有因式+a 1的是选项D ; 故选:D .3.(2020·上海市静安区实验中学初一课时练习)已知−−=−−x x m x x n 452)()(,则m ,n 的值是( )A .=m 5,=n 1B .=−m 5,=n 1C .=m 5,=−n 1D .=−m 5,=−n 1【答案】C【解析】解:由x 2-4x-m=(x-5)(x-n ), 得:-5-n=-4,(-5)(-n )=-m 所以n=-1,m=5. 故选:C .4.(2020·全国初二课时练习)下列各式中,计算结果是+−x x 7182的是( ) A .−+x x (1)(18) B .++x x (2)(9) C .−+x x (3)(6) D .−+x x (2)(9)【答案】D【解析】原式=(x -2)(x +9)故选D.5.(2020·湖南茶陵·初一期末)分解因式x 2+3x +2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).这样,我们可以得到x 2+3x +2=(x +1)(x +2).请利用这种方法,分解因式2x 2-3x -2=_____.【答案】(2x +1)(x -2) 【解析】解:原式=(2x +1)(x -2), 故答案为(2x +1)(x -2)考点3:利用分组分解法进行因式分解 典例:将下列各式因式分解: (1)++x x 142;(2)+−+−x x y y 26822.【答案】(1)++−+x x x x 1122)()(;(2)+−−+x y x y (2)(4).【解析】解:(1)原式=++−x x x 21422=+−x x 1222)(=++−+x x x x 1122)()(;(2)原式=++−+−x x y y 216922=++−−+x x y y 216922)()( =+−−x y 1322)()(=++−+−+x y x y 1313)()( =+−−+x y x y 24)()(. 方法或规律点拨本题考查了多项式的因式分解,正确变形、熟练掌握分解因式的方法是解题的关键. 巩固练习1.已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2-ab-bc-ac 的值为_____.【答案】3【解析】解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018, ∴a-b=-1,a-c=-2,b-c=-1, ∴a 2+b 2+c 2-ab-bc-ac=++−−−a b c ab bc ac 2222222222=−+−+−a b a c b c 2()()()222=−+−+−2(1)(2)(1)222=3,故答案为:3.2.分解因式:++−=a ab b 2422__________. 【答案】+++−a b a b (2)(2) 【解析】解:原式=(a+b )2-22 =(a+b+2)(a+b-2), 故答案为:(a+b+2)(a+b-2).3.分解因式:++−=b c bc a 2222_______.【答案】+++−b c a b c a ()()【解析】解:原式=+−=+++−b c a b c a b c a ()()()22.故答案为:+++−b c a b c a ()()4.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如−−+x y x y 42422,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。
第08讲 因式分解(二)
第八讲 因式分解(二)知识导航 1.整式乘法 m n m n a a a +⋅=()nm mn a a =()nn n ab a b =(m 、n 都是正整数)m (a +b +c )=ma +mb +mc (m +n )(a +b )=ma +mb +na +nb2.整式除法m n m n a a a -÷=(a ≠0,m 、n 都是正整数,并且m >n )(am +bm )÷m =am ÷m +bm ÷m =a +b 3.乘法公式 平方差公式:(a +b )(a -b )=a 2-b 2 完全平方公式 和:(a +b )2=a 2+2ab +b 2 差:(a -b )2=a 2-2ab +b 2 4.复杂乘法公式 三元完全平方公式:(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca 和的完全立方公式:(a +b )3 =a 3 +3a 2b +3ab 2+b 3差的完全立方公式:()3a b -=3a -23a b +23ab -3b 5.常见式子的变形 x 2+y 2=(x +y )2-2xy(x -y )2=(x +y )2-4xyx 4+y 4=(x 2+y 2)2-2x 2y 2x y -=222211122x x x x x x ⎛⎫⎛⎫+=+-=-+ ⎪ ⎪⎝⎭⎝⎭24242112x x x x ⎛⎫+=+- ⎪⎝⎭例1:(1)已知a =8131,b =2741,c =961,则a 、b 、c 的大小关系是( ) A .a >b >c B .a >c >b C .c >b >a D .b >c >a (2)若(x +m )(x -8)中不含x 的一次项,则m 的值为( ) A .8 B .-8 C .0 D .8或-8(3)已知x 2-5x +1=0,则221x x +=____________. (4)已知x +y =7,xy =6,则(x +y )(x -y )=__________. 练习(1)下列运算正确的是( ) A .x 3+x 3=2x 6 B .x 8÷x 4=x 2 C .(-x 3)2=x 6 D .x (x -y )=x 2-y (2)(2016-2017六中八上12月月考) 已知x +y =3,(x +3)(y +3)=20.①求xy 的值;②求x 2+y 2+4xy 的值;③直接写出x -y 的值.(3)先化简,再求值:(x -2y )2-(x -y )(x +y )-2y 2,其中x =14,y =13-.练习:已知x 2+x -1=0,则x 3+2x 2+3=__________. 达标练习将下列各式展开成多项式的形式: (1)(3x +4)(5y -6)(2)1113234x y x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭(3)(2a -3b -c )(2a -3b +c ) (4)(2x -3y )(3x -2y )(3y +2x )(2y -3x )模块二 因式分解 知识导航1、因式分解的概念整式乘法:将几个整式的乘积化为一个多项式的形式. 因式分解:把一个多项式化成几个整式的乘积的形式. 可以看出,因式分解与整式乘法是方向相反的变形,即:多项式 整式乘积,例如:x 2-1 (x +1)(x -1).2、 提公因式法一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一因式的乘积形式,这种分解因式的方法叫做提公因式法. 例如,pa +pb -pc =p (a +b -c ),其中p 叫做这个多项式各项的公因式. 3、 公式法把乘法公式反过来,就可以利用公式将某些多项式写成因式乘积的形式,即因式分解. 常用因式分解: a 2-b 2=(a +b )(a -b ) a 2+2ab +b 2=(a +b )2 a 2-2ab +b 2=(a -b )2 a 3 +3a 2b +3ab 2+b 3 =(a +b )33a -23a b +23ab -3b =()3a b -因式分解 整式乘法 因式分解整式乘法立方差的因式分解:a 3-b 3=(a -b )(a 2+ab +b 2) 4、十字相乘法 对于(mx +a )(nx +b )=mnx 2+(an +bm )x +ab ,将等式反过来写,可以得到mnx 2+(an +bm )x +ab =(mx +a )(nx +b ).这个因式分解的过程,可以用“十字相乘”的形式形象地表示:banx mx例2(1)下列是完全平方式的是( ) A .x 2+xy +y 2B .y 2+y +12C .m 2-m +14D .4x 2+2x +1(2)下列因式分解结果正确的是( ) A .6p (p +q )-4q (p +q )=(p +q )(6p -4q ) B .x 2+2x -3=x (x +2)-3C .a 2-2a +1=(a -1)2D .4x 2-9=(4x +3)(4x -3) (3)已知a 2+9b 2-4a +6b +5=0,求b a =__________. (4)已知a +b =1,则a 2-b 2+2b =___________________.(5)分解因式:x (x +1)3+x (x +1)2+x (x +1)+(x +1)=_________________. (6)分解因式:x 2-2x -48 =__________________. 练习下列哪些多项式可以因式分解?若可以,请你写出因式分解后的结果. (1)4a 2-12ab +9b 2(2)22152591264a ab b -+(3)2x 2+15x -8(4)x 2-x +12(5)22144x xy y ++(6)9m 2-50mn +64n 2例3:分解因式 (1)(2x -y )2+8xy(2)16m 4-81(3)322314x y x y xy -+(4)4x 2-4x -y 2+4y -3练习分解因式:(1)16x 4-8x 2y 2+y 4(2)(x 2-4y 2)2-12(x 2-4y 2)+36(3)(x 2+4y 2-z 2)2-16x 2y 2(4)81x 2-1-18xy +y 2例4:分解因式 (1)x 2-5x -24(2)-x 3+2x 2+15x(3)3x4-13x2+4 (4)(a-b)2-12(a-b)+12练习分解因式:(1)4x2-24xy+11y2(2)3x3y-15x2y2+18xy3(3)-m2-4mn+96n2(4)6a2b2-17abc+5c2模块三主元法知识导航在对含有多个字母的代数式进行因式分解时,可以选其中的某一个字母为主元,把其它字母看成是主元的系数进行因式分解,这样可以分解一些较复杂的多项式.实际上,例5和练5就是把x当作主元,a、m、k等当作x的系数再十字相乘法分解因式.例5:分解因式(1)k2x2-4kx-12 (2)mx2-(m2+m+1)x+m2+m练习分解因式:(1)x2+(a+b+c)x+(a+b)c(4)x4-(a2-4)x2-4a2例6:分解因式(1)2a2-b2-ab+bc+2ac(2)a2b-ab2+a2c-ac2-3abc+b2c+bc2(3)x2-6xy+9y2-5xz+15yz+6z2(4)a(6a+11b+4)+b(3b-1)-2练习:分解因式(1)1+a+b+c+ab+ac+bc+abc(2)x2-y2+5x+3y+4第8讲因式分解(二)A基础巩固1.已知多项式x2+bx+c因式分解的结果为(x-1)(x+4),则bc为()A.12 B.9 C.-9 D.-122.下列各式由左到右的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2-4x+4=x(x-4)+4C.10x2-5x=5x(2x-1)D.x2-16+3x=(x+4)(x-4)+3x3.已知a-b=3,则a2-b2-6b的值为___________.4.已知a2+b2-4a-6b+13=0,则a-b=__________.5.分解因式:1+a+a(a+1)+a(a+1)2+a(a+1)3+…+a(a+1)2017=____________.6.已知x2-2x-2=0,则(x-1)2+(x+3)(x-3)+(x-3)(x-1)=______________.7.已知a+b ab=2,则a2b-ab2=___________.8.分解因式:(1)3b2-12b+12 (2)x2-4x-12(3)2x4-8 (4)x2-y2+2x+6y-8(5)(x+y)2-6z(x+y)+9z2(2)-4(a-b)2+16(a+b)2B综合训练9.分解因式:(1)abcx2+(a2b2+c2)x+abc(2)kx2+k2x+x+k2-1(3)x4+2(a2+b2)x2+(a2-b2)2(4)x2+xy-6y2+x+13y-6 (5)a2+ab-6b2+5a+35b-36 (6)6x2-5xy-6y2+2x+23y-20课外阅读 因式定理:如果x =a 时,多项式a n x n +a n -1x n -1+… + a 1x +a 0的值为0 ,那么x -a 是该多项式的一个 因式.例如,当x =2时,x 3-2x 2-x +2的值为0,那么x -2是该多项式的一个因式,由此可以找到分解因式的思路:x 3-2x 2-x +2=x 2(x -2)-(x -2)=(x -2)(x -1)(x +1)或者,我们发现,当x =1时,x 3-2x 2-x +2的值为0,那么x -1是该多项式的一个因式, 由此也可以找到分解因式的思路:x 3 -2x 2-x +2 = x 3-x 2 –x 2 +x -2x +2 =(x 3-x 2)-(x 2-x )-(2x -2) =x 2 (x -1)-x (x -1)-2(x -1) = (x -1)(x 2-x -2) =(x -1)(x -2)(x +1)实际上,当 x =2 或x =1或 x =-1 时,x 3-2x 2-x +2 的值都为 0,则x -2、x -1、x +1都是该多项式的一个因式.那么以此为出发点,分组构造这样的公因式,可以进行因式分解.本讲的主元法、双十字法主要针对二次多项式的因式分解,当題目需要分解三次或更高 次的多项式时,可以依据因式定理先找到该多项式的一个因式,再分组构造此公因式或者用 大除法进行因式分解. 【例】分解因式:2x 3-x 2-5x -2【解析】当x =-1时,2x 3-x 2-5x -2的值为0,那么x +1是该多项式的一个因式.这里我们可以用分组构造x +1的方法或者大除法,得到此多项式余下的因式. 法一:构造x +12x 3-x 2-5x -2=2x 3+2x 2-3x 2-3x -2x -2=(2x 3+2x 2)-(3x 2+3x )-(2x +2) =2x 2(x +1)-3x (x +1)-2(x +1)=(x +1)(2x 2-3x -2) =(x +1)(2x +1)(x -2) 法二:大除法 232322223212522235332222x x x x x x x x x x x xx x --+---+--------可得原式=(2x 2-3x -2)(x +1)=(x -2)(2x +1)(x +1) 【练】因式分解: (1)3x 3-5x 2+x +1 (2)x 4+2x 3-3x 2-4x +4。
第2讲 因式分解(2)
(2)9x2-y2-4y-4;
(3)a2+(b2-2b)a-b3+b2;
(4)(a+b)2(a-b)2-a4+b4.
【答案】(1)(a- b +x)(a― b ―x)(2)(3x+y+2)(3x-y-2)(3)(a-b)(a-b+b2)
2
2ቤተ መጻሕፍቲ ባይዱ
(4)-2a2(a+b)(a-b)
c1c2=c,a1c2+a2c1=b.
2. 双字母型 双字母型与单字母型的分解方法是一样的,只是结构上的区别.
考点一 单字母型十字相乘法
例 1.分解因式. (1)x2+3x+2;
(2)x2+x-20;
(3)6x-27+x2;
(4)x2-2x-99.
【答案】(1)(x+1)(x+2)(2)(x+5)(x-4)(3)(x+9)(x-3)(4)(x-11)(x+9)
(2)4x2-xy-5y2;
(3)-9xy+2x2-5y2;
(4)a2b2-7ab3+10b4.
【答案】(1)(x-6y)(x-8y)(2)(x+y)(4x-5y) (3)(x-5y)(2x+y)(4)b2(a-2b)(a-5b)
分组分解法
1. 分组分解法 很多多项式都不能直接运用提公因式法或直接运用公式法分解,但是,进行分组后,
(2)x2-15x+36; (4)x2-5x-104.
【答案】(1)(x+2)(x+4)(2)(x-12)(x-3) (3)(x-12)(x+6)(4)(x-13)(x+8)
变 2.把下列各式因式分解. (1)-3x2-2-7x;
(3)3x2-2x-8;
(2)2x2-x-3; (4)-2m2-5m+12.
就可以运用这两种方法进行分解,使问题迎刃而解.常见的分组方式有“2+2”型,“3 +1”型,“3+2”型等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)(a6+b4)2-4a6b4
=a^12+2a^6b^4+b^8-4a^6b^4
=a^12-2a^6b^4+b^8
=(a^6-b^4)^2
=(a^3+b^2)^2(a^3-b^2)^2
(5)-2m8+512
=-2(m^8-256)
=-2(m^4-16)(m^4+16)
12.(m+n)的平方+4m(m+n)+4m的平方=(3m+n)2
13.2xy-x的平方-y的平方=-(x-y)2
14.4xy的平方-4x的平方y-y的三次方=y(2x-y)2
15.3-6x+3x的平方=3(x-1)2
16.-a+2a的平方-a的三次方=-a(a-1)2
三.把下列各式先因式分解,再求值。
1、5x(m-2)-4x(m-2),其中x=-0.4,m=5.5
=x(m-2)
当x=-0.4,m=5.5时
原式=-0.4(5.5-2)
=1.4
2、4a的平方(x+7)-3a的平方(x+7),其中a=-5,x=3
=a 2(x+7)
当 a=-5,x=3 时
原式=(-5)2(3+7)
61.因式分解4x2+4xy+y2-4x-2y-3= 。
62.因式分解9x5-35x3-4x= 。
1.81a的四次方-b的四次方=(9a2+b2)(3a+b)(3a-b)
2.8Y的四次方-2Y的平方=2y2(2y+1)(2y-1)
3.3ax的平方-3ay的四次方=3a(x+y2)(x-y2)
4.m的四次方-1=(m2+1)(m+1)(m-1)
5.25a的四次方-40a的平方b的平方+16b的四次方=(5a2-4b2)2
41.因式分解2ax2-3x+2ax-3= 。
42.因式分解9x2-66x+121= 。
43.因式分解8-2x2= 。
44.因式分解x2-x+14 = 。
45.因式分解9x2-30x+25= 。
46.因式分解-20x2+9x+20= 。
47.因式分解12x2-29x+15= 。
54.因式分解(x2-3x)+(x-3)2= 。
55.因式分解9x2-66x+121= 。
56.因式分解8-2x2= 。
57.因式分解x4-1= 。
58.因式分解x2+4x-xy-2y+4= 。
59.因式分解4x2-12x+5= 。
60.因式分解21x2-31x-22= 。
=250
(1)-6ax^3y+8x^2y^2-2x^2y
=2x^2y(-3ax+4y-1)
(2)3a^2(x-y)^3-4b^2(y-x)^2
=(x-y)^2(3a^2-4b^2)
=(x-y)^2(3^0.5a+2b)(3^0.5a-2b)
(3)(x+y)(m-a)-3y(a-m)^2+(a-m)^3
=(a-m)[(a-m)^2-3y(a-m)-(x-y)]
此题是不是有错,按照道理后面这一项还可以再分解的,是关于(a-m)的分解式
(4)8x(a-1)-4(1-a)
=4(a-1)(2x+1)
(5)m(1-a)+mn(1-a)+1-a
=(1-a)(m+mn+1)
此题是不是有错,按照道理后面这一项还可以再分解的
例如:m+n+mn+1=(m+1)(n+1)
(1)16x4-64y4
=16(x^4-4y^4)
=16(x^2+2y^2)(x-2^0.5y)(x+2^0.5y)
(2)16x6-1/4
=1/4(64x^6-1)
=1/4(8x^3-1)(2+2x+1)(2x+1)(4x^2-2x+1)
=-2(m^2-4)(m^2+4)(m^4+16)
=-2(m-2)(m+2)(m^2+4)(m^4+16)
(6) (x+y)3-64
=(x+y-4)(x^2+2xy+y^2+4x+4y+16)
或m3-64n3
=(m-4n)(m^2+4mn+16n^2)
40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。
6.36X的四次方-12x的平方+y的平方=(6x2-y)2
7.a的平方b的平方-4ab+4=(ab-2)2
8.16-8xy+x的平方y的平方=(4-xy)2
9.(x+y)的平方+6(x+y)+9=(x+y+3)2
10.a的平方-2a(b+c)+(b+c)的平方=(a-b-c)2
11.4-12(x-y)+9(x-y)的平方=(4-3x+3y)2
48.因式分解36x2+39x+9= 。
49.因式分解21x2-31x-22= 。
50.因式分解9x4-35x2-4= 。
51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。
52.因式分解2ax2-3x+2ax-3= 。
53.因式分解x(y+2)-x-y-1= 。