3.2 合并同类项与移项练习题及答案.doc
《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册
《3.2 解一元一次方程(一)——合并同类项与移项》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在学习一元一次方程时,掌握合并同类项与移项的基本方法。
通过实际操作,提高学生的计算能力和逻辑思维能力,为后续学习一元一次方程的解法打下坚实的基础。
二、作业内容本作业主要包括以下几个部分:1. 复习与巩固:要求学生回顾并复习一元一次方程的基本概念,包括合并同类项的定义和方法。
2. 实践操作:设计一系列练习题,让学生通过实际操作,掌握合并同类项的技巧。
练习题包括填空题、选择题和计算题等。
3. 移项练习:设计一系列关于移项的练习题,包括将常数项移至等式另一侧的练习,以及将未知数项移至等式另一侧的练习。
4. 实际问题应用:设计一些实际问题,让学生运用所学知识解决实际问题,如购物找零、行程问题等。
三、作业要求为确保学生能够有效地完成本作业,特提出以下要求:1. 学生在完成作业时,需按照步骤和顺序进行,先复习巩固基础知识,再逐一完成实践操作部分的练习题。
2. 学生在合并同类项时,应理解同类项的概念,准确判断同类项并进行合并。
在移项时,应正确运用移项的规则,确保等式两边的平衡。
3. 在实际问题应用部分,学生应理解问题的背景和要求,运用所学知识进行解答。
在解答过程中,应注重解题思路的清晰和解题步骤的规范。
4. 学生在完成作业后,需进行自我检查和修正,确保答案的准确性。
如有疑问或困难,可向老师或同学请教。
四、作业评价本作业的评价标准主要包括以下几个方面:1. 基础知识的掌握程度;2. 实践操作的准确性和熟练程度;3. 解题思路的清晰度和规范性;4. 实际问题的解决能力和应用能力。
五、作业反馈为确保学生能够及时了解自己的学习情况并加以改进,老师需在批改作业后进行以下反馈:1. 对学生的作业进行逐一评价,指出优点和不足;2. 对学生的解题思路和步骤进行点评和指导;3. 对学生的实际问题的解决能力进行评价和建议;4. 对学生的学习提出进一步的建议和要求。
解一元一次方程(一)——合并同类项与移项
慧眼识金
判断下列移项是否正确,看谁又快又准 (1)若x-4=8,则x=8-4× x=8+4
(2)若3a=2a+5,则-3a-2a=5
×
3a-2a=5
(3)若5s-2=4s+1,则5s-4s=1+2
√
动手做一做 请你来给下列一元一次方程移项 (1)9-3y=5y+5 (2) 0.5x-0.7=6.5-1.3x (3)3x+5=4x+1 (4)6x-7=4x-5
解一元一次方程(一)—— 合并同类项与移项
第1课时 合并同类项
约公元820年,中亚细亚数学 家阿尔-花拉子米写了一本代 数书,重点论述怎样解方程. 这本书的拉丁文译本取名为 《对消与还原》.“对消”与 “还原”是什么意思呢?
某校三年共购买计算机140台,去 年购买数量是前年的2倍,今年购买的 数量又是去年的2倍.前年这个学校购 买了多少台计算机?
练习1 解下列方程: (1)6x – 7 = 4x – 5 (2)6 – 3x = 7x – 14
例4 把一些图书分给某班学生阅读,如果每 人分3本,则剩余20本;如果每人分4本, 则还缺25本.这个班有多少学生?
解;设这个班有x名学生 分析:
每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,需要4x本,减去缺的25本,这批书共(4x25)本.
3x + 20 = 4x - 25
2. 对于方程– 3x – 7=12x+6,下列移项正确的是 A ()
A. – 3x – 12x=6+7
B. – 3x+12x= – 7+6
解一元一次方程(一)——合并同类项与移项(2)
解方程:
5 x=25.
系数化为1,得
系数化为1,得
1 - x=4. 2
x=5.
x=-8.
我思我进步
一、移项法解一元一次方程的一般步骤: 第一步:移项 第二步:合并同类项 第三步:系数化为1 二、移项的方法:
一般将含未知数的项都移到方程的左边, 常数都移到方程右边。(左“元”右 “常” )
错 因 下面是马虎同学在学习解一元一次方程 分 时完成的一道练习题,他的解法对吗? 析 Why? : x-5+2x+1=-5+3x-7-4x-x 思 路 解:移项,得: x-3x+4x+2x=5-7-1-5 不 合并同类项,得:4x=-8 清 系数化为1,得:x=-2 , 程 依次先抄再移 金点子 序 先合并再移项 混 先将左边未知项依次抄写下来,再把右 乱 边未知项变号后依次写下来,右边类推。
义务教育教科书
数学
七年级
上册
3.2 解一元一次方程(一) ——合并同类项与移项(第2课时)
江东初中 屠 欣
学习目标
学习目标: 1. 理解移项法则,会解形如 ax+b=cx+d 型方程; 2.体会等式变形中的化归思想. 学习重点: 利用移项与合并同类项解形如 ax+b=cx+d 的一元一次 方程. 学习难点: 正确地进行移项并解出方程.
3x 4x= 25 20
合作探究
4 x-25 20 3 x+ 20=
方程两边都-4x-20 移项
移项的定义:
3x 4x= 25 20
变号 像上面那样,把等式一边的某项变号后移 到另一边,叫做移项. 点拨 (1)移项是将某项从等式的一边移到另一边; (2)移项要变号.(移“+”为“-” ,移“-”为“+” )
七年级数学上册解一元一次方程3.2,3.3-合并同类项与移项,去括号去分母
合并同类项 ,得 x =4;
系数化为 1 ,得 x =4.
解题后的反思 解 题 后 的 反 思
(1) 移项实际上是对方程两边进行 同加减 使用的是等式的性质 1 ;
,
(2) 系数 化为 1 实际上是对方程两边进行 同乘除 , 使用的是等式的性质 2 .
3 x 690 5 x 540
移项 去括号
方程的方法吗?用 其他方法列出的方 程应怎样解?
3 x 5 x 540 690
合并
2 x 150
x 75
系数化为1 代入
138 x 63
契诃夫的小说 中说用算术方法解 上面的问题很难。 你会用算术方法解 它吗?如果你会做, 那么不妨把算术方 法和方程解法比较 一下。
—— 合并同类项与移项
复习:
什么叫做方程的解?
使方程左右两边的值相 等的未知数的值叫做方 程的解。
回顾与思考
1、解方程的基本思想 是经过对方程一系列的变形,最 终把方程转化为“x=d‖的形式. 即:①等号左、右分别都只有一项,且左边是未知数项, 右边是常数项; ②未知数项的系数为1. 2、目前为止,我们用到的对方程的变形有: 等号两边同加减(同一代数式)、 等号两边同乘除(同一非零数) 等号两边同加减的目的是: 使项的个数减少; 等号两边同乘除的目的是: 使未知项的系数化为1.
解一元一次方程
5x-2=8 5x=8+2
知识点3:移项
解方程 :5x -2=8
方程两边都加上2,得
5x -2+2=8+2
5x =8+2
比较这个方程与原方程,同学们可以发现什么?
5x -2 =8
《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册
《3.2 解一元一次方程(一)——合并同类项与移项》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在课堂上所学的合并同类项与移项的解一元一次方程的基本方法,加强学生对一元一次方程的认知,提高学生的运算能力和解题技巧。
二、作业内容1. 练习题:(1)合并同类项练习:设计一系列题目,如“3x的平方-2x 的平方+5x-3x的平方”,要求学生合并同类项,并说明合并的原理。
(2)移项练习:如“3x-5=4x+a”,要求学生将等式中的项进行移项,使x的系数归一。
(3)实际运用:设计一些与日常生活相关的一元一次方程问题,如购物找零、行程问题等,让学生运用所学知识解决实际问题。
三、作业要求(1)独立完成:学生需独立完成作业,不得抄袭他人答案。
(2)细致审题:要求学生在解题前认真审题,理解题目的意思和要求。
(3)步骤清晰:解题过程中,学生需写出详细的步骤,清晰表达解题思路。
(4)准确计算:要求学生计算准确,避免因计算错误导致的答案错误。
(5)按时提交:学生需在规定时间内提交作业,并保证作业的整洁和规范。
四、作业评价(1)教师评价:教师根据学生的作业情况进行评分,并给出详细的评价和建议。
(2)互评:鼓励学生之间互相评价作业,互相学习,互相进步。
(3)自评:学生需对自己的作业进行自评,反思自己的不足之处,以便下次改进。
五、作业反馈(1)及时反馈:教师需及时批改作业,并给予学生及时的反馈。
(2)针对性指导:针对学生在作业中出现的错误和不足,教师需给出针对性的指导和建议。
(3)鼓励表扬:对于表现优秀的学生,教师应给予鼓励和表扬,激发学生的积极性。
(4)整理错题:将学生的错题进行整理和归类,以便后续复习和巩固。
六、总结本作业设计旨在通过练习、实践和反馈等方式,帮助学生巩固一元一次方程的基本知识和技能,提高学生的解题能力和运算技巧。
同时,通过互评、自评和教师评价等方式,帮助学生发现自己的不足之处,以便及时改进和提高。
人教版数学七年级上册 第3章 3.2---3.4期末练习含答案
3.2解一元一次方程合并同类项及移项一.选择题1.在梯形面积公式S=(a+b)h中,已知S=30,a=6,h=6,则b=()A.4B.16C.26D.362.方程x=3的解是()A.x=6B.x=C.x=D.x=3.对于“ax+b=cx+d”类型的一元一次方程,移项与合并同类项得()A.(a﹣c)x=d﹣b B.(a﹣c)x=b﹣d C.(a+c)x=b+d D.(a﹣c)x=b+d 4.在解方程时,去分母正确的是()A.7(1﹣2x)=3(3x+1)﹣3B.1﹣2x=(3x+1)﹣3C.1﹣2x=(3x+1)﹣63D.7(1﹣2x)=3(3x+1)﹣635.下列方程变形正确的是()A.将方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2B.将方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.将方程去分母,得2(x+1)﹣4=8+(2﹣x)D.将方程化系数为1,得x=﹣16.设a、b、c、d为有理数,先规定一种新运算“=ad﹣bc”,若=3,则x=()A.B.﹣5C.﹣4D.17.下列方程变形正确的是()A.方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2B.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程可化为3x=6D.方程系数化为1,得x=﹣18.若代数式3x﹣7和6﹣2x互为相反数,则x的值为()A.﹣1B.+1C.﹣2D.+29.若的倒数与互为相反数,那么m的值是()A.m=1B.m=﹣1C.m=2D.m=﹣210.已知关于x的方程x﹣m=1与方程2x﹣3=﹣1的解互为相反数,则m=()A.2B.﹣2C.0D.1二.填空题11.方程x﹣1=2的解是.12.关于x的方程(3a﹣2)x=2(3﹣x),当a≠0时,该方程的解是.13.某种商品的市场需求量D(千件)和单价P(元/件)服从需求关系:,当单价为4元时,则市场需求量为(千件).14.a、b、c、d为实数,规定运算,那么时,x的值为.15.已知关于x的一元一次方程kx=5,k的值为单项式﹣的系数与次数之和,则这个方程的解为x=.三.解答题16.解方程:(1)8x﹣2=0;(2)x﹣5=4x+7.17.解下列方程:(1)﹣2=x+1;(2)5(x﹣5)﹣2(x﹣12)=2;(3)﹣=1;(4)(3x+7)=2﹣x.18.+4=0;(2)解方程,并检验:19.当m为何值时,代数式的值比的值小2.参考答案与试题解析一.选择题1.【解答】解:将S=30,a=6,h=6代入公式得:30=×(6+b)×6,去分母得:60=6(b+6),就b+6=10,解得:b=4.故选:A.2.【解答】解:系数化为1,得x=6.故选:A.3.【解答】解:ax+b=cx+d,移项合并得:(a﹣c)x=d﹣b.故选:A.4.【解答】解:去分母得:7(1﹣2x)=3(3x+1)﹣63.故选:D.5.【解答】解:A、将方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1+2,错误;B、将方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x+5,错误;C、将方程去分母得:2(x+1)﹣4=8+(2﹣x),正确;D、将方程x系数化为1,得:x=﹣,错误,故选:C.6.【解答】解:根据题意得:=2(x﹣1)﹣3x=3,去括号得:2x﹣2﹣3x=3,移项合并得:﹣x=5,解得:x=﹣5.故选:B.7.【解答】解:A、方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1+2,本选项错误;B、方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x+5,本选项错误;C、方程﹣=1,化简得:﹣=5x﹣5﹣2x=1,即3x=6,本选项正确;D、方程x=﹣系数化为1,得:x=﹣,本选项错误,故选:C.8.【解答】解:根据题意得:3x﹣7+6﹣2x=0,解得:x=1.故选:B.9.【解答】解:∵的倒数与互为相反数,∴+=0,3m+2m﹣10=0,5m=10,m=2,故选:C.10.【解答】解:由关于x的方程x﹣m=1,得x=1+m;由方程2x﹣3=﹣1,得x=1;∵关于x的方程x﹣m=1与方程2x﹣3=﹣1的解互为相反数,∴1+m=﹣1,解得,m=﹣2;故选:B.二.填空题(共5小题)11.【解答】解:移项得,x=2+1,合并得,x=3.故答案为:x=3.12.【解答】解:去括号得,3ax﹣2x=6﹣2x,移项得,3ax﹣2x+2x=6,合并同类项得,3ax=6,∵a≠0,∴两边同除以3a得,x=.故答案为:x=.13.【解答】解:∵P=4,∴D+4﹣=0,解得,D=5,故答案为5.14.【解答】解:根据运算的规则:得10﹣4(1﹣x)=18,化简可得4x=12;即x=3.故答案为3.15.【解答】解:由题意可知,k=﹣+3=,列方程,得x=5,方程两边同乘以,得x=2.故答案为:2.三.解答题(共4小题)16.【解答】解:(1)移项得:8x=2,解得:x=;(2)移项得:x﹣4x=7+5,合并得:﹣3x=12,解得:x=﹣4.17.【解答】解:(1)﹣2=x+1,去分母得:9x﹣24=4x+12,移项得:9x﹣4x=12+24,合并同类项得:5x=36,解得:x=7.2.(2)5(x﹣5)﹣2(x﹣12)=2,去括号得:5x﹣25﹣2x+24=2,移项得:5x﹣2x=2+25﹣24,合并同类项得:3x=3,解得:x=1.(3)﹣=1,去分母得:3(3x+5)﹣4(4x﹣2)=12去括号得:9x+15﹣16x+8=12,移项得:9x﹣16x=12﹣15﹣8,合并同类项得:﹣7x=﹣11,解得:x=.(4)(3x+7)=2﹣x,去分母得:4(3x+7)=28﹣21x,去括号得:12x+28=28﹣21x移项合并得:33x=0,解得:x=0.18.【解答】解:(1)去括号得:4x﹣60+3x+4=0,移项合并得:7x=56,解得:x=8;(2)去分母得:9y﹣3﹣12=10y﹣14,移项合并得:﹣y=1,解得:y=﹣1,把y=﹣1代入方程得:左边=﹣9﹣3﹣12=﹣24,右边=﹣10﹣14=﹣24,左边=右边,即y=﹣1是方程的解.19.【解答】解:根据题意得:+2=,去分母得:3m+6+12=2m﹣2,解得:m=﹣20.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x-2)-3(4x-1)=9的去括号的过程,其中正确的是( )A.2x-4-12x+3=9B.2x-4-12x-3=9C.2x-4-12x+1=9D.2x-2-12x+1=97.若5m+4与-(m-2)的值互为相反数,则m的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( ) A.-1 B.1 C.12 D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,求k 的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( )A.5x =15-3(x -1)B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1) 2.下列等式变形正确的是( ) A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 .4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( )去分母,得3(3x +5)=2(2x -1).( ) 去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( ) 合并同类项,得5x =-17.( ),得x =-175.( )5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1C.x +14+x 6=1D.x 4+14+x -16=17.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( )A.5x =1-3(x -1)B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1) 9.某书上有一道解方程的题:1+□x3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( ) A.7 B.5 C.2 D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3C.x 50-x +12050+6=3D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = .12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0; 解:去括号,得2x -2+1=0. 移项、合并同类项,得2x =1. 系数化为1,得x =12.(2)2x +5=3(x -1). 解:2x +5=3x -3, 2x -3x =-3-5, -x =-8, x =8.5.解:第一步错误.正确的解答过程如下: 去括号,得6-8x =1-6x +3. 移项,得-8x +6x =1+3-6. 合并同类项,得-2x =-2. 系数化为1,得x =1. 6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1; 解:去括号,得12x -8-2x -3=-1. 移项,得12x -2x =8+3-1. 合并同类项,得10x =10. 系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y. 移项、合并同类项,得-6y =-48. 系数化为1,得y =8. (3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x.移项、合并同类项,得2x =6. 系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89.把x =89代入方程6-2k =2(x +3),得6-2k =2×(89+3).解得k =-89.第2课时 利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得 40x +30(20-x)=650. 解得x =5. 则20-x =15.答:购买甲种奖品5件,乙种奖品15件. 3.解:设装运香菇的汽车需x 辆.根据题意,得 1.5x +2(6-x)=10.解得x =4. 所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇,依题意,得 (x +2)×2=118-x ,解得x =38. 答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得 176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km. 6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得 2x +3(100-x)=270.解得x =30. 则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质)去分母,得3(3x +5)=2(2x -1).(等式的性质2) 去括号,得9x +15=4x -2.(去括号法则) (移项),得9x -4x =-15-2.(等式的性质1) 合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2)5.(1)x +12=3+x -64;解:2(x +1)=12+(x -6). 2x +2=12+x -6.2x +2=x +6. x =4.(2)x -32-4x +15=1.解:去分母,得5x -15-8x -2=10, 移项合并,得-3x =27, 解得x =-9. 6.B7.解:设应先安排x 人工作, 根据题意,得4x 40+8(x +2)40=1.化简可得:x 10+x +25=1,即x +2(x +2)=10. 解得x =2.答:应先安排2人工作. 8.C 9.B 10.C 11. 1.12.(1)x -13-x +26=4-x2;解:去分母,得2(x -1)-(x +2)=3(4-x). 去括号,得2x -2-x -2=12-3x. 移项,得2x -x +3x =2+2+12. 合并同类项,得4x =16. 系数化为1,得x =4. (2)2x +13-5x -16=1;解:去分母,得2(2x +1)-(5x -1)=6. 去括号,得4x +2-5x +1=6. 移项、合并同类项,得-x =3. 系数化为1,得x =-3.(3)2x +14-1=x -10x +112;解:去分母,得6x +3-12=12x -10x -1, 移项合并,得4x =8, 解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1.去分母,得30x -7(17-20x)=21. 去括号,得30x -119+140x =21. 移项、合并同类项,得170x =140. 系数化为1,得x =1417.13.解:设A ,B 两地间的距离为x 千米,依题意,得 x 7.5+2.5+x +107.5-2.5=4,解得x =203.答:A ,B 两地间的距离为203千米.14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a.因为将求得的结果代入原方程,左边与右边相等, 所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)],整理,得4a =16. 解得a =4,故a 的值为4.3.4 实际问题与一元一次方程一、选择题(共15小题;共60分)1. 一项工程,甲单独做需天完成,乙单独做需天完成,现由甲先做天,乙再加入合作,设完成这项工程共需天,由题意可列方程A. B.C. D.2. 某通信公司自 2016 年 2 月 1 日起实行新的飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量,国内主叫分钟,若想使每月付费最少,则他应预定的套餐是A. 套餐B. 套餐C. 套餐D. 套餐3. 已知甲煤场有煤,乙煤场有煤,为了使甲煤场存煤是乙煤场的倍,需要从甲煤场运煤到乙煤场.设从甲煤场运煤到乙煤场,则可列方程为A. B.C. D.4. 某同学骑车从学校到家,每分钟行米,某天回家时,速度提高到每分钟米,结果提前分钟到家,设原来从学校到家骑分钟,则列方程为A. B.C. D.5. 某车间原计划小时生产一批零件,后来每小时多生产件,用了小时不但完成了任务,而且还多生产件,原计划每小时生产个零件,则所列方程为A. B.C. D.6. 一家三口人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:父母买全票,女儿按半价优惠,乙旅行社告知:家庭游可按团体票计价,即每人均按全价的的收费.若这两家旅行社每人的原票价相同,那么优惠条件是A. 甲比乙更优惠B. 乙比甲更优惠C. 甲和乙相同D. 与原票价有关7. 在矩形中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽.若,依题意可得方程A. B.C. D.8. 某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过元,则不予优惠;②如果超过元,但不超过元,则按购物总额给予折优惠;③如果超过元,则其中元给予折优惠,超过元的部分给予折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款元和元;若合并付款,则她们总共只需付款元.A. B. C. 或 D.或9. 文具店老板以每个元的价格卖出两个计算器,其中一个赚了,另一个亏了,则卖这两个计算器总的是A. 不赚不赔B. 亏元C. 盈利元D. 亏损元10. 博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走米,一列火车以每小时千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过秒,如果队伍长米,那么火车长为米.A. B. C. D.11. 在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是A. B. C. D.12. 某商家在一次买卖中,同时卖出两种不同型号的计算器,每台都以元的价格出售,其中一种盈利,另一种亏本.在这次买卖中,该商家的盈亏情况是A. 不盈不亏B. 亏元C. 亏元D. 盈利元13. 某商品提价后,欲恢复原价,则应降价A. B. C. D.14. 如图,用块相同的长方形地砖拼成一个大长方形,则每个小长方形地砖的面积是A. B. C. D.15. 甲是乙现在的年龄时,乙岁,乙是甲现在的年龄时,甲岁,那么A. 甲比乙大岁B. 甲比乙大岁C. 乙比甲大岁D. 乙比甲大岁二、填空题(共5小题;共15分)16. 一件商品按成本价九折销售,售价为元.这件商品的成本价是多少?设这件商品的成本价为元,则可以列出方程.17. 如图(1)是边长为的正方形纸板,裁掉阴影部分后将其折叠成如图(2)所示的长方体纸盒,已知该长方体的宽是高的倍,则它的体积是 .18. 如图所示,两人沿着边长为的正方形,按的方向行走,甲从点以的速度、乙从点以的速度行走,当乙第一次追上甲时,将在正方形的边上.19. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过立方米,则按每立方米元收费;若每月用水超过立方米,则超过部分按每立方米元收费.如果某户居民今年5月缴纳了元水费,那么这户居民今年5月的用水量为立方米.20. 有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身个,或者加工杯盖个,车间共有人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?解:设安排加工杯身的人数为人,则加工杯盖的人数为人,每小时加工杯身个,杯盖个,则可列方程为,解得.三、解答题(共3小题;共45分)21. 用白铁皮做罐头盒,每张铁片可制盒身个或制盒底个,一个盒身与两个盒底配成一套罐头盒,现有张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?22. 剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换).有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了把剃须刀,乙厂家销售的刀片数量是刀架数量的倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把刀架?多少片刀片?23. 某甲、乙、丙三个圆柱形容器,甲的内径是厘米,高厘米;乙的内径是厘米,高厘米;丙的内径是厘米,甲、乙两容器中都注满了水.问:如果将甲、乙两容器中的水全部倒入丙容器而使水不溢出来,丙容器至少要多高?答案第一部分1. C2. C3. C4. B5. B6. B 【解析】甲旅行社的票价为;乙旅行社的票价为.7. B8. D9. B 【解析】设赚了的进价为元,亏了的一个进价为元. 由题意得:..解得:, .则两个计算器的进价和(元),两个计算器的售价和(元),则(元),即在这次交易中亏了元.10. B11. D 【解析】设第一个数为,则第二个数为,第三个数为,故三个数的和为.当时,;当时,;当时,.故任意圈出一竖列上相邻的三个数的和不可能是.12. C13. C14. B【解析】设小长方形地砖的长为 .依题意,得 .解得 .15. A第二部分16.17.18.【解析】提示:设乙第一次追上甲用了分钟.由题意可得解得..19.20. ,,,,第三部分21. 设张制盒身,则可用张制盒底,列方程得:解方程得:(张).答:用张制盒身,张制盒底,可以正好制成整套罐头盒.22. 设这段时间内乙厂家销售了把刀架,片刀片.,即,解得:,.答:这段时间内乙厂家销售了把刀架,片刀片.23. 设丙容器至少要厘米.根据题意得:解得所以丙容器至少要厘米.。
人教版七年级数学上册 3 2解一元一次方程 移项合并同类项练习(word版含简单答案)
3.2解一元一次方程--移项合并同类项一、单选题1.一元一次方程21x =的解是( )A .2x =-B .0x =C .12x =- D .12x =2.方程3x =2x +7的解是( ) A .x =4B .x =﹣4C .x =7D .x =﹣73.已知5x =是方程2x −4a =2的解,则a 的值是( ) A .1B .2C .-2D .-14.若m 与13⎛⎫-- ⎪⎝⎭互为相反数,则m 的值为( )A .3-B .13-C .13D .35.代数式3310.3x a b -与323x a b 是同类项,则x 的值是( )A .0B .2C .52D .16.已知关于x 的方程3220x a +-=的解是x a =,则a 的值是( )A .1B .25C .52D .-17.某同学在解关于x 的方程3x -1=mx +3时,把m 看错了,结果解得x =4,该同学把m 看成了( ).A .-2B .2C .43D .728.关于x 的方程3x +5=0与3x =1﹣3m 的解相同,则m 等于( ) A .﹣2B .2C .4-3D .439.对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如: 5*7=5+2×7,则方程3x *12=5-x 的解为( ) A .1B .2C .2.5D .310.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正三角形数”.设第n 个“平行四边形数”和“正三角形数”分别为a 和b .若42a =,则b 的值为( )A .190B .210C .231D .253二、填空题11.若23391m x -+=是关于x 的一元一次方程,则m 的值为_________.12.把方程2y ﹣6=y +7变形为2y ﹣y =7+6,这种变形叫_____,根据是_____. 13.若2x +与2(3)y -互为相反数,则x y -=________.14.利用方程可以将无限循环小数化成分数,例如:将0.7化成分数,可以先设0.7x =,由0.70.777=⋅⋅⋅⋅⋅⋅可知,107.777x =⋅⋅⋅⋅⋅⋅,所以107x x -=,解方程得79x =,于是得70.79=.仿此方法,0.730.7373=⋅⋅⋅⋅⋅⋅用分数表示为__________. 三、解答题 15.解方程 (1)617x +=(2)3845x x -=-16.小明在解一道有理数混合运算时,一个有理数m 被污染了. 计算:()3312m ÷+⨯-.(1)若2m =,计算:()33212÷+⨯-;(2)若()33132m ÷+⨯-=,求m 的值;(3)若要使()3312m ÷+⨯-的结果为最小正整数,求m 值.17.已知两个整式2A x x =+,B =■x +1,其中系数■被污染. (1)若■是2,化简A -B ;(2)若x =1时,A -B 的值为2.说明原题中■是几?18.对于有理数a 、b 定义一种新运算“⊗”,规定a ⊗b =|a |+|b |﹣|a ﹣b |.(1)计算2⊗3的值;(2)当a 、b 在数轴上的位置如图所示时,化简a ⊗b ; (3)已知a <0,a ⊗a =12+a ,求a 的值.19.已知关于x 的方程()()233210k x k x m ---++=是一元一次方程.(1)求k 的值.(2)若已知方程与方程3243x x -=-的解互为相反数,求m 的值. (3)若已知方程与关于x 的方程7352x x m -=-+的解相同,求m 的值.答案1.D 2.C 3.B 4.B 5.D 6.B 7.B 8.B9.A10.C11.212.移项等式基本性质1 13.-514.73 9915.(1)x=1(2)x=-316.(1)0;(2)1m=-;(3)1m=.17.(1)21x x--(2)-118.(1)4;(2)0;(3)a的值为-4.19.(1)3-;(2)2.5;(3)2.5.。
人教版七年级数学上册3.2.2《合并同类项与移项(第2课时)》教学设计
人教版七年级数学上册3.2.2《合并同类项与移项(第2课时)》教学设计一. 教材分析人教版七年级数学上册3.2.2《合并同类项与移项(第2课时)》这一节主要介绍了合并同类项和移项的方法。
合并同类项是指将同类项的系数相加减,字母和字母的指数不变;移项是指将方程中的一项移到另一边,移项时要变号。
这一节的内容是初中数学的重要基础知识,对于学生后续的学习和应用有着重要的意义。
二. 学情分析七年级的学生已经掌握了整式的加减法,对同类项有了初步的认识,但合并同类项和移项的方法还没有完全掌握。
因此,在教学这一节时,需要通过具体例子让学生理解合并同类项和移项的原理,并通过大量的练习让学生熟练掌握方法。
三. 教学目标1.知识与技能:理解合并同类项和移项的概念,掌握合并同类项和移项的方法。
2.过程与方法:通过观察、分析、归纳,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:合并同类项和移项的方法。
2.难点:如何判断哪些项是同类项,如何正确移项。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过具体例子引导学生观察、分析、归纳合并同类项和移项的规律,然后通过小组合作进行练习,巩固所学知识。
六. 教学准备1.课件:制作合并同类项和移项的PPT,包含具体的例子和练习题。
2.练习题:准备一些合并同类项和移项的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过一个实际问题引入合并同类项和移项的概念,激发学生的兴趣。
2.呈现(10分钟)呈现PPT,展示合并同类项和移项的定义和规则,让学生观察、分析、归纳。
3.操练(10分钟)让学生进行合并同类项和移项的练习,教师巡回指导,及时纠正错误。
4.巩固(10分钟)让学生分组合作,共同完成一些合并同类项和移项的综合练习题。
5.拓展(10分钟)让学生思考:合并同类项和移项在实际生活中的应用,如何解决实际问题。
七年级数学上册 3-2 解一元一次方程(一)--合并同类项与移项 同步习题精讲精练【含答案】
3.2 解一元一次方程(一)-合并同类项与移项同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣42.若多项式3x+5与5x﹣7的值相等,则x的值为()A.6 B.5 C.4 D.33.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1 B.x=﹣1 C.x=2 D.x=﹣24.下面4个方程的变形中正确的是()A.4x+8=0⟹x+2=0 B.x+7=5﹣3x⟹4x=2C.x=3⟹x=D.﹣4x=﹣2⟹x=﹣25.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个6.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b =0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣47.某同学解方程5x﹣1=□x+3时,把“□”处的系数看错了,解得x=﹣4,他把“□”处的系数看成了()A.4 B.﹣9 C.6 D.﹣68.规定一种新运算:a⊗b=a2﹣2b,若2⊗[1⊗(﹣x)]=6,则x的值为()A.﹣1 B.1 C.2 D.﹣29.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,﹣4}=2.则方程max{x,﹣x}=3x+4的解为()A.﹣1 B.﹣2 C.﹣1或﹣2 D.1或210.已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,则x的值是()A.x=1 B.C.D.x=﹣1二、填空题11.设P=2y﹣2,Q=2y+3,且3P﹣Q=1,则y的值为.12.关于x的方程9x﹣2=kx+7的解是自然数,则整数k的值为.13.小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=.14.已知关于x的方程2mx﹣6=(m+2)x有正整数解,则整数m的值是.15.用⊕表示一种运算,它的含义是:A⊕B=.如果,那么3⊕4=.16.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=2x﹣1的解为.三、解答题17.解一元一次方程:4x﹣1=2x+5.18.对任意有理数a、b,规定一种新运算“⊗”,使a⊗b=3a﹣2b,例如:5⊗(﹣3)=3×5﹣2×(﹣3)=21.若(2x﹣1)⊗(x﹣2)=﹣3,求x的值.19.对于两个非零常数a,b,规定一种新的运算:a※b=a﹣2b,例如,3※2=3﹣2×2=﹣1.根据新运算法则,解答下列问题:(1)求(﹣2)※5的值;(2)若2※(x+1)=10,求x的值.20.小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.3.2 解一元一次方程(一)-合并同类项与移项同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项 同步练习(附答案)
3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A.3x =8B.4x =8C.-4x =8D.2x =82.方程x +2x =-6的解是( )A.x =0B.x=1 C.x =2 D.x=-2 3.方程2x +x +x 2=210的解是( )A.x =20B.x=40 C.x =60 D.x=804.下列各方程中,合并正确的是( )A.由3x -x =-1+3,得2x =4B.由23x +x =-7-4,得53x =-3C.由52-13=-x +23x ,得136=13xD.由6x -4x =-1+1,得2x =05.解下列方程:(1)6x -5x =3; (2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.6.解方程:-23x +x =3.7.若式子3x -7和6x +13互为相反数,则x 的值为( )A.23B.32C.-32D.-238.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,这个常数是 .9.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).第2课时 利用合并同类项解一元一次方程的实际问题1.某数的3倍与这个数的2倍的和是30,这个数为( )A.4B.5C.6D.72.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有 个.3.已知3个连续偶数的和为36,则这三个偶数分别是 .4.一条长1 210 m 的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m ,乙队每天挖90 m ,则挖好水渠需要几天?5.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?6.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?7.有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是 .8.某人把360 cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4∶5,则这两个正方形的边长分别是 .9.在排成每行七天的日历表中取下一个3×3方块.若所有日期数之和为189,则n的值为 .10.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,求此人第六天走的路程.第3课时 利用移项解一元一次方程1.解方程2x -5=3x -9时,移项正确的是( )A.2x +3x =9+5B.2x -3x =-9+5C.2x -3x =9+5D.2x -3x =9-52.若式子x +2的值为1,则x 等于( )A.1B.-1C.3D.-33.解方程4x -2=3-x 的步骤是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A.①②③B.③②①C.②①③D.③①②4.下列四组变形属于移项的是( )A.由x -24=3,得x -2=12 B.由9x -3=x +5,得9x -3=5+xC.由5x =15,得x =3D.由1-7x =2-6x ,得-7x +6x =2-15.若3x +6=4,则3x =4-6,这个过程是 .6.解下列方程:(1)4-35m =7; (2)2x -3=3x +4.7.解方程:x -3=-12x -4.8.已知x =1是关于x 的方程a(x -2)=a +3x 的解,则a 的值等于( )A.32B.-32C.34D.-349.下列方程中与2x -4=x +2的解相同的方程为( )A.3x +4=xB.x -2=3C.3x +6=0D.x +1=2x -510.某同学在解方程5x -1=■x+3时,把■处的数字看错了,解得x =-43,则该同学把■看成了( )A.3B.-1289C.-8D.8 11.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x = .12.解下列方程:(1)3x +6=31-2x ; (2)x -2=13x +43.13.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?第4课时利用移项解一元一次方程的实际问题1.天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x +10=6x -5D.2x -10=6x +52.甲厂库存钢材100吨,每月用去15吨;乙厂库存钢材82吨,每月用去9吨.经过m 个月,两厂剩余钢材相等,则m 的值应为( )A.2B.3C.4D.53.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是 ,调往乙队的人数是 .4.七年级某班小组活动中,如果每组5人则余3人,每组6人则缺5人,则该班的学生人数为 人.5.小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A.x +1=2(x -2)B.x +3=2(x -1)C.x +1=2(x -3)D.x -1=x +12+17.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:.8.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10 km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8 km.甲走了多长时间?A,B两地的路程是多少?9.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?10.我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x参考答案:3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.B2.D3.C4.D5.(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.6.解方程:-23x +x =3.解:合并同类项,得13x =3.系数化为1,得x =9.7.D8. 3.9.(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题1.C2. 24 .3. 10,12,14.4.解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x=5.5.答:挖好水渠需要5.5天.5.解:设麻商集团第二季度销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二季度销售冰箱400台.6.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为5x m3,根据题意,得x+5x=13 800.解得x=2 300.则5x=11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.7.64,128,256.8.40__cm,50__cm.9.21.10.解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x +5x =32.解得x =4.所以3x =3×4=12,5x =5×4=20.答:黑色皮有12块,白色皮有20块.11.解:设第一天走的路程为x 里,则后面5天走得路程分别为:12x 里,14x 里,18x 里,116x 里,132x 里.根据题意,得 则x +12x +14x +18x +116x +132x =378. 解得x =192.则132x =132×192=6. 答:此人第六天走的路程为6里.第3课时 利用移项解一元一次方程1.B2.B3.C4.D5. 移项.6.(1)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(2)2x -3=3x +4.解:移项,得2x -3x =3+4.合并同类项,得-x =7.系数化为1,得x =-7.7.解:移项,得x +12x =-4+3.合并同类项,得32x =-1.系数化为1,得x =-23.8.B9.D10.D11. 13.12.(1)3x +6=31-2x ;解:移项,得3x +2x =31-6.合并同类项,得5x =25.系数化为1,得x =5.(2)x -2=13x +43. 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.13.解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x 的方程4x -2m =3x +1的解是x =6m.将x =6m 代入4x -2m =3x +1,得24m -2m =18m +1.移项、合并同类项,得4m =1.所以m =14.第4课时 利用移项解一元一次方程的实际问题1.A2.B3. 10, 18.4. 43 .5.解:设小华现在的年龄为x 岁,则妈妈现在的年龄为(x +25)岁.根据题意,得 x +25=3x +5.解得x =10.答:小华现在的年龄为10岁.6.C7. 3x+5=5(x-1).8.解:设甲走了x h,则A,B两地的路程是10x km.根据题意,得10x=6x+8.解得x=2.则10x=20.答:甲走了2 h,A,B两地的路程是20 km.9.解:(1)设小明在买x元的书的情况下办会员卡与不办会员卡一样.则x=20+80%x.解得x=100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱. 10.A。
人教版七年级数学上册3.2.1《合并同类项与移项(第1课时)》说课稿
人教版七年级数学上册3.2.1《合并同类项与移项(第1课时)》说课稿一. 教材分析《合并同类项与移项(第1课时)》是人教版七年级数学上册3.2.1的内容。
这部分内容是在学生已经掌握了整式的加减、同类项的定义等知识的基础上进行学习的。
合并同类项与移项是解决一元一次方程的重要技巧,也是后续学习更高阶数学的基础。
教材通过具体的例子引导学生理解合并同类项与移项的概念,并通过练习让学生掌握这两个操作。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于整式的加减和同类项的定义有一定的了解。
但是,对于合并同类项与移项的实质和应用可能还不够清晰。
因此,在教学过程中,需要引导学生从实际问题中抽象出数学模型,进一步理解和掌握合并同类项与移项的方法。
三. 说教学目标1.知识与技能目标:让学生理解合并同类项与移项的概念,掌握合并同类项与移项的方法,能够应用合并同类项与移项解决实际问题。
2.过程与方法目标:通过具体例子,让学生体会数学与实际生活的联系,培养学生的抽象思维能力。
3.情感态度与价值观目标:让学生体验数学的乐趣,培养学生的自信心和克服困难的勇气。
四. 说教学重难点1.教学重点:合并同类项与移项的概念和方法的掌握。
2.教学难点:合并同类项与移项在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,让学生在解决实际问题的过程中学习和理解合并同类项与移项的概念和方法。
2.教学手段:使用多媒体教学,通过动画和例子的展示,帮助学生形象地理解合并同类项与移项的概念和方法。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何求解未知数的值,从而引出合并同类项与移项的概念。
2.新课讲解:通过具体的例子,讲解合并同类项与移项的方法,让学生在实践中理解和掌握这两个操作。
3.练习巩固:让学生通过练习题,巩固合并同类项与移项的方法。
4.应用拓展:让学生通过解决实际问题,应用合并同类项与移项的方法,体会数学与实际生活的联系。
七年级数学上册 第三章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第2课时 用移
3.2 解一元一次方程(一)——合并同类项与移项情景导入归纳导入类比导入悬念激趣问题1:上节课我们学习了利用等式的基本性质解方程,哪位同学能叙述一下等式的基本性质呢?问题2:上周在我校举办了全市的数学优质课评选,共有50名教师听课,已知男教师比女教师的4倍少5人,请问听课的教师中有多少名男教师,多少名女教师?(要求:只列方程)[说明与建议] 说明:此环节为本节课新知的学习做好铺垫,体会等式的基本性质在解方程的过程中的作用.同时让学生体会到数学来源于生活,激发学生探究新知的兴趣.建议:学生叙述等式的基本性质要准确,问题2可引导学生发散思维,一题多解.通过上节课的学习,同学们知道:可以利用等式的基本性质解方程,比如:5x -2=8.方程两边同时加上2,得5x -2+2=8+2. 也就是5x =10.方程两边同时除以5,得x =2.此种解法过程比较繁琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的基本性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发学生的学习兴趣.建议:此方程可由学生独立完成,回顾上节课解题过程,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第89页例3 解下列方程:(1)3x +7=32-2x ;(2)x -3=32+1.【模型建立】利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.【变式变形】1.下列变形符合移项法则的是(C )A .由5+3x =2,得3x =2+5B .由-10x -5=-2x ,得-10x -2x =5C .由7x +9=4x -1,得7x -4x =-1-9D .由5x +2=9,得5x =9+22.一元一次方程t -3=12t 化为t =a 的形式为__t =6__.3.当k =__-12__时,方程5x -k =3x +8的解是x =-2.4.如果5a 3b -m 与a 3b 6m -7是同类项,那么m 的值为( D ) A .-1 B .2 C .-2 D .15.解方程:(1)-9x -4x +8x =-3-7; (2)3x -4=8-x ; (3)-3m +1=9-m ; (4)0.6x -4.1=3.9-1.4x.[答案:(1)x =2 (2)x =3 (3)m =-4 (4)x =4][命题角度1] 用合并同类项解一元一次方程用合并同类项法解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5(1)题.[命题角度2] 用合并同类项与移项解一元一次方程利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.如素材二变式变形第5(2)(3)(4)题.[命题角度3] 利用一元一次方程解决和差倍分问题解这类题的关键是根据题意找出题目中的和差倍分的等量关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中等量关系可能不止一个,有时会有多个,要根据具体情况恰当地选择等量关系.解完方程后要检验,避免出现不符合实际的答案.例 如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的13,丙村出工人数是乙村出工人数的2倍,求乙村出工人数.解:设乙村出工人数为x ,则甲村出工人数为13x ,丙村出工人数为2x.根据题意,得x +13x +2x =60.合并同类项,得103x =60.系数化为1,得x =18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决盈亏问题 盈亏问题的等量关系:(1)“盈”是分配中的多余情况,“亏”是分配中的缺少情况; (2)一般会给出两个条件:什么情况下会“盈”,盈多少?什么情况下会“亏”,亏多少?这两个条件都可以用来列式子,然后利用相等关系列方程.例 某小组计划做一批“中国结”,如果每人做5个,那么比计划多做了9个;如果每人做4个,那么比计划少做了15个.小组成员共有多少名?解:设小组成员共有x 名,由题意,得5x -9=4x +15. 移项,得5x -4x =15+9. 合并同类项,得x =24. 答:小组成员共有24名.[命题角度5] 利用一元一次方程解决比例分配问题甲∶乙∶丙=a∶b∶c,设其中一份为x ,由已知部分量在总量中的比例,可得表示各部分份量的式子,相等关系:各部分量之和=总量.例 已知a∶b∶c=2∶3∶4,a +b +c =27,求a -2b -2c 的值. 解:因为a∶b∶c=2∶3∶4,所以设a =2m ,b =3m ,c =4m. 代入a +b +c =27,得2m +3m +4m =27, 即9m =27,所以m =3. 所以a =6,b =9,c =12.所以a -2b -2c =6-2×9-2×12=-36. [命题角度6] 利用一元一次方程解决日历问题 日历中的相等关系:(1)日历中同一行中相邻的两数相差1,同一列中相邻的两数相差7.(2)用字母表示相邻三个数时,有多种表示方法,一般设中间一个数为a ,利用相反数的性质,能使计算过程简便.例 [利川校级一模] 图3-2-2是2014年6月的日历表,在日历表上可以用一个方框圈出3×3个位置相邻的数(如11,12,13,18,19,20,25,26,27),若圈出的9个数的和为99,则方框中心的数为( A )图3-2-2A .11B .12C .16D .18P88练习1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550.合并同类项得5.5x =550. 系数化为1.得x =100.答:前年的产值是100元. P90练习1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3;(3)2.5y +10y -6y =15-21.5;(4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16;(2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14.答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?[答案] 长18 m,宽12 m.综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t,则另两块实验田的用水量各如何表示?(2)如果三块实验田共用水420 t,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t,第二块实验田的用水量为0.25x t,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得: -3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m 的值是( )A .m=-1B .m=1C .m=-2D .m=2 4. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,请你能帮小悦列出方程为__________________(不需要求解). 5. 用合并同类项解方程: (1)4x –7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7.参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程 1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整. 解:移项得:5x-7x =___ 合并同类项得:___=10 系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17. 参考答案: 1. C ; 2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程 1.解下列方程(1)12884x x +=-;(2)233234x x +=-.2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x 的方程kx +2=4x +5 ()4≠k 有正整数解,求满足条件的k 的正整数值.专题二 列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁 ( )A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个. (1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元? 专题三 列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变.答案:1. 解:(1)12884x x +=-, 移项,得:12848x x -=--, 合并同类项,得:412x =-, 系数化为1,得:x =-3.(2)233234x x +=-,移项,得:232334x x -=--,合并同类项,得:1512x -=-, 系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m , 3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235;(2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -.所以2121()3434x --=1134x -,解得:158-=x .4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3, 因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则: 9x ×2+6x ×18+2x (18﹣1)=1280, 解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有x 个,那么省外境内投资合作项目 (512-x )个,由题意得: 348512=-+x x ,解得133=x ,512-x =215; (2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个. (2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元), 租60座的客车的租金应为:300×(5-1)=1200(元), 所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x ±1,x ±7,x ±8,x ±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得: (x-7)+x+(x+7)=21.解得x=7, x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况. 答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得 x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23. 答:这四天分别是2号,9号,16号,23号.解一元一次方程的“八项注意”革命歌曲<<三大纪律,八项注意>>想必同学们都知道吧,尤其是”八项注意”可以说是耳熟能详了.那么在学习解一元一次方程时,为了避免同学们在解方程时发生错误,特提出以下八个注意点:第一,注意解方程的格式.解方程的每一步都必须是方程,因此同学们在初学时出现的“连等式”或“解原式=”这些解题格式均是错误的。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (115)
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) 阅读下面的解题过程:解方程:52x =.解:(1)当50x ≥时,原方程可化为一元一次方程52x =,解得25x =; (2)当50x <时,原方程可化为一元一次方程52x -=,解得25x =-. 请同学们仿照上面例题的解法,解方程:(1)21x -=(2)31210x --=.【答案】(1)x=1和x=3;(2)x=5和x=-3.【解析】试题分析:(1)分别根据x -2≥0和x -2<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解;(2)分别根据x -1≥0和x -1<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解.试题解析:(1)①当x -2≥0时,原方程可化为一元一次方程x -2=1 解得:x=3②当x -2<0时,原方程可化为一元一次方2-x=1解得:x=1综上所述,原方程的解为:x=1和x=3(2)①当x -1≥0时,原方程可化为3(x -1)-2=10解得:x=5②当x -1<0时,原方程可化为3(1-x )-2=10解得:x=-3综上所述,原方程的解为:x=5和x=-3考点:(1)解一元一次方程;(2)分类讨论思想42.解方程:(本题每小题5分,共20分)(1)15435+=-x x(2)()432x x -=-(3)32213+-=-x x (4)3714153x x --=- 【答案】(1)x=18;(2)x=1;(3)x=1;(4)x=19【解析】试题分析:(1)首先进行移项合并同类项,从而得出方程的解;(2)首先根据去括号的法则进行去括号,然后进行移项合并同类项,从而得出方程的解;(3)首先进行移项合并同类项,从而得出方程的解;(4)首先根据等式的性质进行去分母,然后根据去括号的法则进行去括号,进行移项合并同类项,从而得出方程的解.试题解析:(1)移项得:5x -4x=15+3 解得:x=18、去括号得:4-x=6-3x 移项得:-x+3x=6-4 合并同类项得:2x=2 解得:x=1、移项得:3x+2x =3+12 合并同类项得:72x=72解得:x=1 、去分母得:3(3-7x )=5(1-4x )-15 去括号得:9-21x=5-20x -15移项得:-21x+20x=5-15-9 合并同类项得:-x=-19 解得:x=19考点:解一元一次方程.43.解方程(1)285--=-x x(2))2(39)3(2+-=--x x(3)312121+=--x x (4)4.0123.01.02.0-=--x x 【答案】(1)1;(2)59;(3)11-;(4)111【解析】 试题分析:(1)移项合并同类项,然后系数化为1即可;(2)先去括号,然后移项合并同类项,然后系数化为1即可;(3)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可.试题解析:(1)285--=-x x ,5x+x=8-2,6x=6,x=1;(2))2(39)3(2+-=--x x ,2x-6-9=-3x-6,2x+3x=9+6-6,5x=9,x=59;(3)312121+=--x x ,3(x-1)-6=2(2x+1),3x-3-6=4x+2,3x-4x=2+3+6,-x=11,x=-11;(4)4.0123.01.02.0-=--x x ,0.4(0.2x-0.1)-2×0.12=0.3(x-1),0.08x-0.04-0.24=0.3x-0.3,0.08x-0.3x=0.04+0.24-0.3,-0.22x=-0.2,x=111.考点:解一元一次方程.44.解方程【答案】x=5试题分析:首先进行移项,然进行合并同类项计算,最后将x的系数化为1得出方程的解.试题解析:移项,得:3x+2x=31-6合并同类项,得:5x=25将系数化为1得:x=5考点:解一元一次方程45.(2015秋•高密市校级月考)当x取什么值时,代数式与的差等于5.【答案】x=﹣8.【解析】试题分析:根据题意列出关于x的方程,求出x的值即可.解:由题意得,﹣=5,去分母得,5(x+3)﹣2(x﹣7)=50,去括号得,5x+15﹣2x+14=5,移项得,5x﹣2x=5﹣15﹣14,合并同类项得,3x=﹣24,系数化为1得,x=﹣8.46.(2015秋•兴化市校级月考)解方程(1)6x﹣4=3x+2(2)=1+.【答案】(1)x=2;(2)x=1.试题分析:(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)方程移项合并得:3x=6,解得:x=2;(2)去分母得:2x+4=6+3x﹣3,移项合并得:x=1.47.(2015秋•兴化市校级月考)当m为何值时,关于x的方程4x+2m=3x ﹣5的解和方程6x﹣8=10的解相同?【答案】m=﹣4【解析】试题分析:根据方程的解相同,可得关于m的方程,根据解方程,可得答案.解:解4x+2m=3x﹣5,得x=﹣5﹣2m.解6x﹣8=10,得x=3.关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同,得﹣5﹣2m=3.解得m=﹣4,当m=﹣4时,关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同.48.(2015秋•海安县期中)解方程:(1)4x ﹣3(20﹣x )+4=0(2)1﹣.【答案】(1)x=8;(2)x=13.【解析】试题分析:(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 解:(1)去括号得:4x ﹣60+3x+4=0,移项合并得:7x=56,解得:x=8;(2)去分母得:12﹣4x+10=9﹣3x ,移项合并得:x=13.49.x ﹣4=2﹣5x【答案】x=1【解析】试题分析:首先进行移项合并同类项,然后将系数化为1,解出方程. 试题解析:移项合并得:6x=6, 解得:x=1;考点:解一元一次方程50.解方程:x ﹣12x =2233x 解:去分母,得6x ﹣3x+1=4﹣2x+4…①即﹣3x+1=﹣2x+8…②移项,得﹣3x+2x=8﹣1…③合并同类项,得﹣x=7…④∴x=﹣7…⑤上述解方程的过程中,是否有错误?答:;如果有错误,则错在步.如果上述解方程有错误,请你给出正确的解题过程.【答案】有;①;x=-35【解析】试题分析:首先在方程的左右两边同时乘以分母的最小公倍数,然后再进行去括号,去括号时括号里面的每一项都要乘,千万不能漏乘.试题解析:有,①;正确的解题过程如下:6x﹣3(x﹣1)=4﹣2(x+2)6x﹣3x+3=4﹣2x﹣45x=﹣3x=﹣35考点:解一元一次方程。
人教版数学七年级上册 3.2---3.3练习题含答案
3.2解一元一次方程合并同类项及移项一.选择题1.一元一次方程3x﹣(x﹣1)=1的解是()A.x=2B.x=1C.x=0D.x=﹣1 2.解方程:2x﹣3=3x﹣2,正确的答案是()A.x=1B.x=﹣1C.x=5D.x=﹣5 3.方程﹣+x=2x的解是()A.x=B.x=﹣C.x=2D.x=﹣2 4.在解方程﹣=1时,对该方程进行化简正确的是()A.=100B.C.D.05.方程﹣=1的解是()A.x=1B.x=3C.x=5D.x=7 6.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)7.对于实数a、b,规定a⊕b=a﹣2b,若4⊕(x﹣3)=2,则x的值为()A.﹣2B.﹣C.D.4 8.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解是()A.﹣1B.C.D.1 9.把方程1﹣=﹣去分母后,正确的是()A.1﹣2x﹣3=3x+5B.1﹣2(x﹣3)=﹣3x+5C.4﹣2(x﹣3)=﹣3x+5D.4﹣2(x﹣3)=﹣(3x+5)10.下列方程的变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程x=,未知数系数化为1,得x=1D.方程﹣=1 化成5(x﹣1)﹣2x=10二.填空题11.当x=时,4x﹣4与3x﹣10互为相反数.12.当x=时代数式的值是1.13.定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=(﹣2)×1+3×5=13,则方程x⊕2=0的解为.14.对于任意实数a、b、c、d规定了一种运算,则当时,x=.15.在图示的运算流程中,若输出的数y=5,则输入的数x=.三.解答题16.解方程:﹣=1.17.解方程:(1)2(x+1)﹣7x=﹣8;(2)﹣=1.18.在一次数学课上,王老师出示一道题:解方程3(x+2)﹣8=2+x.小马立即举手并在黑板上写出了解方程过程,具体如下:解:3(x+2)﹣8=2+x,去括号,得:3x+2﹣8=x+2…①移项,得:3x﹣x=2﹣2+8.…②合并同类项,得:2x=8…③系数化为1,得:x=…④(1)请你写出小马解方程过程中哪步错了,并简要说明错误原因;(2)请你正确解方程:1﹣=.19.在一次数学课上,王老师出示一道题:解方程3(x+2)﹣8=2+x,小马立即举手并在黑板上写出了解方程过程,具体如下:(1)请你写出小马解方程过程中哪步错了,并简要说明错误原因;(2)请你正确解方程:1﹣=.参考答案与试题解析一.选择题1.【解答】解:去括号得3x﹣x+1=1,移项得3x﹣x=1﹣1,合并得2x=0,系数化为1得x=0.故选:C.2.【解答】解:移项合并得:﹣x=1,解得:x=﹣1,故选:B.3.【解答】解:由原方程,得x﹣2x=,﹣x=,x=﹣.故选:B.4.【解答】解:方程化简得:﹣=1,故选:B.5.【解答】解:去分母得:2x﹣x+1=6,移项合并:x=5.6.【解答】解:把方程3x+=3﹣去分母得:18x+2(2x﹣1)=18﹣3(x+1),故选:D.7.【解答】解:4⊕(x﹣3)=2,4﹣2(x﹣3)=2,4﹣2x+6=2,解得:x=4;故选:D.8.【解答】解:∵方程x2k﹣1+k=0是关于x的一元一次方程,∴2k﹣1=1,解得:k=1,方程为x+1=0,解得:x=﹣1,故选:A.9.【解答】解:方程去分母得:4﹣2(x﹣3)=﹣(3x+5),故选:D.10.【解答】解:A、方程3x﹣2=2x+1,移项得:3x﹣2=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号得:3﹣x=2﹣5x+5,不符合题意;C、方程x=,未知数系数化为1,得:x=,不符合题意;D、方程﹣=1化为5(x﹣1)﹣2x=10,符合题意,故选:D.二.填空题(共5小题)11.【解答】解:根据题意得:4x﹣4+3x﹣10=0,移项合并得:7x=14,解得:x=2,故答案为:212.【解答】解:根据题意得:=1,去分母得:4x﹣5=3,解得:x=2,故答案为:2.13.【解答】解:根据题意得:x⊕2=﹣2x+6=0,解得:x=3,故答案为:3.14.【解答】解:,即10+4(3﹣x)=25,解得:x=﹣.故答案为:﹣.15.【解答】解:①若x为奇数,则根据图表可得:=5,解得:x=11;②若x为偶数,则根据图表可得:=5,解得:x=10.故答案为:10或11.三.解答题(共4小题)16.【解答】解:﹣=1,去分母,得2x﹣(3x﹣1)=6,去括号,得2x﹣3x+1=6,移项,得2x﹣3x=6﹣1,合并同类项,得﹣x=5,系数化1,得x=﹣5.17.【解答】解:(1)2(x+1)﹣7x=﹣8,去括号,得2x+2﹣7x=﹣8,移项,得2x﹣7x=﹣8﹣2,合并同类项,得﹣5x=﹣10,系数化1,得x=2;(2)﹣=1,分母,得2(5x+1)﹣(2x﹣1)=6,去括号,得10x+2﹣2x+1=6,移项,得10x﹣2x=6﹣2﹣1,合并同类项,得8x=3,系数化1,得x=.18.【解答】解:(1)小马解方程过程中第①步错误,原因是去括号法则运用错误;(2)去分母得:12﹣2(7﹣5y)=3(3y﹣1),去括号得:12﹣14+10y=9y﹣3,移项合并得:y=﹣1.19.【解答】解:(1)小马解方程过程中第①步错误,去括号法则运用错误;(2)去分母得:12﹣2(7﹣5y)=3(3y﹣1),去括号得:12﹣14+10y=9y﹣3,移项合并得:y=﹣1.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x-2)-3(4x-1)=9的去括号的过程,其中正确的是( )A.2x-4-12x+3=9B.2x-4-12x-3=9C.2x -4-12x +1=9D.2x -2-12x +1=9 7.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( ) A.-1 B.1 C.12 D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,求k 的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0;解:去括号,得2x -2+1=0.移项、合并同类项,得2x =1.系数化为1,得x =12. (2)2x +5=3(x -1).解:2x +5=3x -3,2x -3x =-3-5,-x =-8,x =8.5.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1;解:去括号,得12x -8-2x -3=-1.移项,得12x -2x =8+3-1.合并同类项,得10x =10.系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y.移项、合并同类项,得-6y =-48.系数化为1,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.第2课时 利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得40x +30(20-x)=650.解得x =5.则20-x =15.答:购买甲种奖品5件,乙种奖品15件.3.解:设装运香菇的汽车需x 辆.根据题意,得1.5x +2(6-x)=10.解得x =4.所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇,依题意,得 (x +2)×2=118-x ,解得x =38.答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km.6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得2x +3(100-x)=270.解得x =30.则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的性质2)去括号,得9x +15=4x -2.(去括号法则)(移项),得9x -4x =-15-2.(等式的性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2) 5.(1)x +12=3+x -64; 解:2(x +1)=12+(x -6).2x +2=12+x -6.2x +2=x +6.x =4.(2)x -32-4x +15=1. 解:去分母,得5x -15-8x -2=10,移项合并,得-3x =27,解得x =-9.6.B7.解:设应先安排x 人工作,根据题意,得4x 40+8(x +2)40=1. 化简可得:x 10+x +25=1, 即x +2(x +2)=10.解得x =2.答:应先安排2人工作.8.C9.B10.C11. 1.12.(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)2x +13-5x -16=1; 解:去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项、合并同类项,得-x =3.系数化为1,得x =-3.(3)2x +14-1=x -10x +112; 解:去分母,得6x +3-12=12x -10x -1,移项合并,得4x =8,解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x)=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 13.解:设A ,B 两地间的距离为x 千米,依题意,得x 7.5+2.5+x +107.5-2.5=4, 解得x =203. 答:A ,B 两地间的距离为203千米. 14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a. 因为将求得的结果代入原方程,左边与右边相等,所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)], 整理,得4a =16.解得a =4,故a 的值为4.。
【教育资料】秋七年级数学(河北)人教版习题:3.2 解一元一次方程(一)——合并同类项与移项学习专用
3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程基础题知识点 利用合并同类项解简单的一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是(B)A .3x =8B .4x =8C .-4x =8D .2x =82.方程x +2x =-6的解是(D)A .x =0B .x =1C .x =2D .x =-23.方程x 2+x +2x =210的解是(C) A .x =20 B .x =40 C .x =60D .x =80 4.下列各方程中,合并同类项正确的是(D)A .由3x -x =-1+3,得2x =4B .由23x +x =-7-4,得53x =-3 C .由52-13=-x +23x ,得136=13x D .由6x -4x =-1+1,得2x =05.方程12x +13x =10的解是x =12. 6.解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.易错点 解方程时系数化为1时出错7.解方程:-23x +x =3. 解:合并同类项,得13x =3. 系数化为1,得x =9. 中档题8.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C) A .0B .2C .-2D .-69.(定州市期末)嘉淇同学在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:3y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-15,于是,他很快知道了这个常数,并补出这个常数是1. 10.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题基础题知识点 根据“总量=分量之和”列方程1.若三个连续偶数的和是24,则它们的积是(B)A .48B .480C .240D .1202.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有24个.3.(教材P87例2变式)有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是64,128,256.4.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售冰箱2x 台,第三季度销售冰箱4x 台.根据总量等于各分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.5.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?解:设中国人均淡水资源占有量为x m 3,则美国人均淡水资源占有量为5x m 3.根据题意,得x +5x =13 800.解得x =2 300.则5x =11 500.答:中国人均淡水资源占有量为2 300 m 3,美国人均淡水资源占有量为11 500 m 3. 中档题6.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3,10,17.7.某种药含有甲、乙、丙3种草药,这3种草药的质量比是2∶3∶7,现在要配制1 440 g 这种中药,这3种草药分别需要多少克?解:设这3种草药分别需要2x g ,3x g ,7x g .根据题意,得2x +3x +7x =1 440.解得x =120.则2x =240,3x =360,7x =840.答:这3种草药分别需要240 g, 360 g, 840 g.综合题8.(沧州市孟村县期末)我国明代数学家程大为从事商业,终日奔波于大江南北,集市商行,每遇到有关数学传闻就马上记录下来,程大为曾提出过这样一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再赶这么一群羊,再赶这么一群羊的一半,又赶这群羊的四分之一,最后把你牵的羊也给我,我恰好有一百只.”(1)若设这群羊有x 只,则这群羊的四分之一应该有x 4只. (2)求这群羊有多少只?(3)若赶羊的人把回答改为“我如果再赶这么一群羊数的2倍,并把你牵的羊也给我,我恰好有一百只.”求此时这群羊的只数.解:(2)设这群羊有x 只,根据题意可列方程为x +x +x 2+x 4+1=100, 解得x =36.答:这群羊有36只.(3)设这群羊有x 只,根据题意可列方程为x +2x +1=100,解得x =33.答:这群羊有33只.第3课时 利用移项解一元一次方程基础题知识点 利用移项解一元一次方程1.下列变形中属于移项的是(C)A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.(邢台宁晋市期末)由方程3x -5=2x -4变形得3x -2x =-4+5,那么这是根据( )变形的(A)A .移项B .乘法分配律C .合并同类项法则D .等式性质23.(海南中考)若式子x +2的值为1,则x 等于(B)A .1B .-1C .3D .-34.若3x +6=4,则3x =4-6,这个过程是移项.5.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 6.解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7;解:移项,得-35m =7-4. 合并同类项,得-35m =3. 系数化为1,得m =-5.(3)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.易错点 解方程时,移项不变号或误将不移动的项也变号7.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23. 中档题8.若方程3x +5=11的解也是方程6x +3a =22的解,则a 的值为(A)A.103B.310 C .10 D .3 9.若单项式3a 3x +1b 与12a 4x -2b 是同类项,则x 的值为3. 10.已知|3x -6|+(2y -8)2=0,则2x -y 的值为0.11.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43; 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.(3)-5x +6+7x =1+2x -3+8x.解:移项,得-5x +7x -2x -8x =1-3-6.合并同类项,得-8x =-8.系数化为1,得x =1.12.当a 为何值时,式子12a -5与-23a +6的值相等?解:根据题意,得12a -5=-23a +6. 移项,得12a +23a =6+5. 合并同类项,得76a =11. 系数化为1,得a =667.第4课时利用移项解一元一次方程的实际问题基础题知识点根据“表示同一个量的两个不同式子相等”列方程1.(绵阳中考)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有________个小朋友(B)A.4 B.5 C.10 D.122.甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等(D)A.6天B.5天C.4天D.3天3.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.4.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:3x+5=5(x-1).5.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.中档题6.(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x个小组.由题意,得7x+3=8x-5.解得x=8.则7x+3=7×8+3=59.答:该班共有59名同学.7.如图,张新和李明相约到图书大世界去买书,请根据他们的对话内容,求出李明上次购买书籍的原价.解:设李明上次购买书籍的原价为x元,依题意,列方程,得0.8x+20=x-12.解得x=160.答:李明上次购买书籍的原价是160元.综合题8.如图,将一个长方形分成六个正方形,其中最小的正方形的面积是 1 cm2,求这个长方形的面积.解:设正方形E的边长为x cm, 则正方形F的边长为x cm,正方形D的边长为(x+1)cm,正方形B的边长为(2x-1)cm.根据正方形C的边长相等列方程,得x+1+1=2x-1-1.解得x=4.所以正方形E和F的边长为4 cm,正方形D的边长为5 cm,正方形B的边长为7 cm,所以长方形的面积为:(7+4)×(4+4+5)=143(cm2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2解一元一次方程同步训练
一、选择题
1.下列移项正确的是()
A.从12-2x=-6,得到12-6=2x
B.从-8x+4=-5x-2,得到8x+5x=-4-2
C.从5x+3=4x+2,得到5x-2=4x-3
D.从-3x-4=2x-8,得到8-7=2x-3x
2.方程3x+2=x-4b 的解是5,则b=( ) A.-1 B.-2 C.2 D-3
3.
51
3
48
x-=的解为()
A.
11
24
B.
11
24
- C.
24
11
D.
24
11
-
4.某蔬菜商店备有100千克蔬菜,上午按每千克1.2元价格售出50千克,中午按每千克1元的价格售出30千克,下午按每千克x元价格售出20千克,已知这批蔬菜的平均价格是每千克1.06元,则x的值为()
A.0.75 B.0.8 C.1.24 D.1.35
5.小王用2000元买了债券,一年后的本息和2200元,则小王买的债券年利率是()
A.9%B.10% C.11% D.12%
二、填空题
6.5x-8与3x互为相反数,可列方程_____________________________,它的解是_______.
7.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队是乙队的相等,问应调往甲队的人数是_____________,调往乙队的人数是____________________.
8.一群小孩分一堆苹果,1人3个多7个,1人4个少3个,则有___个小孩,____个苹果.
三、解答题
9.一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨若400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?
10.甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲列车每小时行80km,乙列车每小时行70km,问多少小时后两列车相距30km?
答案:
1.C 2.D 3.A 4.B5.B
6.5x-8=-3x,1
7.10,18
8.10,37
9.装橙子的箱子8个,装梨的箱子16个.
10.3小时或3.4小时后两列车相距30km.。