八年级下学期五月份月考试卷(四边形)
苏科八年级苏科初二数学下册5月月考数学试题百度文库
苏科八年级苏科初二数学下册5月月考数学试题百度文库一、选择题1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有 A .1组 B .2组C .3组D .4组2.“明天会下雨”这是一个( )A .必然事件B .不可能事件C .随机事件D .以上说法都不对3.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是( ) A .每个学生的身高是个体 B .本次调查采用的是普查 C .样本容量是500名学生D .10000名学生是总体4.如图,在四边形ABCD 中,AD BC =,BC ,E 、F 、G 分别是AB 、CD 、AC 的中点,若10DAC ∠=︒,66ACB ∠=︒,则FEO ∠等于( )A .76°B .56°C .38°D .28°5.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x=图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .40396.下列事件为必然事件的是()A.射击一次,中靶B.12人中至少有2人的生日在同一个月C.画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上7.反比例函数3yx=-,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大8.下面调查方式中,合适的是()A.试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B.了解一批袋装食品是否含有防腐剂,选择普查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.调查某新型防火材料的防火性能,采用普查的方式9.如图所示,在矩形ABCD中,E为AD上一点,EF CE⊥交AB于点F,若2DE=,矩形ABCD的周长为16,且CE EF=,求AE的长( )A.2B.3C.4D.610.如果把分式aa b-中的a、b都扩大2倍,那么分式的值一定()A.是原来的2倍B.是原来的4倍C.是原来的12D.不变二、填空题11.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”)12.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.13.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.14.如图,在□ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=______.15.如图,在平面直角坐标系中,一次函数y =2x ﹣5的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为_____.16.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号).17.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________. 18.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)19. 如图,在ABCD 中,已知8AD cm =,6AB cm =,DE 平分ADC ∠,交BC 边于点E ,则BE = ___________ cm .20.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大.三、解答题21.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.22.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:EO=FO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.23.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.24.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了 名学生; (2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 ︒; (4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.25.如图,在平面直角坐标系中,△ABC 和△A 'B 'C '的顶点都在格点上. (1)将△ABC 绕点B 顺时针旋转90°后得到△A 1BC 1;(2)若△A 'B 'C '是由△ABC 绕某一点旋转某一角度得到,则旋转中心的坐标是 .26.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?27.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3,P m ⎛⎫⎪ ⎪⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?28.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =; (2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】如图,(1)∵AB ∥CD ,AD ∥BC , ∴四边形ABCD 是平行四边形; (2)∵AB ∥CD , ∴∠ABC+∠BCD=180°, 又∵∠BAD=∠BCD , ∴∠BAD+∠ABC=180°, ∴AD ∥BC ,∴四边形ABCD 是平行四边形;(3)∵在四边形ABCD 中,AO =CO ,BO =DO , ∴四边形ABCD 是平行四边形;(4)∵在四边形ABCD 中,AB ∥CD ,AD =BC , ∴四边形ABCD 可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD 是平行四边形的有3组. 故选C.2.C解析:C 【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.据此可得. 【详解】解:“明天会下雨”这是一个随机事件, 故选:C . 【点晴】本题主要考查随机事件,解题的关键是掌握随机事件的概念:在一定条件下,可能发生也可能不发生的事件,称为随机事件.3.A解析:A 【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案. 【详解】解:A 、每个学生的身高是个体,故A 正确; B 、本次调查是抽样调查,故B 错误; C 、样本容量是500,故C 错误;D 、八年级10000名学生的身高是总体,故D 错误; 故选:A . 【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.D解析:D 【分析】利用EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线,求出EG FG =,从而得出FGC ∠和EGC ∠,再根据EG FG =,利用三角形内角和定理即可求出FEG ∠的度数.【详解】解:∵E 、F 、G 分别是AB 、CD 、AC 的中点, ∴EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线, ∴//EG BC ,//FG AD ,且22AD BCEG FG ===,∴10FGC DAC ∠=∠=︒,180114EGC ACB ∠=︒-∠=︒, ∴124EGF FGC EGC ∠=∠+∠=︒, 又∵EG FG =,∴()()111801801242822FEG EGF ∠=-∠=-︒=︒︒︒. 故本题答案为:D . 【点睛】本题考查了三角形内角和定理,等腰三角形的判定与性质,三角形中位线定理.解决本题的关键是正确理解题意,熟练掌握三角形中位线定理,通过等腰三角形的性质找到相等的角.5.A解析:A 【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x=中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x ...2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x=, 得:1y 、2y 、3y …2020y202040392019.52y ==, 故选:A . 【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k ≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .6.C解析:C 【分析】必然事件就是一定会发生的事件,依据定义即可判断. 【详解】解:A .射击一次,中靶是随机事件;B .12人中至少有2人的生日在同一个月是随机事件;C .画一个三角形,其内角和是180°是必然事件;D .掷一枚质地均匀的硬币,正面朝上是随机事件; 故选:C .考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.D解析:D 【解析】 【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案. 【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x=-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的, 故选:D . 【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.8.C解析:C 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】A 、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;B 、了解一批袋装食品是否含有防腐剂,适合抽样调查;C 、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;D 、调査某新型防火材料的防火性能,适合抽样调查. 故选:C . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解析:B 【分析】易证△AEF ≌△ECD ,可得AE=CD ,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE 的长度. 【详解】∵四边形ABCD 为矩形, ∴∠A=∠D=90°, ∵EF ⊥CE , ∴∠CEF=90°, ∴∠CED+∠AEF=90°, ∵∠CED+∠DCE=90°, ∴∠DCE=∠AEF , 在△AEF 和△DCE 中,A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DCE(AAS), ∴AE=DC ,由题意可知:2(AE+DE+CD)=16,DE=2, ∴2AE=6, ∴AE=3; 故选:B . 【点睛】本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.10.D解析:D 【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论. 【详解】解:把2a 、2b 代入分式可得22222()a a aa b a b a b==---,由此可知分式的值没有改变, 故选:D . 【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.二、填空题11.不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.解析:不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.12.∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.13.28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.15.10【分析】过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,易得△OCM≌△OAN;由CM =ON,OM=ON;设点C坐标(a,b),可求得A(2a﹣5,﹣a),则a=3,可求OC=,所以正方解析:10【分析】过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,易得△OCM≌△OAN;由CM=ON,OM=ON;设点C坐标(a,b),可求得A(2a﹣5,﹣a),则a=3,可求OC=10,所以正方形面积是10.【详解】解:过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,∵∠COM+∠MOA=∠MOA+∠NOA=90°,∴∠NOA=∠COM,又因为OA=OC,∴Rt△OCM≌Rt△OAN(ASA),∴OM=ON,CM=AN,设点C(a,b),∵点A在函数y=2x﹣5的图象上,∴b=2a﹣5,∴CM=AN=2a﹣5,OM=ON=a,∴A(2a﹣5,﹣a),∴﹣a=2(2a﹣5)﹣5,∴a=3,∴A(1,﹣3),在直角三角形OCM中,由勾股定理可求得OA=10,∴正方形OABC的面积是10,故答案为:10.【点睛】本题考查了一次函数与正方形的综合,涉及全等三角形的证明,勾股定理的应用,函数的相关计算等,熟知以上知识是解题的关键.16.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键.17.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率10.10.30.40.2=---=【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.18.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y随x的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】解:6yx=的图象当0x<时,y随x的增大而减小,∵4-<-2,故12y y>,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质.19.2【分析】由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【详解】解:中,AD//BC ,平分故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形解析:2【分析】由ABCD 和DE 平分ADC ∠,可证DEC CDE ∠=∠,从而可知DCE ∆为等腰三角形,则CE CD =,由8AD BC cm ==,6AB CD cm ==,即可求出BE .【详解】解:ABCD 中,AD//BC ,ADE DEC ∴∠=∠ DE 平分ADC ∠ADE CDE ∴∠=∠DEC CDE ∠=∠∴CD CE ∴=6CD AB cm ==6CE cm ∴=8BC AD cm ==862BE BC EC cm ∴=-=-=故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.20.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16,所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.三、解答题21.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.22.(1)见解析;(2)AE =3.【分析】(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果.【详解】(1)∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠OBE =∠ODF .在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC ,∴∠GEA =∠GFD =90°.∵∠A =45°,∴∠G =∠A =45°.∴AE =GE ,∵BD ⊥AD ,∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°.∴DG =DO ,∴OF =FG =1,由(1)可知,OE =OF =1,∴GE =OE +OF +FG =3,∴AE =3.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.23.(1)k =1;(2)证明见解析.【分析】(1)把x =1代入方程,即可求得k 的值;(2)求出根的判别式是非负数即可.【详解】(1)把x =1代入方程x 2﹣(k +3)x +3k =0得1﹣(k ﹣3)+3k =0,1﹣k ﹣3+3k =0解得k=1;(2)证明:==-+=1,(3),3a b k c k24∆=-b ac∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 24.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°;(4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.25.(1)见解析(2)(3,4)【分析】(1)根据网格结构找出点A、C绕点B顺时针旋转90°后的对应点A1、C1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.26.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭ 化简得2281920x x -+=,解得112x =,216x =又8860%x -<⨯12.8x ∴≤16x ∴=不合题意,舍去12x ∴=, ∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.27.(1)233;(2)存在.()0,23Q +或()0,32-或()0,3-或30,⎛⎫ ⎪ ⎪⎝⎭;(2)PHOB S 梯形334m =-,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形334m =-,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 3342m =-,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()()11,0,0,3A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a =, 11223232233ABC S AC AB ∆∴==⨯⨯=; ()2存在设()0,Q a ,则(2224,3AB BQ a ==-,221AQ a =+, ①当AB BQ =时,即22AB BQ =,()243a ∴=-, 解得:123a =+或232a =-, ()()120,23,0,32Q Q ∴=+=-;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =-或3a =(舍去,与B 重合),()30,3Q ∴-;③当BQ AQ =时,即22BQ AQ =, ()2231,232a a a ∴-=+=,解得:3a =, 430,Q ⎛⎫∴= ⎪ ⎪⎝⎭,综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,3⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,2P m ⎛ ⎝⎭,(),0H m ∴,3,12OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形, ()13322m =⨯⨯-⎭=,111322AOB S OA OB ∆==⨯⨯=,()111222APH S AH PH m ∆==⨯-⨯)14m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)1m =-42=-, ABP ABC S S ∆∆=,24∴-+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.28.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.【分析】(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.【详解】解:(1)证明:∵CBP ∆和APQ ∆为等边三角形,∴AP=PQ ,CP=BP ,∠CPN=∠APQ=60°,∴∠CPA=∠BPQ ,∴△ACP ≌△QBP (SAS )∴AC=BQ ;(2)∵△ACP ≌△QBP ,∴3BQ AC ==,CAP BQP ,AP AQ =, ∵APQ ∆为等边三角形,∴60PAQ AQP , ∵30CAB ∠=︒ ∴BAQ AQBCAQ CAB AQP BQP 603060CAP BQP 90=︒∴90ABQ ∠=︒, ∴2222435APAQ AB BQ ; (3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大值,由(1)得△ACP ≌△QBP ,∴BQ=CA=3,∠CAP=∠Q,∵△APQ 为等边三角形,∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.∴∠CAB=120°,故AP 最大值时,7AP =,此时∠CAB=120°.【点睛】本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ 是解题关键;(2)中能求得90ABQ ∠=︒是解题关键;(3)中能想到AQ 有最大值,即AP 有最大值是解题关键.。
新苏科版初二数学下册5月月考试卷及答案
新苏科版初二数学下册5月月考试卷及答案一、解答题1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.2.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?3.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表:批次123456油菜籽粒100400800100020005000数发芽油菜a31865279316044005籽粒数发芽频率0.8500.7950.8150.793b0.801(1)分别求a和b的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1);(3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.4.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.5.一粒木质中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平滑的.将它从定高度下掷,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下.由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表: 试验次数 20 40 60 80 100 120 140 160 “帅”字面朝上频数 a 18 38 47 52 66 78 88 相应频率0.70.450.630.590.520.550.56b(1)表中数据a = ;b = ; (2)画出“帅”字面朝上的频率分布折线图;(3)如图实验数据,实验继续进行下去,根据上表的这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?6.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数.7.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,﹣1)、B (﹣1,0)、C (0,﹣3)(1)点A 关于坐标原点O 对称的点的坐标为 .(2)将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,A 1A 的长为 .8.解方程:224124x x x +-=-- 9.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC ∆的顶点均在格点上,请在所给的平面直角坐标系中解答下列问题:(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆; (2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆. 10.在矩形纸片ABCD 中,AB=6,BC=8.(1)将矩形纸片沿BD 折叠,点A 落在点E 处(如图①),设DE 与BC 相交于点F ,求BF的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.11.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.12.(发现)(1)如图1,在▱ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F .求证:△AOE ≌△COF ;(探究)(2)如图2,在菱形ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F ,若AC =4,BD =8,求四边形ABFE 的面积. (应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)13.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .14.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.15.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CD B CDF BE DF∠∠=== ∴△CBE ≌△CDF (SAS ). ∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF , ∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°, 又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF ∵∠GCE =∠GCF , GC =GC ∴△ECG ≌△FCG (SAS ). ∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质. 3.(1)85a ,0.802b =;(2)0.8;(3)4800【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数. 【详解】(1)1000.85085a =⨯=,16040.8022000b ==; (2)∵观察表格发现发芽频率逐渐稳定到0.8附近, ∴该品种油菜籽发芽概率的估计值为0.8; (3)60000.8=4800⨯,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800. 【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.4.(1)详见解析;(2)24 【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案.【详解】(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12 BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•AC=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.5.(1)14,0.55;(2)图见解析;(3)0.55.【分析】(1)根据图中给出的数据和频数、频率与总数之间的关系分别求出a、b的值;(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.【详解】(1)a=20×0.7=14;b=88160=0.55;故答案为:14,0.55;(2)根据图表给出的数据画折线统计图如下:(3)随着试验次数的增加“帅”字面朝上的频率逐渐稳定在0.55左右,利用这个频率来估计概率,得P(“帅”字朝上)=0.55.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.6.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小. 7.(1)(3,1);(2)作图见解析;26. 【分析】(1)根据对称性即可得点A 关于坐标原点O 对称的点的坐标;(2)根据旋转的性质即可将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,进而可得A 1A 的长. 【详解】(1)∵A (﹣3,﹣1),∴点A 关于坐标原点O 对称的点的坐标为(3,1). 故答案为:(3,1); (2)如图,△A 1B 1C 即为所求,A 1A 2215 26. 26 【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质. 8.-1 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】去分母得:(x+2)2-4=x 2-4, 解得:x=-1,经检验x=-1是分式方程的解. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 9.(1)见解析 (2)见解析 【分析】(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可.【详解】【点睛】解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作图时先找点,继而由点连成线.10.(1)254(2)152【分析】 (1)根据折叠的性质可得∠ADB=∠EDB ,再根据两直线平行,内错角相等可得∠ADB=∠DBC ,然后求出∠FBD=∠FDB ,根据等角对等边可得BF=DF ,设BF=x ,表示出CF ,在Rt △CDF 中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH ,设BH=DH=x ,表示出CH ,然后在Rt △CDH 中,利用勾股定理列出方程求出x ,再连接BD 、BG ,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254 (2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中,S 菱形BHDG =12BD ⋅GH=BH ⋅CD , 即12×10⋅GH=254×6,解得GH=152.故答案:152【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.11.(1)见解析;(2)①②③④;(3)①证明见解析;②23【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF 是菱形,∴AE ⊥CF ,∠ADC=90°,又∵∠ABC=90°,∴A 、B 、C 、D 四点共圆,点M 是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD 是等腰直角三角形,∴BM=DM=22BD=222=1, ∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC ×sin30°=1,CD=AC ×cos30°3∴菱形ACEF 的面积=12×13×4=3 【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.12.(1)见解析 (2)8 (3)见解析【分析】(1)根据ASA 证明三角形全等即可.(2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,∴AO =OC ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中, EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA).(2)【探究】解:如图2中,由(1)可知△AOE≌△COF,∴S△AOE=S△COF,∴S四边形ABFE=S△ABC,∵四边形ABCD是菱形,∴S△ABC=12S菱形ABCD,∵S菱形ABCD=12•AC•BD=12×4×8=16,∴S四边形ABFE=12×16=8.(3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.如图3中,直线l即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.13.t=2【分析】当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,由EF∥AB,BF∥AE可得出四边形ABFE为平行四边形,利用平行四边形的性质可得出关于t的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,∵EF∥AB,BF∥AE,∴四边形ABFE为平行四边形,∴BF=AE,即t=6﹣2t,解得:t=2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.14.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线,∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.15.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .【分析】(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有BH=BE ,∠CBH=∠ABE ,进而可证△HBF ≌△EBF ,推出HF=EF ,最后根据线段的等量关系可求解;如图3,在AE 上截取AQ=CF ,连接BQ ,根据题意易得△BCF ≌△BAQ ,推出BF=BQ ,∠CBF=∠ABQ ,进而可证△FBE ≌△QBE ,推出EF=QE 即可.【详解】解:(1)如图1,AE+CF=EF ,理由如下:∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠C=90°,∵AB=BC ,AE=CF ,∴△ABE ≌△CBF (SAS ),∴∠ABE=∠CBF,BE=BF,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴11,22AE BE CF BF==,∵∠MBN=60°,BE=BF,∴△BEF是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
苏科八年级苏科初二数学下册5月月考试卷及答案百度文库
苏科八年级苏科初二数学下册5月月考试卷及答案百度文库一、选择题1.如图,点E,F,G,H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A.不是平行四边形B.不是中心对称图形C.一定是中心对称图形D.当AC=BD时,它为矩形2.下列调查中,最适合采用普查的是()A.长江中现有鱼的种类B.八年级(1)班36名学生的身高C.某品牌灯泡的使用寿命D.某品牌饮料的质量3.下列调查中,适宜采用普查方式的是()A.对全国中学生使用手机情况的调查B.对五一节期间来花果山游览的游客的满意度调查C.环保部门对长江水域水质情况的调查D.对本校某班学生阅读课外书籍情况的调查4.“明天会下雨”这是一个()A.必然事件B.不可能事件C.随机事件D.以上说法都不对5.下列调查中,适合采用普查的是()A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.了解扬州市中学生的近视率6.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.7.下列条件中,不能..判定平行四边形ABCD为矩形的是()A.∠A=∠C B.∠A=∠B C.AC=BD D.AB⊥BC8.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件9.下列成语故事中所描述的事件为必然发生事件的是()A .水中捞月B .瓮中捉鳖C .拔苗助长D .守株待兔 10.如果把分式a a b-中的a 、b 都扩大2倍,那么分式的值一定( ) A .是原来的2倍 B .是原来的4倍C .是原来的12D .不变二、填空题11.如图,在□ABCD 中,AD=6,点E 、F 分别是BD 、CD 的中点,则EF=______.12.如图,在Rt △ABC 中,∠ACB =90°,AC =5,BC =12,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是___.13.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.14.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号).15.若点()23,在反比例函数k y x=的图象上,则k 的值为________. 16.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D 、B 作DE ⊥a 于点E 、BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为_______.17.如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE ,设▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2,则12S S的值是_____.18.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.19.如图,在矩形ABCD中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为_____.20.若关于x 的分式方程233x a x x+--=2a 无解,则a 的值为_____. 三、解答题21.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,﹣1)、B (﹣1,0)、C (0,﹣3)(1)点A 关于坐标原点O 对称的点的坐标为 .(2)将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,A 1A 的长为 .22.已知:如图,AC 、BD 相交于点O ,且点O 是AC 、BD 的中点,点E 在四边形ABCD 的形外,且∠AEC =∠BED =90°.求证:四边形ABCD 是矩形.23.计算:242933x x x x x ----- 24.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,BO =DO ,点E 、F 分别在AO ,CO 上,且BE ∥DF ,AE =CF .求证:四边形ABCD 为平行四边形.25.如图,在四边形ABCD 中,AB ∥CD ,AB =AD ,对角线AC 、BD 交于点O ,AC 平分∠BAD .求证:四边形ABCD 为菱形.26.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =;(2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长.27.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PB PE =,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系,并说明理由;(2)如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P 在AC 的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.28.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【分析】先连接AC,BD,根据EF=HG=12AC,EH=FG=12BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【详解】连接AC,BD,如图:∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,故选项A错误;∴四边形EFGH一定是中心对称图形,故选项B错误;当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,故选项D错误;∴四边形EFGH可能是轴对称图形,∴四边形EFGH是平行四边形,四边形EFGH一定是中心对称图形.故选:C.【点睛】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.2.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.调查长江中现有鱼的种类,调查的难度大,范围广,适合抽样调查;B.调查八年级(1)班36名学生的身高,难度不大,适合普查;C.调查某品牌灯泡的使用寿命,调查带有破坏性,适合抽样调查;D.调查某品牌饮料的质量,调查带有破坏性,适合抽样调查;故选:B.【点睛】本题考查的是普查与抽样调查的含义与运用,掌握以上知识是解题的关键.3.D解析:D【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.对全国中学生使用手机情况的调查适合抽样调查;B.对五一节期间来花果山游览的游客的满意度调查适合抽样调查;C.环保部门对长江水域水质情况的调查适合抽样调查;D.对本校某班学生阅读课外书籍情况的调查适合普查;故选:D.【点睛】本题考查判别普查的方式,关键在于熟记抽样调查和普查的定义.4.C解析:C【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.据此可得.【详解】解:“明天会下雨”这是一个随机事件,故选:C.【点晴】本题主要考查随机事件,解题的关键是掌握随机事件的概念:在一定条件下,可能发生也可能不发生的事件,称为随机事件.5.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.6.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可.【详解】A项是轴对称图形,不是中心对称图形;B项是中心对称图形,不是轴对称图形;C项是中心对称图形,不是轴对称图形;D项是中心对称图形,也是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.7.A解析:A【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.【详解】A、∠A=∠C不能判定这个平行四边形为矩形,故此项错误;B、∵∠A=∠B,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故此项正确;D、AB⊥BC,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故选:A.【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.8.B解析:B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.9.B解析:B【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解:A 、水中捞月是不可能事件,故A 错误;B 、瓮中捉鳖是必然事件,故B 正确;C 、拔苗助长是不可能事件,故C 错误;D 、守株待兔是随机事件,故D 错误;故选B .考点:随机事件.10.D解析:D【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论.【详解】解:把2a 、2b 代入分式可得22222()a a a a b a b a b==---, 由此可知分式的值没有改变,故选:D .【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.二、填空题11.3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点, 116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.12.. 【分析】连接CD ,利用勾股定理列式求出AB ,判断出四边形CFDE 是矩形,根据矩形的对角线相等可得EF=CD ,再根据垂线段最短可得CD ⊥AB 时,线段EF 的值最小,然后根据三角形的面积公式列出求解解析:6013. 【分析】 连接CD ,利用勾股定理列式求出AB ,判断出四边形CFDE 是矩形,根据矩形的对角线相等可得EF=CD ,再根据垂线段最短可得CD ⊥AB 时,线段EF 的值最小,然后根据三角形的面积公式列出求解即可.【详解】解:如图,连接CD .∵∠ACB =90°,AC =5,BC =12,∴AB 22A BC C +22512+=13,∵DE ⊥AC ,DF ⊥BC ,∠C =90°,∴四边形CFDE 是矩形,∴EF =CD ,由垂线段最短可得CD ⊥AB 时,线段EF 的值最小,此时,S △ABC =12BC •AC =12AB •CD , 即12×12×5=12×13•CD , 解得:CD =6013, ∴EF =6013.故答案为:60 13.【点睛】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.13.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.14.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键.15.6【详解】解:由题意知:k=3×2=6故答案为:6解析:6【详解】解:由题意知:k=3×2=6故答案为:616.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△DEA ,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD 是正方形,所以AB=AD ,∠BFA=∠BAD=90°,则有∠ABF=∠DAE ,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△DEA ,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.17.2【分析】首先由ASA 可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S ▱ABCD ,进而可求出的值.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AD∥B解析:2【分析】首先由ASA 可证明:△BCE ≌△ADF ;由平行四边形的性质可知:S △BEC +S △AED =12S ▱ABCD ,进而可求出12S S 的值. 【详解】∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ABC +∠BAD =180°,∵AF ∥BE ,∴∠EBA +∠BAF =180°,∴∠CBE =∠DAF ,同理得∠BCE =∠ADF ,在△BCE 和△ADF 中, CBE DAF BC ADBCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCE ≌△ADF (ASA ),∴S △BCE =S △ADF ,∵点E 在▱ABCD 内部,∴S △BEC +S △AED =12S ▱ABCD ,∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =12S ▱ABCD , ∵▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2, ∴12S S =2, 故答案为:2.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.18.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 19.【分析】已知S △PAB =S 矩形ABCD ,则可以求出△ABP 的高,此题为“将军饮马”模型,过P 点作直线l ∥AB ,作点A 关于l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.【详解解析:41【分析】已知S△PAB=13S矩形ABCD,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.【详解】解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=22225441+=+=AB AE,即PA+PB的最小值为41.故答案为:41.【点睛】本题主要考查的是勾股定理以及“将军饮马”的模型,“将军饮马”模型主要是用来解决最小值问题,掌握这模型是解题的关键.20.5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x==3时,分式方程无解,则a =1.5 .【详解】解析:5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5 .【详解】解:2233x aax x+=--,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点睛】本题主要考查了当分式方程无意义时,求字母的值.值得引起注意的是,当分式方程化为整式方程(1﹣2a)x=﹣4a时,一定要分1-2a=0和1-2a≠0两种情况,来分别求m的值.三、解答题21.(1)(3,1);(2)作图见解析;26.【分析】(1)根据对称性即可得点A关于坐标原点O对称的点的坐标;(2)根据旋转的性质即可将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,进而可得A1A的长.【详解】(1)∵A(﹣3,﹣1),∴点A关于坐标原点O对称的点的坐标为(3,1).故答案为:(3,1);(2)如图,△A1B1C即为所求,A1A2215+26.26【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.22.见解析【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到AC=BD,即可得出结论.【详解】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=12 BD,在Rt△AEC中,∵O为AC的中点,∴EO=12 AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.23.3x-【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】解:原式22242969(3)3333x x x x x xxx x x--+-+-====----;【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.24.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE ∥DF ,∴∠BEO =∠DFO ,在△BEO 与△DFO 中,BEO DFO BO DO BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO ≌△DFO (ASA ),∴EO =FO ,∵AE =CF ,∴AE +EO =CF +FO ,即AO =CO ,∵BO =DO ,∴四边形ABCD 为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.25.详见解析.【分析】先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DAC ,得出CD =AD =AB ,证出四边形ABCD 是平行四边形,再由AD =AB ,即可得出结论.【详解】证明:∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 平分∠BAD .∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大. 26.(1)详见解析;(2)详见解析;(3)20【分析】(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;(2)由邻边相等可判断四边形BGFD 是菱形;(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值.【详解】(1)证明:90ABC ∠=︒,BD 为AC 的中线,12BD AC ∴= //AG BD ,BD FG =,∴四边形BDFG 是平行四边形,CF BD ⊥CF AG ∴⊥ 又点D 是AC 的中点12DF AC ∴= BD DF ∴=.(2)证明:由(1)知四边形BDFG 是平行四边形又BD DF =BDFG ∴是菱形(3)解:设GF x =则13AF x =-,2AC x =,6CF =,在Rt ACF ∆中,222CF AF AC +=2226(13)(2)x x ∴+-=解得5x =4520BDFG C ∴=⨯=菱形.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.27.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠, 又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒, ∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下: ∵四边形ABCD 是正方形,AC 为对角线, ∴BA DA =,45BAP DAP ∠=∠=︒, 又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示, ∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..28.(1);BC a c -;(2)①BE DC =,证明见解析,②32;(3)AM 最小为(6,3P 或(33.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c -()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,2BADEAC BD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠∴在ABE ∆和ADC ∆中AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩()BAE DAC SAS ∴∆≅∆BE DC ∴=②而32DC BC BD ≥-=-BE 最小值为32-,当且仅当D 在线段BC 上取到()3以AP 为边向右边作等边三角形APC ,连接BCAPC ∆为正三角形,2,60AC AP PC APC ︒∴===∠=又60MPB ︒∠=APM APC MPC ∴∠=∠-∠60MPC ︒=-∠MPB MPC =∠-∠CPB =∠∴在APM ∆和CPB ∆中AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩()APM CPB SAS ∴∆≅∆()10226AM BC AB AC ∴=≥-=--=AM ∴最小为6,此时C 在线段AB 上,P 的横坐标为1232AP +⨯=纵坐标为==((3,P ∴或.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.。
苏科八年级数学下册第二学期5月月考测试卷百度文库
苏科八年级数学下册第二学期5月月考测试卷百度文库一、选择题1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有 A .1组B .2组C .3组D .4组2.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100°3.用配方法解一元二次方程2620x x --=,以下正确的是( )A .2(3)2x -=B .2(3)11x -=C .2(3)11x +=D .2(3)2x +=4.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A .5B .7+1C .25D .2455.若分式42x x -+的值为0,则x 的值为( ) A .0B .-2C .4D .4或-26.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( )A .B .C .D .7.如图,在四边形ABCD 中,AD BC =,BC ,E 、F 、G 分别是AB 、CD 、AC 的中点,若10DAC ∠=︒,66ACB ∠=︒,则FEO ∠等于( )A .76°B .56°C .38°D .28°8.下列事件为必然事件的是( )A .射击一次,中靶B .12人中至少有2人的生日在同一个月C .画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上9.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2S =甲, 1.8S =乙,3.3S =丙,S a =丁,a 是整数,且使得关于x 的方程2(2)410a x x -+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a 的取值可以是( ) A .3B .2C .1D .1-10.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .二、填空题11.如图,点D 、E 分别是△ABC 的边AB 、AC 的中点,若BC=6,则DE= .12.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.13.如图,在平面直角坐标系中,一次函数y =2x ﹣5的图象经过正方形OABC 的顶点A 和C,则正方形OABC的面积为_____.14.在平行四边形ABCD中,对角线AC与BD相交于点O.要使四边形ABCD是正方形,还需添加一组条件.下面给出了五组条件:①AB=AD,且AC=BD;②AB⊥AD,且AC⊥BD;③AB⊥AD,且AB=AD;④AB=BD,且AB⊥BD;⑤OB=OC,且OB⊥OC.其中正确的是_____(填写序号).15.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.16.如图,在矩形ABCD中,AB=5,BC=6,P为AD上一动点,把△ABP沿BP翻折,使点A落在点F处,连接CF,若BF=CF,则AP的长为_____.17.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC 于E、F,则阴影部分的面积是_____.18.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.19.如图,正方形ABCD的边长为a,对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F,正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积为_____(用含a的代数式表示)20.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于___.三、解答题21.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.22.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组 49.5~59.5 59.5~69.569.5~79.5 79.5~89.5 89.5~100.5 合计 频数 2a2016450频率0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a = ,b = ; (2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.23.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,﹣1)、B (﹣1,0)、C (0,﹣3)(1)点A 关于坐标原点O 对称的点的坐标为 .(2)将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,A 1A 的长为 .24.已知关于x 的方程x 2﹣(k +3)x +3k =0. (1)若该方程的一个根为1,求k 的值;(2)求证:不论k 取何实数,该方程总有两个实数根. 25.解方程:224124x x x +-=-- 26.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.27.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.28.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;S=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A (2)已知ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.【详解】解:由题意得:DE∥BC,∴∠A'DE=∠B=180°﹣120°﹣26°=34°,∴∠BDE=180°﹣∠B=146°,故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.故选:B.【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.3.B解析:B【分析】利用完全平方公式的特征在方程的两边同时加上11即可.【详解】解:2621111x x --+=,即26911x x -+=,所以2(3)11x -=. 故选:B. 【点睛】本题考查了配方法解一元二次方程,灵活利用完全平方公式是应用配方法解题的关键.4.D解析:D 【解析】 【分析】首先根据菱形的对角线性质得到DE+CE 的最小值=CF,再利用菱形的面积列出等量关系即可解题. 【详解】解:如下图,过点C 作CF ⊥OA 与F,交OB 于点E,过点E 作ED ⊥OC 与D, ∵四边形OABC 是菱形,由菱形对角线互相垂直平分可知EF=ED, ∴DE+CE 的最小值=CF, ∵A 的坐标为(4,3), ∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积), 即24=CF×5, 解得:CF=245, 即DE+CE 的最小值=245, 故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E 的位置并熟悉菱形面积的求法是解题关键.5.C解析:C 【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值.【详解】解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩,由40x -=,得:4x =,由20x +≠,得:2x ≠-. 综上,得4x =,即x 的值为4. 故选:C . 【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.6.B解析:B 【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项. 【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数ky x=-的图象分布在二、四象限,没有选项符合题意;当k 0<时,函数1y kx =+的图象经过一、二、四象限,反比例函数ky x=-的图象分布在一、三象限,B 选项正确, 故选:B . 【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大.7.D解析:D 【分析】利用EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线,求出EG FG =,从而得出FGC ∠和EGC ∠,再根据EG FG =,利用三角形内角和定理即可求出FEG ∠的度数.【详解】解:∵E 、F 、G 分别是AB 、CD 、AC 的中点, ∴EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线, ∴//EG BC ,//FG AD ,且22AD BCEG FG ===, ∴10FGC DAC ∠=∠=︒,180114EGC ACB ∠=︒-∠=︒, ∴124EGF FGC EGC ∠=∠+∠=︒, 又∵EG FG =, ∴()()111801801242822FEG EGF ∠=-∠=-︒=︒︒︒.故本题答案为:D . 【点睛】本题考查了三角形内角和定理,等腰三角形的判定与性质,三角形中位线定理.解决本题的关键是正确理解题意,熟练掌握三角形中位线定理,通过等腰三角形的性质找到相等的角.8.C解析:C 【分析】必然事件就是一定会发生的事件,依据定义即可判断. 【详解】解:A .射击一次,中靶是随机事件;B .12人中至少有2人的生日在同一个月是随机事件;C .画一个三角形,其内角和是180°是必然事件;D .掷一枚质地均匀的硬币,正面朝上是随机事件; 故选:C . 【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.C解析:C 【分析】根据方程的根的情况得出a 的取值范围,结合乙同学的成绩最稳定且a 为整数即可得a 得取值. 【详解】∵关于于x 的方程2(2)410a x x -+-=有两个不相等的实数根,∴()=16+42>0,a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠∵丁同学的成绩最稳定, ∴<1.8a 且0a >. 则a=1. 故答案选:C. 【点睛】本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.10.B解析:B 【解析】 【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大二、填空题11.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=12BC=3.故答案为3.考点:三角形的中位线定理.12.0或-2【分析】根据(ab≠0),可以得到a和b的关系,从而可以求得所求式子的值.【详解】解:∵(ab≠0),∴,∴(a2+b2)2=4a2b2,∴(a2﹣b2)2=0,∴a2=b2解析:0或-2【分析】 根据2222114a b a b +=+(ab ≠0),可以得到a 和b 的关系,从而可以求得所求式子的值.【详解】 解:∵2222114a b a b +=+(ab ≠0), ∴2222224b a a b a b +=+, ∴(a 2+b 2)2=4a 2b 2,∴(a 2﹣b 2)2=0,∴a 2=b 2,∴a =±b ,经检验:a b =±符合题意,当a =b 时,2019202020192020110,b a a b ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭当a =﹣b 时,()()2019202020192020112,b a a b ⎛⎫⎛⎫-=---=- ⎪ ⎪⎝⎭⎝⎭ 故答案为:0或﹣2.【点睛】 本题考查的是代数式的值,同时考查了因式分解的应用,类解分式方程的方法,掌握以上知识是解题是关键.13.10【分析】过点C 作CM⊥x 轴于点M ,过点A 作AN⊥y 轴于点N ,易得△OCM≌△OAN;由CM =ON ,OM =ON ;设点C 坐标(a ,b ),可求得A (2a ﹣5,﹣a ),则a =3,可求OC =,所以正方解析:10【分析】过点C 作CM ⊥x 轴于点M ,过点A 作AN ⊥y 轴于点N ,易得△OCM ≌△OAN ;由CM =ON ,OM =ON ;设点C 坐标(a ,b ),可求得A (2a ﹣5,﹣a ),则a =3,可求OC =,所以正方形面积是10.【详解】解:过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,∵∠COM+∠MOA=∠MOA+∠NOA=90°,∴∠NOA=∠COM,又因为OA=OC,∴Rt△OCM≌Rt△OAN(ASA),∴OM=ON,CM=AN,设点C(a,b),∵点A在函数y=2x﹣5的图象上,∴b=2a﹣5,∴CM=AN=2a﹣5,OM=ON=a,∴A(2a﹣5,﹣a),∴﹣a=2(2a﹣5)﹣5,∴a=3,∴A(1,﹣3),在直角三角形OCM中,由勾股定理可求得OA=10,∴正方形OABC的面积是10,故答案为:10.【点睛】本题考查了一次函数与正方形的综合,涉及全等三角形的证明,勾股定理的应用,函数的相关计算等,熟知以上知识是解题的关键.14.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键. 15.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.16.【分析】过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.【详解】解:过点F作EN∥DC交BC于点N,交AD于点E,∵四解析:5 3【分析】过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.【详解】解:过点F作EN∥DC交BC于点N,交AD于点E,∵四边形ABCD是矩形,∴∠A=∠D=∠DCB=90°,∴FN⊥BC,FE⊥AD,∵BF=CF,BC=6,∴CN=BN=3,由折叠的性质可知,AB=BF=5,AP=PF,∴224FN BF BN=-=,∴EF=EN﹣FN=5﹣4=1,设AP=x,则PF=x,∵PE2+EF2=PF2,∴(3﹣x)2+12=x2,解得,53x ,故答案为:53.【点睛】本题主要考查了折叠变换的性质、等腰三角形的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠变换的性质、勾股定理是关键.17.1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=解析:1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=△BOC面积=12×2×1=1.故答案为:1.【点睛】本题考查正方形的性质以及全等三角形的判定,根据全等三角形的性质将阴影部分的面积转化为△BOC面积是解题的关键.18.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.19.a2.【分析】由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,由全等三角形的性解析:14a2.【分析】由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的14,即可求解.【详解】解:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°,∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.在△AOE和△BOF中OAE OBF OA OBAOE BOF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△BOF(ASA),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2. 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE ≌△BOF 是本题的关键. 20.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB==6,∵四边形ABCD 是菱形,∴AC ⊥BD ,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB =244=6, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∵H 为AB 边中点,∴在Rt △AOB 中,OH 为斜边上的中线,∴OH =12AB =3. 故答案为:3.【点睛】 本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题21.解:(1)200,144.(2)见解析;(3)120名【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出“艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144°故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名),补图如下:(3)根据题意得:800×30200=120(名),答:其中有120名学生选修“科技制作”项目.22.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.23.(1)(3,1);(2)作图见解析;26.【分析】(1)根据对称性即可得点A关于坐标原点O对称的点的坐标;(2)根据旋转的性质即可将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,进而可得A1A的长.【详解】(1)∵A(﹣3,﹣1),∴点A关于坐标原点O对称的点的坐标为(3,1).故答案为:(3,1);(2)如图,△A1B1C即为所求,A1A2215+26.26【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.24.(1)k=1;(2)证明见解析.【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.25.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x 2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.27.见解析【分析】由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .【详解】BG =DH ,理由如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,∴∠E =∠F ,又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,∴AF =CE ,在△CEH 和△AFG 中,A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFG ≌△CEH (ASA ),∴AG =CH ,∴BG =DH .【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.28.(1)证明见详解;(2)①5或6;②9或10或496.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=160cm2,而x>0,∴x=4cm,则BD=8cm,AD=12cm,CD=16cm,AB=AC=20cm.由运动知,AM=20-2t,AN=2t,①当MN∥BC时,AM=AN,即20-2t=2t,∴t=5;当DN∥BC时,AD=AN,∴12=2t,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②存在,理由:Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10当DE=DM,则2t-8=10,∴t=9;当ED=EM,则点M运动到点A,∴t=10;当MD=ME=2t-8,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=6,在Rt△AEF中,EF=8;∵BM=2t,BF=BD+DF=8+6=14,∴FM=2t-14在Rt△EFM中,(2t-8)2-(2t-14)2=82,∴t=496.综上所述,符合要求的t值为9或10或496.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.。
八年级第二学期5月份月考数学试题含解析
一、选择题1.如图,在四边形ABCD 中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,多少s 时直线将四边形ABCD 截出一个平行四边形( )A .1B .2C .3D .2或32.将个边长都为1cm 的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A .B .C .D .3.如图,111A B C ∆中,114A B =,115AC =,117B C =.点2A 、2B 、2C 分别是边11B C 、11A C 、11A B 的中点;点3A 、3B 、3C 分别是边22B C 、22A C 、22A B 的中点;;以此类推,则第2019个三角形的周长是( )A .201412 B .201512 C .201612 D .2017124.如图,在正方形ABCD 中,4AB =,E 是对角线AC 上的动点,以DE 为边作正方形DEFG ,H 是CD 的中点,连接GH ,则GH 的最小值为( )A .2B .51-C .2D .422- 5. 如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE=∠BAP ;⑤PD=2EC .其中正确结论的番号是( )A .①②④⑤B .①②③④⑤C .①②④D .①④6.已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件( ) 可以得到结论: “四边形ABCD 是平行四边形”.A .AB =CD B .∠BAD=∠BCDC .∠ABC=∠ADCD .AC= BD7.如图,四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为1S 、2S 、3S ,若1S =3,3S =8,则2S 的值为( )A .22B .24C .44D .488.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个9.在菱形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的一点(不与端点重合),对于任意的菱形ABCD ,下面四个结论中:①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形正确的结论的个数是( )A .1个B .2个C .3个D .4个10.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.14.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.15.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.16.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.17.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).18.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .19.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.20.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.23.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .24.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.25.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.26.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)27.问题背景 若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.28.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF的值是_____________(结果用含n 的式子表示).29.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.30.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意设t秒时,直线将四边形ABCD截出一个平行四边形,AP=t,DP=9-t,CQ=2t,BQ=6-2t.要使成平行四边形,则就有AP=BQ或CQ=PD,计算即可求出t值.【详解】根据题意设t秒时,直线将四边形ABCD截出一个平行四边形则AP=t,DP=9-t,CQ=2t,BQ=6-2t要使构成平行四边形则:AP=BQ 或CQ=PD进而可得:62t t =- 或29t t =-解得2t = 或3t =故选D.【点睛】本题主要考查四边形中的动点移动问题,关键在于根据平行四边形的性质列出方程求解即可.2.B解析:B【解析】【分析】 根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为n-1阴影部分的和.由此即可解答.【详解】 由题意可得一个阴影部分面积等于正方形面积的 , 即一个阴影部分的面积为如图,5个这样的正方形重叠部分(阴影部分)的面积和为×4, ∴n 个这样的正方形重叠部分(阴影部分)的面积和为×(n-1), ∴2019个正方形重叠形成的重叠部分的面积和为×(2019-1)=. 故选B .【点睛】本题考查了正方形的性质,解决本题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积. 3.A解析:A【分析】根据三角形的中位线可得,B 2C 2,A 2B 2,A 2C 2分别等于12B 1C 1,12A 1B 1,12A 1C 1,所以△A 2B 2C 2的周长等于△A 1B 1C 1周长的一半.进而推出第n 个三角形的周长【详解】 解:∵114A B =,115AC =,117B C =,∴△A 1B 1C 1的周长是16,∵点2A 、2B 、2C 分别是边11B C 、11A C 、11A B 的中点,∴B 2C 2,A 2B 2,A 2C 2分别等于12B 1C 1,12A 1B 1,12A 1C 1, 以此类推,则△A 4B 4C 4的周长是31×16=22 , ∴△A n B n C n 的周长是4n 122, ∴当n=2019时,第2019个三角形的周长是=42018201421=22, 故选:A.【点睛】本题主要考查了三角形的中位线,解题的关键是找出题目的规律.4.A解析:A【分析】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,再根据正方形及勾股定理求出OE ,即可得到GH 的长.【详解】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,∵AD=AB=4,∴AO=12AB=2 在Rt △AOE 中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=2∴GH 的最小值为2故选A .【点睛】本题考查了正方形的性质,根据题意确定E 点的位置是解题关键.5.A解析:A【分析】过P 作PG ⊥AB 于点G ,根据正方形对角线的性质及题中的已知条件,证明△AGP ≌△FPE后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=2EC.【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,①∴AP=EF;∠PFE=∠GAP∴④∠PFE=∠BAP,②延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴2EC.∴其中正确结论的序号是①②④⑤.故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.6.B解析:B【分析】设BD与AC交于O点,已知条件为BO=DO,∠AOB=∠COD,结合选项条件应证出能判断平行四边形的条件,或举出反例证明不成立.【详解】解:A、BO=DO,∠AOB=∠COD, AB=CD不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误;B、如图,在直线AC上任取一点C´,使OA=OC´,∵BO=DO,∴四边形ABC´D是平行四边形,∴AD∥BC´,AB∥C´D,∴∠BC´A=∠C´AD, ∠AC´D=∠BAC´,∴∠BC´A+∠AC´D=∠C´AD+∠BAC´,即∠BC´D=∠BAD,∵∠BAD=∠BCD∴∠BC´D=∠BCD,∴点C与点C´重合,∴四边形ABCD是平行四边形.故本选项正确;C、当BO=DO,∠ABC=∠ADC不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误;D、当BO=DO,AC=BD, 不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误.故选:B.【点睛】本题考查平行四边形的判定,根据已知条件证出判定平行四边形的条件及举出反例图形是解答此题的关键.7.C解析:C【分析】根据已知条件得到AB=3,CD=22,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=22,由已知条件得到∠BAE=90°,根据勾股定理得到BE=22,于是得到结论.AB AE【详解】∵S1=3,S3=8∴AB=3,CD=22过A作AE∥CD交BC于E则∠AEB=∠DCB∵AD∥BC∴四边形AECD 是平行四边形∴CE =AD ,AE =CD=∵∠ABC +∠DCB =90°∴∠AEB +∠ABC =90°∴∠BAE =90°∴BE=∵BC =2AD∴BC =2BE=∴S 2=(244=故选:C .【点睛】本题考查平行四边形的判定和性质,勾股定理,能正确作辅助线构造直角三角形是解决此题的关键. 8.A解析:A【分析】根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2=△;再根据勾股定理求得EF ,即可得到答案. 【详解】∵ACB 90∠=︒,2AC BC ==∴AB ==∴A B 45∠=∠=︒∵点D 是AB 的中点∴CD AB ⊥,且1AD BD CD AB 2====∴DCB 45∠=︒∴A DCF ∠∠=,在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE ≌()CDF SAS∴DE DF =,ADE CDF ∠∠=∵CD AB ⊥∴ADC 90∠=︒∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒∴DEF 是等腰直角三角形∵ADE ≌CDF∴ADE 和CDF 的面积相等∵D 为AB 中点∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;当DE AC ⊥,DF BC ⊥时,2EF 值最小根据勾股定理得:222EF DE DF =+此时四边形CEDF 是正方形即EF CD 2==∴22EF (2)2==∴正确的个数是4个故选:A .【点睛】本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.9.D解析:D【分析】根据菱形的判定和性质,矩形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】①如图,连接AC ,BD 交于O ,四边形ABCD 是菱形,过点O 直线MP 和QN ,分别交AB ,BC ,CD ,AD 于M ,N ,P ,Q ,则四边形MNPQ 是平行四边形,故存在无数个四边形MNPQ 是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④如图,当四边形ABCD为正方形时,四边形MNPQ是正方形,故至少存在一个四边形MNPQ是正方形;故④正确;综上,①②③④4个均正确,故选:D.【点睛】本题考查了平行四边形的判定和性质,菱形的判定,正方形的判定,矩形的判定,熟记各定理是解题的关键.10.D解析:D【分析】通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.【详解】∵BF⊥AC∴∠BMC=90°DE BF又∵//∴∠EDO=∠MBO,DE⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD 为矩形∴AD=BC ,AD ∥BC ,DC ∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO 即∠AND=∠CBM在△AND 与△CMB∵90DNA BMC AND CBM AD BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND ≌△CMB(AAS)∴AN=CM ,DN=BM ,故①正确.∵AB ∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE 与△CMF 中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°故DE=EB∴四边形DEBF 为菱形,故④正确.故①②③④正确故选D .【点睛】本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.二、填空题11.43或23【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,23AD =, 132DE AD ∴==,332AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-=,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=,如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ===,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =-, 30A ∠=︒,33BE x =, 在Rt BDE △中,2BD =, 22232()(23)3x x ∴=+-, 3x ∴=,23x =(不合题意舍去),1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==,故答案为:43或23.【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.12.42【分析】首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.【详解】解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE ,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD==故本题答案为:【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.13.4:9【分析】设DP =DN =m ,则PNm ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PNm ,∴m=MC ,,∴BC =CD =PC+DP=3m ,∵四边形HMPN 是正方形,∴GF ⊥BC∵∠ACB =45︒,∴△FGC 是等腰直角三角形,∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.14.21 【分析】 如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,23EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==, 60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,2212,232EF ME MF ME EF ∴===-=, 123FN EN EF ∴=+=+=,则在Rt FMN 中,22223(23)21MN FN MF =+=+=,故答案为:21.【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.15.①③④【分析】由矩形的性质可得AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC ,可判断①;通过证明△DCG ≌△BEG ,可得∠BGE=∠DGC ,BG=DG ,即可判断②③;过点G 作GH ⊥CD 于H ,设AD=4x=DF ,AB=3x ,由勾股定理可求BD=5x ,由等腰直角三角形的性质可得HG=CH=FH=12x ,DG=GB=2x ,由三角形面积公式可求解,可判断④. 【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠F=∠FAD ,∴AD=DF ,∴BC=DF ,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD ,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF 是等腰直角三角形,∵点G 为EF 的中点,∴CG=EG ,∠FCG=45°,CG ⊥AG ,∴∠BEG=∠DCG=135°,在△DCG 和△BEG 中, ===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩,∴△DCG ≌△BEG (SAS ).∴∠BGE=∠DGC ,BG=DG ,∵∠BGE <∠AEB ,∴∠DGC=∠BGE <45°,∵∠CGF=90°,∴∠DGF <135°,故②错误;∵∠BGE=∠DGC ,∴∠BGE+∠DGA=∠DGC+∠DGA ,∴∠CGA=∠DGB=90°,∴BG ⊥DG ,故③正确;过点G 作GH ⊥CD 于H ,∵34AB AD=,∴设AD=4x=DF,AB=3x,∴CF=CE=x,22AB AD x+,∵△CFG,△GBD是等腰直角三角形,∴HG=CH=FH=12x,DG=GB=522x,∴S△DGF=12×DF×HG=x2,S△BDG=12DG×GB=254x2,∴254BDG FDGS S=,故④正确;故答案为:①③④.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.16.3013≤AM<6【分析】由勾股定理得BC=13从而得到点A到BC的距离, M为EF中点,所以AM=12EF,继而求得AM的范围.【详解】因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A到BC的距离为AC512BC13AB⨯⨯==6013,所以AM的最小值为6013÷2=3013,因为M为EF中点,所以AM=12EF,当E越接近A,F越接近C时,EF越大,所以EF<AC,则AM<6,所以3013≤AM<6,故答案为3013≤AM<6.17.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=12EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DMF中,A FDM AF DF AFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF(ASA),∴EF=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴CF=12EM=EF , ∴∠FEC=∠ECF , ∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC ,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB ∥CD ,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°, ∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF ≌△DMF 是解题关键.18.【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.19.5【分析】过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则22OE BE +OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键. 20.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C 时,作辅助线,构建平行四边形AGHD 和直角三角形EGB',计算EG 和B'G 的长,根据勾股定理可得B'D 的长;【详解】∵四边形ABCD 是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=18CD=,AG=DH=8,3∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D226810+=综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。
最新苏科八年级苏科初二数学下册第二学期5月月考测试卷
最新苏科八年级苏科初二数学下册第二学期5月月考测试卷一、解答题1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.2.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.3.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?4.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表:批次123456油菜籽粒100400800100020005000数发芽油菜a31865279316044005籽粒数发芽频率0.8500.7950.8150.793b0.801(1)分别求a和b的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1);(3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.6.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.7.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.8.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q 为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.9.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 10.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.11.如图,在ABC 中,∠BAC =90°,DE 是ABC 的中位线,AF 是ABC 的中线.求证DE =AF .证法1:∵DE 是ABC 的中位线,∴DE=.∵AF是ABC的中线,∠BAC=90°,∴AF=,∴DE=AF.请把证法1补充完整,连接EF,DF,试用不同的方法证明DE=AF证法2:12.如图,在矩形ABCD中,AB=1,BC=3.(1)在图①中,P是BC上一点,EF垂直平分AP,分别交AD、BC边于点E、F,求证:四边形AFPE是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)13.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC 中,∠ABC =90°,以AC 为一边向外作“准菱形”ACEF ,且AC =EC ,AF =EF ,AE 、CF 交于点D .①若∠ACE =∠AFE ,求证:“准菱形”ACEF 是菱形; ②在①的条件下,连接BD ,若BD =,∠ACB =15°,∠ACD =30°,请直接写出四边形ACEF 的面积.14.解方程:x 21x 1x-=-. 15.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =; (2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析. 【解析】试题分析:根据已知易证∠DAC=∠ACB ,根据平行线的判定可得AD ∥BC ,AB ∥CD ,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD 是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D ,∠1=∠2, ∴∠DAC=∠ACB , ∴AD ∥BC , ∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.解:(1)200,144.(2)见解析;(3)120名【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出“艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144°故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名),补图如下:(3)根据题意得:800×30200=120(名),答:其中有120名学生选修“科技制作”项目.3.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,{BC CD B CDF BE DF∠∠=== ∴△CBE ≌△CDF (SAS ). ∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF , ∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°, 又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF ∵∠GCE =∠GCF , GC =GC ∴△ECG ≌△FCG (SAS ). ∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质. 4.(1)85a ,0.802b =;(2)0.8;(3)4800【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数. 【详解】(1)1000.85085a =⨯=,16040.8022000b ==; (2)∵观察表格发现发芽频率逐渐稳定到0.8附近, ∴该品种油菜籽发芽概率的估计值为0.8; (3)60000.8=4800⨯,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800. 【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.5.(1)150人;(2)见解析;(3)192人 【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形; (3)总人数乘以样本中围棋的人数所占百分比即可. 【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人).【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6.(1)图见解析;(2)图见解析;(3)x的值为6或7.【分析】(1)分别作出B、C的对应点B1,C1即可解决问题;(2)分别作出A、B、C的对应点A2、B2、C2即可解决问题;(3)观察图形即可解决问题.【详解】(1)作图如下:△AB1C1即为所求;(2)作图如下:△A2B2C2即为所求;(3)P点如图,x的值为6或7.【点睛】本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.7.(1)(3,2),12y x;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x ;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),∵点G在直线ON上,∴e﹣3=12(e+5),解得e=11,∴H(16,11).(3)s1:s2的值是一个常数,理由如下:如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),∵点G 在直线y =12x 上, ∴a ﹣3m =12(a +5m ), ∴a =11m ,∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =12×11m ×11m +12(8m +11m )•5m •12﹣12×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2, ∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型. 8.(1)15344t ;(2)当t =52时,四边形MNQP 为平行四边形, 证明见解析;(3)AQ ⊥CQ ,证明见解析.【分析】 (1)由勾股定理可求BD =5,由三角形的面积公式和S △DPQ =12(S △BED ﹣S △BDP )可求解; (2)当t =52时,可得BP =52=12BE ,由中位线定理可得MN ∥BD ,MN =12BD =5,PQ ∥BD ,PQ =12BD =5,可得MN ∥PQ ,MN =PQ ,可得结论. (3)连接BQ ,由等腰三角形的性质可得∠AQD +∠BQA =90°,由直角三角形的性质可得DQ =CQ ,∠DCQ =∠CDQ ,由“SAS ”可证△ADQ ≌△BCQ ,可得∠AQD =∠BQC ,即可得结论.【详解】解:(1)∵四边形ABCD 是矩形,AB =3,BC =4,∴BC=4,CD=3,∴BD=22BC CD+=5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=12S△DPE,∴S△DPQ=12(S△BED﹣S△BDP)=11135t3222⎛⎫⨯⨯-⨯⨯⎪⎝⎭=15344t-.故答案为:15344t-.(2)当t=52时,四边形MNQP为平行四边形,理由如下:∵M、N分别为AB、AD的中点,∴MN∥BD,MN=12BD=52,∵t=52时,∴BP=52=12BE,且点Q是DE的中点,∴PQ∥BD,PQ=12BD=52,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.【点睛】本题考查平行四边形中的动点问题,关键在于熟练掌握矩形的性质,全等三角形的性质和判定.9.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.10.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是【详解】当点O 运动到AC 的中点(或OA=OC )时,四边形AECF 是矩形.证明:如图,∵CE 平分∠BCA ,∴∠1=∠2,又∵MN ∥BC ,∴∠1=∠3,∴∠3=∠2,∴EO=CO ,同理,FO=CO ,∴EO=FO ,又∵OA=OC ,∴四边形AECF 是平行四边形,∵CF 是∠BCA 的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF 是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF 是平行四边形,并证明∠ECF 是90°.11.2BC ,2BC ,证明见解析 【分析】 证法1:根据三角形中位线定理得到DE=12BC ,根据直角三角形的性质得到AF=12BC ,等量代换证明结论;证法2:连接DF 、EF ,根据三角形中位线定理得到DF ∥AC ,EF ∥AB ,证明四边形ADFE 是矩形,根据矩形的对角线相等证明即可.证法1:∵DE是△ABC的中位线,∴DE=12 BC,∵AF是△ABC的中线,∠BAC=90°,∴AF=12 BC,∴DE=AF,证法2:连接DF、EF,∵DE是△ABC的中位线,AF是△ABC的中线,∴DF、EF是△ABC的中位线,∴DF∥AC,EF∥AB,∴四边形ADFE是平行四边形,∵∠BAC=90°,∴四边形ADFE是矩形,∴DE=AF.故答案为:12BC;12BC.【点睛】本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,则可得12+(3-x)2=x2,解得x=53,所以菱形的边长为53.【点睛】本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.13.(1)见解析;(2)①②③④;(3)①证明见解析;②3【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD是等腰直角三角形,∴BM=DM=2BD=2=1, ∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC ×sin30°=1,CD=AC ×cos30°∴菱形ACEF 的面积=12×1×4= 【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.14.2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.【分析】(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.【详解】解:(1)证明:∵CBP ∆和APQ ∆为等边三角形,∴AP=PQ ,CP=BP ,∠CPN=∠APQ=60°,∴∠CPA=∠BPQ ,∴△ACP ≌△QBP (SAS )∴AC=BQ ;(2)∵△ACP ≌△QBP ,∴3BQ AC ==,CAP BQP ,AP AQ =,∵APQ ∆为等边三角形,∴60PAQ AQP , ∵30CAB ∠=︒∴BAQ AQB CAQ CAB AQP BQP 603060CAP BQP90=︒∴90ABQ ∠=︒, ∴2222435APAQ AB BQ ; (3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大值,由(1)得△ACP ≌△QBP ,∴BQ=CA=3,∠CAP=∠Q,∵△APQ 为等边三角形,∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.∴∠CAB=120°,故AP 最大值时,7AP =,此时∠CAB=120°.【点睛】本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ 是解题关键;(2)中能求得90ABQ ∠=︒是解题关键;(3)中能想到AQ 有最大值,即AP 有最大值是解题关键.。
新苏科版八年级苏科初二数学下册第二学期5月月考试卷及答案
新苏科版八年级苏科初二数学下册第二学期5月月考试卷及答案一、选择题1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组B.2组C.3组D.4组2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )A.13B.12C.1 D.04.如图,已知正方形ABCD,对角线的交点M(2,2).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为()A.(﹣2012,2)B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)5.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=06.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF7.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是()A.320名学生的全体是总体B.80名学生是总体的一个样本C.每名学生的体重是个体D.80名学生是样本容量8.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件9.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm10.下列图标中,是中心对称图形的是()A.B.C.D.二、填空题11.如图,小正方形方格的边长都是1,点A、B、C、D、O都是小正方形的顶点.若COD是由AOB绕点O按顺时针方向旋转一次得到的,则至少需要旋转______°.12.如图,在□ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=______.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.15.若关于x 的一元二次方程x 2+(2k +4)x +k 2=0没有实数根,则k 的取值范围是_____. 16. 如图,在ABCD 中,已知8AD cm =,6AB cm =,DE 平分ADC ∠,交BC 边于点E ,则BE = ___________ cm .17.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.18.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图.19.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.20.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.三、解答题21.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?22.如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E 、F 分别是AB 、CD 上的点,且BE =DF ,连接EF 交BD 于O .(1)求证:EO=FO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.23.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.24.如图,在▱ABCD中,E为BC边上一点,且AB=AE(1)求证:△ABC≌△EAD;(2)若∠B=65°,∠EAC=25°,求∠AED的度数.25.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).(1)求证:EO 平分∠AEB ;(2)猜想线段OE 与EB 、EA 之间的数量关系为 (直接写出结果,不要写出证明过程);(3)过点C 作CF ⊥EB 于F ,过点D 作DH ⊥EA 于H ,CF 和DH 的反向延长线交于点G (如图2),求证:四边形EFGH 为正方形.26.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x (单位:小时)分成了4组,A :0≤x <2;B :2≤x <4;C :4≤x <6;D :6≤x <8,试结合图中所给信息解答下列问题:(1)这次随机抽取了 名学生进行调查;扇形统计图中,扇形B 的圆心角的度数为 .(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?27.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?28.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.A解析:A【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可.【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种,因此选到月季花的概率是13,故选A.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.4.A解析:A【分析】根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得结果.【详解】解:∵对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.【点睛】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M 的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.5.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.6.D解析:D【详解】解:∵EF垂直平分BC,∴BE=EC,BF=CF;∵CF=BE,∴BE=EC=CF=BF;∴四边形BECF是菱形.当BC=AC时,∠ACB=90°,∠A=45°,∴∠EBC=45°;∴∠EBF=2∠EBC=2×45°=90°.∴菱形BECF是正方形.故选项A不符合题意.当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B不符合题意.当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C不符合题意.当AC=BD 时,无法得出菱形BECF 是正方形,故选项D 符合题意.故选D .7.C解析:C【分析】根据总体、样本、样本容量及个体的定义对选项逐一判断即可得答案.【详解】A 、320名学生的体重情况是总体,故该选项错误;B 、80名学生的体重情况是样本,故该选项错误;C 、每个学生的体重情况是个体,故该选项正确;D 、样本容量是80,故该选项错误;故选:C .【点睛】本题考查总体、个体、样本、样本容量的定义,熟练掌握相关定义是解题关键.8.B解析:B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.9.B解析:B【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===,设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯, 解得24.5h =即菱形的高为245cm . 故选B .10.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.二、填空题11.90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而解析:90【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案【详解】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为: 90.【点睛】本题考查了旋转的性质.解题的关键是理解△COD是由△AOB绕点O按顺时针方向旋转而得的含义,找到旋转角.12.3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.13..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠解析:020.【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD 为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD 绕点A 顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.14.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.15.k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<解析:k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x 的一元二次方程x 2+(2k +4)x +k 2=0没有实数根,∴△=(2k +4)2﹣4k 2<0,解得k <﹣1.故答案为:k <﹣1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.16.2【分析】由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【详解】解:中,AD//BC ,平分故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形解析:2【分析】由ABCD 和DE 平分ADC ∠,可证DEC CDE ∠=∠,从而可知DCE ∆为等腰三角形,则CE CD =,由8AD BC cm ==,6AB CD cm ==,即可求出BE .【详解】解:ABCD 中,AD//BC ,ADE DEC ∴∠=∠ DE 平分ADC ∠ADE CDE ∴∠=∠DEC CDE ∠=∠∴CD CE∴=CD AB cm==6∴=CE cm6BC AD cm==8∴=-=-=BE BC EC cm862故答案为2.【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.18.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.19.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 20.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x3,x4, ∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x 3+x 4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.三、解答题21.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDF BE DF∠∠===∴△CBE ≌△CDF (SAS ).∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF∵∠GCE =∠GCF , GC =GC∴△ECG ≌△FCG (SAS ).∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.22.(1)见解析;(2)AE =3.【分析】(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果.【详解】(1)∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠OBE =∠ODF .在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC ,∴∠GEA =∠GFD =90°.∵∠A =45°,∴∠G =∠A =45°.∴AE =GE ,∵BD ⊥AD ,∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°.∴DG =DO ,∴OF =FG =1,由(1)可知,OE =OF =1,∴GE =OE +OF +FG =3,∴AE =3.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.23.(1)150人;(2)见解析;(3)192人【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人). 【点睛】 本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)见解析;(2)∠AED =75°.【分析】(1)先证明∠B =∠EAD ,然后利用SAS 可进行全等的证明;(2)先根据等腰三角形的性质可得∠BAE =50°,求出∠BAC 的度数,即可得∠AED 的度数.【详解】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,AB AE ABC EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B =∠AEB ,∴∠BAE =50°,∴∠BAC =∠BAE+∠EAC =50°+25°=75°,∵△ABC ≌△EAD ,∴∠AED =∠BAC =75°.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质,注意掌握平行四边形的对边平行且相等的性质.25.(1)求证见解析;(2)2OE =EB +EA ;(3)见解析.【分析】(1)延长EA 至点F ,使AF =BE ,连接OF ,由SAS 证得△OBE ≌△OAF ,得出OE =OF ,∠BEO =∠AFO ,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF 是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA 证得△ABE ≌△ADH ,△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,得出FG =EF =EH =HG ,再由∠F =∠H =∠AEB =90°,由此可得出结论.【详解】(1)证明:延长EA 至点F ,使AF =BE ,连接OF ,如图所示:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∵∠AEB =90°,∴∠OBE +∠OAE =360°﹣90°﹣90°=180°,∵∠OAE +∠OAF =180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB AOBE OAF BE AF=⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(22OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.26.(1)200;72° (2)见解析 (3)1300名【分析】(1)由D 组人数及其所占百分比可得总人数;用360°乘以B 所占的百分比即可求出扇形B 的圆心角的度数;(2)根据各组人数之和等于总人数求出A 组人数,从而补全统计图;(3)用该校的总人数乘以每周阅读时间不少于4小时的学生所占的百分比即可.【详解】解:(1)本次随机抽查的学生人数为:60÷30%=200(名),扇形B 的圆心角的度数为:360°×40200=72°; 故答案为:200,72°;(2)A 组人数为:200﹣(40+70+60)=30(人),补全图形如下:(3)根据题意得:2000×7060200+=1300(名), 答:估计每周阅读时间不少于4小时的学生共有.【点睛】本题考查了频数分布直方图,扇形图,用样本估计总体等知识,总体难度不大,根据直方图和扇形图提供的公共信息D 组信息得到样本容量是解题关键.27.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.28.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s=或时,使得APQ ∆为直角三角形,理由是①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s =∴综上所述,存在8163t s s =或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=,①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。
八年级第二学期5月份月考数学试题
一、选择题1.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A .1B .2C .3D .4 2.如图,正方形ABCD 的周长是16,P 是对角线AC 上的个动点,E 是CD 的中点,则PE +PD 的最小值为( )A .25B .23C .22D .43.如图,菱形ABCD 的边长为4,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为 ( )A .23B .4C .232+D .423+4.如图,在菱形ABCD 中,AB =5cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB .CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1c m/s ,点F 的速度为2c m/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .34B .43C .32D .535.如图,在ABCD 中,已知6AB =,8AD =,60B ∠=︒,过BC 的中点E 作∆的面积是()⊥,垂足为F,与DC的延长线相交于点H,则DEFEF ABA.83B.123C.143D.1836.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE 的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有()A.2个B.3个C.4个D.5个7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于 E,PF⊥AC于F,M 为 EF 中点,则 AM 的最小值为()A.1 B.1.3 C.1.2 D.1.58.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.0.5 B.2.5 C.2D.19.如图,在ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,M为EF中点,则AM的最小值为()A .6013B .3013C .2413D .121310.如图,BD 为平行四边形ABCD 的对角线,45DBC ∠=︒,DE BC ⊥于E ,BF CD ⊥于F ,DE 、BF 相交于H ,直线BF 交线段AD 的延长线于G ,下面结论:①2BD BE =;②A BHE =∠∠;③AB BH =;④BHD BDG ∠=∠其中正确的个数是( )A .1B .2C .3D .4二、填空题11.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.12.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.13.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.14.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.15.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.16.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,17.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.18.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.19.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.22.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.23.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;②当折痕经过点A 时,BE 与AE 的数量关系为 .(2)深入探究:在矩形ABCD 中,AB =3,BC =23.①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.24.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .25.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)26.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG =BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB =AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.27.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E 是AC 的一点,连接EB ,过点A 做AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .(1)猜想:如图(1)线段OE 与线段OF 的数量关系为 ;(2)拓展:如图(2),若点E 在AC 的延长线上,AM ⊥BE 于点M ,AM 、DB 的延长线相交于点F ,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.28.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.29.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.30.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长= EF=FG=GH=HE =2AB,故⑤正确,没有条件可证明EG=12BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.2.A解析:A【解析】【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【详解】解:如图,连接BE,设BE与AC交于点P',∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.即P 在AC 与BE 的交点上时,PD+PE 最小,即为BE 的长度.∴直角△CBE 中,∠BCE=90°,BC=4,CE=12CD=2, ∴224225BE =+=.故选:A.【点睛】本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P 点位置是解题的关键 3.C解析:C【分析】如下图,△BEP 的周长=BE+BP+EP ,其中BE 是定值,只需要BP+PE 为最小值即可,过点E 作AC 的对称点F ,连接FB ,则FB 就是BP+PE 的最小值.【详解】如下图,过点E 作AC 的对称点F ,连接FB ,FE ,过点B 作FE 的垂线,交FE 的延长线于点G∵菱形ABCD 的边长为4,点E 是BC 的中点∴BE=2∵∠DAB=60°,∴∠FCE=60°∵点F 是点E 关于AC 的对称点∴根据菱形的对称性可知,点F 在DC 的中点上则CF=CE=2∴△CFE 是等边三角形,∴∠FEC=60°,EF=2∴∠BEG=60°∴在Rt △BEG 中,EG=1,3∴FG=1+2=3∴在Rt △BFG 中,()2233+3根据分析可知,BF=PB+PE∴△PBE 的周长32故选:C【点睛】本题考查菱形的性质和利用对称性求最值问题,解题关键是利用对称性,将BP+PE 的长转化为FB 的长.4.D解析:D【分析】由题意知道AE=t ,CF=2t ,连接BD ,证明△DEB ≌△DFC,得到EB=FC=2t ,进而AB=AE+EB=3t=5,进而求出t 的值.【详解】解:连接DB ,如下图所示,∵四边形ABCD 为菱形,且∠ADC=120°,∴∠CDB=60°∴△CDB 为等边三角形,∴DB=DC又∵△DEF 为等边三角形,∴∠EDF=60°,DE=DF∴∠CDB=∠EDF∴∠CDB-∠BDF=∠EDF-∠BDF∴∠CDF=∠BDE在△EDB 和△FDC 中:=⎧⎪∠=∠⎨⎪=⎩DE DF EDB FDC DB DC ,∴△EDB ≌△FDC(SAS)∴FC=BE=2t∴AB=AE+EB=t+2t=3t=5∴t=53. 故答案为:D.【点睛】本题考查了三角形全等、菱形的性质等相关知识,关键是能想到连接BD 后证明三角形全等,本题是动点问题,将线段长用t 的代数式表示,化动为静.5.A解析:A【分析】根据平行四边形的性质得到6AB CD ==,8AD BC ==,求出BE 、BF 、EF ,根据()BFE CHE ASA 得出2CH =,23EH ,根据三角形的面积公式求DFH ∆的面积,即可求出答案. 【详解】解:四边形ABCD 是平行四边形,8AD BC ∴==,//AB CD ,6AB CD ==,E 为BC 中点,4BE CE ∴==,60B ∠=︒,EF AB ⊥,30FEB ∴∠=︒,2BF ∴=,由勾股定理得:EF =,//AB CD ,BECH , 在BFE ∆和CHE ∆中, BECH BE CE BEF CEH ,()BFECHE ASA , 23EF EH ,2CH BF , ∴111622323163222DHF SDH FH DC CH FE HE , 1832DEF DHF S S .故选:A .【点睛】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.6.B解析:B【分析】根据平行四边形的性质可得AD//BC ,AD=BC ,根据平行线的性质可得∠BEA=∠EAD ,根据等腰三角形的性质可得∠ABE=∠BEA ,即可证明∠EAD=∠ABE ,利用SAS 可证明△ABC ≌△EAD ;可得①正确;由角平分线的定义可得∠BAE=∠EAD ,即可证明∠ABE=∠BEA=∠BAE ,可得AB =BE =AE ,得出②正确;由S △AEC =S △DEC ,S △ABE =S △CEF 得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,AB AEABE EAD BC AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.7.C解析:C【分析】首先证明四边形AEPF为矩形,可得AM=12AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.【详解】在△ABC中,因为AB2+AC2=BC2,所以△ABC为直角三角形,∠A=90°,又因为PE⊥AB,PF⊥AC,故四边形AEPF为矩形,因为M 为 EF 中点,所以M 也是 AP中点,即AM=12 AP,故当AP⊥BC时,AP有最小值,此时AM最小,由1122ABCS AB AC BC AP=⨯⨯=⨯⨯,可得AP=125,AM=12AP=61.25=故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.8.B解析:B【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,如图,将ΔEFB绕点E旋转60°,使EF与EG重合,得到ΔEFB≅ΔEHG,从而可知ΔEBH为等边三角形,点G在垂直于HE的直线HN上,如图,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则1351=2.5222CM MP CP HE EC=+=+=+=.故选B.【点睛】本题考查了线段极值问题,构造图形计算,是极值问题中比较典型的类型.分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是解本题的关键.9.B解析:B【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用面积法可求得AP最短时的长,然后即可求出AM最短时的长.【详解】解:连接AP,在ABC中,AB=5,AC=12,BC=13,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=12 AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴S△ABC=1122BC AP AB AC⋅=⋅,∴11 1351222AP⨯=⨯⨯,∴AP最短时,AP=6013,∴当AM最短时,AM=12AP=3013.故选:B.【点睛】此题主要考查学生对勾股定理逆定理的应用、矩形的判定和性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定难度.10.B解析:B【分析】通过判断△BDE为等腰直角三角形,根据等腰直角三角形的性质和勾股定理可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,可对③进行判断;因为∠BHD=90°+∠EBH,∠BDG=90°+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,可判断④.【详解】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,222,22BE DE BD BE DE BE BE∴==+==,所以①错误;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中BHE CHEB CEDBE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,所以③正确;∵∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,∵∠BDE=∠DBE >∠EBH ,∴∠BDG >∠BHD ,所以④错误;故选:B .【点睛】本题考查平行四边形的性质,全等三角形的性质和判定,等腰直角三角形的判定和性质,三角形外角的性质.熟练掌握平行四边形的性质并能灵活运用是解题关键,本题中主要用到平行四边形对边相等,对角相等.二、填空题11【分析】如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==, 60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,2212,232EF ME MF ME EF ∴===-=, 123FN EN EF ∴=+=+=,则在Rt FMN 中,22223(23)21MN FN MF =+=+=,故答案为:21.【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.12.42【分析】作P 点关于线段AE 的对称点P ',根据轴对称将DQ PQ +转换成DP ',然后当DP AC '⊥的时候DP '是最小的,得到DP '长,最后求出正方形边长DC .【详解】∵AE 是DAC ∠的角平分线,∴P 点关于线段AE 的对称点一定在线段AC 上,记为P '由轴对称可以得到PQ P Q '=,∴DQ PQ DQ P Q DP ''+=+=,如图,当DP AC '⊥的时候DP '是最小的,也就是DQ PQ +取最小值4,∴4DP '=,由正方形的性质P '是AC 的中点,且DP P C ''=,在Rt DCP '中,2222443242DC DP P C ''=+=+==.故答案是:42.【点睛】本题考查轴对称的最短路径问题,解题的关键是能够分析出DQ PQ +取最小值的状态,并将它转换成DP '去求解.13.①②③④【分析】①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE =,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.14.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可15.6【分析】先证明△AEB ≌△FEB ≌△DEF ,从而可知S △ABE =13S △DAB ,即可求得△ABE 的面积. 【详解】解:由折叠的性质可知:△AEB ≌△FEB∴∠EFB=∠EAB=90°∵ABCD 为矩形∴DF=FB∴EF 垂直平分DB∴ED=EB在△DEF 和△BEF 中DF=BF EF=EF ED=EB∴△DEF ≌△BEF∴△AEB ≌△FEB ≌△DEF ∴13666AEB FEB DEF ABCD S S S S ∆∆∆====⨯=矩形. 故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB ≌△FEB ≌△DEF 是解题的关键.16.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB ==∴5P N '===同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.17.13【分析】根据12•BC •AH =12•AB •AC ,可得AH =13,根据 12AD •BO =12BD •AH ,得OB =13,再根据BE =2OB =13,运用勾股定理可得EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC∵点D 是BC 的中点,∴AD =DC =DB , ∵12•BC •AH =12•AB •AC ,∴AH =13, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE , ∵12AD •BO =12BD •AH ,∴OB =613, ∴BE =2OB =1213, ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE , ∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=51313. 故答案为:513. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.18.4【分析】过点E 作EM ∥AD ,由△ABO 是等腰三角形,根据三线合一可知点E 是AO 的中点,可证得EM=12AD=12BC ,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF 为等腰直角三角形,可得BF=EF=FC=12BC ,因此可证明△BFP ≌△MEP (AAS ),则EP=FP=12FC ,在Rt △BFP 中,利用勾股定理可求得x ,即得答案.【详解】过点E 作EM ∥AD ,交BD 于M ,设EM=x ,∵AB=OB ,BE 平分∠ABO ,∴△ABO 是等腰三角形,点E 是AO 的中点,BE ⊥AO ,∠BEO=90°,∴EM 是△AOD 的中位线,又∵ABCD 是平行四边形,∴BC=AD=2EM=2x ,∵EF ⊥BC , ∠CAD=45°,AD ∥BC ,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC 为等腰直角三角形,∴EF=FC ,∠FEC=45°,∴∠BEF=90°-∠FEC=45°,则△BEF 为等腰直角三角形,∴BF=EF=FC=12BC=x , ∵EM ∥BF , ∴∠EMP=∠FBP ,∠PEM=∠PFB=90°,EM=BF ,则△BFP ≌△MEP (ASA ),∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+,即:2221(5)()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键. 19.2【分析】分别延长AE ,BF 交于点H ,易证四边形EPFH 为平行四边形,得出点G 为PH 的中点,则G 的运动轨迹为△HCD 的中位线MN ,再求出CD 的长度,运用中位线的性质求出MN 的长度即可.【详解】解:如图,分别延长AE ,BF 交于点H ,∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分,∵点G 为EF 的中点,∴点G 为PH 的中点,即在P 运动的过程中,G 始终为PH 的中点,∴G 的运动轨迹为△HCD 的中位线MN ,∵CD=6-1-1=4,∴MN=12CD =2, ∴点G 移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G 的运动轨迹为△HCD 的中位线MN .20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC ∠=∠证明BC=BE ,由此根据三角形的三线合一及勾股定理求出BF ,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===, ∴22223122BF BC CF =-=-=.∴平行四边形ABCD 的面积为225102BF CD ⋅=⨯=.故答案为:102.【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)证明见解析;(2)73.【分析】(1)由题意根据勾股定理分别表示出2222,AB CD AD BC ++进行分析求证即可;(2)根据题意连接CG 、BE ,证明△GAB ≌△CAE ,进而得BG ⊥CE ,再根据(1)的结论进行分析即可求出答案.【详解】解:(1)∵AC ⊥BD ,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,222222AD BC AO DO BO CO +=+++,222222AB CD AO BO CO DO +=+++,∴2222AD BC AB CD +=+;(2)连接CG 、BE ,如图2,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△GAB 和△CAE 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△CAE (SAS ),∴∠ABG=∠AEC ,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE ⊥BG ,由(1)得,2222CG BE CB GE +=+,∵AC=4,AB=5,∴BC=3,,,∴222273GE CG BE CB =+-=,∴【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,熟练并正确理解全等三角形的判定和性质以及灵活运用勾股定理是解题的关键.22.(1)见解析;(2) HG =OH +BG ;(3)能成矩形,y 3342x =-. 【分析】(1)根据旋转和正方形的性质可得出CD =CB ,∠CDG =∠CBG =90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG =∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt △CDG ≌Rt △CBG 可得出BG =DG ,根据全等直角三角形的判定定理(HL )即可证出Rt △CHO ≌Rt △CHD ,即OH =HD ,再根据线段间的关系即可得出HG =HD +DG =OH +BG ;(3)根据(2)的结论即可找出当G 点为AB 中点时,四边形AEBD 为矩形,再根据正方形的性质以及点B 的坐标可得出点G 的坐标,设H 点的坐标为(x ,0),由此可得出HO =x ,根据勾股定理即可求出x 的值,即可得出点H 的坐标,结合点H 、G 的坐标利用待定系数法即可求出直线DE 的解析式.【详解】(1)∵正方形ABCO 绕点C 旋转得到正方形CDEF ,∴CD =CB ,∠CDG =∠CBG =90°.在Rt △CDG 和Rt △CBG 中,∵CG CG CD CB =⎧⎨=⎩,∴Rt △CDG ≌Rt △CBG (HL ),∴∠DCG =∠BCG ,即CG 平分∠DCB . (2)由(1)证得:Rt △CDG ≌Rt △CBG ,∴BG =DG .在Rt △CHO 和Rt △CHD 中,∵CH CH CO CD =⎧⎨=⎩,∴Rt △CHO ≌Rt △CHD (HL ),∴OH =HD ,∴HG =HD +DG =OH +BG . (3)假设四边形AEBD 可为矩形.当G 点为AB 中点时,四边形AEBD 为矩形,如图所示.。
苏科八年级苏科初二数学下册第二学期5月月考测试卷
苏科八年级苏科初二数学下册第二学期5月月考测试卷一、解答题1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.2.已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.3.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证:△ABE≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.4.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q 为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.5.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF 是菱形.6.在Rt △AEB 中,∠AEB =90°,以斜边AB 为边向Rt △AEB 形外作正方形ABCD ,若正方形ABCD 的对角线交于点O (如图1).(1)求证:EO 平分∠AEB ;(2)猜想线段OE 与EB 、EA 之间的数量关系为 (直接写出结果,不要写出证明过程);(3)过点C 作CF ⊥EB 于F ,过点D 作DH ⊥EA 于H ,CF 和DH 的反向延长线交于点G (如图2),求证:四边形EFGH 为正方形.7.解方程:224124x x x +-=-- 8.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC ∆的顶点均在格点上,请在所给的平面直角坐标系中解答下列问题:(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆;(2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆.9.在矩形纸片ABCD 中,AB=6,BC=8.(1)将矩形纸片沿BD 折叠,点A 落在点E 处(如图①),设DE 与BC 相交于点F ,求BF 的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.10.解方程:x21 x1x-= -.11.先化简,再求代数式(1﹣32x+)÷212xx-+的值,其中x=4.12.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x <2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?13.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.14.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?15.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.3.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.4.(1)15344t-;(2)当t=52时,四边形MNQP为平行四边形,证明见解析;(3)AQ⊥CQ,证明见解析.【分析】(1)由勾股定理可求BD=5,由三角形的面积公式和S△DPQ=12(S△BED﹣S△BDP)可求解;(2)当t=52时,可得BP=52=12BE,由中位线定理可得MN∥BD,MN=12BD=5,PQ∥BD,PQ=12BD=5,可得MN∥PQ,MN=PQ,可得结论.(3)连接BQ,由等腰三角形的性质可得∠AQD+∠BQA=90°,由直角三角形的性质可得DQ=CQ,∠DCQ=∠CDQ,由“SAS”可证△ADQ≌△BCQ,可得∠AQD=∠BQC,即可得结论.【详解】解:(1)∵四边形ABCD是矩形,AB=3,BC=4,∴BC=4,CD=3,∴BD5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=12S△DPE,∴S△DPQ=12(S△BED﹣S△BDP)=11135t3222⎛⎫⨯⨯-⨯⨯⎪⎝⎭=15344t-.故答案为:15344t-.(2)当t=52时,四边形MNQP为平行四边形,理由如下:∵M、N分别为AB、AD的中点,∴MN∥BD,MN=12BD=52,∵t=52时,∴BP=52=12BE,且点Q是DE的中点,∴PQ∥BD,PQ=12BD=52,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.【点睛】本题考查平行四边形中的动点问题,关键在于熟练掌握矩形的性质,全等三角形的性质和判定.5.(1)见解析;(2)见解析.【分析】(1)由“AAS”可证△AFE≌△DBE,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质的AD=DC,即可证明四边形ADCF是菱形.【详解】(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,AFE DBE AEF BED AE DE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFE ≌△DBE (AAS ))∴AF=BD(2)由(1)知,AF=BD ,且BD=CD ,∴AF=CD ,且AF ∥BC ,∴四边形ADCF 是平行四边形∵∠BAC=90°,D 是BC 的中点,∴AD =12BC =DC ∴四边形ADCF 是菱形【点睛】本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质.证明AD =DC 是解题的关键.6.(1)求证见解析;(2)2OE =EB +EA ;(3)见解析.【分析】(1)延长EA 至点F ,使AF =BE ,连接OF ,由SAS 证得△OBE ≌△OAF ,得出OE =OF ,∠BEO =∠AFO ,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF 是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA 证得△ABE ≌△ADH ,△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,得出FG =EF =EH =HG ,再由∠F =∠H =∠AEB =90°,由此可得出结论.【详解】(1)证明:延长EA 至点F ,使AF =BE ,连接OF ,如图所示:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∵∠AEB =90°,∴∠OBE +∠OAE =360°﹣90°﹣90°=180°,∵∠OAE +∠OAF =180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(2OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.7.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x 2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(1)见解析 (2)见解析【分析】(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可.【详解】【点睛】解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作图时先找点,继而由点连成线.9.(1)254(2)152【分析】 (1)根据折叠的性质可得∠ADB=∠EDB ,再根据两直线平行,内错角相等可得∠ADB=∠DBC ,然后求出∠FBD=∠FDB ,根据等角对等边可得BF=DF ,设BF=x ,表示出CF ,在Rt △CDF 中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH ,设BH=DH=x ,表示出CH ,然后在Rt △CDH 中,利用勾股定理列出方程求出x ,再连接BD 、BG ,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG,∴BH=DH=DG=BG,∴四边形BHDG是菱形,在Rt△BCD中,S菱形BHDG=12BD⋅GH=BH⋅CD,即12×10⋅GH=254×6,解得GH=152.故答案:15 2【点睛】本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.10.2x=.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.11x+;15【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】解:原式=()()232211x x x x x +-+⋅++- ()()12211x x x x x -+=⋅++- 11x =+ 当x =4时,原式=15. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.12.(1)200;72° (2)见解析 (3)1300名【分析】(1)由D 组人数及其所占百分比可得总人数;用360°乘以B 所占的百分比即可求出扇形B 的圆心角的度数;(2)根据各组人数之和等于总人数求出A 组人数,从而补全统计图;(3)用该校的总人数乘以每周阅读时间不少于4小时的学生所占的百分比即可.【详解】解:(1)本次随机抽查的学生人数为:60÷30%=200(名),扇形B 的圆心角的度数为:360°×40200=72°; 故答案为:200,72°;(2)A 组人数为:200﹣(40+70+60)=30(人),补全图形如下:(3)根据题意得:2000×7060200+=1300(名), 答:估计每周阅读时间不少于4小时的学生共有.【点睛】本题考查了频数分布直方图,扇形图,用样本估计总体等知识,总体难度不大,根据直方图和扇形图提供的公共信息D 组信息得到样本容量是解题关键.13.详见解析.【分析】先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,证出四边形ABCD是平行四边形,再由AD=AB,即可得出结论.【详解】证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC平分∠BAD.∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.14.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.15.(1)见解析;(2)32;(3)见解析【分析】(1)根据同角的余角相等得到∠GCB=∠FBA,利用ASA定理证明△ABF≌△BCE;(2)根据全等三角形的性质得到BF=CE=8,根据三角形的面积公式计算,得到答案;(3)作DH⊥CE,设AB=CD=BC=2a,根据勾股定理用a表示出CE,根据三角形的面积公式求出BG,根据勾股定理求出CG,证明△CHD≌△BGC,得到CH=BG,证明CH=GH,根据线段垂直平分线的性质证明结论.【详解】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,在△ABF和△BCE中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG ) =12×CE ×BF =12×8×8 =32;(3)证明:如图3,过点D 作DH ⊥CE 于H , 设AB =CD =BC =2a ,∵点E 是AB 的中点,∴EA =EB =12AB =a , ∴CE=,在Rt △CEB 中,12BG •CE =12CB •EB , ∴BG=5CB EB a CE ⋅=, ∴CG5a =, ∵∠DCE +∠BCE =90°,∠CBF +∠BCE =90°, ∴∠DCE =∠CBF ,∵CD =BC ,∠CHD =∠CGB =90°,∴△CHD ≌△BGC (AAS ),∴CH =BGa , ∴GH =CG ﹣CHa =CH , ∵CH =GH ,DH ⊥CE ,∴CD =GD ;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用.。
新苏科版八年级数学下册第二学期5月月考试卷百度文库
新苏科版八年级数学下册第二学期5月月考试卷百度文库一、选择题1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有 A .1组B .2组C .3组D .4组2.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .3.如果a =32+,b =3﹣2,那么a 与b 的关系是( )A .a +b =0B .a =bC .a =1bD .a >b4.已知关于x 的方程23x mx -=+的解是负数,则m 的取值范围为( ) A .6m >-且3m ≠- B .6m >- C .6m <-且3m ≠- D .6m <-5.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意..四边形的面积为a ,则它的中点四边形面积为( ) A .12a B .23a C .34a D .45a 6.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .7.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( ) A .2000 B .200 C .20 D .2 8.下列图形不是轴对称图形的是( )A .等腰三角形B .平行四边形C .线段D .正方形9.关于x 的一元二次方程x 2+(a 2﹣2a )x+a ﹣1=0的两个实数根互为相反数,则a 的值为( ) A .2 B .0C .1D .2或0 10.要反应一周气温的变化情况,宜采用( )A .统计表B .条形统计图C .扇形统计图D .折线统计图二、填空题11.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).12.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.13.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是_____.14.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .15.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.16.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.17.如图,在 ABCD 中,若∠A =2∠B ,则∠D =________°.18.任意掷一枚质地均匀的骰子,下列事件:①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数,这些事件发生的可能性大小,按从小到大的顺序排列为_____.19.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为 .20.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AB 边中点,菱形ABCD 的周长为24,则OH 的长等于___.三、解答题21.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22.已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.23.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.24.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.25.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.26.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.27.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?28.如图,反比例函数ky x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数ky x=的图像上另一点(,2)C n -.(1)求反比例函数ky x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0kax b x +-≥的解集为_________(4)若()11,D x y 在ky x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】如图,(1)∵AB ∥CD ,AD ∥BC , ∴四边形ABCD 是平行四边形; (2)∵AB ∥CD , ∴∠ABC+∠BCD=180°, 又∵∠BAD=∠BCD , ∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.D解析:D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.A解析:A【分析】先利用分母有理化得到a32),从而得到a与b的关系.【详解】∵a32+32(32)(32)-+-32),而b32,∴a=﹣b,即a+b=0.故选:A.【点睛】3﹣2是解答本题的关键.4.A解析:A 【分析】解分式方程,得到含有m 得方程的解,根据“方程的解是负数”,结合分式方程的分母不等于零,得到两个关于m 得不等式,解之即可. 【详解】解:方程两边同时乘以1x +得:3(1)x m x -=+, 解得:6=--x m , 又∵方程的解是负数, ∴60--<m , 解不等式得:6m >-, 综上可知:6m >-且3m ≠-, 故本题答案为:A. 【点睛】本题考查了分式方程的解;解一元一次不等式.解决本题的关键是熟练掌握分式方程的解法过程,注意分式方程分母不为0这一要求.5.A解析:A 【分析】由E 为AB 中点,且EF 平行于AC ,EH 平行于BD ,得到△BEK 与△ABM 相似,△AEN 与△ABM 相似,利用面积之比等于相似比的平方,得到△EBK 面积与△ABM 面积之比为1:4,且△AEN 与△EBK 面积相等,进而确定出四边形EKMN 面积为△ABM 的一半,同理得到四边形KFPM 面积为△BCM 面积的一半,四边形QGPM 面积为△DCM 面积的一半,四边形HQMN 面积为△DAM 面积的一半,四个四边形面积之和即为四个三角形面积之和的一半,即为四边形ABCD 面积的一半,即可得出答案. 【详解】解:如图,画任意四边形ABCD ,设AC 与EH ,FG 分别交于点N ,P ,BD 与EF ,HG 分别交于点K ,Q ,则四边形EFGH 即为它的中点四边形,∵E 是AB 的中点,EF//AC ,EH//BD , ∴△EBK ∽△ABM ,△AEN ∽△ABM ,∴EBK ABM S S ∆∆=14,S △AEN =S △EBK ,∴EKMN ABMS S ∆四边形=12, 同理可得:KFPM BCMS S ∆四边形=12,QGPM DCM S S ∆四边形=12,HQMN DAM S S ∆四边形=12, ∴EFGH ABCDS S 四边形四边形=12, ∵四边形ABCD 的面积为a , ∴四边形EFGH 的面积为12a , 故选:A . 【点睛】本题考查了三角形中位线的性质,相似三角形的判定和性质,掌握知识点是解题关键.6.C解析:C 【解析】解:A .是轴对称图形,不是中心对称图形,故本选项错误; B .既不是轴对称图形,又不是中心对称图形,故本选项错误; C .既是轴对称图形又是中心对称图形,故本选项正确; D .不是轴对称图形,是中心对称图形,故本选项错误. 故选C .点睛:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B 【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量 【详解】解:2000×10%=200,故样本容量是200. 故选:B . 【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.8.B解析:B 【分析】根据轴对称图形的概念判断即可. 【详解】等腰三角形是轴对称图形,故A 错误;平行四边形不是轴对称图形,故B正确;线段是轴对称图形,故C错误;正方形是轴对称图形,故D错误;故答案为:B.【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.9.B解析:B【解析】设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2-2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=-4<0,故a=2舍去,所以a的值为0.故选B.10.D解析:D【分析】反应一周气温的变化情况,即反应一周气温的升高、降低的变化情况,因此采取折线统计图较好.【详解】解:折线统计图能够直观反应出一组数据的增减变化情况,因此要反应一周的气温变化情况,采用折线统计图较好,故选:D.【点晴】本题考查了各种统计图表的特征及应用,掌握统计图表的特征是解题的关键.二、填空题11.大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断. 【详解】解:从中任意摸出1只球.摸出的是红球的概率=67, 摸出的是白球的概率=17, 所以摸出的是红球的可能性大于摸出的是白球的可能性. 故答案为:大于. 【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.12.0或-2 【分析】根据(ab≠0),可以得到a 和b 的关系,从而可以求得所求式子的值. 【详解】解:∵(ab≠0), ∴,∴(a2+b2)2=4a2b2, ∴(a2﹣b2)2=0, ∴a2=b2解析:0或-2 【分析】根据2222114a b a b +=+(ab ≠0),可以得到a 和b 的关系,从而可以求得所求式子的值. 【详解】解:∵2222114a b a b+=+(ab ≠0), ∴2222224b a a b a b+=+, ∴(a 2+b 2)2=4a 2b 2, ∴(a 2﹣b 2)2=0, ∴a 2=b 2, ∴a =±b ,经检验:a b =±符合题意,当a =b 时,2019202020192020110,b a a b ⎛⎫⎛⎫-=-= ⎪⎪⎝⎭⎝⎭当a =﹣b 时,()()2019202020192020112,b a a b ⎛⎫⎛⎫-=---=- ⎪ ⎪⎝⎭⎝⎭ 故答案为:0或﹣2.【点睛】 本题考查的是代数式的值,同时考查了因式分解的应用,类解分式方程的方法,掌握以上知识是解题是关键.13.【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT△BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO=A 解析:245【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =12AC =3cm ,BO =12BD =4cm ,AO ⊥BO ,∴BC 5cm ,∴S 菱形ABCD =2BD AC ⋅==12×6×8=24cm 2, ∵S 菱形ABCD =BC ×AE ,∴BC ×AE =24,∴AE =24245BC =cm . 故答案为:245cm . 【点睛】 此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.14.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.15.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】=---=解:第四组的频率10.10.30.40.2【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.17.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.18.①③②【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【详解】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;解析:①③②【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【详解】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为16;②面朝上的点数大于2的有4种结果,其概率为42 63 =;③面朝上的点数是奇数的有3种结果,其概率为31 62 =;∵112 623 <<,∴按从小到大的顺序排列为:①③②;故答案为:①③②.【点睛】考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.19.【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO解析:【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴223BC EC EB=-=【点睛】解题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.20.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH的长.【详解】∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AB的中点,从而求得OH 的长.【详解】∵菱形ABCD的周长等于24,∴AB=244=6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=12AB=3.故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题21.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.22.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.23.(1)见解析;(2)15;见解析.【分析】(1)连接BD作线段BD的垂直平分线MN交AD于点E,点E即为所求.(2)证明△ABE的周长=AB+AD即可.【详解】解:(1)如图,点E即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.24.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI .∵四边形ABCD 是正方形,∴AD =AB ,∠ADF =∠ABC =90°,∴∠ABI =90°,又∵BI =DF ,∴△DAF ≌△BAI (SAS ),∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,又∵AE是△EAI与△EAF的公共边,∴△EAI≌△EAF(SAS),∴∠BEA=∠FEA.【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.25.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.26.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,1=0.25,解得x=3.1x答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.27.(1)50;32;43.2(2)见解析(3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.28.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数 (2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =,∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x-=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0. 【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.。
苏科初二数学下册5月月考试卷百度文库
苏科初二数学下册5月月考试卷百度文库一、选择题1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组B.2组C.3组D.4组2.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个3.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°4.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A’,若∠C=120°,∠A=26°,则∠A′DB的度数是()A.120°B.112°C.110°D.100°5.如图,函数kyx=-与1y kx=+(0k≠)在同一平面直角坐标系中的图像大致()A.B.C.D.6.下列条件中,不能..判定平行四边形ABCD为矩形的是()A.∠A=∠C B.∠A=∠B C.AC=BD D.AB⊥BC7.若分式5x x-的值为0,则( ) A .x =0 B .x =5C .x ≠0D .x ≠58.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为( ) A .20B .25C .30D .1009.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .10.如图,是一组由菱形和矩形组成的图案,第1个图中菱形的面积为S (S 为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第2020个图中阴影部分的面积可以用含S 的代数式表示为( )(S ≥2且S 是正整数)A .20184S B .20194S C .20204S D .20214S二、填空题11.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”) 12.在平面直角坐标系中,点P (5,﹣3)关于原点对称的点的坐标是___. 13.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠=_________.14.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .15.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.16.当a <0时,化简|2a ﹣2a |结果是_____.17.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.18.在整数20200520中,数字“0”出现的频率是_________.19.如果用A 表示事件“三角形的内角和为180°”,那么P (A )=_____.20.如图,正方形ABCD 的边长为a ,对角线AC 和BD 相交于点O ,正方形A 1B 1C 1O 的边OA 1交AB 于点E ,OC 1交BC 于点F ,正方形A 1B 1C 1O 绕O 点转动的过程中,与正方形ABCD 重叠部分的面积为_____(用含a 的代数式表示)三、解答题21.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF 求证:四边形BECF 是平行四边形.22.已知:如图,在 ABCD 中,点E 、F 分别在AD 、BC 上,且∠ABE =∠CDF . 求证:四边形BFDE 是平行四边形.23.如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.24.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.25.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平形四边形的第四个顶点D的坐标.26.如图,反比例函数kyx=的图像经过第二象限内的点(1,)A m-,AB x⊥轴于点B,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数ky x=的图像上另一点(,2)C n -.(1)求反比例函数ky x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0kax b x +-≥的解集为_________(4)若()11,D x y 在ky x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.27.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .28.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB=BC ,∠ABC =120゜,∠MBN=60゜,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),试猜想线段AE 、CF 、EF 之间存在的数量关系为 .(不需要证明);(2)当∠MBN 绕B 点旋转到AE ≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE 、CF 、EF 又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.C解析:C【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】第1个,即不是轴对称图形,也不是中心对称图形,故本选项错误;第2个,既是轴对称图形,也是中心对称图形,故本选项正确;第3个,既是轴对称图形,也是中心对称图形,故本选项正确;第4个,既是轴对称图形,也是中心对称图形,故本选项正确.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念是解题关键.3.C解析:C【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=12(180°-∠BAC)=12(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=12BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°. 故选:C . 【点睛】此题考查等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE 是等腰直角三角形是解题的关键.4.B解析:B 【分析】根据轴对称和平行线的性质,可得∠A 'DE =∠B ,又根据∠C =120°,∠A =26°可求出∠B 的值,继而求出答案. 【详解】解:由题意得:DE ∥BC ,∴∠A 'DE =∠B =180°﹣120°﹣26°=34°, ∴∠BDE =180°﹣∠B =146°,故∠A 'DB =∠BDE ﹣∠A 'DE =146°﹣34°=112°. 故选:B . 【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.5.B解析:B 【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项. 【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数ky x=-的图象分布在二、四象限,没有选项符合题意;当k 0<时,函数1y kx =+的图象经过一、二、四象限,反比例函数ky x=-的图象分布在一、三象限,B 选项正确, 故选:B . 【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大.6.A解析:A 【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可. 【详解】A 、∠A=∠C 不能判定这个平行四边形为矩形,故此项错误;B 、∵∠A=∠B ,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确; C 、AC=BD ,对角线相等,可推出平行四边形ABCD 是矩形,故此项正确; D 、AB ⊥BC ,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确; 故选:A . 【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.7.B解析:B 【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案. 【详解】解:∵分式5x x-的值为0, ∴x ﹣5=0且x ≠0, 解得:x =5. 故选:B . 【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.8.B解析:B 【分析】根据频率、频数的关系:频数=频率×数据总和,可得这一小组的频数. 【详解】解:∵容量是50的,某一组的频率是0.5, ∴样本数据在该组的频数0.55025⨯== . 故答案为B . 【点睛】本题考查频率、频数、总数的关系,属于基础题,比较简单,注意熟练掌握:频数=频率×数据总和.9.B解析:B 【解析】 【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可 【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误; 故选B 【点睛】此题考查中心对称图形,难度不大10.B解析:B 【分析】观察图形发现第2个图形中的阴影部分的面积为S 4,第3个阴影部分的面积为16S,依此类推,得到第n 个图形的阴影部分的面积即可. 【详解】解:观察图形发现:第2个图形中的阴影部分的面积为S4, 第3个图形中的阴影部分的面积为16S , …第n 个图形中的阴影部分的面积为14n S ,故第2020个图中阴影部分的面积可以用含S 的代数式表示为20194S .故选:B . 【点睛】本题考查了图形的变化类问题,解题的关键是仔细的观察图形,找到规律用通项公式表示出来.二、填空题11.不可能事件. 【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件. 故答案为不可能事件.解析:不可能事件. 【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.12.(﹣5, 3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).故答案为: (﹣5, 3).解析:(﹣5, 3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).故答案为: (﹣5, 3).13.40°【详解】因为OA=OB,所以.故答案为:解析:40°【详解】因为OA=OB,所以180402AOBOAB︒-∠∠==︒.故答案为:40︒14.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.15.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16.﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根解析:﹣3a【分析】首先利用a 的取值范围化简,进而去绝对值求出答案.【详解】∵a <0,∴2a |=|﹣a ﹣2a |=|﹣3a |=﹣3a .故答案为:﹣3a .【点睛】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.17.3【分析】由,平分,易证得是等腰三角形,即可求得,又由四边形是等腰梯形,易证得,然后由,根据直角三角形的两锐角互余,即可求得,则可求得的值,继而求得的值.【详解】解:∵,,∴,,∵平分,解析:3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.18.5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是.故答案为:.【点睛】此题主要考查了频率的求解析:5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12. 故答案为:12. 【点睛】此题主要考查了频率的求法,正确把握定义是解题关键. 19.1【分析】先判断出事件A 是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A )=1,故答案为:1.【点睛】解析:1【分析】先判断出事件A 是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P (A )=1,故答案为:1.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.a2.【分析】由题意得OA =OB ,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA 可证△AOE≌△BOF,由全等三角形的性 解析:14a 2. 【分析】 由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE +∠EOB =90°,∠BOF +∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性质可得S △AOE =S △BOF ,可得重叠部分的面积为正方形面积的14,即可求解. 【详解】解:在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°,∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°,∴∠AOE =∠BOF . 在△AOE 和△BOF 中OAE OBF OA OBAOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2. 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE ≌△BOF是本题的关键.三、解答题21.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.22.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.23.(1)见解析;(2)15 2【分析】(1)由矩形的性质得到AB∥CD,再根据平行线的性质得到∠DFO=∠BEO再证明△DOF≌△BOE,根据全等三角形的性质得到DF=BE,从而得到四边形BEDF是平行四边形;(2)先证明四边形BEDF是菱形,再得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2,∴x 2+62=(8-x)2.解得x =74. ∴DE =8-74=254. 在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD 2,∴BD=10.∴OD =12BD =5. 在Rt △DOE 中,根据勾股定理,有DE 2-OD 2=OE 2,∴OE=154. ∴EF =2OE =152. 【点睛】 考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.24.(1)图见解析;(2)图见解析;(3)x 的值为6或7.【分析】(1)分别作出B 、C 的对应点B 1,C 1即可解决问题;(2)分别作出A 、B 、C 的对应点A 2、B 2、C 2即可解决问题;(3)观察图形即可解决问题.【详解】(1)作图如下:△AB1C1即为所求;(2)作图如下:△A2B2C2即为所求;(3)P点如图,x的值为6或7.【点睛】本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.25.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】---,根据关于原点对称的点解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)--,描点连线,的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:则由图可知D 点的坐标分别为:(3,1),(1,1),(5,3)---,故答案为:(1,1),(5,3),(3,1)---.【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.26.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数 (2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x -=,又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0. 【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.27.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE为平行四边形,∴BF=AE,即t=6﹣2t,解得:t=2.答:当t=2秒时,EF∥AB.【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t的一元一次方程是解题的关键.28.(1)AE+CF=EF;(2)如图2,(1)中结论成立,即AE+CF=EF;如图3,(1)中结论不成立,AE=EF+CF.【分析】(1)根据题意易得△ABE≌△CBF,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC到H,使CH=AE,连接BH,根据题意可得△BCH≌△BAE,则有BH=BE,∠CBH=∠ABE,进而可证△HBF≌△EBF,推出HF=EF,最后根据线段的等量关系可求解;如图3,在AE上截取AQ=CF,连接BQ,根据题意易得△BCF≌△BAQ,推出BF=BQ,∠CBF=∠ABQ,进而可证△FBE≌△QBE,推出EF=QE即可.【详解】解:(1)如图1,AE+CF=EF,理由如下:∵AB⊥AD,BC⊥CD,∴∠A=∠C=90°,∵AB=BC,AE=CF,∴△ABE≌△CBF(SAS),∴∠ABE=∠CBF,BE=BF,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴11,22AE BE CF BF==,∵∠MBN=60°,BE=BF,∴△BEF是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
最新苏科八年级苏科初二数学下册第二学期5月月考试卷及答案
最新苏科八年级苏科初二数学下册第二学期5月月考试卷及答案一、解答题1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.2.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.3.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.4.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.5.一粒木质中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平滑的.将它从定高度下掷,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下.由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:试验次数20406080100120140160“帅”字面朝上频数a18384752667888相应频率0.70.450.630.590.520.550.56b=;=;(2)画出“帅”字面朝上的频率分布折线图;(3)如图实验数据,实验继续进行下去,根据上表的这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?6.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.7.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.8.化简求值:221211x x xx x x x++⎛⎫-÷⎪--⎝⎭,其中31x=-9.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?10.在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF 的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.11.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.12.如图,在ABC中,∠BAC=90°,DE是ABC的中位线,AF是ABC的中线.求证DE=AF.证法1:∵DE是ABC的中位线,∴DE=.∵AF是ABC的中线,∠BAC=90°,∴AF=,∴DE=AF.请把证法1补充完整,连接EF,DF,试用不同的方法证明DE=AF证法2:13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.14.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.15.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;(2)在(1)中该菱形的边长是,面积是;(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画个菱形.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2.3.(1)150人;(2)见解析;(3)192人 【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形; (3)总人数乘以样本中围棋的人数所占百分比即可. 【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人). 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 4.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析.【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解; (2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解; (3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩,∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10, ∵四边形OABC 是矩形, ∴∠B =90°,BC =6,AB =8, ∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4, ∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=, ∴()22248a a +-=,解得a =3,∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N , ∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA , ∴∠ENO =∠NOM =∠OME =90°, ∴四边形OMEN 是矩形, ∴EM =ON . ①当EC =EO 时, ∵EC =EO ,NE ⊥OC , ∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时, ∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=, 在Rt △ENO 中,222NE EO ON -=, 即()2222688b b ---=, 解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法. 5.(1)14,0.55;(2)图见解析;(3)0.55. 【分析】(1)根据图中给出的数据和频数、频率与总数之间的关系分别求出a 、b 的值; (2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小. 【详解】(1)a =20×0.7=14; b =88160=0.55; 故答案为:14,0.55;(2)根据图表给出的数据画折线统计图如下:(3)随着试验次数的增加“帅”字面朝上的频率逐渐稳定在0.55左右,利用这个频率来估计概率,得P (“帅”字朝上)=0.55.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.6.(1)0.25;(2)3个. 【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可. 【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近, ∴估计从袋中摸出一个球是黑球的概率是0.25; (2)设袋中白球为x 个, 11x+=0.25,解得x =3. 答:估计袋中有3个白球, 故答案为:(1)0.25;(2)3个. 【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近. 7.(1)见解析;(2)见解析. 【分析】(1)由“AAS”可证△AFE ≌△DBE ,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质的AD =DC ,即可证明四边形ADCF 是菱形. 【详解】 (1)∵AF ∥BC , ∴∠AFE=∠DBE∵△ABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点, ∴AE=DE ,BD=CD 在△AFE 和△DBE 中,AFE DBE AEF BED AE DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AFE ≌△DBE (AAS )) ∴AF=BD(2)由(1)知,AF=BD ,且BD=CD , ∴AF=CD ,且AF ∥BC , ∴四边形ADCF 是平行四边形∵∠BAC=90°,D 是BC 的中点,∴AD =12BC =DC ∴四边形ADCF 是菱形【点睛】本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质.证明AD =DC 是解题的关键.8.11x +【分析】通分合并同类项,再约分,代入求值.【详解】 原式222111(1)x x x x x x -=⋅=+-+代入得原式== 【点睛】本题考查分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.9.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x 件衬衫,用含x 的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x 件衬衫,则第二批购进了2x 件衬衫. 根据题意得12000x =264002x-10 解得x=120. 经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.10.(1)254(2)152【分析】 (1)根据折叠的性质可得∠ADB=∠EDB ,再根据两直线平行,内错角相等可得∠ADB=∠DBC ,然后求出∠FBD=∠FDB ,根据等角对等边可得BF=DF ,设BF=x ,表示出CF ,在Rt △CDF 中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH ,设BH=DH=x ,表示出CH ,然后在Rt △CDH 中,利用勾股定理列出方程求出x ,再连接BD 、BG ,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中, S 菱形BHDG =12BD ⋅GH=BH ⋅CD ,即12×10⋅GH=254×6,解得GH=152.故答案:152【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.11.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B ′D ′为对角线时,∵四边形B ′PD ′Q 为平行四边形,∴63162n m n ⎧-=⎪⎨⎪-=-⎩,解得:13232m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴P (132,0),Q (32,4); ②当B ′D ′为边时. ∵四边形PQB ′D ′为平行四边形, ∴626031m n n-=-⎧⎪⎨-=-⎪⎩,解得:73m n =⎧⎨=⎩, ∴P (7,0),Q (3,2);∵四边形B ′QPD ′为平行四边形, ∴626031n m n -=-⎧⎪⎨-=-⎪⎩,解得:73m n =-⎧⎨=-⎩. 综上可知:存在x 轴上的点P 和反比例函数图象上的点Q ,使得以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形,符合题意的点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE ≌△BAF ;(2)找出关于k 、t 的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k 是关键. 12.2BC ,2BC ,证明见解析 【分析】 证法1:根据三角形中位线定理得到DE=12BC ,根据直角三角形的性质得到AF=12BC ,等量代换证明结论;证法2:连接DF 、EF ,根据三角形中位线定理得到DF ∥AC ,EF ∥AB ,证明四边形ADFE 是矩形,根据矩形的对角线相等证明即可.【详解】证法1:∵DE 是△ABC 的中位线,∴DE=12BC , ∵AF 是△ABC 的中线,∠BAC=90°,∴AF=12BC , ∴DE=AF ,证法2:连接DF 、EF ,∵DE 是△ABC 的中位线,AF 是△ABC 的中线,∴DF 、EF 是△ABC 的中位线,∴DF ∥AC ,EF ∥AB ,∴四边形ADFE 是平行四边形,∵∠BAC=90°,∴四边形ADFE 是矩形, ∴DE=AF .故答案为:12BC ;12BC . 【点睛】本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.14.(1)见解析;(2)①②③④;(3)①证明见解析;②3【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF ≌△ECF ,再结合∠ACE =∠AFE 可推出AC ∥EF ,AF ∥CE ,则证明了准菱形ACEF 是平行四边形,又因为AC =EC 即可得出准菱形ACEF 是菱形;②取AC 的中点M ,连接BM 、DM ,根据四边形ACEF 是菱形可得A 、B 、C 、D 四点共圆,点M 是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC ,再根据∠ACD =30°即可求出AD ,CD 的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD是等腰直角三角形,∴BM=DM=2BD=2×2=1,∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC×sin30°=1,CD=AC×cos30°=3,∴菱形ACEF的面积=12×1×3×4=23.【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.15.(1)见解析;(2)10,6;(3)3【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【详解】解:(1)如图,菱形AEBF即为所求.(2)AE=223+1=10,菱形AEBF的面积=12×6×2=6,故答案为10,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点睛】本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.。
八年级第二学期5月份月考数学试卷含解析
一、选择题1.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A .1B .2C .3D .42.如图,在正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于点G,连接AG 、HG .下列结论:①CE ⊥DF ;②AG=DG;③∠CHG=∠DAG .其中,正确的结论有( )A .0个B .1个C .2个D .3个 3.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .1324.如图,ABCD 中,对角线,AC BD 交于点O ,2BD AD =,, , E F G 分别是,OC OD ,AB 的中点.下列结论正确的是( )①EG EF =;②EFG GBE ≌△△;③FB 平分EFG ;④EA 平分GEF ∠;⑤四边形BEFG 是菱形.A .③⑤B .①②④C .①②③④D .①②③④⑤5.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥ D .16AFD AFB S S ∆∆+=+6.如图,在ABC 中,6AB =,8AC =,10BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为( )A .245B .4C .5D .1257.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =55;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .58.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .49.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .222-B .222+C .252-D .22+10.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .4二、填空题11.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.12.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.13.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).14.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________15.如图,在矩形ABCD 中,∠ACB =30°,BC =3E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.16.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.17.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,18.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=a,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B,而是经过了AB边上的M点,如果AD=a,测得EC=3BM,那么AB长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图1所示,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AE、AF.(1)求证:AE=AF;(2)取AF的中点M,EF的中点N,连接MD,MN.则MD,MN的数量关系是,MD、MN的位置关系是(3)将图2中的直角三角板ECF,绕点C旋转180°,如图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.CP将线段CP绕点C顺时针旋转90, 22.如图,点P是正方形ABCD内的一点,连接,得到线段,CQ 连接,BP DQ .()1如图甲,求证:CBP CDQ ∠=∠;()2如图乙,延长BP 交直线DQ 于点E .求证:BE DQ ⊥;()3如图丙,若BCP 为等边三角形,探索线段,PD PE 之间的数量关系,并说明理由.23.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .24.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.25.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)26.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD=_________cm;=;(2)求证:PB PQ、、、为顶点的四边形为平行四边形?(3)当t为何值时,以P Q D M27.如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段 BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.28.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数是否发生改变?探究问题:(1)首先考察点的两个特殊位置:①当点与点重合时,如图1所示,____________②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.29.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒2246B BP PD +=时,求PD 之长.30.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长= EF=FG=GH=HE =2AB,故⑤正确,没有条件可证明EG=12BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.2.C解析:C【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12 DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=12 CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD, AH 垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH ≌△DCF∴∠DAH=∠CDF ,∴∠DAG=2∠CDF,∵GH=DH ,∴∠HDG=∠HGD ,∴∠GHC=∠HDG+∠HGD=2∠CDF ,∴∠GHC=∠DAG ,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE ≌△CDF ,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC ,而DG≠DC ,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF 即可.3.B解析:B【解析】【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则2CH AB ==4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠=,ABC ∆∴为等边三角形,CH AB ∴==,4AH BH ==, 3PB =,1HP ∴=,在Rt CHP ∆中,7CP ==,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选:B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.4.B解析:B【分析】由中点的性质可得出//EF CD ,且12EF CD BG ,结合平行即可证得②结论成立,由2BD BC =得出BO BC =,即而得出BE AC ⊥,由中线的性质可知//GP BE ,且12GP BE ,AO EO =,通过证APG EPG 得出AG EG EF 得出①成立,再证GPE FPE 得出④成立,此题得解.【详解】解:令GF 和AC 的交点为点P ,如图E 、F 分别是OC 、OD 的中点,//EF CD ∴,且12EF CD =, 四边形ABCD 为平行四边形,//AB CD ∴,且AB CD =,//AB EF ∴ FEG BGE (两直线平行,内错角相等),点G 为AB 的中点,1122BG AB CD FE ,在EFG ∆和GBE ∆中,BG FE FEG BGE GE EG ,()EFGGBE SAS ,即②成立, EGF GEB ,FE BG ,//GF BE (内错角相等,两直线平行),2BD BC =,点O 为平行四边形对角线交点,12BO BD BC ,E 为OC 中点, BE OC ∴⊥, GP AC ,90APG EPG//GP BE ,G 为AB 中点, P ∴为AE 中点,即AP PE =,且12GPBE , 在APG ∆和EGP ∆中,AP EP APG EPG GP GP , ()APGEPG SAS , 12AG EG AB , EG EF ∴=,即①成立,//EF BG ,//GF BE ,∴四边形BGFE 为平行四边形,GF BE ∴=, 1122GP BE GF , GPFP , GF AC ,90GPEFPE 在GPE 和FPE ∆中,GP FP GPE FPE EP EP ,()GPEFPE SAS , GEP FEP ,EA ∴平分GEF ∠,即④成立,综上所述,正确的有①②④,故选:B .【点睛】本题考查了全等三角形的判定与性质、中位线定理以及平行线的性质定理,解题的关键是利用中位线,寻找等量关系,借助于证明全等三角形找到边角相等.5.B解析:B【分析】A 、首先利用已知条件根据边角边可以证明△APD ≌△AEB ;B 、利用全等三角形的性质和对顶角相等即可解答;C 、由(1)可得∠BEF =90°,故BE 不垂直于AE 过点B 作BP ⊥AE 延长线于P ,由①得∠AEB =135°所以∠PEB =45°,所以△EPB 是等腰Rt △,于是得到结论;D 、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD 中,AB =AD ,∵AF ⊥AE ,∴∠BAE +∠BAF =90°,又∵∠DAF +∠BAF =∠BAD =90°,∴∠BAE =∠DAF ,在△AFD 和△AEB 中,AE AF BAE DAF AB AD =⎧⎪∠∠⎨⎪=⎩=∴△AFD ≌△AEB (SAS ),故A 正确;∵AE =AF ,AF ⊥AE ,∴△AEF 是等腰直角三角形,∴∠AEF =∠AFE =45°,∴∠AEB =∠AFD =180°−45°=135°,∴∠BEF =135°−45°=90°,∴EB ⊥ED ,故C 正确;∵AE =AF 2,∴FE 2AE =2,在Rt △FBE 中,BE 221046FB FE -=-=∴S △APD +S △APB =S △APE +S △BPE ,=112226 22⨯⨯+⨯⨯16=+,故D正确;过点B作BP⊥AE交AE的延长线于P,∵∠BEP=180°−135°=45°,∴△BEP是等腰直角三角形,∴BP=2632⨯=,即点B到直线AE的距离为3,故B错误,故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.6.D解析:D【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用面积法可求得AP最短时的长,然后即可求出AM最短时的长.【详解】解:连接AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=12 AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴S△ABC=12BC•AP=12AB•AC,∴12×10AP=12×6×8,∴AP最短时,AP=245,∴当AM最短时,AM=12AP=125.故选:D.【点睛】此题主要考查学生对勾股定理逆定理的应用、矩形的判定和性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定难度.7.C解析:C【分析】①由翻折知∠ABE=∠AB'E=90º,再证∠M=∠CB'E=∠B'AD即可;②借助轴对称可知;③利用计算,勾股定理求B′D,构造方程,求EB,在构造勾股定理求MB′=55;④由相似CB':BM=CE:BE,BM=103,在计算B'M>5;⑤证△BEG≌△B′PG得BE=B′P,再证菱形即可.【详解】①由折叠性质知∠ABE=∠AB'E=90º,∴∠CB'E+∠AB'D=90º∵∠D=90º∴∠B'AD+∠AB'D=90º∴∠CB'E=∠B'AD,∵CD∥MB,∴∠M=∠CB'E=∠B'AD;②点P在对称轴上,则B'P=BP;③由翻折,AB=AB'=5,AD=4,由勾股定理DB'=3,∴CB'=5-3=2,设BE=x=B'E,CE=4-x,在Rt△B′CE中,∠C=90º,由勾股定理(4-x)2+22=x2,解得x=52,∴CE=4-52=32,在Rt△ABE中,∠ABE=90º,AE=22555+5=22⎛⎫⎪⎝⎭;④由BM∥CB′∴△ECB′∽△EBM,∴CB':BM=CE:BE,∴2:BM=32:52,∴BM=103,则B'M=221020+4=33⎛⎫⎪⎝⎭>5=CD;⑤连接BB′,由对称性可知,BG=B′G,EP⊥BB′,BE∥B′P,∴△BEG≌△B′PG,∴BE=B′P,∴四边形BPB′E为平行四边形,又BE=EB′,所以四边形BPB′E是菱形,所以PB′=B'E.故选择:C.【点睛】此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现△BEG≌△B′PG.8.C解析:C【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出最大值BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【详解】解:①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);②∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);③点H与点A重合时,此时BF最小,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,点G与点D重合时,此时BF最大,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,22+=542MF ME+22综上所述,结论正确的有①③④共3个,故选C.【点睛】本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.9.B解析:B【分析】取DC 的中点E ,连接OE 、DE 、OD ,根据三角形的任意两边之和大于第三边可知当O 、E 、D 三点共线时,点D 到点O 的距离最大,再根据勾股定理求出DE 的长,根据直角三角形斜边上的中线等于斜边的一半求出OE 的长,两者相加即可得解.【详解】取AB 中点E ,连接OE 、DE 、OD ,90MON ∠=︒, 122OE AB ∴==. 在Rt DAE ∆中,利用勾股定理可得22DE =.在ODE ∆中,根据三角形三边关系可知DE OE OD +>,∴当O 、E 、D 三点共线时,OD 最大为222OE DE +=+.故选B .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O 、E 、D 三点共线时,点D 到点O 的距离最大是解题的关键.10.C解析:C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM , ∵BF ⊥AD ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN ,∴∠BFE=2∠DEF ,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题11.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP ),∴CE=2(AC+CP ),当AC=2,CP=CD=1时,OC=2×(2+1)=2,当AC=2,CP=CB=5时,OC=2×(2+5)=2,∴当P 从点D 出发运动至点B 停止时,点O 的运动路径长-2.故答案为点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.12.24【分析】由菱形的性质可得OD =OB ,∠COD =90°,由直角三角形的斜边中线等于斜边的一半,可得OH =12BD =OB ,可得∠OHB =∠OBH ,由余角的性质可得∠DHO =∠DCO ,即可求解. 【详解】 【解答】解:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∠DAB =∠DCB =48°,∵DH ⊥AB ,∴OH =12BD =OB , ∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO =12∠DCB =24°, 故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH 是BD 的一半,和∠DHO =∠DCO 是解决本题的关键.13.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA 证明△AEF ≌△DMF ,得出EF=MF ,∠AEF=∠M ,由直角三角形斜边上的中线性质得出CF=1 2EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DMF中,A FDMAF DFAFE DFM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF≌△DMF(ASA),∴EF=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=12EM=EF,∴∠FEC=∠ECF,∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB∥CD,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°,∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF≌△DMF是解题关键.14.①②④⑤【分析】根据∠B=90°,AB=BE,△ABE绕点A逆时针旋转45°,得到△AHD,可得△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,可证AD//BC,根据DC⊥BC,可得∠HDE=∠CDE,根据三角形的内角和可得∠HDE=∠CDE,即DE平分∠HDC,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD是矩形,有∠ADC=90°,∠HDC=45°,由①有DE平分∠HDC,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH,利用 AE=AD易证∠OHE=∠HEO=67.5°,则有OE=OH,OD=OE,所以②正确;利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE ≅△AHD ,并且△ABE 和△AHD 都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED ,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC ,∴∠ADE=∠DEC ,∴∠AED=∠DEC ,又∵DC ⊥BC ,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE ,即:DE 平分∠HDC ,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD 是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE 平分∠HDC ,∴∠HDO=12∠HDC=12×45°=22.5°, ∵∠BAE=45°,AB=AH , ∴∠OHE=∠AHB=12 (180°−∠BAE)= 12×(180°−45°)=67.5°, ∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH ,在△AED 中,AE=AD ,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°, ∴∠OHE=∠HEO=67.5°,∴OE=OH ,∴OD=OE ,所以②正确;在△DHE 和△DCE 中,DHE DCE HDE CDE DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE ≅ΔDCE(AAS),∴DH=DC ,∠HDE=∠CDE=12×45°=22.5°, ∵OD=OH ,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③不正确;如图,过H作HJ⊥BC于J,并延长HJ交AD于点I,∵△ABE是等腰直角三角形,JH⊥JE,∴JH=JE,又∵J是BC的中点,H是BF的中点,∴2JH=CF,2JC=BC,JC=JE+CE,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC,即有:BC−CF=2CE,所以④正确;∵AD//BC,∴IJ⊥AD,又∵△AHD是等腰直角三角形,∴I是AD的中点,∵四边形ABCD是矩形,HJ⊥BC,∴J是BC的中点,∴H是BF的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键.15.42a23【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG的长,作辅助线,构建矩形ABHM和高线GM,如图2,通过画图发现:当GE⊥BC时,AG最小,即a 最小,可计算a的值,从而得结论.【详解】∵四边形ABCD是矩形,∴∠B=90°,∵∠ACB=30°,BC=3,∴AB=2,AC=4,∵AG=a,∴CG=4a-,如图1,过G作MH⊥BC于H,交AD于M,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11323222a aAD MG=⋅=⨯⨯=,当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a=,∴△ADG 的面积的最小值为4233⨯=,故答案为:42a -. 【点睛】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.16.(-,0)【分析】先计算得到点D 的坐标,根据旋转的性质依次求出点D 旋转后的点坐标,得到变化的规律即可得到答案.【详解】∵菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,∴对角线的交点D 的坐标是(2,2),∴OD ==将菱形绕点O 以每秒45︒的速度逆时针旋转,旋转1次后坐标是(0,),旋转2次后坐标是(-2,2),旋转3次后坐标是(-,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-旋转6次后坐标是(2,-2),旋转7次后坐标是(,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,由此得到点D 旋转后的坐标是8次一个循环,∵201982523÷=,∴第2019秒时,菱形两对角线交点D 的坐标为(-,0)故答案为:(-0).【点睛】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D 的坐标依次求出旋转后的坐标得到变化规律是解题的关键.17.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠ 22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.18.【分析】连接AF ,CF ,AC ,利用勾股定理求出AC 、AF ,再根据三角形的三边关系得到当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为.【详解】解:如图,连接AF ,CF ,AC ,∵长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1,∴AC =AF ,∵AF +CF ≥AC ,∴CF ≥AC ﹣AF ,∴当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为,故答案为:.。
八年级数学第二学期5月份月考测试卷
一、选择题1.如图,在四边形ABCD 中,AB ∥CD ,∠BCD=90°,AB=AD=10cm ,BC=8cm ,点P 从点A 出发,以每秒3cm 的速度沿折线A-B-C-D 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动、已知动点P ,Q 同时出发,当点Q 运动到点C 时,点P ,Q 停止运动,设运动时间为t 秒,在这个运动过程中,若△BPQ 的面积为20cm 2 , 则满足条件的t 的值有( )A .1个B .2个C .3个D .4个2.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =43,E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .25C .27D .83.如图,正方形ABCD 中,4AB =,点E 在BC 边上,点F 在CD 边上,连接AE 、EF 、AF ,下列说法:①若E 为BC 中点,1CF =,则90AEF ∠=︒;②若E 为BC 中点,90AEF ∠=︒,则1CF =;③若90AEF ∠=︒,1CF =,则点E 为BC 中点,正确的有( )个A .0B .1C .2D .34.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.85.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连结BF ,交AC 于点M ,连结DE ,BO .若60BOC ∠=︒,FO FC =,则下列结论:①AE CF =;②BF 垂直平分线段OC ;③EOB CMB ∆∆≌;④四边形是BFDE 菱形.其中正确结论的个数是( )A .1个B .2个C .3个D .4个 6.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( ) ①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥ 7.如图,在ABCD 中,AD=2AB ,CE AB ⊥,垂足E 在线段AB 上,F 、G 分别是AD 、CE 的中点,连接FG ,EF 、CD 的延长线交于点H ,则下列结论:①12DCF BCD ∠=∠;②EF CF =:③2BEC CEF S S =;④3DFE AEF ∠=∠.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个8.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片,使AD 落在BC 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E 、G ,连结GF ,给出下列结论①∠AGD =110.5°;②S △AGD =S △OGD ;③四边形AEFG 是菱形;④BF 2OF ;⑤如果S △OGF =1,那么正方形ABCD 的面积是2,其中正确的有( )个.A .2个B .3个C .4个D .5个9.如图,45A ABC C ∠=∠=∠=︒,E 、F 分别是AB 、BC 的中点,则下列结论:①EF BD ⊥,②12EF BD =,③ADC BEF BFE ∠=∠+∠,④AD DC =,其中正确有( )A .1个B .2个C .3个D .4个10.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE 沿AE 对折至AFE ,延长交BC 于点G ,连接AG.则BG 的长( )A .1B .2C .3D .3二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,某景区湖中有一段“九曲桥”连接湖岸A ,B 两点,“九曲桥”的每一段与AC 平行或BD 平行,若AB =100m ,∠A =∠B =60°,则此“九曲桥”的总长度为_____.13.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.14.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.15.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).16.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.17.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =DF =_________.18.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.19.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.22.如图,四边形OABC 中,BC ∥AO ,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)当t 为何值时,四边形BNMP 为平行四边形?(2)设四边形BNPA 的面积为y ,求y 与t 之间的函数关系式.(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.25.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若52CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.26.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 27.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.28.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.29.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由30.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】过A 作AH ⊥DC ,由勾股定理求出DH 的长.然后分三种情况进行讨论:即①当点P 在线段AB 上,②当点P 在线段BC 上,③当点P 在线段CD 上,根据三种情况点的位置,可以确定t 的值.【详解】解:过A 作AH ⊥DC ,∴AH =BC =8cm ,DH =22AD AH - =10064-=6. i )当P 在AB 上时,即1003t ≤≤时,如图,1110382022BPQ S BP BC t =⋅=-⨯=(),解得:53t =;ii )当P 在BC 上时,即103<t ≤6时,BP =3t -10,CQ =16-2t ,113101622022BPQ S BP CQ t t =⋅=-⨯-=()(),化简得:3t 2-34t +100=0,△=-44<0,∴方程无实数解.iii )当P 在线段CD 上时,若点P 在线段CD 上,若点P 在Q 的右侧,即6≤t ≤345,则有PQ =34-5t ,13458202BPQ S t =-⨯=(),295t =<6(舍去); 若点P 在Q 的左侧时,即3485t ≤<,则有PQ =5t -34,15348202BPQ S t =-⨯=(); t =7.8. 综上所述:满足条件的t 存在,其值分别为153t =,t 2=7.8.故选B.【点睛】本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.2.C解析:C【解析】【分析】连结DE交AC于点P,连结BP,根据菱形的性质推出AO是BD的垂直平分线,推出PE+PB=PE+PD=DE且值最小,根据勾股定理求出DE的长即可.【详解】如图,设AC,BD相交于O,∵四边形ABCD是菱形,∴AC⊥BD,AO=12AC,BO=12BD=3∵AB=4,∴AO=2,连结DE交AC于点P,连结BP,作EM⊥BD于点M,∵四边形ABCD是菱形,∴AC⊥BD,且DO=BO,即AO是BD的垂直平分线,∴PD=PB,∴PE+PB=PE+PD=DE且值最小,∵E是AB的中点,EM⊥BD,∴EM=12AO=1,BM=12BO2,∴DM=DO+OM=32BO=3,∴DE2222E DM1(33)27M+=+=,故选C.【点睛】此题考查了轴对称-最短路线问题,关键是根据菱形的判定和三角函数解答.3.D解析:D【解析】【分析】正方形的边长相等,因为AB=4,所以其他三边也为4,正方形的四个角都是直角,①若E 为BC 中点,1CF =,则能求出AE 2+EF 2=AF 2,用勾股定理可得90AEF ∠=︒.②若E 为BC 中点,90AEF ∠=︒,用勾股定理列方程可求得CF ,③若90AEF ∠=︒,1CF =,用勾股定理列方程可求得BE ,【详解】解:①若E 为BC 中点,1CF =,∵AB=4,∴BE=CE=2,DF=3,∴AE 2=42+22=20,EF 2=22+12=5,AF 2=42+32=25,∴AE 2+ EF 2=AF 2,∴90AEF ∠=︒;故①正确,②若E 为BC 中点,90AEF ∠=︒,设CF x =;则DF=4-x.∴AE 2=42+22=20,EF 2=4+x 2,AF 2=42+(4-x )2,∵90AEF ∠=︒∴∴AE 2+ EF 2=AF 2,∴20+4+ x 2=42+(4-x )2解得x=1;即CF=1.③若90AEF ∠=︒,1CF =,则DF=3,设BE=x ,∴AE 2+ EF 2=AF 2,即42+x 2+1+(4-x )2=42+32解得x=2,即BE=2,E 为BC 的中点.故①②③正确,答案选D.【点睛】本题考查了正方形的性质及勾股定理及勾股定理逆定理的应用,解题关键是应用勾股定理列方程并求解.4.D解析:D【分析】连接PC ,当CP ⊥AB 时,PC 最小,利用三角形面积解答即可.【详解】解:连接PC ,∵PE ⊥AC ,PF ⊥BC ,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP 是矩形,∴EF=PC ,∴当PC 最小时,EF 也最小,即当CP ⊥AB 时,PC 最小,∵AC=8,BC=6,∴AB=10,∴PC 的最小值为:68 4.810AC BC PC AB ⋅⨯=== ∴线段EF 长的最小值为4.8.故选:D .【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.5.C解析:C【分析】通过证△AEO ≌CFO 可判断①;利用矩形的性质证△OCB 是正三角形,可得②;因OB≠MB ,得到③错误;通过证△EOB ≌△FCB 得到EB=FB ,从而证④.【详解】∵四边形ABCD 是矩形∴AB ∥DC,AO=OC∴∠AEO=∠CFO,∠EAO=∠FCO∴△AEO ≌CFO(AAS)∴AE=FC ,①正确∵四边形ABCD 是矩形∴OC=OB∵∠BOC=60°∴△OCB 是正三角形,∴OB=OC∵FO=FC∴FB 是线段OC 的垂直平分线,②正确∵BM ⊥OC ,∴△OMB 是直角三角形,∴OB >BM∴EOB CMB ∆∆≌是错误的,即③错误∵四边形ABCD 是矩形∴EB ∥DF ,AB=DC∵AE=FC∴EB=DF∴四边形EBFD 是平行四边形∵△AEO ≌△CFO ,OF=FC ,∴AE=EO=OF=FC∵△OBC 是正三角形,∴∠BOC=60°=∠BCO ,BC=BO∴∠FCO=30°,∴∠FOC=30°∴∠FOB=30°+60°=90°∴∠EOB=90°=∠FCB∴△EOB ≌△FCB(SAS)∴EB=FB∴平行四边形EBFD 是菱形,④正确故选:C【点睛】本题考查矩形的性质和证明,解题关键是证明△AOE ≌△COF 和证明△BOC 是正三角形.6.D解析:D【分析】先根据全等三角形进行证明,即可判断①和②,然后作辅助线,推出OD=OF ,得出四边形BEDF 是平行四边形,求出BM=DM 即可判断④和⑤,最后根据AE=CF ,即可判断⑥.【详解】①∵四边形ABCD 是平行四边形,∴AB ∥DC,AB=DC,∴∠BAC=∠ADC,在△ABE 和△DFC 中BAC ADC AB A F C E D C ∠=∠=⎧=⎪⎨⎪⎩∴△ABE≌△DFC(SAS ),∴BE=DF,故①正确.②∵△ABE≌△DFC,∴∠AEB=∠DFC,∴∠BEF=∠DFE,∴BE∥DF,故②正确.③根据已知的条件不能推AB=DE ,故③错误.④连接BD 交AC 于O ,过D 作DM⊥AC 于M ,过B 作BN⊥AC 于N,∵四边形ABCD 是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF 是平行四边形,故④正确.⑤∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO 和△DMO 中∠BNO=∠DMO ∠BON=∠DOM OB=OD ⎧⎪⎨⎪⎩△ADE △ABE ∴△BNO ≌△DMO (AAS )∴BN=DM11∵S =AE DM ,S =AE BN 22⨯⨯⨯⨯∴△ADE △ABE S =S ,故⑤正确.⑥∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,故⑥正确.故答案是D.【点睛】本题主要考查了全等三角形的判定和平行四边形的判定以及性质,熟练掌握相关的性质是解题的关键.7.C解析:C【分析】由点F 是AD 的中点,结合ABCD 的性质,得FD=CD ,即可判断①;先证∆AEF ≅∆DHF ,再证∆ECH 是直角三角形,即可判断②;由EF=HF ,得2HEC CEF S S =,由CE AB ⊥,CE ⊥CD ,结合三角形的面积公式,即可判断③;设∠AEF=x ,则∠H=x ,根据直角三角形的性质,得∠FCH=∠H=x ,由FD=CD ,∠DFC=∠FCH=x ,由FG ∥CD ∥AB ,得∠AEF=∠EFG=x ,由EF=CF ,∠EFG=∠CFG=x ,进而得到3DFE AEF ∠=∠,即可判断④.【详解】∵点F 是AD 的中点,∴2FD=AD , ∵在ABCD 中,AD=2AB ,∴FD=AB=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠BCF ,∴∠DCF=∠BCF ,即:12DCF BCD ∠=∠, ∴①正确;∵AB ∥CD ,∴∠A=∠FDH ,∠AEF=∠H ,又∵AF=DF ,∴∆AEF ≅∆DHF (AAS ),∴EF=HF ,∵CE AB ⊥,∴CE ⊥CD ,即:∆ECH 是直角三角形,∴EF CF ==12EH , ∴②正确;∵EF=HF ,∴2HEC CEF S S =∵CE AB ⊥,CE ⊥CD ,垂足E 在线段AB 上,∴BE CH <,∴BEC HCE SS <, ∴2BEC CEFS S <, ∴③错误;设∠AEF=x ,则∠H=x ,∵在Rt ∆ECH 中,CF=FH=EF ,∴∠FCH=∠H=x ,∵FD=CD ,∴∠DFC=∠FCH=x ,∵点F ,G 分别是EH ,EC 的中点,∴FG ∥CD ∥AB ,∴∠AEF=∠EFG=x ,∵EF=CF ,∴∠DFE=∠DFC+∠EFG+∠CFG=3x ,∴3DFE AEF ∠=∠.∴④正确.故选C .【点睛】本题主要考查平行四边形和直角三角形的性质定理的综合,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.8.B解析:B【分析】①由四边形ABCD 是正方形,可得∠GAD =∠ADO =45°,又由折叠的性质,可求得∠ADG 的度数,从而求得∠AGD ;②证△AEG ≌△FEG 得AG =FG ,由FG >OG 即可得;③先计算∠AGE =∠GAD+∠ADG =67.5°,∠AED=∠AGD -∠EAG=67.5°,从而得到∠AGE =∠AED ,易得AE=AG ,由AE =FE 、AG =FG 即可得证;④设OF =a ,先求得∠EFG =45°,易得∠GFO =45°,在Rt △OFG 中,GFa ,从而可证得BF =EF =GF;⑤由S △OGF =1求出a 2,再表示出BE 及AE 的长,利用正方形的面积公式可得出结论.【详解】解:∵四边形ABCD 是正方形,∴∠EAG=∠GAD =∠ADO =45°,∠AOB=90°,由折叠的性质可得:∠ADG =12∠ADO =22.5°, ∴∠AGD =180°-∠GAD -∠ADG =112.5°,故①错误;由折叠的性质可得:AE =EF ,∠AEG =∠FEG ,在△AEG 和△FEG 中,AE FE AEG FEG EG EG =⎧⎪∠=∠⎨⎪=⎩,∴△AEG ≌△FEG (SAS ),∴AG =FG ,∵在Rt △GOF 中,AG =FG >GO ,∴S △AGD >S △OGD ,故②错误;∵∠AGE =∠GAD+∠ADG =67.5°,∠AED=∠AGD -∠EAG=67.5°,∴∠AGE =∠AED ,∴AE =AG ,又∵AE =FE ,AG =FG ,∴四边形AEFG 是菱形,故③正确;设OF =a ,∵△AEG ≌△FEG ,∴∠EFG =∠EAG=45°,又∵∠EFO =90°,∴∠GFO =45°,∴在Rt △OFG 中,GF ,∵∠EFO =90°,∠EBF =45°,∴在Rt △EBF 中,BF =EF =GF a ,即BF OF ,故④正确;∵S △OGF =1, ∴12OF 2=1,即12a 2=1, 则a 2=2,∵BF =EF a ,且∠BFE =90°,∴BE =2a ,又∵AE =EF ,∴AB =AE+BE +2a =)a ,则正方形ABCD 的面积是)2a 2=(6+=12+故⑤正确;故选:B .【点睛】本题考查了四边形的综合,熟练掌握正方形的性质、折叠的性质、等腰直角三角形的性质以及全等三角形、菱形的判定与性质等知识是解题的关键.9.C解析:C【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”可得//EF AC ,12EF AC =,再由45°角可证△ABQ 为等腰直角三角形,从而可得可得AQ BQ =,进而证明AQC BQDASA ≅△△(),利用三角形的全等性质求解即可. 【详解】解:如图所示:连接AC ,延长BD 交AC 于点M ,延长AD 交BC 于Q ,延长CD 交AB 于P .45ABC C ∠=∠=︒,CP AB ∴⊥,45ABC BAD ∠=∠=︒,AQ BC ∴⊥,点D 为两条高的交点,BM ∴为AC 边上的高,即:BM AC ⊥,由中位线定理可得//EF AC ,12EF AC =, BD EF ∴⊥,故①正确;45DBQ DCA ∠+∠=︒,45DCA CAQ ∠+∠=︒,DBQ CAQ ∴∠=∠,BAD ABC ∠=∠,AQ BQ ∴=,90BQD AQC ∠=∠=︒,∴根据以上条件得AQC BQD ASA ≅△△(),BD AC ∴=,12EF AC ∴=,故②正确; 45A ABC C ∠=∠=∠=︒,()18045DAC DCA BAD ABC BCD ∴∠+∠=︒-∠+∠+∠=︒,180135()180ADC DAC DCA BEF BFE ABC ∴∠=︒-∠+∠=︒=∠+∠=︒-∠,故③ ADC BEF BFE ∠=∠+∠成立;无法证明AD CD =,故④错误.综上所述:正确的是①②③,故选C .【点睛】本题考点在于三角形的中位线和三角形全等的判断及应用.解题关键是证明AQC BQD ASA ≅△△().10.B解析:B【分析】首先证明AB=AF=AD ,然后再证明∠AFG=90°,接下来,依据HL 可证明△ABG ≌△AFG ,得到BG=FG ,再利用勾股定理得出GE 2=CG 2+CE 2,进而求出BG 即可.【详解】解:在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ADE 沿AE 对折至△AFE ,∴AD=AF ,DE=EF ,∠D=∠AFE=90°,∴AB=AF ,∠B=∠AFG=90°,又∵AG=AG ,在Rt △ABG 和Rt △AFG 中,AG AG AB AF ⎧⎨⎩== ∴△ABG ≌△AFG (HL );∴BG=FG (全等三角形对应边相等),设BG=FG=x ,则GC=6-x ,∵E 为CD 的中点,∴CE=EF=DE=3,∴EG=3+x ,∴在Rt △CEG 中,32+(6-x )2=(3+x )2(勾股定理),解得x=2,∴BG=2,故选B .【点睛】此题主要考查了勾股定理的综合应用、三角形全的判定和性质以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.二、填空题11【分析】过B 点作HE 的平行线交AC 于O 点,延长EG 交AB 于I 点,得到BO=2HE ,其中O 点在线段AC 上运动,再由点到直线的距离垂线段最短求出BO 的长即可求解.【详解】解:过B 点作HE 的平行线交AC 于O 点,延长EG 交AB 于I 点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.12.200m【分析】如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M,则四边形EDHF,四边形MNCF,四边形MKGJ是平行四边形,△ABC是等边三角形,由此即可解决问题.【详解】如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M由题意可知,四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形∵∠A =∠B =60°∴18060E A B ∠=-∠-∠=∴△ABC 是等边三角形∴ED =FM+MK+KH =CN+JG+HK ,EC =EF+FC =JN+KG+DH∴“九曲桥”的总长度是AE+EB =2AB =200m故答案为:200m .【点睛】本题考查了平行四边形、等边三角形、三角形内角和的知识;解题的关键是熟练掌握平行四边形、等边三角形、三角形内角和的性质,从而完成求解.13.5【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5 故答案为:5【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.14.4【分析】根据三个角都是直角的四边形是矩形,得四边形AEPF 是矩形,根据矩形的对角线相等,得EF =AP ,则EF 的最小值即为AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角三角形ABC 斜边上的高.【详解】解:连接AP ,∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP ,∵AP 的最小值即为直角三角形ABC 斜边上的高,设斜边上的高为h ,则S △ABC =1122BC h AB AC ⋅=⋅∴1153422h ⨯⋅=⨯⨯ ∴h=2.4,∴EF 的最小值为2.4,故答案为:2.4.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.15.①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC ,故①正确;②根据四边形ABCD 是正方形,且△ABE ≌△AFE ,证明Rt △AFG ≌Rt △ADG ,得出∠FAG=∠GAD ,根据∠BAF+∠FAD=90°,推出∠EAF+∠FAG=45°,可得∠EAG=45°,根据全等得:BE=FE ,DG=FG ,即可得BE+DG=EF+GF=EG ,故②正确;③先求出S △ECG ,根据EF :FG=2a :3a =3:2,得出S △EFC :S △FCG =3:2,即S △EFC =2110a ,再根据S ABCD =a 2,得出S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误;④设正方形的边长为a ,根据勾股定理得22AB BE +5,设DG=x ,则CG=a-x ,FG=x ,EG=2a +x ,再根据勾股定理求出x ,即可得出结论,故④正确.【详解】解:①由折叠可得△ABE ≌△AFE ,∴∠BEA=∠AEF ,BE=EF ,∵E 是BC 中点,∴BE=CE=EF ,∴△EFC 是等腰三角形,∴∠EFC=∠ECF ,∵∠BEF=∠EFC+∠FEC ,∴∠BEA=∠AEF=∠EFC=∠ECF ,∴AE ∥FC ,故①正确;②∵四边形ABCD 是正方形,且△ABE ≌△AFE ,∴AB=AF=AD ,∠B=∠D=∠AFG ,∴△AFG 和△ADG 是直角三角形,∴在Rt △AFG 和Rt △ADG 中AF AD AG AG ==⎧⎨⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴∠FAG=∠GAD ,又∵∠BAF+∠FAD=90°,∴2∠EAF+2∠FAG=90°,即∠EAF+∠FAG=45°,∴∠EAG=45°,由全等得:BE=FE ,DG=FG ,∴BE+DG=EF+GF=EG ,故②正确;③对于Rt △ECG ,S △ECG =12×EC ×CG=12×2a ×23a =216a , ∵EF :FG=2a :3a =3:2, 则S △EFC :S △FCG =3:2,即S △EFC =2110a , 又∵S ABCD =a 2,则S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误; ④设正方形的边长为a , ∴AB=AD=AF=a ,BE=EF=2a =EC ,由勾股定理得=2, 设DG=x ,则CG=a-x ,FG=x , EG=2a +x , ∴EG 2=EC 2+CG 2,即(2a +x )2=(2a )2+(a-x )2, 解得x=3a ,CG=23a , 即AD=3DG 成立,故④正确.【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键.16.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.17.4【分析】证明CF ∥DB ,CF=DB ,可得四边形CDBF 是平行四边形,作EM ⊥DB 于点M ,解直角三角形即可.【详解】解:∵CF ∥AB ,∴∠ECF=∠EBD .∵E 是BC 中点,∴CE=BE .∵∠CEF=∠BED ,∴△CEF ≌△BED (ASA ).∴CF=BD .∴四边形CDBF 是平行四边形.作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,22BC =∴BE=122BC =,DF=2DE , 在Rt △EMB 中,EM 2+BM 2=BE 2且EM=BM∴EM=1,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,18.25﹣2【分析】连接AF,CF,AC,利用勾股定理求出AC、AF,再根据三角形的三边关系得到当点A,F,C在同一直线上时,CF的长最小,最小值为25﹣2.【详解】解:如图,连接AF,CF,AC,∵长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1,∴AC=25,AF=2,∵AF+CF≥AC,∴CF≥AC﹣AF,∴当点A,F,C在同一直线上时,CF的长最小,最小值为25﹣2,故答案为:25﹣2.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.192【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴22112FG GC FC=+=+=,故答案为:2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.20.答案不唯一,例AC=BD 等【分析】连接AC、BD,先证明四边形ABCD是平行四边形,再根据菱形的特点添加条件即可.【详解】连接AC,∵点E、F分别是AB、BC的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,连接BD,同理EH=FG,EF∥FG,当AC=BD时,四边形EFGH是平行四边形,故答案为:答案不唯一,例AC=BD 等.【点睛】此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.三、解答题21.(1)见解析;(2)24;(3)5AI=.【分析】(1)证∠BDA =∠CEA =90°,∠CAE =∠ABD ,由AAS 证明△ABD ≌△CAE 即可; (2)连接CE ,交AF 于O ,由菱形的性质得∠COA =∠ADB =90°,同(1)得△ABD ≌△CAO (AAS ),得OC =AD =3,OA =BD =4,由三角形面积公式求出S △AOC =6,即可得出答案;(3)过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,同(1)得△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),得EM =AH =GN ,证△EMI ≌△GNI (AAS ),得EI =GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG =22AEAG +=2286+=10,∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.22.(1)34;(2)y =4t +2;(3)存在,点M 的坐标为(1,0)或(2,0). 【分析】(1)因为BN ∥MP ,故当BN=MP 时,四边形BNMP 为平行四边形,此时点M 在点P 的左侧,求解即可;(2)y =12(BN +PA )•OC ,即可求解; (3)①当∠MQA 为直角时,则△MAQ 为等腰直角三角形,则PA =PM ,即可求解;②当∠QMA为直角时,则NB+OM=BC=3,即可求解.【详解】(1)∵BN∥MP,故当BN=MP时,四边形BNMP为平行四边形.此时点M在点P的左侧时,即0≤t<1时,MP=OP﹣OM=3﹣t﹣2t=3﹣3t,BN=t,即3﹣3t=t,解得:t=34;(2)由题意得:由点C的坐标知,OC=4,BN=t,NC=PO=3﹣t,PA=4﹣OP=4﹣(3﹣t)=t+1,则y=12(BN+PA)•OC=12(t+t+1)×4=4t+2;(3)由点A、C的坐标知,OA=OC=4,则△COA为等腰直角三角形,故∠OCA=∠OAC=45°,①当∠MQA为直角时,∵∠OAC=45°,故△MAQ为等腰直角三角形,则PA=PM,而PA=4﹣(3﹣t)=t+1,PM=OP﹣OM=(3﹣t)﹣2t=3﹣3t,故t+1=3﹣3t,解得:t=12,则OM=2t=1,故点M(1,0);②当∠QMA为直角时,则点M、P重合,则NB+OM=BC=3,即2t+t=3,解得:t=1,故OM=OP=2t=2,故点M(2,0);综上,点M的坐标为(1,0)或(2,0).【点睛】本题是四边形综合题,涉及坐标与图形、平行四边形的性质、等腰直角三角形的判定和性质、图形的面积计算等,复杂度较高,难度较大,其中(3)要分类求解,避免遗漏.23.(1)见解析;(2)MON为等腰直角三角形,见解析【分析】(1)如图1,由正方形的性质得CB=CD,∠BCD=90°,再证明∠BCN=∠CDM,然后根据“AAS”证明△CDM≌△CBN,从而得到DM=CN;(2)如图2,利用正方形的性质得OD=OC,∠ODC=∠OCB=45°,∠DOC=90°,再利用∠BCN=∠CDM得到∠OCN=∠ODM,则根据“SAS”可判断△OCN≌△ODM,从而得到ON=OM,∠CON=∠DOM,所以∠MON=∠DOC=90°,于是可判断△MON为等腰直角三角形.【详解】(1)证明:如图1,∵四边形ABCD 为正方形,∴CB =CD ,∠BCD =90°,∵DM ⊥CP ,BN ⊥CP ,∴∠DMC =90°,∠BNC =90°,∵∠CDM+∠DCM =90°,∠BCN+∠DCM =90°,∴∠BCN =∠CDM ,在△CDM 和△CBN 中DMC CNB CD CBCDM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDM ≌△CBN ,∴DM =CN ;(2)解:△OMN 为等腰直角三角形.理由如下:如图2,∵四边形ABCD 为正方形,∴OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,∵∠BCN =∠CDM ,∴∠BCN ﹣45°=∠CDM ﹣45°,即∠OCN =∠ODM ,在△OCN 和△ODM 中CN DM OCN ODM OC OD =⎧⎪∠=∠⎨⎪=⎩, ∴△OCN ≌△ODM ,∴ON =OM ,∠CON =∠DOM ,∴∠MON =∠DOC =90°, ∴MON 为等腰直角三角形.【点睛】本题考查正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.也考查全等三角形的判定与性质.24.(1)四边形AEFD 能够成为菱形,理由见解析;(2)5t =,理由见解析.【分析】(1)能;首先证明四边形AEFD 为平行四边形,当AE =AD 时,四边形AEFD 为菱形,即40﹣4t =2t ,解方程即可解决问题;(2)当∠FDE =90°时,AEFD 为矩形,再根据线段的长度关系列方程求得.【详解】解:(1)四边形AEFD 能够成为菱形,理由如下:在DFC ∆中,90,30DFC C ∠=︒∠=︒,4DC t =,∴2DF t =,又∵2AE t =,∴AE DF =,∵,AB BC DF BC ⊥⊥,∴//AE DF ,又∵AE DF =,∴四边形AEFD 为平行四边形,如图1,当AE AD =时,四边形AEFD 为菱形,即4042t t -=,解得203t =.∴当203t =秒时,四边形AEFD 为菱形. (2)如图2,当90FDE ∠=︒时,四边形EBFD 为矩形,在Rt AED ∆中,60A ∠=︒,则30ADE ∠=︒,∴2AD AE =,即4044t t -=,解得5t =.【点睛】本题考查平行四边形的判定和性质、菱形的判定、直角三角形的判定和性质、矩形的性质。
苏科八年级数学下册第二学期5月月考测试卷
苏科八年级数学下册第二学期5月月考测试卷一、解答题1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.2.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?3.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?4.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.5.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.6.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.7.已知:如图,AC、BD相交于点O,且点O是AC、BD的中点,点E在四边形ABCD的形外,且∠AEC=∠BED=90°.求证:四边形ABCD是矩形.8.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.9.如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.10.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?11.如图,已知△ABC.(1)画△ABC关于点C对称的△A′B′C;(2)连接AB′、A′B,四边形ABA'B'是形.(填平行四边形、矩形、菱形或正方形)12.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.13.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.14.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.15.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.3.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.4.(1)见解析;(2)15;见解析.【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求.(2)证明△ABE 的周长=AB +AD 即可.【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.5.(1)详见解析;(2)24【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案.【详解】(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12 BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•AC=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.6.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.7.见解析【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到AC=BD,即可得出结论.【详解】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=12 BD,在Rt△AEC中,∵O为AC的中点,∴EO=12 AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.8.(1)k=1;(2)证明见解析.【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 9.(1)见解析;(2)当∠A=90°时,FG⊥FH.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.【详解】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=12BD,FH=12CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.10.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.11.(1)见解析;(2)平行四边形.【分析】(1)根据题意画出三角形即可;(2)由对称的性质判断即可.【详解】(1)如图,△A′B′C即为所求;(2)如上图,由题意可得△ABC≌△A′B′C,∴AC=A′C,BC=B′C,∴四边形ABA'B'为平行四边形.【点睛】本题考查了对称图形的性质,平行四边形的判定,掌握知识点是解题关键.12.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.13.详见解析.【分析】先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,证出四边形ABCD是平行四边形,再由AD=AB,即可得出结论.【详解】证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC平分∠BAD.∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.14.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,故答案为1.5,1.5;(2)所有被调查学生阅读时间的平均数为:1100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均阅读时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×40+18100=290(人).故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【点睛】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.15.(1)m≤14;(2)m=14.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x12-x22=0得x1+x2=0或x1-x2=0;当x1+x2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m的值.【详解】解:(1)由题意有△=(2m-1)2-4m2≥0,解得m≤14,即实数m的取值范围是m≤14;(2)由两根关系,得根x1+x2=-(2m-1),x1•x2=m2,由x12-x22=0得(x1+x2)(x1-x2)=0,若x1+x2=0,即-(2m-1)=0,解得m=12,∵12>14,∴m=12不合题意,舍去,若x1-x2=0,即x1=x2∴△=0,由(1)知m=14,故当x12-x22=0时,m=14.【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟练掌握公式正确计算是本题的解题关键.。
新苏科初二数学下册5月月考数学试题
新苏科初二数学下册5月月考数学试题一、选择题1.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD =B .//AD BC C .A C ∠∠=D .AD BC = 2.平行四边形的一条边长为8,则它的两条对角线可以是( ) A .6和12B .6和10C .6和8D .6和6 3.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论: ①∠ABE =∠DCE ;②∠AHB =∠EHD ;③S △BHE =S △CHD ;④AG ⊥BE .其中正确的是( )A .①③B .①②③④C .①②③D .①③④4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .6.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .7.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠8.下列调查中,最适宜采用全面调查方式的是( )A .调查某市成年人的学历水平B .调查某批次日光灯的使用寿命C .调查市场上矿泉水的质量情况D .了解某个班级学生的视力情况 9.“明天下雨的概率是80%”,下列说法正确的是( ) A .明天一定下雨B .明天一定不下雨C .明天下雨的可能性比较大D .明天80%的地方下雨 10.下列成语故事中所描述的事件为必然发生事件的是( )A .水中捞月B .瓮中捉鳖C .拔苗助长D .守株待兔 二、填空题11.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.12.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.13.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.14.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB =16,EF =1,∠AFB =90°,则BC 的长为_____.15.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.16.在整数20200520中,数字“0”出现的频率是_________.17.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .18.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.19.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.20.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为_____.三、解答题21.解下列方程: (1)9633x x=+- ; (2)241111x x x -+=-+ . 22.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.23.正方形ABCD 中,点O 是对角线DB 的中点,点P 是DB 所在直线上的一个动点,PE ⊥BC 于E ,PF ⊥DC 于F .(1)当点P 与点O 重合时(如图①),猜测AP 与EF 的数量及位置关系,并证明你的结论;(2)当点P 在线段DB 上(不与点D 、O 、B 重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.24.已知关于x 的方程x 2﹣(k +3)x +3k =0.(1)若该方程的一个根为1,求k 的值;(2)求证:不论k 取何实数,该方程总有两个实数根.25.解方程:224124x x x +-=-- 26.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m _________,扇形D 所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?27.某中学八年级共有10个班,每班40名学生,学校对该年级学生数学学科某次学情调研测试成绩进行了抽样分析,请按要求回答下列问题:(1)若要从全年级学生中抽取40人进行调查,你认为以下抽样方法中最合理的是 . ①随机抽取一个班级的40名学生的成绩;②在八年级学生中随机抽取40名女学生的成绩;③在八年级10个班中每班各随机抽取4名学生的成绩.(2)将抽取的40名学生的成绩进行分组,绘制如下成绩频数分布表:①m = ,n = ;②根据表格中的数据,请用扇形统计图表示学生成绩分布情况.28.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =;(2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;C.∵//AB CD∴180C D ∠+∠=︒∵A C ∠=∠∴180A D +=︒∠∠∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意.故选:D【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.2.A解析:A【分析】由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分,即可求得OB 与OC 的长,然后根据三角形的三边关系,即可求得答案.【详解】解:如图:∵四边形ABCD 是平行四边形,∴OA=OC=12AC ,OB=OD=12BD , 若BC=8,根据三角形三边关系可得:|OB-OC|<8<OB+OC .A 、6和12,则OB+OC=3+6=9>8,OB-OC=6-3=3<8,能组成三角形,故本选项符合题意;B 、6和10,则OB+OC=3+5=8,不能组成三角形,故本选项不符合题意;C 、6和8,则OB+OC=3+4=7<8,不能组成三角形,故本选项不符合题意;D 、6和6,则OB+OC=3+3=6<8,不能组成三角形,故本选项不符合题意;故选:A .【点睛】此题考查了平行线的性质与三角形三边关系,解题的关键是注意掌握平行四边形的对角线互相平分,注意三角形三边关系知识的应用.3.B解析:B【分析】根据正方形的性质证得BAE CDE ∆≅∆,推出ABE DCE ∠=∠,可知①正确;证明ABH CBH ∆≅∆,再根据对顶角相等即可得到AHB EHD ∠=∠,可知②正确;根据//AD BC ,求出BDE CDE S S ∆∆=,推出BDE DEH CDE DEH S S S S ∆∆∆∆-=-,即BHE CHD S S ∆∆=,故③正确;利用正方形性质证ADH CDH ∆≅∆,求得HAD HCD ∠=∠,推出ABE HAD ∠=∠;求出90ABE BAG ∠+∠=︒,求得90AGE ∠=︒故④正确.【详解】 解:四边形ABCD 是正方形,E 是AD 边上的中点,AE DE ∴=,AB CD =,90BAD CDA ∠=∠=︒,()BAE CDE SAS ∴∆≅∆,ABE DCE ∴∠=∠,故①正确;∵四边形ABCD 是正方形,∴AB=BC , ∠ABD=∠CBD ,∵BH=BH ,∴ABH CBH ∆≅∆,AHB CHB ∴∠=∠,BHC DHE ∠=∠,AHB EHD ∴∠=∠,故②正确;//AD BC ,BDE CDE S S ∆∆∴=,BDE DEH CDE DEH S S S S ∆∆∆∆∴-=-,即BHE CHD S S ∆∆=,故③正确;四边形ABCD 是正方形,AD DC ∴=,45ADB CDB ∠=∠=︒,DH DH =,()ADH CDH SAS ∴∆≅∆,HAD HCD ∴∠=∠,ABE DCE ∠=∠ABE HAD ∴∠=∠,90BAD BAH DAH ∠=∠+∠=︒,90ABE BAH ∴∠+∠=︒,1809090AGB ∴∠=︒-︒=︒,AG BE ∴⊥,故④正确;故选:B .【点睛】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题关键要充分利用正方形的性质:①四边相等; ②四个内角相等,都是90度; ③对角线相等,相互垂直,且每条对角线平分一组对角.4.D解析:D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.C解析:C【解析】解:A.是轴对称图形,不是中心对称图形,故本选项错误;B.既不是轴对称图形,又不是中心对称图形,故本选项错误;C.既是轴对称图形又是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.故选C.点睛:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.A解析:A【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是中心对称图形,也是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.7.D解析:D【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确∠=∠,所以选项D正确;再根据∠EBC再根据等腰三角形的性质即可得出A EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB判断选项B不一定正确即可.【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE 2∠︒-, ∴选项A 、C 不一定正确∴∠A =∠EBC ∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090,∴选项B 不一定正确;故选D .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.8.D解析:D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A. 调查某市成年人的学历水平工作量比较大,宜采用抽样调查;B. 调查某批次日光灯的使用寿命具有破坏性,宜采用抽样调查;C. 调查市场上矿泉水的质量情况具有破坏性,宜采用抽样调查;D. 了解某个班级学生的视力情况工作量比较小,宜采用全面调查.故选D .【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.C解析:C【解析】【分析】根据概率的意义找到正确选项即可.【详解】解:明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有C 合题意. 故选:C .【点睛】本题考查了概率的意义,解决本题的关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.10.B解析:B【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解:A、水中捞月是不可能事件,故A错误;B、瓮中捉鳖是必然事件,故B正确;C、拔苗助长是不可能事件,故C错误;D、守株待兔是随机事件,故D错误;故选B.考点:随机事件.二、填空题11.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:112.20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.13.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼100÷20200=1000条.故答案为1000.【点睛】本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.14.18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=AB=8,∵EF=1,【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:18【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是.故答案为:.【点睛】此题主要考查了频率的求解析:5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.17.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.18.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.19.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 20.【分析】已知S △PAB =S 矩形ABCD ,则可以求出△ABP 的高,此题为“将军饮马”模型,过P 点作直线l ∥AB ,作点A 关于l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.【详解【分析】已知S△PAB=13S矩形ABCD,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.【详解】解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=22225441+=+=AB AE,即PA+PB的最小值为41.故答案为:41.【点睛】本题主要考查的是勾股定理以及“将军饮马”的模型,“将军饮马”模型主要是用来解决最小值问题,掌握这模型是解题的关键.三、解答题21.(1)35x=;(2)原方程无解【分析】(1)分式方程两边同乘以(3+x)(3﹣x)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即得结果.【详解】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=35,检验:当x=35时,(3+x)(3﹣x)≠0,∴x=35是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴x=﹣1是增根,原方程无解.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键.22.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.24.(1)k=1;(2)证明见解析.【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:a b k c k==-+=1,(3),324∆=-b ac∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.25.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x 2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.(1)50;32;43.2 (2)见解析 (3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1)③;(2)①16,0.2;②见解析【分析】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,所以可得出答案;(2)①用40减去A 类,C 类和D 类的频数,即可得到m 值,用C 类的频数除以40即可得到n 值;②根据频数分布表画出扇形统计图即可.【详解】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,故答案为:③;(2)①m=40-12-8-4=16, n=840=0.2; ②扇形统计图如下:.【点睛】本题考查了数据的整理和应用,由图表获取数据是解题关键.28.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.【分析】(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.【详解】解:(1)证明:∵CBP ∆和APQ ∆为等边三角形,∴AP=PQ ,CP=BP ,∠CPN=∠APQ=60°,∴∠CPA=∠BPQ ,∴△ACP ≌△QBP (SAS )∴AC=BQ ;(2)∵△ACP ≌△QBP ,∴3BQ AC ==,CAP BQP ,AP AQ =, ∵APQ ∆为等边三角形,∴60PAQ AQP , ∵30CAB ∠=︒ ∴BAQ AQBCAQ CAB AQP BQP 603060CAP BQP 90=︒∴90ABQ ∠=︒, ∴2222435APAQ AB BQ ; (3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大值,由(1)得△ACP ≌△QBP ,∴BQ=CA=3,∠CAP=∠Q,∵△APQ 为等边三角形,∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.∴∠CAB=120°,故AP 最大值时,7AP =,此时∠CAB=120°.【点睛】本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ 是解题关键;(2)中能求得90ABQ ∠=︒是解题关键;(3)中能想到AQ 有最大值,即AP 有最大值是解题关键.。
新苏科版初二数学下学期5月月考试卷及答案
新苏科版初二数学下学期5月月考试卷及答案一、解答题1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.2.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.3.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF 交BD于O.(1)求证:EO=FO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.4.先化简:22241a aa a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a的值代入求值.5.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE 的周长.6.如图,在正方形网格中,△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)直接写出:以A 、B 、C 为顶点的平形四边形的第四个顶点D 的坐标 .7.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF求证:AC 、EF 互相平分.8.解方程:224124x x x +-=-- 9.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?10.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,BO =DO ,点E 、F 分别在AO ,CO 上,且BE ∥DF ,AE =CF .求证:四边形ABCD 为平行四边形.11.如图,在▱ABCD 中,点E 、F 分别在边CB 、AD 的延长线上,且BE =DF ,EF 分别与AB ,CD 交于点G ,H ,则BG 与DH 有怎样数量关系?证明你的结论.12.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC ⊥BC ,AC =2,BC =3.点E 是BC 延长线上一点,且CE =3,连结DE .(1)求证:四边形ACED 为矩形.(2)连结OE ,求OE 的长.13.解方程(1)22(1)1x x +=+(2)22310x x ++=(配方法)14.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?15.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB=BC ,∠ABC =120゜,∠MBN=60゜,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),试猜想线段AE 、CF 、EF 之间存在的数量关系为 .(不需要证明);(2)当∠MBN 绕B 点旋转到AE ≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE 、CF 、EF 又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB ,根据平行线的判定可得AD ∥BC ,AB ∥CD ,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD 是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.解:(1)200,144.(2)见解析;(3)120名【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出“艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144°故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名),补图如下:(3)根据题意得:800×30200=120(名),答:其中有120名学生选修“科技制作”项目.3.(1)见解析;(2)AE=3.【分析】(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;(2)先证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.【详解】(1)∵四边形ABCD是平行四边形,∴DC ∥AB ,∴∠OBE =∠ODF .在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC ,∴∠GEA =∠GFD =90°.∵∠A =45°,∴∠G =∠A =45°.∴AE =GE ,∵BD ⊥AD ,∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°.∴DG =DO ,∴OF =FG =1,由(1)可知,OE =OF =1,∴GE =OE +OF +FG =3,∴AE =3.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.4.1a 2--,当1a =-时,原式1=3【分析】 本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,即当0a =、1、2、2-时原分式无意义,故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.5.(1)见解析;(2)15;见解析.【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求.(2)证明△ABE 的周长=AB +AD 即可.【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.6.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1;(2)分类讨论:分别以AB 、AC 、BC 为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D 点的坐标.【详解】解:(1)如图,点A 、B 、C 的坐标分别为(1,0),(4,1),(2,2)---,根据关于原点对称的点的坐标特征,则点A 、B 、C 关于原点对称的点分别为(1,0),(4,1),(2,2)--,描点连线,△A 1B 1C 1即为所作:(2)分别以AB 、AC 、BC 为对角线画平行四边形,如下图所示:---,则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---.故答案为:(1,1),(5,3),(3,1)【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.7.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.8.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.10.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE∥DF,∴∠BEO=∠DFO,在△BEO与△DFO中,BEO DFO BO DOBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA),∴EO=FO,∵AE=CF,∴AE+EO=CF+FO,即AO=CO,∵BO=DO,∴四边形ABCD为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.11.见解析【分析】由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .【详解】BG =DH ,理由如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,∴∠E =∠F ,又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,∴AF =CE ,在△CEH 和△AFG 中,A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFG ≌△CEH (ASA ),∴AG =CH ,∴BG =DH .【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.12.(1)见解析(2【分析】(1)根据平行四边形的性质得到AD =BC =3,AD ∥BC ,得到AD =CE ,推出四边形ACED 是平行四边形,由垂直的定义得到∠ACE =90°,于是得到结论;(2)根据三角形的中位线定理得到OC =12DE =12AC =1,由勾股定理即可得到结论. 【详解】(1)证明:∵在平行四边形ABCD 中,AD =BC =3,AD ∥BC ,∵CE =3,∴AD =CE ,∴四边形ACED 是平行四边形,∵AC ⊥BC ,∴∠ACE =90°,∴四边形ACED 为矩形;(2)解:连接OE ,如图,∵BO =DO ,BC =CE ,∴OC =12DE =12AC =1, ∵∠ACE =90°,∴OE 22221310OC CE +=+=【点睛】本题主要考查了平行四边形的性质,结合三角形中位线定理和勾股定理进行求解.13.(1)11x =-,212x =-;(2)11x =-,212x =- 【分析】(1)移项,提取公因式1x +,利用因式分解法求解即可;(2)移项,方程左右两边同时除以2后,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.【详解】(1)22(1)1x x +=+, 移项得:22(1)10()x x -++=,提取公因式1x +得:121)()(0x x ++=,可得:10x +=或210x +=, 解得:12112x x =-=-,; (2)22310x x ++=, 原方程化为:23122x x +=-, 配方得:22233132424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即231()416x +=, 开方得:3144x +=±, 解得:12112x x =-=-,. 【点睛】本题考查了解一元二次方程-因式分解法及配方法,能把一元二次方程转化成一元一次方程是解此题的关键.14.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭ 化简得2281920x x -+=,解得112x =,216x =又8860%x -<⨯12.8x ∴≤16x ∴=不合题意,舍去12x ∴=, ∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.15.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .【分析】(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有BH=BE ,∠CBH=∠ABE ,进而可证△HBF ≌△EBF ,推出HF=EF ,最后根据线段的等量关系可求解;如图3,在AE 上截取AQ=CF ,连接BQ ,根据题意易得△BCF ≌△BAQ ,推出BF=BQ ,∠CBF=∠ABQ ,进而可证△FBE ≌△QBE ,推出EF=QE 即可.【详解】解:(1)如图1,AE+CF=EF ,理由如下:∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠C=90°,∵AB=BC ,AE=CF ,∴△ABE ≌△CBF (SAS ),∴∠ABE=∠CBF ,BE=BF ,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴11,22AE BE CF BF==,∵∠MBN=60°,BE=BF,∴△BEF是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
人教版八年级(下)学期5月份月考检测数学试卷含答案
一、选择题1.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .632.如图,菱形ABCD 中,∠A 是锐角,E 为边AD 上一点,△ABE 沿着BE 折叠,使点A 的对应点F 恰好落在边CD 上,连接EF ,BF ,给出下列结论:①若∠A =70°,则∠ABE =35°;②若点F 是CD 的中点,则S △ABE 13=S 菱形ABCD 下列判断正确的是( )A .①,②都对B .①,②都错C .①对,②错D .①错,②对3.如图,90MON ∠=︒边长为2的等边三角形ABC 的顶点A B 、分别在边OM ,ON 上当B 在边ON 上运动时,A 随之在边OM 上运动,等边三角形的形状保持不变,运动过程中,点C 到点O 的最大距离为( )A .2.4B 5C 31D .524.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形1111D C B A ,又顺次连接正方形1111D C B A 四边中点得到第二个正方形2222A B C D ,……,以此类推,则第六个正方形6666A B C D 的面积是( )A.1 64B.116C.132D.185.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的番号是()A.①②④⑤B.①②③④⑤C.①②④D.①④6.如图,直角梯形ABCD中AD∥BC,∠D=90°.∠A的平分线交DC于E,EF⊥AB于F.已知AD=3.5cm,DC=4cm,BC=6.5cm.那么四边形BCEF的周长是()A.10cm B.11cm C.11.5cm D.12cm7.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连结EF,则线段EF的长的最小值是( )A.2.5 B.2.4 C.2.2 D.28.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①∠EFH=45°;②△AHD≌△EHF;③∠AEF+∠HAD=45°;④若BEEC=2,则1113BEHAHESS.其中结论正确的是()A .①②③B .①②④C .②③④D .①②③④9.如图,点P ,Q 分别是菱形ABCD 的边AD ,BC 上的两个动点,若线段PQ 长的最大值为85 ,最小值为8,则菱形ABCD 的边长为( )A .4 6B .10C .12D .1610.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,菱形ABCD 的BC 边在x 轴上,顶点C 坐标为(3,0) ,顶点D 坐标为(0,4),点E 在y 轴上,线段//EF x 轴,且点F 坐标为(8,6),若菱形ABCD 沿x 轴左右运动,连接AE 、DF ,则运动过程中,四边形ADFE 周长的最小值是_______.12.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.13.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.14.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.15.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.16.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.17.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______18.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .19.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..22.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.23.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.24.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P为直线BC上一点,在坐标平面内是否存在一点Q,使得以O、B、P、Q为顶点的四边形为菱形,若存在,求出此时Q的坐标;若不存在,请说明理由.26.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
八年级(下)学期5月份月考数学试卷含答案
一、选择题1.已知点A (4,0),B (0,﹣4),C (a ,2a )及点D 是一个平行四边形的四个顶点,则线段CD 的长的最小值为( ) A .655B .1255C .32D .422.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A .1B .2C .3D .43.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .634.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,H 是AF 的中点,那么CH 的长是( )A .2B .52C 332D 55.如图,菱形ABCD 的周长为24,对角线AC 、BD 交于点O ,∠DAB =60°,作DH ⊥AB 于点H ,连接OH ,则OH 的长为( )A .2B .3C .23D .436.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.87.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a + D .12b a + 8.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB :②GC 平分∠BGD ;③S 四边形BCDG =3CG 2;④∠BGE 的大小为定值.其中正确的结论个数为( )A .1B .2C .3D .49.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCDSAB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDEBOCSS=④,其中正确的有( )A .1个B .2个C .3个D .4个10.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.13.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.14.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.15.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.16.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.17.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.18.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.19.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.20.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,三、解答题21.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处)①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由;()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______;22.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题. 23.综合与探究如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.24.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.25.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.26.如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=5,且BF=DF,求旋转角度α的大小.27.如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直、重合),另一直角边与角边经过点D,且直角顶点E在AB边上滑动(点E不与点A B∠的平分线BF相交于点F.CBM(1)求证: ADE FEM∠=∠;(2)如图(1),当点E在AB边的中点位置时,猜想DE与EF的数量关系,并证明你的猜想;(3)如图(2),当点E在AB边(除两端点)上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.28.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.29.如图,已知正方形ABCD 与正方形CEFG 如图放置,连接AG ,AE . (1)求证:AG AE =(2)过点F 作FP AE ⊥于P ,交AB 、AD 于M 、N ,交AE 、AG 于P 、Q ,交BC 于H ,.求证:NH =FM30.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF ,GH 分别交边AB 、CD ,AD 、BC 于点E 、F 、G 、H .(1)观察发现:如图①,若四边形ABCD 是正方形,且EF ⊥GH ,易知S △BOE =S △AOG ,又因为S △AOB =14S 四边形ABCD ,所以S 四边形AEOG = S 正方形ABCD ; (2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =14S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);(3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =14S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题意可判定此题需分两种情况讨论,如果AB、CD为对角线,AB与CD交于点F,当FC⊥直线y=2x时,CD最小,根据垂直及F点坐标可先求的直线FC的函数解析式,进而通过求得点C坐标来求CD;如果CD是平行四边形的边,则CD=AB=42,对比两种情况即可求得CD最小值.【详解】解:如图,由题意点C在直线y=2x上,如果AB、CD为对角线,AB与CD交于点F,当FC⊥直线y=2x时,CD最小,易知直线AB为y=x﹣4,∵AF=FB,∴点F坐标为(2,﹣2),∵CF⊥直线y=2x,设直线CF为y=﹣12x+b′F(2,﹣2)代入得b′=﹣1∴直线CF为y=﹣12x﹣1,由2112y xy x=⎧⎪⎨=--⎪⎩解得2545xy⎧=-⎪⎪⎨⎪=-⎪⎩,∴点C坐标(25-,45-).∴CD=2CF=2.如果CD是平行四边形的边,则CD=AB=5,∴CD的最小值为5.故选:B.【点睛】本题考查了一次函数与平行四边形的综合题,解本题的关键是找到何时CD最短.2.C解析:C【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长= EF=FG=GH=HE =2AB,故⑤正确,没有条件可证明EG=12BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.3.C解析:C【分析】如图,先作辅助线,首先根据垂直条件,求出线段ME 、DE 长度,然后运用勾股定理求出DE 的长度,再根据翻折的性质,当折线'EA ,'AC 与线段CE 重合时,线段'AC 长度最短,可以求出最小值.【详解】如图,连接EC,过点E 作EM ⊥CD 交CD 的延长线于点M.四边形ABCD 是平行四边形,6AD BC AD BC ∴==,,E 为AD 的中点,30BCD ∠=︒,330DE EA MDE BCD ∴==∠=∠=︒,,又 EM CD ⊥,133222ME DE DM ∴===, 3315363CM CD DM ∴=+== 根据勾股定理得: 22223153319.22CE ME CM ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭根据翻折的性质,可得'3EA EA ==,当折线'EA ,'AC 与线段CE 重合时,线段'AC 长度最短,此时'AC = 3193. 【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.4.D解析:D【分析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】如图,连接AC 、CF ,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=2,CF=32,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,22AF=AC CF=25,∵H是AF的中点,∴CH=12AF=12×25=5.故选D.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.B解析:B【解析】【分析】由菱形四边形相等、OD=OB,且每边长为6,再有∠DAB=60°,说明△DAB为等边三角形,由DH⊥AB,可得AH=HB(等腰三角形三线合一),可得OH就是AD的一半,即可完成解答。
八年级第二学期5月份月考数学试题含答案
一、选择题1.如图,已知平行四边形ABCD ,6AB =,9BC =,120A ∠=︒,点P 是边AB 上一动点,作PE BC ⊥于点E ,作120EPF ∠=︒(PF 在PE 右边)且始终保持33PE PF +=,连接CF 、DF ,设m CF DF =+,则m 满足( )A .313m ≥B .63m ≥C .313937m <+≤D .3337379m +<<+2.如图,已知正方形ABCD 的边长为8,点E ,F 分别在边BC 、CD 上,45EAF ∠=︒.当8EF =时,AEF 的面积是( ).A .8B .16C .24D .323.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F.若AB =3,BC =4,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.44.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,82)D .(0,16)5.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AD =12AC ,M 、N 、P 分别是OA 、OB 、CD 的中点,下列结论:①CN ⊥BD ;②MN =NP ;③四边形MNCP 是菱形;④ND 平分∠PNM .其中正确的有( )A .1 个B .2 个C .3 个D .4 个6.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 7.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( )A .1B .2C .3D .48.在ABCF 中,2BC AB =,CD AB ⊥于点D ,点E 为AF 的中点,若50ADE ∠=︒,则B 的度数是( )A .50︒B .60︒C .70︒D .80︒9.在菱形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的一点(不与端点重合),对于任意的菱形ABCD ,下面四个结论中:①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形正确的结论的个数是( )A .1个B .2个C .3个D .4个10.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD 的周长等于______________ .12.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.14.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.15.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.16.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.17.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.18.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.19.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.20.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB 2CD ;其中正确的是_____(填序号)三、解答题21.已知,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.22.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.23.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+24.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC 的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.25.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).26.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.27.如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.28.在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级_____________ 座号_____________ 姓名____________考号_______________
………………………………密…………………………………封…………………………………线…………………………………
2011-2012学年度下学期五月份月考试卷
八年级 数学
(时间:120分钟 满分:150分)
一、精心选一选:(本大题共8小题,每小题4分,共32分)
1.能够判定一个四边形是平行四边形的条件是( ) A 、一组对角相等 B 、两条对角线互相平分 C 、两条对角线互相垂直 D 、一对邻角的和为180°
2. 矩形、菱形、正方形都具有的性质是( ) A 、每一条对角线平分一组对角 B 、对角线相等 C 、对角线互相垂直 D 、对角线互相平分
3.如图,在
ABCD 中,已知cm AD 5=,cm AB 3=,AE 平分BAD ∠交BC 边于点E ,
则EC 等于( ) A 、cm 4
B 、cm 3
C 、cm 2
D 、cm 1
4.如图,菱形ABCD 中,AD BE ⊥,CD BF ⊥,E 、F 为垂足,ED AE =, 则EBF ∠等于( ) A 、︒75 B 、︒60
C 、︒50
D 、︒45
5.下列命题是真命题的是( )
A 、有一个角是直角的四边形是矩形
B 、对角线互相垂直且相等的四边形是菱形
C 、两个底角相等的梯形是等腰梯形
D 、对角线互相垂直且相等的平行四边形是正方形 6.如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,, 则矩形的对角线AC 的长是( ) A 、4
B 、2
C 、23
D 、43
A
B
C
D
第
3题图
E
第4题图
第6题图
7.已知OABC 在平面直角坐标系中的位置如图所示,
452AOC OC ∠==°,,2=OA 则点B 的坐标为( ) A 、(2,1)
B 、(1,3)
C 、(3,1)
D 、)1,12(+
8.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A 、32 B 、26 C 、3 D 、6
二、细心填一填:(本大题共8小题,每小题4分,共32分)
9.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: , 使得该菱形为正方形.
10.边长为cm 5的菱形,一条对角线长是cm 6,则另一条对角线的长是 . 11.如图,ABCD 的周长为20,对角线AC 的长为5,则ABC △的周长为 .
12.直角三角形两直角边的长分别为cm 6和cm 8,那么斜边上的中线的长为 . 13.如图,B A 、两处被池塘隔开,为了测量B A 、两处的距离,在AB 外选一适当的点C ,连接AC BC 、,并分别取线段AC BC 、的中点E F 、,测得EF =20 m ,则AB = m .
14.如图所示,有一质地均匀的三角形铁片,其中一中线AD 长24cm ,若想用食指撑住此铁片,则支撑点应设在中线AD 距离D 点 cm 处最恰当.
A
B
C
D
D C B
A
O 第9题图
O
x
y
O
C B A
第7题图
第8题图
A
B
C
D
第11题图 A
E
C
F B
第13题图 第14题图
座位号
15.如图,在等腰梯形ABCD 中,若AD BC AC +=,则ACB ∠的度数是 . 16.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2005次,点P 依次落在点1P ,
2P ,3P ,4P ,…,2005P 的位置,则2005P 的横坐标2005x = .
三、解答题:(本大题共8小题,共86分)
17.(本小题8分)已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、
AD 的中点.求证:四边形EFGH 是平行四边形.
18.(本小题8分)如图,矩形ABCD 中,AC 与BD 交于O 点,AC BE ⊥于E ,
BD CF ⊥于
F .求证:CF BE
=.
第16题图
第15题图
A
B C
D
E
F
O
……………………………密…………………………………封…………………………………线…………………………………
19.(本小题10分)如图:已知等腰梯形ABCD 中,BC AD ∥,5=AD ,4=AB ,9=BC ,求B ∠的度数.
20.(本小题10分)如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =, 请你猜想:BE 与DF 有怎样的位置..关系和数量..
关系?并对你的猜想加以证明.
D
C
A
B
班级_____________ 座号_____________ 姓名____________考号_______________
………………………………密…………………………………封…………………………………线…………………………………
21.(本小题12分)如图:四边形ABCD 是菱形,对角线cm AC 16=,cm BD 12= , AB DH ⊥于H ,求:(1)求菱形ABCD 的面积 (2)求DH 的长.
22.(本小题12分)如图,在ABC ∆中,D 是AB 的中点,点E 是CD 的中点,过点C 作
//CF AB 交AE 的延长线于点F ,连结BF
(1)求证:CF BD =;
(2)如果BC AC =,试判断四边形BDCF 的形状,并证明你的结论.
23.(本小题12分) 如图,正方形ABCD 中对角线AC 、BD 相交于O 点,E 为AC 上一点,
BE AG ⊥交BE 于G ,AG 交BD 于F .
(1)求证:OF OE =;
(2)在(1)中,若E 在AC 延长线上,BE AG ⊥交BE 的延长线于G ,AG 、BD 的延长线交于F ,其他条件不变,如图(2),则结论:“OF OE =”还成立吗?请说明理由.
A B
C
D
O
E F G
(1)
A B
C
D
O
E
F
G
(2)
座位号
24.(本小题14分) 如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形且在第一象限内,点E 是边OC 上的中点,作︒=∠90AEF ,使EF 交正方形的外角平分线CF 于点F .
(1)如图①,求证:EF AE =;
(2)若EF 交BC 于点M ,有一反比例函数图像过点M ,并交AB 于点N ,如图②所示, 求这个反比例函数的解析式.
(3)在坐标平面内,是否存在一点P ,使以O 、M 、N 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.
y
O
A x
C
B
E
F
①
y
O
A
x
C
B
E
F
M
N
②。