3.3 轴对称与坐标变化
北师大版八年级数学上册3.3轴对称与坐标变化
4 3 2
y
1
0 –1 –2 –3 –4 –5 1 2 3 4 5 6 7 8 9 10
x
探索坐标变化引起的图形变化
y
(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)并用 线段依次连接, 得到“一条鱼”.
–1
5
4 3 2
1
0 –1 –2 –3 –4 –5 1 2 3 4 5 6 7 8 9 10
探索坐标变化引起的图形变化
(1)将所得图案的各个顶点的纵坐标保持不变,横坐标 分别乘-1,依次连接这些点,你会得到怎样的图案?观察 坐标系中的两条鱼的位置关系?
(x , y) 关于y轴对称的两个点的坐标特征:
(-x , y)
(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分 别乘-1,依次连接这些点,你会得到怎样的图案?观察坐标 系中的两条鱼的位置关系?
第一象限( + ,+ ) 第二象限( - ,+ )
第三象限( - , -) 第四象限 ( + , - )
知识回顾:
1.在平面直角坐标系内有一点 A(a,b) ,若 ab 0 ,则 点A的位置在( A、原点 ) B、x轴上
C、y轴上
D、坐标轴上
知识回顾:
1.在平面直角坐标系内有一点A(a,b),若 ab=0,
知识回顾:
3.在同一平面直角坐标系中,过x轴上坐标是(-3,0)的
点作x轴的垂线,过y轴上坐标是(0,-3)的点作y轴的
垂线,两垂线交点为A,则点A的坐标是 。
知识回顾:
3.在同一平面直角坐标系中,过x轴上坐标是(-3,0)的
点作x轴的垂线,过y轴上坐标是(0,-3)的点作y轴的
3.3轴对称与坐标变化(定稿)
练习
1).点A在轴上,距离原点4个单位长度,则A点的坐标是
。
2).点A(1-a,5),B(3 ,b)关于y轴对称,则 a + b = ______。
3). 在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置 在________。
4).如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别
关于y轴对称的两点的坐标, 横坐标 互为相反数, 纵坐标 相同
小试牛刀
1.已知点P(-3,4),则 (1)点P关于x轴对称的点的坐标是 (-3,-4) ;
(2)点P关于y轴对称的点的坐标是 (3,4) ; 2.已知点P(a,b),则
(1)点P关于x轴对称的点的坐标是 (a,-b) ; (2)点P关于y轴对称的点的坐标是 (-a,b) ;
A.- 2 B.2 C.1 D.- 1
5.(1)若 mn = 0,则点 P(m,n)必定在 坐标轴 上. (2)已知点 P( a,b),Q(3,6),且 PQ ∥ x轴, 则b的值为 6 .
6. 已知A、B两点的坐标分别是(-2,3)和(2,3), 则下面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关 于原点对称;④A、B之间的距离为4,其中正确的有 (B ) A.1个 B.2个 C.3个 D.4个
A1(2,6) B1(5,4) C1(2,4) D1(2,0)
探究
如右图所示的平面直角坐标系中, 第一、二象限内各有一面小旗.
(-2,6)
(1)两面小旗之间有怎样的位置关系?
关于y轴成轴对称
对应点 A与A1 的坐标又有什么特点?
纵坐标相等,横坐标互为相反数
数学八年级上册《轴对称与坐标变化》课件
探索新知
y 4 3 2 1
–5 –4 –3 –2 –1 O 1 2 3 4 5 x –1 –2
如图,所得的图案与原来的图案关于y轴对称.
探索新知
(2)横坐标保持不变,纵坐标分别乘以-1,再将所得 的点用线段依次连接起来,所得的图案与原来的图案相比有 什么变化?
分析:变化后的点的坐标依次为(0,0),(5,-4) ,(3,0),(5,-1),(5,1),(3,0),(4,2) ,(0,0).
5.若点A关于x轴对称的点是(2,3),则点A的坐标 为 (2,-3) ;若点A关于y轴对称的点是(2,3),则点 A的坐标为 (-2,3) .
当堂检测
6.如图,△COB与△AOB关于x轴对称,点A的坐标为 (2,3),则点C的坐标为 (2,-3) .
当堂检测
7.如图,在平面直角坐标系中,线段AB垂直于y轴, 垂足为点B,AB=2,如果将线段AB沿y轴翻折,点A落 在点C处,那么点C的横坐标是-__2__.
解:∵3a-11=-2,∴a=3, 又∵2b-1=-5,∴b=-2, ∴a2-2ab+b2=(a-b)2=25
当堂检测
10.如图,在平面直角坐标系中,已知两点A(0,4),B(8,2), 点P是x轴上的一点,求PA+PB的最小值.
解:如图,A与A′关于x轴 对称.连接A′B交x轴于点P ,则点P即为所求.过点B作 y轴的垂线交y轴于点E,由 勾股定理得A′B=PA+PB= 10.即PA+PB的最小值为10
情景导入
如图,你能画出把鱼往左平移 6 格后所得的图形吗? y
建立如图所示的平面直角 坐标系,平移这个图形, 图形上的点的坐标发生了 什么变化呢?
O
x
探索新知
一 轴对称与坐标变化观来自:如右图所示的平面直角坐 标系中,第一、二象限内各有一 面小旗。
3.3轴对称与坐标变化
P2
1、说出图中各点的坐标
y
P1
P 1 (3, 4)
P2 (3, 4)
1
P3 (3, 4) P4 (3, 4)
O
1
x
P3
P4
2、在以上各点中,哪些点关于y轴对称,哪些点关于x轴对称 ,哪些点关于原点对称? 3、若点M(x,4)到y轴的距离是3,则x= 若点N(-3,y)到x轴的距离是4,则y=
利用本节课的知识设 计完成下列两幅作品
y
O 1
x
必做题:课本P69 习题3.5 1 ,2,3 选作题:4 拓展题: 1. 已知A、B两点的坐标分别是(-2,3)和(2,3),则下 面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原 点对称;④A、B之间的距离为4,其中正确的有( ) A.1个 B.2个 C.3个 D.4个 *2.一束光线从点A(3,3)出发,经过y轴上点C反射后经 过点B(1,0)则光线从A点到B点经过的路线长是 ( )。 A.4 B.5 C.6 D.7
(x,y) (-x,y)
(0,0)
(5,4)
–5
(0,0) (-5,4)
y
5
4
3 2 1 0 –1 –2 –3 1 2 3 4 5 6 7 8
与 原 图 形 关 于 轴 对 称
3、如果图案的各 个顶点的横坐标保 持不变,纵坐标分 别变为原来的-1倍, 顺次连接所得的点, 你会得到怎样的图 案? 这个图案与原图 x 案有怎样的位置关 系呢?
3、尝试归纳: 关于y轴对称的两点,他们横坐标 ______, 相反 纵坐标_____ 相同
p,
p
p ( x, y) 即点 p ( x, y )关于y轴的对称点_____
北师大版八年级数学上册3.3轴对称和坐标变化课件(共18张PPT)
1、两面小旗之间有怎样的位置关系?
关于y轴对称
2、对应点A与A1的坐标有什么特点?
纵坐标相同,横坐标互为相反数
3、其它对应的点也有这个特点吗?
同样具有
( 2,6)
4、在这个坐标系里面画 出小旗ABCD关于x轴的对 称图形,它的各个“顶 点”的坐标与原来的点 的坐标有什么关系?
所得图形与原图关于x轴对称;
纵坐标不变,横坐标乘以-1,即横反纵同时,
所得图形与原图关于y轴对称。
关于x轴对称的点 (x,y)
横坐标相同,纵坐标互为相反数 ( x , - y ) 横同纵反
关于y轴对称的点 (x,y)
纵坐标相同,横坐标互为相反数 ( - x , y ) 横反纵同
温馨小贴士:关于哪个轴对称,哪个坐标相等。
横坐标相同,纵坐标互为相反数
图形轴对称
点的坐标特点
1、关于x轴对称的两点,它们的横坐标 相同 , 纵坐标 互为相反数 ;
2、关于y轴对称的两点,它们的横坐标 互为相反数 , 纵坐标 相同 。
1.点 A(-2,-3)关 于 x 轴 对 称 的 点 的 坐 标 是(-2,3) 。
2.点 P(-5,6)与 点 Q 关 于 y 轴 对 称,则 点 Q 的 坐 标 为(5,6)。
C.关于 y轴对称 D.不能构成对称关系
4.点(m,- 1)和点(2,n)关于 x轴对称,则 mn等
于( B )
A.- 2 B.2 C.1
D.- 1
7. 已知A、B两点的坐标分别是(-2,3)和(2,3),
则下面四个结论:
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。
本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。
但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。
三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化规律,解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。
2.教学难点:如何运用坐标变化规律解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备坐标纸、剪刀、胶水等实验材料。
3.设计好课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。
引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。
引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。
3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。
要求学生用自己的语言描述坐标变化规律。
4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。
通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。
但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。
2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。
3.培养学生的观察能力、操作能力和思维能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标变化的应用。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。
2.准备坐标纸,以便学生进行坐标操作。
3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。
2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。
引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。
3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。
然后,让学生将对称轴沿坐标轴移动,观察图形的变化。
通过操作,让学生理解坐标变化对轴对称图形的影响。
4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。
通过解决问题,巩固学生对轴对称和坐标变化的理解。
5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。
3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册
6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一 点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余 三个点中存在两个点关于一条坐标轴对称,则原点是( B ) A.点A B.点B C.点C D.点D
7.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值 是( D ) A.-5 B.-3 C.3 D.1
即 22+52= 29.
巩固提升
1.在平面直角坐标系中,点A的坐标为(1,2).作点A关于x轴的对称 点,得到点A′,则点A′所在的象限是( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放 在平面直角坐标系中,如果图中点A的坐标为(-5,3),则其关于y轴 对称的点B的坐标为( A ) A.(5,3) B.(5,-3) C.(-5,-3) D.(3,5)
5.如图所示的点A,B,C,D,E中,哪两个点关于x轴对称?哪两个 点关于y轴对称?点C和点E关于x轴对称吗?为什么? 解:因为点A(-3,2),B(-3,-2),E(3,-2), 所以点A,B关于x轴对称,点B,E关于y轴对称. 因为点C(3,3),E(3,-2), 所以点C,E不关于x轴对称.
7.【空间观念、几何直观】△ABC在平面直角坐标系中的位置如图 所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别为A,B, C的对应点); 解:如图所示,△A′B′C′即为所求.
(2)直接写出A′,B′,C′三点的坐标; 解:A′,B′,C′三点的坐标分别为(2,3),(3,1),(-1,-2). (3)在y轴上找一点P,使得PA+PB最小,画出点P所在的位置(保留作 图痕迹,不写作法),并求出PA+PB的最小值. 解:如图所示,点 P 即为所求,PA+PB 的最小值为线段 A′B 的长,
3.3轴对称与坐标变化课件 2024-2025学年北师大版八年级数学上册
(3)在这个坐标系里画出小旗ABCD关于x
(2,6)
轴的对称图形,它的各个“顶点”的坐标
与原来的点的坐标有什么关系?
先做出对称图形:
对应点横坐标相同,
纵坐标互为相反数.
步骤:①找各对应点位置;②连线
A (2,6)
A2 ( 2 , -6 )
B (5,4)
C (2,4)
B2 ( 5 , -4 ) C2 ( 2 , -4 )
2.各顶点关于原点对称,则构成的图形关于原点对称
课堂小结
点P(a,b)
(2,6)
点P(a,b)
关于y轴对称
关于x轴对称
点P(a,b) 关于原点对称
点坐标(-a,b)
点坐标(a,-b)
点坐标(-a,-b)
关于y轴对称的图形:各顶点关于y轴对称;
关于x轴对称的图形:各顶点关于x轴对称
B3
C3
A3
C2
A2
D. (3,-4)
12.如图,在平面直角坐标系中,直线l过点A且平行于x轴,交y轴于点
(0,1),△ABC关于直线l对称,点B的坐标为(-1,-1),则点C的坐标为
(-1,3)
.
13. 如图,在平面直角坐标系中,直线l∥y轴且过点(1,0),依次作
△ABC关于x轴对称的△A1B1C1,作△A1B1C1关于直线l对称的△A2B2C2,
2.各顶点关于x轴对称,则构成的图形关于x轴对称
(3)将各坐标的横,纵坐标都乘以
-1,那么图形会怎么变化呢?
坐标变化为:
(x,y)
(5,4)
(3,0)
(5,1)
(x,-y) (-5,-4) (-3,0) (-5,-1)
北师大版八年级上册3.3轴对称与坐标变化 讲义
第三章位置与坐标3.3 轴对称与坐标变化1.图形的坐标变化与图形平移之间的关系在平面直角坐标系中,当纵坐标不变,横坐标都加上或减去一个正数a时,图形会向右或向左平移a个单位长度;当横坐标不变,纵坐标都加上或减去一个正数a时,图形会向上或向下平移a个单位长度.【例1】如图①所示的箭头是将坐标为(0,0),(1,2),(1,1),(4,1),(4,-1),(1,-1),(1,-2),(0,0)的点用线段依次连接而成的,若纵坐标保持不变,横坐标分别加1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?若是横坐标保持不变,纵坐标分别减2呢?2.图形的坐标变化与图形的伸长和压缩之间的关系在平面直角坐标系中,当图形的纵坐标不变,横坐标扩大或缩小一定倍数时,图形就相应地被横向拉长或压缩该倍数,而纵向不变;当图形的横坐标不变,纵坐标扩大或缩小一定倍数时,图形就相应地被纵向拉长或压缩该倍数,而横向不变.【例2】如图所示的小船是将坐标为(1,0),(3,0),(4,1),(2,1),(2,3),(1,2),(1,1),(0,1),(1,0)的点用线段依次连接而成的,现将各点的坐标作如下变化:纵坐标保持不变,横坐标分别变成原来的1.5倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?坐标与图形变化的对应关系当横坐标不变,纵坐标扩大或缩小为原来的a倍时,图形就要被纵向拉长或压缩为原来的a倍;当纵坐标不变,横坐标扩大或缩小为原来的b倍时,原图形就要被横向拉长或压缩为原来的b倍.3.图形的坐标变化与图形的轴对称之间的关系在平面直角坐标系中,当图形上各点的横坐标不变,纵坐标乘-1时,所得的新图形与原图形关于x轴对称;当图形上各点的纵坐标不变,横坐标乘-1时,所得的新图形与原图形关于y轴对称;当图形上各点的横、纵坐标都乘-1时,那么所得到的新图形与原图形关于原点对称.对称点的坐标变化规律对应点的坐标对称情况可以简单记为:关于横轴对称,“横不变,纵相反”;关于纵轴对称,“纵不变,横相反”;关于原点对称,“全相反”.【例3】按要求回答问题:(1)在平面直角坐标系中描出点(1,2),(1,4),(1,6),(3,6),(1,4),(3,2),(1,2),并将各点用线段依次连接起来.(2)将上述各点作如下变化:①纵坐标不变,横坐标分别变成原来的2倍,再将所得的点用线段按第一问中的顺序连接起来,所得的图形与原来的图形相比有什么变化?②横坐标保持不变,纵坐标分别加3呢?③横、纵坐标分别乘-1呢?4.图形的变换与点的坐标的关系将图形放在平面直角坐标系中,我们可以求得各顶点的坐标,反过来,知道了一些点的坐标,我们还可以将各点顺次连接起来得到一些有趣的图形.通过点的坐标的变化与图形的变换,可以得到图形变换的规律.图形是由点组成的,点的坐标发生了变化,图形也会发生相应的变化;图形移动时,点的坐标也发生变化.其变化规律为:(1)纵坐标不变,横坐标按比例增大时,图形被横向拉长;纵坐标不变,横坐标按比例减小时,图形被横向“压缩”.(2)图形向右平移时,纵坐标不变,横坐标增大;图形向左平移时,纵坐标不变,横坐标减小;图形向上平移时,横坐标不变,纵坐标增大;图形向下平移时,横坐标不变,纵坐标减小.(3)横坐标加上一个数,纵坐标不变时,图形左、右平移(加负数,左移,加正数,右移);纵坐标加上一个数,横坐标不变时,图形上、下平移(加正数,上移,加负数,下移).(4)横坐标不变,纵坐标乘-1时,所得图形与原图形关于x轴对称;纵坐标不变,横坐标乘-1时,所得图形与原图形关于y轴对称.【例4】如图1,在平面直角坐标系内,一个封闭的图形ABCDE上各顶点的坐标分别为A(-2,0),B(1,2),C(2,1),D(3,2),E(2,0).(1)将各顶点的横坐标都加上3,纵坐标不变,并把得到的顶点依次连接,则所得的图形和原图形相比,位置有怎样的变化?(2)如果将各顶点的纵坐标都加上3,横坐标不变,顺次连接各顶点,所得图形与原图形的位置有什么变化?(3)将各顶点的横坐标都加上4,纵坐标都加上5,顺次连接各顶点,所得的图形与原图形的位置有怎样的变化?5.从变化的“鱼”中探索坐标变化与图形变化的关系通过变化的“鱼”,在坐标系内,将图形的坐标变化与图形的平移、轴对称、伸长、压缩巧妙地融合在一起,既体现了图形的现实性、趣味性,又体现了数学的深刻性以及数形结合的思想方法.平移:原图形的坐标中,横坐标保持不变,纵坐标分别增加(减少)a (a >0),则所得图案被向上(向下)平移a 个单位长度,形状、大小未发生改变;反之,纵坐标不变,横坐标分别增加(减少)a (a >0),则所得图案被向右(向左)平移a 个单位长度.轴对称:原图形的坐标中,横(纵)坐标保持不变,纵(横)坐标分别乘-1,则所得的图案与原图案关于横轴(纵轴)对称.伸长:新图案的坐标变为原图案坐标的a 倍,则将原图案伸长a 倍,便可得新图案.压缩:新图案的坐标变为原图案坐标的1a (a >1),则将原图案压缩1a,便可得新图案. 【例5】 下面的方格纸中画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形的边长为单位长度建立平面直角坐标系,可得点A 的坐标是(__________,__________).针对训练1.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点的坐标为( ) A .(3,2) B .(2,﹣3) C .(﹣2,3) D .(﹣2,﹣3)2.如图,△ABC 与△DEF 关于y 轴对称,已知A (﹣4,6),B (﹣6,2),E (2,1),则点D 的坐标为( )A .(﹣4,6)B .(4,6)C .(﹣2,1)D .(6,2)3.将平面直角坐标系内的△ABC 的三个顶点坐标的横坐标乘以﹣1,纵坐标不变,则所得的三角形与原三角形( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .无任何对称关系 4.若某四边形顶点的横坐标变为原来的相反数,而纵坐标不变,此时图形位置也不变,则这四边形不是( )A .矩形B .直角梯形C .正方形D .菱形5.已知点M 与点P 关于x 轴对称,点N 与点M 关于y 轴对称,若点N (1,2),则点P 的坐标为( )A .(2,1)B .(﹣1,2)C .(﹣1,﹣2)D .(1,﹣2)6.坐标平面上有一个轴对称图形,、两点在此图形上且互为对称点.若此图形上有一点C(﹣2,﹣9),则C的对称点坐标为何()A.(﹣2,1)B.C.D.(8,﹣9)7.点P(a﹣1,b﹣2)关于x轴对称与关于y轴对称的点坐标相同,则P点坐标为()A.(﹣1,﹣2) B.(﹣1,0)C.(0,﹣2)D.(0,0)8.在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为()A.(0,2) B.(2,0) C.(0,﹣2)D.(﹣2,0)9.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=.10.如图,在方格纸上建立的平面直角坐标系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A的对应点D的坐标是.11.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点A′的坐标为.12.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.13.△ABC在平面直角坐标系中的位置如图.请画出△ABC关于y轴对称的△A1B1C1,并求出A1、B1、C1三点的坐标.14.在直角坐标系中,将坐标是(3,0),(3,2),(0,3),(3,5),(3,2),(6,3),(6,2),(3,0),(6,0)的点用线段依次连接起来形成一个图案.(1)作出原图案关于x轴对称的图案.两图案中的对应点的坐标有怎样的关系?(2)作出原图案关于y轴对称的图案.两图案中的对应点的坐标有怎样的关系?15.在图(1)中编号①②③④的四个三角形中,关于y轴对称的两个三角形的编号为;关于x轴对称的两个三角形的编号为.在图(2)中,画出△ABC关于x轴对称的图形△A1B1C1,并分别写出点A1,B1,C1的坐标.16.在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.。
北师大数学八年级上册第二章3.3轴对称与坐标变化
3.3轴对称与坐标变化知识精讲图形的平移1.在平面直角坐标系中,图形上各点的纵坐标不变,横坐标分别加上(或减去)一个正数a,则图形沿水平方向向右(或向左)平移a个单位长度,图形形状、大小不变.2.在平面直角坐标系中,图形上各点的横坐标不变,纵坐标分别加上(或减去)一个正数b,则图形向上(或向下)平移b个单位长度,图形形状、大小不变.横坐标(x)纵坐标(y)左右向左移动n个单位长度(n>0),横坐标变为x n-不变向右移动n个单位长度(n>0),横坐标变为x n+上下不变向上移动n个单位长度(n>0),纵坐标变为x n+向下移动n个单位长度(n>0),纵坐标变为x n-割分割,把图形分割成几部分容易求解的图形,分别求解,然后相加即可.补补齐,把图形补成一个容易求解的图形,然后再减去补上的那些部分.三点剖析一.考点:用坐标表示地理位置,坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.二.重难点:坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.三.易错点:1.平行移动最关键的是掌握平移的方向与坐标变化之间的关系,可以用口诀形式表示:横坐标,右移加,左移减;纵坐标,上移加,下移减;2.求面积时,优先考虑补的方法,通常补成一个长方形或者梯形,之后再相减求解即可;3.计算坐标系内图形的面积时,平行或垂直于坐标轴直线上的两个点之间的距离,用横坐标之差的绝对值或者纵坐标之差的绝对值表示.用坐标表示地理位置例题1、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(-1,-2),你能帮她建立平面直角坐标系并求出其他各景点的坐标?(图中每个小正方形的边长为1)【答案】两栖动物(6,2);狮子(-2,6);飞禽(5,5)【解析】如图所示:南门(2,1),两栖动物(6,2),狮子(-2,6),飞禽(5,5).随练1、如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【答案】D【解析】①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-5,-2)时,表示左安门的点的坐标为(11,-11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5),此结论正确.坐标系内图形的变换例题1、把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为________。
3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案
第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)
八年级数学上册3.3轴对称与坐标变化说课稿(新版北师大版)一. 教材分析《八年级数学上册3.3轴对称与坐标变化》这一节的内容,主要介绍了轴对称的概念,以及如何利用坐标来表示轴对称的变换。
这部分内容是学生在学习了平面几何和坐标系的基础上,进一步深化对几何变换的理解,为后续学习函数、解析几何等内容打下基础。
教材通过具体的实例,引导学生认识轴对称,并学会用坐标来表示对称变换。
同时,通过练习题的设置,让学生在实际操作中掌握坐标变换的规律,提高解决问题的能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对平面几何的概念和性质有所了解。
同时,学生也学习了坐标系,能够熟练地用坐标表示点的位置。
但是,学生对于轴对称的概念可能还比较陌生,对于如何利用坐标来表示轴对称的变换,可能还存在一定的困难。
三. 说教学目标1.知识与技能目标:学生能够理解轴对称的概念,掌握坐标变换的规律,能够用坐标来表示轴对称的变换。
2.过程与方法目标:通过实例的讲解和练习,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:轴对称的概念,坐标变换的规律。
2.教学难点:如何用坐标来表示轴对称的变换。
五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法等教学方法,引导学生通过观察、思考、操作等活动,掌握轴对称的概念和坐标变换的规律。
2.教学手段:利用多媒体课件,直观地展示轴对称的变换过程,帮助学生理解和掌握。
六. 说教学过程1.导入:通过一个具体的实例,引导学生认识轴对称,激发学生的兴趣。
2.新课讲解:讲解轴对称的概念,引导学生通过观察、思考,发现坐标变换的规律。
3.练习:让学生通过实际操作,运用坐标变换的规律解决问题。
4.总结:对本节课的内容进行总结,强调轴对称的概念和坐标变换的规律。
5.作业布置:布置一些有关轴对称和坐标变换的练习题,巩固所学内容。
3.3 轴对称与坐标变化 北师大版八年级数学册同步作业(含答案)
3.3轴对称与坐标变化一、单选题1.已知点Q与点关于x轴对称点是,那么点为()A.B.C.D.【答案】B【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案.【解析】解:∵点P(3,a)关于x轴的对称点为Q(b,-2),∴a=2,b=3,∴点(a,b)的坐标为(2,3),故选:B.【点睛】此题主要考查了关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.2.已知点和关于y轴对称,则的值为()A.0B.C.1D.【答案】C【分析】根据平面直角坐标系中点的对称的知识点可得到m、n的值,代入求值即可.【解析】解:∵点与点关于轴对称,∴,∴,故选C.【点睛】本题主要考查了平面直角坐标系点的对称,代数式求值,掌握平面直角坐标系点的对称,代数式求值方法,根据对称性构造方程组是解题的关键.3.已知的坐标为,直线轴,且,则点的坐标为()A.B.或C.D.或【答案】D【解析】【分析】根据平行于x轴的直线是上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解析】∵AB//x轴,点A的坐标为(1,2),∴点B的横坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1−5=−4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(−4,2)或(6,2).故选:D.【点睛】此题考查坐标与图形-轴对称,解题关键在于掌握运算法则.4.已知点与点关于某条直线对称,则这条直线是()A.轴B.轴C.过点且垂直于轴的直线D.过点且平行于轴的直线【答案】C【分析】由题意PQ∥x轴,所以过PQ中点且垂直于x轴的直线即为所求的直线,然后根据选项内容进行判断.【解析】解:∵点,点∴PQ∥x轴,设PQ的中点为M则M点坐标为,即∴点与点关于经过点且垂直于轴的直线对称故选项A,B,D错误;又∵在这条直线上,∴选项C符合题意故选:C.【点睛】本题考查点的坐标及轴对称,掌握轴对称的性质,利用数形结合思想解题是关键.5.甲、乙、丙三人所处的位置不同,甲说:“以我为坐标原点,乙的位置是,”丙说:“以我为坐标原点,乙的位置是.”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系在同一平面内,且x轴、y轴的正方向相同)( )A.,B.,C.,D.,【答案】C【解析】【分析】由于已知三人建立坐标时,x轴y轴正方向相同,以甲为坐标原点,乙的位置是(2,3),则以乙为坐标原点,甲的位置是(-2,-3);同样,以乙为坐标原点,丙的位置是(3,2).【解析】∵以甲为坐标原点,乙的位置是,∴以乙为坐标原点,甲的位置是;∵以丙为坐标原点,乙的位置是,∴以乙为坐标原点,丙的位置是.故选C.【点睛】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应.6.如果A(1-a,b+1)关于y轴的对称点在第三象限,那么点B(1-a,b)在( ) A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解析】∵A(1-a,b+1)关于y轴的对称点在第三象限,∴A(1-a,b+1)在第四象限,∴1-a>0,b+1<0,∴1-a>0,b<-1,∴B(1-a,b)在第四象限;故选:D.【点睛】本题考查了关于y对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.在平面直角坐标系中,已知点,则点关于直线(直线上各点的横坐标都为)对称点的坐标是( )A.B.C.D.【答案】B【分析】利用已知直线m上各点的横坐标都是-2,得出其解析式,再利用对称点的性质得出答案.【解析】∵a2+2>0,∴点在第一象限,∵直线m上各点的横坐标都是-2,∴直线为:x=-2,∴a2+2到-2的距离为:a2+4,∴点P关于直线m对称的点的横坐标是:-a2-6,故P点对称的点的坐标是:(-a2-6,5).故选B.【点睛】此题主要考查了坐标与图形的性质,根据题意得出对称点的横坐标是解题关键.8.已知在平面直角坐标系中,点A的坐标为(﹣3,4),下列说法正确的有( )个①点A与点B(-3,﹣4)关于x轴对称②点A与点C(3,﹣4)关于原点对称③点A与点F(-4,3)关于第二象限的平分线对称④点A与点C(4,-3)关于第一象限的平分线对称A.1B.2C.3D.4【答案】D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于第2象限角平分线对称的点的坐标特点:横纵坐标变换位置且变为相反数;关于第1象限角平分线对称的点的坐标特点:横纵坐标变换位置.综合以上即可得答案.【解析】∵点A的坐标为(﹣3,4),∴点A关于x轴对称的点的坐标为(﹣3,﹣4),点A关于原点对称的点的坐标为(3,-4),点A关于第二象限的角平分线对称的点的坐标为(-4,3)点A关于第一象限的角平分线对称的点的坐标为(4,-3)∴①、②、③、④正确.故选:D.【点睛】此题主要考查了关于x轴、y轴、第二象限的角平分线、第一象限的角平分线对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.9.在坐标平面上有一个轴对称图形,其中A(3,﹣)和B(3,﹣)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是( )A.(﹣2,1)B.(﹣2,﹣)C.(﹣,﹣9)D.(﹣2,﹣1)【答案】A【分析】先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.【解析】解:∵A(3,﹣)和B(3,﹣)是图形上的一对对称点,∴点A与点B关于直线y=﹣4对称,∴点C(﹣2,﹣9)关于直线y=﹣4的对称点的坐标为(﹣2,1).故选:A.【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m对称,则两点的纵坐标相同,横坐标和为2m;关于直线y=n对称,则两点的横坐标相同,纵坐标和为2n.10.在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C (﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为( )A.(0,2)B.(2,0)C.(0,﹣2)D.(﹣2,0)【答案】D【分析】根据正方形的性质以及坐标变化得出对应点的坐标,再利用变化规律得出点P2011的坐标与P3坐标相同,即可得出答案.【解析】解:∵作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6…,按如此操作下去,∴每变换4次一循环,∴点P2011的坐标为:2011÷4=502…3,点P2011的坐标与P3坐标相同,∴点P2011的坐标为:(-2,0),故选:D.【点睛】此题主要考查了坐标与图形的变化以及正方形的性质,根据图形的变化得出点P2011的坐标与P3坐标相同是解决问题的关键.二、填空题11.点(x,y)关于x轴对称的点的坐标为_______;点(x,y)关于y轴对称的点的坐标为_______.【答案】(x,-y)(-x,y)【解析】略12.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____.【答案】-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.【解析】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=﹣3,故答案为:﹣3.【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键.13.若点与点关于轴对称,则_______.【答案】3【分析】利用关于x轴对称“横坐标不变,纵坐标互为相反数”求得m的值.【解析】解:∵点A(2,m)与点B(2,-3)关于x轴对称,∴-3+m=0,∴m=3,故答案为:3【点睛】本题考查了关于x轴对称点的坐标变化,掌握关于轴对称坐标变化法则是解题关键.14.如图,与关于轴对称,已知点,则点的坐标_______,点的坐标__________,点的坐标__________.【答案】(-2,1)(4,6)(6,2)【分析】根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数解答即可.【解析】解:∵△与△关于轴对称,且点,∴点的坐标为(-2,1),点的坐标为(4,6),点的坐标为(6,2).故答案为:(-2,1),(4,6),(6,2).【点睛】本题考查了关于坐标轴对称的点的坐标特点,属于应知应会题型,熟练掌握基本知识是关键.15.若过点的直线与轴平行,则点关于轴的对称点的坐标是_________.【答案】【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标. 【解析】解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5)∴点M关于y轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键. 16.已知两点E(x1,y1),F(x2,y2),如果x1+x2=2x1,y1+y2=0,那么E,F两点关于_______对称.【答案】x轴【分析】先根据已知条件得出x1与x2,y1与y2的关系,继而根据这一关系判断即可.【解析】∵x1+x2=2x1,y1+y2=0,∴x1=x2,y1=-y2,∴E,F两点关于x轴对称,故答案为x轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,比较容易,熟记平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系是解题的关键.17.如图,在平面直角坐标系中,将点向右平移2个单位长度得到点,则点关于轴的对称点的坐标是___________.【答案】根据平移的坐标变化规律和关于x轴对称的点的坐标特征即可解决.【解析】解:∵点A(-1,2)向右平移2个单位得到点B,∴B(1,2).∵点C与点B关于x轴对称,∴C(1,-2).故答案为:(1,-2)【点睛】本题考查了平移、关于坐标轴对称等知识点,熟知平移时点的坐标变化规律和关于正半轴对称的点的坐标特征是解题的关键.18.当m=___,n=___时,点A(2m+n,2)与点B(1,n-m)关于y轴对称.【答案】-1 1【分析】根据关于y轴对称的点的坐标特点可知,对应点横坐标互为相反数,纵坐标不变.【解析】因为点A(2m+n,2)与点B(1,n-m)关于y轴对称所以解得故答案为:-1;1考核知识点:轴对称与点的坐标.理解轴对称与点的坐标对应关系是关键.19.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是________.【答案】(﹣1,0).【解析】试题分析:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,求出C的坐标,设直线BC的解析式是y=kx+b,把B、C的坐标代入求出k、b,得出直线BC的解析式,求出直线与x轴的交点坐标即可.试题解析: 作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).考点:1.轴对称-最短路线问题;2.坐标与图形性质.20.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l l于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,…依次进行下去.则点A4的坐标为__;点的坐标为_____;点A2021的坐标为____.【答案】(4,﹣4)(﹣8,8)(21010,21011)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=1×4+2;2021=505×4+1即可找出点A2021的坐标.【解析】解:观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8),…,∴“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,∵6=1×4+2,A6(﹣8,8)∵2021=505×4+1,∴A2021的坐标为(21010,21011).故答案为:(4,﹣4);(﹣8,8);(21010,21011).【点睛】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”.三、解答题21.(1)分别写出下列各点关于x轴对称点的坐标:A(3,6),B(﹣7,9),C(6,﹣1)(2)分别写出下列各点关于y轴对称点的坐标:D(﹣3,﹣5),E(0,10),F(8,0)【答案】(1)A、B、C关于x轴对称的点的坐标分别为(3,﹣6)、(﹣7,﹣9)、(6,1);(2)D、E、F关于y轴对称的点的坐标分别为(3,﹣5)、(0,10)、(﹣8,0).【分析】(1)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数解答即可;(2)根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数解答即可.【解析】解:(1)A(3,6)关于x轴对称点的坐标是(3,﹣6),B(﹣7,9)关于x轴对称点的坐标是(﹣7,﹣9),C(6,﹣1)关于x轴对称点的坐标是(6,1);(2)D(﹣3,﹣5)关于y轴对称点的坐标为(3,﹣5),E(0,10)关于y轴对称点的坐标为(0,10),F(8,0)关于y轴对称点的坐标为(﹣8,0).【点睛】本题考查了关于坐标轴对称的点的坐标特征,属于应知应会题型,熟练掌握基本知识是解题的关键.22.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【答案】(1)见解析;(2)(4,3);(3);【分析】(1)从三角形的三边向y轴引垂线,并延长相同的距离找到三点的对称点,顺次连接.(2)从图形中找出点C1,并写出它的坐标.(3) 根据三角形的面积公式求出△ABC的面积.【解析】(1)△A1B1C1如图所示.(2)点C1的坐标为(4,3).(3)S△ABC=3×5-×3×2-×3×1-×2×5=.【点睛】本题主要考查了轴对称图形的作法,注意画轴对称图形找关键点的对称点然后顺次连接是关键.23.如图,已知的顶点分别为,,和直线(直线上各点的横坐标都为1).(1)作出关于轴对称的图形,并写出点的坐标;(2)作出关于轴对称的图形,并写出点的坐标;(3)若点是内部一点,则点关于直线对称的点的坐标是________.【答案】(1)见解析,;(2)见解析,;(3)【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接可得;(2)分别作出点A,B,C关于y轴的对称点,再首尾顺次连接可得;(3)利用对称轴为直线x=1,进而得出P点的对应点坐标.【解析】解:(1)如图所示,即为所求作的三角形,点的坐标为.(2)解:如图所示,即为所求作的三角形,点的坐标为.(3)解:∵点是内部一点,∴设点关于直线对称的点的横坐标为,则,故.∴点关于直线对称的点的坐标是:.【点睛】本题主要考查作图——轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并根据轴对称变换的定义和性质得出变换后的对应点位置.24.如图,在平面直角坐标系中,,,,试分别作出关于直线和直线的对称图形,并写出对应顶点的坐标.【答案】见解析,,,,,,【分析】根据题意找到各顶点的对应点,即可作图.【解析】解:如图所示,关于直线的对称图形为;关于直线的对称图形为.对应顶点的坐标分别为,,,,,.【点睛】此题主要考查画轴对称图形,解题的关键是熟知轴对称的性质.25.已知,M,N是x轴上两动点(M在N左边),,请在x轴上画出当的值最小时,M,N两点的位置.【答案】见解析【分析】作点A关于x轴的对称点,再将点B向左平移3个单位得到点,连接,与x轴的交点即为点M,将向右平移3个单位得到点C,连接,与x轴的交点即为N.点M,N即为所求.【解析】如图,作点A关于x轴的对称点,再将点B向左平移3个单位得到点,连接,与x轴的交点即为点M,将向右平移3个单位得到点C,连接,与x轴的交点即为N.点M,N即为所求.【点睛】本题主要考查了坐标与图形的性质和最短路线问题,准确计算是解题的关键.26.如图,在平面直角坐标系中,直线l经过点,且平行于y轴给出如下定义:点先关于y轴对称得点,再将点关于直线l对称得点,则称点是点P 关于y轴和直线l的二次反射点.(1)已知,则它们关于y轴和直线l的二次反射点,,的坐标分别是__________________;(2)若点D的坐标是,其中,点D关于y轴和直线l的二次反射点是点,求线段的长;(3)已知点,点,以线段为边在x轴上方作正方形,若点,关于y轴和直线l的二次反射点分别为,且线段与正方形的边有公共点,求a的取值范围.【答案】(1);(2)6;(3)或.【分析】(1)先求关于y轴对称点的坐标,再求关于直线l对称点的坐标即可;(2)根据题意,表示出点的坐标即可;(3)表示为两点的坐标,再根据与正方形有交点列不等式组即可.【解析】解:(1)关于y轴对称的点的坐标分别为:,它们关于直线l对称,纵坐标不变,横坐标加上3的2倍与原横坐标的差,即为:,故答案为:.(2)由(1)可知,..(3)由(1)可知,,当与有公共点时,,∴.当与有公共点时,,∴,∴或.【点睛】本题考查了关于y轴对称和关于平行于y轴的直线对称点的坐标变化规律以及正方形、不等式等知识,能够发现关于平行于y轴的直线对称点的坐标变化规律是解题关键.。
3.3轴对称与坐标变化
y
与原图形关于5 原点中心对称
4 3 2
将各坐标的纵坐标与 横坐标都乘以-1,图 形会变成什么样?
1 –5 –4 –3 –2 –1 0 1 2 3 4
–1
5x
–2
(x,y) (0,0) (5,4) –3(3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
–4
(-x,-y) (0,0) (-5,-4)–5(-3,0) (-5,-1) (-5, 1) (-3,0) (-4, 2) (0,0)
-4 -3 -2 -1 0 -1
· -2
B 1(-4, -2) -3
-4
1 2 3 4 5 x 怎样的关 系?
· C(3, -4)
y
5 与原图形关于x轴对称
4
将各坐标的纵坐标都 乘以-1,横坐标保持 不变,则图形怎么变 化?
3
2
1
0 12345678
x
–1
–2
–3
–4
(x,y) (0,0) (5,4)
3)点A关于原点对称点的坐标为(2,3),则点A 关于 y 轴对称点的坐标为 (2,-3) 。
知识一:关于坐标轴、原点对称的点的坐 标
y (a,b) P
(-a,b) P2
P1 (a,-b)
O
X
P3
(-a,-b)
• (2,-7)关于原点的对称点_________ • (-5,7)关于X轴的对称点_________ • (4,-3)关于Y轴的对称点_________ • (-12,-37)关于原点的对称点_________ • (72,54)关于X轴的对称点_________ • (22,37)关于Y轴的对称点_________ • (-3,-10)关于Y轴的对称点_________
3.3++轴对称与坐标变化+课件+2025学年北师大版八年级数学上册
点
清
单
解
读
返回目录
2. 图形的坐标变化与轴对称
关于坐标轴 图形关于 x 轴对称,得到的新图形的各对应
对称的图形 点的横坐标不变,纵坐标为原来的相反数;
上的点的坐 图形关于 y 轴对称,得到的新图形的各对应
标特征
在直角坐标
系中作轴对
称图形的方
法
点的纵坐标不变,横坐标为原来的相反数
(1)计算:计算对称点的坐标;
3.3 轴对称与坐标变化
● 考点清单解读
● 重难题型突破
3.3 轴对称与坐标变化
考
点
清
单
解
读
■考点
轴对称与坐标变化
1. 关于坐标轴对称的点的坐标特征
点 P(a,b)的坐标变化
对称轴
结果
说明
x 轴
P′(a,-b)
横坐标相同,纵坐标乘-1
y 轴
P ″(-a,b)
横坐标乘-1,纵坐标相同
返回目录
3.3 轴对称与坐标变化
对点典例剖析
考
点
典例 已知点 A(a,b)和点 B(c,d)(d≠0)关于 y
清
单
++
解 轴对称,求
的值.
读
3.3 轴对称与坐标变化
考
点
清
单
解
读
[解题思路]
返回目录
3.3 轴对称与坐标变化
返回目录
[答案] 解: 因为点 A 与点 B 关于 y轴对称,所以
考
点
++
(+)+
综合与实践
(3)实践运用
①若点 M1(-9,5),点 M2(11,17),则线段 M1M2
3.3 轴对称与坐标变化
2a-3=5且-b= a+2 a=4,b=-6
2、已知点A(2,-3) 关于x轴的对称点A ′ , A ′关于y轴 的对称点是A ′ ′,求A ′ ′的坐标?
A(2,-3)
A ′(2,3)
A ′ ′(-2,3)
2、图形坐标变化与对称的关系
例1 已知点O(0,0), D(3,2) , E(5,5) , C(2,3);
(1)在坐标系中描出各点,依次连接得到四边形OCED;
(2)按下列要求绘制图形,并说明图形发生了哪些变化;
①横坐标不变,纵坐标都乘以-1; ②纵坐标不变,横坐标都乘以-1;
③横、纵坐标都乘以-1;
①横坐标不变,纵坐标都乘以-1;
y
5 4 3 2 1 -5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5 1
C
3、直角坐标系中作成轴对称图形的方法
①定对称点的坐标; ②描点; ③连线;
思考:
点P(x,y)
点P(x,y)
关于直线 x=m对称 关于直线 y=n对称
点 P ′ ( 2 m -x , y )
点P ′ ( x , 2n-y )
练习:
1、已知△ABC关于直线y=1对称,C到AB的距离为2,
AB长为6,则点A,点B的坐标分别为
2
3
4
5
x
②纵坐标不变,横坐标都乘以-1;
y
5 4 3 2
1
-5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5 1
2
3
4
5
x
③横、纵坐标都乘以-1;
y
5 4 3 2
1
-5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 7 A 6 5 B1 C1 4 C B 3 2 D1 1 D -7 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 7 -1 -2 -3 -4 -5 -6 -7 A1
x
例:将图中的点(0,0),(5,4),(3,0), (5,
1), (5,-1),(3,0),(4,-2), (0 , 0), 做如下变化: (1)纵坐标保持不变,横坐标分别变成原来的2倍,再将 所得的 点用线段依次连接起来,所得的图案与原来的 图案相比有什么变化?
小组交流,派代表发言。
作业:
P69-70习题3.5第1、2、3、4题
A
C
B
小结:
平移:1.纵坐标不变,横坐标分别增加(减少)a个单位; 2.横坐标不变,纵坐标分别增加(减少) a个单位. 缩放:1.纵坐标不变,横坐标分别变为原来的a倍; 2.横坐标不变,纵坐标分别变为原来的a倍; 3.横坐标与纵坐标同时变为原来的a倍. 对称:1.纵坐标不变,横坐标分别乘-1; 2.横坐标不变,纵坐标分别乘-1; 3.横坐标与纵坐标都乘-1.
解:(1)纵坐标保持不变,横坐标分别变成原来的2倍, 所得各个点坐标依次是:(0,0),(10,4),(6,0), (10,1), (10,-1),(6,0),(8,-2),(0,0) 再将所得的点用线段依次连接起来,所得的图案与原 来的图案相比,整条鱼被横向拉长为原来的2倍。
(2)纵坐标保持不变,横坐标分别加3,再将
议一议:如果纵坐标保持不变,
横坐标分别变成原来的倍,再将所得的 点用线段依次连接起来,所得的图案与 原来的图案相比有什么变化?
巩固训练:
1.点P(3,)与点Q(b,2)关于y轴对称, 则= , b= 。
2.P(-5,4)到x轴的距离是________,到y轴的距 离是_______。 3.已知点P在第二象限,且到x轴的距离是2,到y轴 的距离是3,则P点坐标为________。 4.点M(-3,4)离原点的距离是_________单位长度.
§3.3
• 1.关于x轴对称的两个点的坐标特点:横坐标 • 纵坐标 。 • 2.关于y轴对称的两个点的坐标特点:横坐标 • 纵坐标 。
, ,
• 3.在平面直角坐标系中,点A(2,3)与点B关于x轴 对称,则点B的坐标为( ) • A.(3,2) B.(-2,-3) C.(只“蝴蝶”,在第二象 限里作出一只和它形状、大小完全一样的“蝴蝶” ,并写出第二象限中“蝴蝶”各个“顶点”的坐标 。
6.在如右上图所示的正方形 网格中,每个小正方形的边 长为1,格点三角形(顶点 是网格线的交点的三角形) ABC的顶点A.C的坐标分别为 (-4,5),(-1,3)(1) 请在如图的网格平面内作出 平面直角坐标系; (2)请作出三角形ABC关于 y轴对称的三角形A1B1C1; (3) 写出点B1的坐标
所得的点用线段依次连接起来,所得的图案与 原来的图案相比有什么变化?
解:(2)纵坐标保持不变,横坐标分别加3,所得各个点坐 标依次是:(3,0),(8,4),(6,0), (8,1), (8,-1), (6,0),(7,-2),(3,0)。再将所得的点用线段依次 连接起来,所得的图案与原来的图案相比,鱼的形状、大 小不变,整条鱼向右平移了3个单位长度。
• 4.点M(1,2)关于y轴对称的点坐标为( ) • A.(-1,2) B.(1,-2) C.(2,-1) D.(-1,-2).
• 5.若P(a, 3-b),Q(5, 2)关于x轴对称,则a=___ , b=______. • 6.点P(a,b)关于x轴对称的点的坐标是 关于x轴对称的点,其横坐标 ,纵坐标 • 7.点P(a,b)关于y轴对称的点的坐标是 关于y轴对称的点,其纵坐标 ,横坐标 ;即 . ;即 .
• 8.横坐标不变,纵坐标分别乘以-1,则所得图形与 原图形关于 对称. 纵坐标不变,横坐标分别乘 以-1,则所得图形与原图形关于 对称.
思考:在如图所示的平面直角 坐标系中,第一、二象限内各 有一面小旗。 (1)两面小旗之间有怎样的 位置关系?对应点A与A1的坐 标又有什么共同特点?其它对 应的点也有这个特点吗? (2)在这个坐标系里面画出 小旗ABCD关于x轴的对称图形, 它的各个“顶点”的坐标与原 来的点的坐标有什么关系?