矩阵论_01线性空间
戴华《矩阵论》 第一章线性空间与内积空间
这说明,维数是有限维线性空间的唯一的本质特征。在 同构的意义下,n维向量空间Pn并不只是线性空间V 的一 个特殊例子,而是所有的n维线性空间的代表。即每一个
1 0 C1 0 1 1 0 0 1 0 1 1 0 0 1 1 0
而基 ( III ) 到基 ( II ) 的过渡矩阵为
1 1 C2 1 1 1 1 1 0 1 1 0 0 1 0 0 0
所以
( A , A2 , A3 , A4 ) ( E11 , E12 , E21 , E22 )C1 1 ( B1 , B2 , B3 , B4 ) ( E11 , E12 , E21 , E22 )C2
dim(V1 V2 ) dim(V1 ) dim(V2 ) dim(V1 V2 ).
在维数公式中,和空间的维数不大于子空间维数之和。那么何时等号成立呢?
V1 , V2 是数域 P 上线
性空间 V 的两个有限维子空间,则它们的交 与和
例1.4.6 设 S , K 分别是 n 阶实对称矩阵和反对称矩阵 的全体。显然容易证明 S , K 均为线性空间 R nn 的子
( III )
显然
1 A1 0 0 E11 E22 1 1 0 ( E11 , E12 , E21 , E22 ) 0 1
类似地,
1 A2 0 0 E11 E22 1 1 0 ( E11 , E12 , E21 , E22 ) 0 1 0 1 ( E11 , E12 , E21 , E22 ) 1 0
证明:
1 0 取1= 0 0
0 1 3= 0 0 2= 0 1 1 0
矩阵论-线性代数引论
无限维空间很多,如
n
K={ ai i | ai Q, n N}, (为圆周率) i0
K为Q上的无限维线性空间.
设V是数域F上得线性空间, x1, , xr V ,若满足
1)x1, , xr线性无关, 2)V中任一x均可由x1, , xr线性表示. 则称x1, , xr为V的一个基底(基).
二、维数,基底与坐标
设V为F上线性空间,xi V (i 1, , m), x V .若有ci F,
使得
x
=c 1
x1
c 2
x2
c m
xm
,
则称
x为
x1,
, xm的线性
组合,或者说x可由 x1, , xm线性表示.如果存在一组不
m
全为零的数k1, , km ,使得 ki xi ,则称向量组x1, , i 1
m
xm线性相关;否则称线性无关, 即若 ki xi ,则 i 1
k1 km 0.
线性无关组的任一子集是线性无关的,线性相关组的 任一扩展集仍线性相关.
维数:线性空间V中不同线性无关组中向量个数不
一定相同,向量个数最大者叫做V的维数,记为 dimV. 当dim V< ∞, 称 V 为有限维空间,否则为无
下都构成加群.
数域:若一个数集中任意两个数的和, 差,积,商(除数不为0)仍在该数集 中,则称该数集为数域.
如:有理数域,实数域,复数域等
线性空间:设(V, +)是一个加群,F 是一个数域,若 有 F 对 V 的数乘规则,使得 F,u V , 有V中唯
一元与之对应,记为 u ,且此规则满足:
3)存在零元 V 使得 u V , u u; 4)u V , 存在V中唯一负元-u,使得u+(-u)= .
矩阵分析与计算--01-线性空间
《矩阵分析与应用》
张贤达清华大学出版社,2004年9月
矩阵与计算工具:MATLAB, MAPLE,LAPACK … 编程语言:C/C++, C#, Fortran,Java
14
矩阵分析与计算
考核方式:
闭卷考试:65%
课堂讨论,小报告: 35% 作业抽查,应该重视练习、讨论、算法设计、 上机实践等环节。
矩阵是数学中的一个重要的基本概念,是代数 学的一个主要研究对象,也是数学研究和应用 的一个重要工具。“矩阵”这个词是由西尔维 斯特(1814-1897)首先使用的,他是为了将 数字的矩形阵列区别于行列式而发明了这个述 语 西尔维斯特一生致力于纯数学的研究,他和凯莱、哈 在逻辑上,矩阵的概念应先于行列式的概念, 密顿 (Hamilton)等人一起开创了英国纯粹数学的一个 然而在历史上次序正好相反。 繁荣局面.他的成就主要在代数方面,他同凯莱一起
18
本讲主要内容
线性空间定义与性质 基、维数、坐标 基变换与坐标变换
子空间
内积空间
19
一、线性空间
几何空间和 n 维欧氏空间的回顾 推广思想: 抽象出线性运算的本质,在任意研究对象的集 合上定义具有线性运算的代数结构。
线性空间定义 要点:
集合V 与数域F 向量的加法和数乘向量运算 运算的性质刻画
矩 阵 分 析 与 计 算 Matrix Analysis and Computations
理学院 Email: mymath@ (民) 2011年9月
1
本科线性代数内容的简单回顾与讨论 1)线性代数主要内容 2)有什么用?工科学生最关心的 大家在本科毕业设计中用了么?
矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
矩阵论第1章
例 1.1.4 在实数域上,m n 矩阵全体 R mn 按照通常矩阵 的加法,数与矩阵的乘法构成一个线性空间.
线性空间的三个重要例子:
P n , P[ x]n , P mn
1.1.2线性空间的性质
1 线性空间中零元素是唯一的.
2 线性空间中任一元素的负元素是唯一的.
3 0 0 , (1) , k 0 0 .
向量组之间的等价关系具有如下性质. (1)反身性 每一个向量组都与它自身等价; (2)对称性 如果向量组 1 , 2 ,, m 与 1 , 2 ,, s 等价,则 向量组 1 , 2 ,, s 与 1 , 2 ,, m 等价; (3)传递性 如果向量组 1 , 2 ,, m 与 1 , 2 ,, s 等价,且 向量组 1 , 2 ,, s 与 1 , 2 ,, t 等价,则向量组 1 , 2 ,, m 与
(2)(加法结合律) ( ) ( ) ;
(3)(有零元)在 V 中存在元素 0 ,使对任何 V ,都 有 0 ,称 0 为零元素; ( 4 ) ( 有 负 元 ) 对 任 何 V , 都 有 元 素 V , 使
0 ,称 为 的负元素,记为 ;
所以 在基 1 , 2 , , n 下的坐标为 (a1 , a 2 a1 , , a n a n 1 ) .
T
例 1.2.7 求线性空间 P[ x]n 的一个基、维数以及向量 p 在该基下的坐标.
容易看出,在线性空间 P3 x 2 ,, p n x n1 , p n 1 x n ,
T
例1.2.6 在 R n 中如下的 n 个向量
1 (1,1,1,,1), T 2 (0,1,1,,1) T , , n (0,0,,0,1) T
矩阵论第一章线性空间和线性变换
∃x∈R, x ∉ R
(采用这种观点来读数学,你不觉得别有情致吗?)每一种作用都有 其特性,因而每种运算都有它所服从的规律——运算律,所以在定义 运算时,需要讨论或说明它的运算律。
既然如此,是否有某种方式来描述我们的物质世界呢?就宏观现 象而论,涉及到各式各样的物质,自然的作用使物质产生互变,而且 我们认为物质世界是“完备”的,这句话意味着人类的向往,例如“点 石成金”等这类愿望。从这些粗糙的认识出发,我们来探讨描述它的
§6.1 K 积……………………………………………………(258) §6.2 拉伸算子Vec ……………………………………………(264)
§6.3 几个常见的矩阵方程…………………………………(271) 参考目录……………………………………………………………(275)
第一章 线性空间和线性变换
§1.1 引言
12121212nnnnnxxyyxxyyxyfxyxyxy?????12????????????????????????????????定义数乘12nnnxxaxaxafxfaxaxax??????????????????????????????容易验证这些运算满足公理系的要求nff是线性空间
目录
第二章 特征值和特征向量………………………………………(86) §2.1 引言………………………………………………………(86) §2.2 特征值、特征多项式和最小多项式……………………(87) §2.3 特征矢量和特征子空间………………………………(103) §2.4 约当标准型……………………………………………(113) §2.5 特征值的分布…………………………………………(128) §2.6 几个例子………………………………………………(138)
工程硕士矩阵论第一章
n 例 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
定理1.2 设W是线性空间V的非空子集, 则W是V的子空间的充要条件是: W对V 中的线性运算封闭.
例 函数集合 f x C a, b f a 0是线性空间C[a,b] 的子空间.
例 函数集合 f x C a, b f a 1 不是线性空间 C[a,b]的子空间.
例
22 R 求
中
1 1 2 2 1 1 2 0 A1 0 1 , A2 0 2 , A3 1 0 , A4 1 1 ,
的秩和极大无关组.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若 W关于 V中的线性运算也 构成数域 P 上的线性空间,则称 W 是 V 的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
• 若ka=0,则k=0或a=0
第二节 基、坐标与维数
一.向量组的线性相关性 1.有关概念 定义 设V为数域P上的线性空间,对V 中的向 , 1 , 2 ,, m , 如果存在一组数 量(元素) k1 , k 2 ,, k m P ,使得
则称 或 可由向量组 1 , 2 ,, m 线性表示. k1 , k 2 ,, k m 称为组合系数(或表示系数)
矩阵论学习-(线性空间与线性变换)
ka1 ,
kb1 +
k( k 2
1 ) a21
ka2 ,
kb2
+
k(
k2
1)
a22
=
ka1
+
ka2 ,
kb1
+
kb2
+
k( k 2
1) (
a21
+
a22 )
+
k2 (
a1 a2 )
.
4
矩 阵 论 学 习 辅 导 与 典型 题 解 析
故有 k⊙ ( α β) = ( k⊙α) ( k⊙β) , 即八条运算法则皆成立 , V 在实域 R 上构
第一章 线性空间与线性变换
线性空间是某一类事物从量方面的一个数学抽象, 线性变换则是反映线性空 间元素之间最基本的线性函数关系 , 它们是研究线性代数的理论基础 .理解本章的 主要概念 , 掌握基本定理、结论和方法 , 对学好矩阵论起着关键的作用 .
§1 .1 线性空间 , 基、维数及坐标
一、线性空间与子空间
mn
mn
mn
∑ ∑ ( aij + bij ) = ∑∑ aij + ∑ ∑ bij = 0
i = 1j = 1
i = 1j = 1
i = 1j = 1
即有 A + B∈ W4 , 同样由于 kA = ( kaij ) m × n ,
mn
mn
∑∑ kaij = k∑∑ aij = k0 = 0
i = 1j = 1
i = 1j = 1
即有 kA∈ W4 .加法运算和数乘运算封闭 , 故 W4 是一个子空间 .
⑥ ( kl ) ⊙α=
矩阵论——讲稿
(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22
∈
R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j
∈
R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .
矩阵论_第一章_线性空间和线性映射
(3) 零元素 在 V 中存在一个元素 0 ,使得对 于任意的 V 都有
0
(4) 负元素 对于 V 中的任意元素 都存 在一个元素 使得
0
1
则称 是 的 负元素. ( 5) 数 1
( 6)
( 7)
k (l ) (kl ) (k l ) k l
[a1 , a2 , a3 , ] [b1, b2 , b3 , ] [a1 b1 , a2 b2 , a3 b3 , ] k[a1, a2 , a3 , ] [ka1, ka2 , ka3 , ]
则
R
为实数域
R上的一个线性空间。
二 线性空间的基本概念及其性质
于是可得
1 2 0 1 1 0 3 4 x1 1 1 x2 1 1 1 1 1 1 x3 x4 0 1 1 0
解得
7 4 1 2 x1 , x2 , x3 , x4 3 3 3 3
称 n 阶方阵
a1n a22 a2 n an 2 ann a12
a11 a12 a a22 21 P a n1 a n 2
a1n a2 n ann
是由旧的基底到新的基底的过渡矩阵,那么上式可 以写成
1
x1 1 x 1 2 x3 1 x4 4
第三节 线性空间的子空间
定义 设
V 为数域 F 上的一个 n 维线性空间,
W 为 V 的一个非空子集合,如果对于任意的 , W 以及任意的 k , l F 都有
与向量组
1 0 1 1 1 1 1 1 0 0 , 0 0 , 1 0 , 1 1
01_矩阵论_第一章线性空间与线性变换
则有
1 0 0 1 0 0 0 0 A a11 0 0 a12 0 0 a21 1 0 a22 0 1
因此 R22 中任何一个向量都可写成向量组
1 0 0 1 0 0 0 0 E11 0 0 , E12 0 0 , E21 1 0 , E22 0 1
Pn [ x] { ai xi | ai R}
i 0 n 1
在通常多项式加法和数乘多项式运算下构成线性 空间 Pn[x]。 值得指出的是次数等于 n 1 的多项式集合
V { ai x | ai R, an1 0}
i i [a, b] = {f (x) | f (x) 是区间 [a, b] 上 实连续函数 } ,对于函数的加法与数乘运算构成 实数域上的线性空间。
定义 1.3 设 1, 2, …, n 是线性空间 Vn(F) 的一组基,若 V,
xi i (1 2
i 1 n
x1 x2 n ) x n
(1.1)
则称数 x1, x2, …, xn 是 在基 {1, 2, …, n} 下 的坐标,(1.1) 式中向量 (x1, x2, …, xn)T 为 的坐 标向量,也简称为坐标。
从上述线性空间例子中可以看到,许多常见 的研究对象都可以在线性空间中作为向量来研究。 另外应理解加法和数乘分别是 V 中的一个二元运 算和数域 F 和 V 中元素间的运算,要求运算满足 定义 1.1 中的八条性质,它们已不再局限在数的 加法、乘法的概念中。
一个数学例子 取集合为正实数集合 R+,F 为实数域 R,加 法“”和数乘“”如下定义 :a, bR+,ab = ab, :kR(i.e. F ),aR+,k a = ak。 在此运算下,R+ 是 R 上的一个线性空间,其中 加法零元素是 R+ 中的数 1,R+ 中元素 a 的负元素 是 a1。
矩阵论第一章
k1 , k2 ,L, kr ∈ P ,使得
k1α1 + k2α 2 + L + krα r = 0
线性相关的 则称向量组 α1 ,α 2 ,L,α r 为线性相关的;
不是线性相关的 (4)如果向量组 α1 ,α 2 ,L,α r 不是线性相关的,即 )
k1α1 + k2α 2 + L + krα r = 0
上零多项式作成的集合, 上零多项式作成的集合,按多项式的加法和数量乘 上的一个线性空间, 表示. 法构成数域 P上的一个线性空间,常用 P[x]n表示. 上的一个线性空间
P [ x ]n = { f ( x ) = a n − 1 x n − 1 + L + a 1 x + a 0 a n − 1 ,L , a 1 , a 0 ∈ P }
+ ∀a ∈ R + , ∀k ∈ R, k o a = a k ∈ R,且 ak 唯一确定. 唯一确定.
其次, 其次,加法和数量乘法满足下列算律 ① a ⊕ b = ab = ba = b ⊕ a ② (a ⊕ b) ⊕ c = (ab) ⊕ c = (ab)c = a(bc) = a ⊕(bc) = a ⊕(b ⊕ c)
二、线性空间的简单性质
1、零元素是唯一的. 、零元素是唯一的
证明:假设线性空间 有两个零元素 有两个零元素0 证明:假设线性空间V有两个零元素 1、02,则有 01=01+02=02.
2、 α ∈V ,的负元素是唯一的,记为- α . 、 的负元素是唯一的,记为∀
证明: 证明:假设α 有两个负元素 β、γ ,则有
k ,α 的数量乘积 并记做 kα , 如果加法和数量乘法 的数量乘积,并记做
矩阵论 线性空间一(1-3)
例2、在线性空间 中,
例3 在三维空间R3中,求k1 , k2 , k3 ,使得
求解
注:讨论向量组的线性表示可化为讨论线性方程组的求
解问题。
给定线性空间V 的两个向量组
与
,如果
中的每一个向量都可以由向量组 线性表示,则称向
量组
可以由向量组 线性表示;
如果向量组
与
组
与向量组
可以相互表示,则称向量 是等价的。
进而得x=0,及
故向量组x1 ,x2 , …,xt , y1 ,y2 , …,yr-t , z1 ,z2 , …,zs-t 线性无关,并构成S1+S2的基。
例3、求
的交空间与和空间的维 数与基
解 由于
并且
是
的极大线性无关组,故 是和空间L的一组基。
由维数公式得交空间的维数是1,现在要求交空间 的一组基。
一、子空间与生成子空间 1、定义:设V是一个线性空间,S是V的一个子集, 如果S关于V的加法及数乘也构成一个线性空间,则 称S是V的一个子空间。记为 定理 : 线性空间V的一个子集S是V的一个子空间 当且仅当S关于V的加法及数乘是封闭的,即
说明:每个非零线性空间至少有两个子空间,一个是 它自身,另一个是仅由零向量所构成的子集合,称为 零子空间。
命题二 向量组 x1 ,x2 , …,xp 是线性相关的充 要条件是其中的一个向量可由其余的向量线性表 示。
可以证明:
1、在线性空间
中,
线性无关。
其中 表示第i行元素第j列元素1,其它元素为0的 矩阵。
2、在线性空间
中,
线性无关。
定义 设
是线性空间V的向量组,如果
(1)
是线性无关组,
矩阵理论第一章线性空间与线性变换精品PPT课件
(A1) 加法交换律: , (A2) 加法结合律:( ) ( ),
(A3) 具有加法单位元(零向量) V ,使得
(A4) 具有加法逆元(负向量) V
( )
,使得
(M1) 数乘的结合律:k(l ) (kl)
例3 闭区间 [a,b]上的所有实值连续函数按通常函
数的加法和数与函数的乘法,构成线性空间 C[a, b]
例4 次数不超过 n 的所有实系数多项式按通常多项
式加法和数与多项式的乘法,构成线性空间 P[ x]n
例5 所有收敛的实数数列按数列极限的加法和数乘,
构成线性空间
。l
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间,
或矩阵 的A核空间或零空间,即
N ( A) { x Rn | Ax , A Rmn}
Ker( A)
例7 所有矩阵向量积 Ax 的集合构成数域 R 上的
线性空间 R( A) , 称为矩阵 A 的列空间或值域, 也称为矩阵 A 的像 , 即
R( A) { y Rm | y Ax, x Rn, A Rmn}
(M2) 数乘的单位元:1 (D1) 分配律1: k( ) k k (D2) 分配律2:(k l) k l
注意:这里我们不再关心元素的特定属性,而 且我们也不用关心这些线性运算(加法和数乘) 的具体形式。
例2 所有 m n 阶的实(复)矩阵按矩阵的加法和
数乘,构成线性空间 Rmn (C mn ) 。
中,直觉和抽象是交互为用的。”(汤川秀树,1949 年诺贝尔物理奖获得者)。
几何方法与代数方法的融和是数学自身的需要和数 学统一性的体现,也是处理工程问题的有力手段。
01南航戴华《矩阵论》第一章线性空间与内积空间
注意:
通过上面的例子可以看出线性空间的基底并不
唯一,但是维数是唯一确定的。由维数的定义,
线性空间可以分为有限维线性空间和无限维线性 空间。目前,我们主要讨论有限维的线性空间。
N(A)称为矩阵A的零子空间或核空间,也记为Ker(A);
例1.4.1
对于任意一个有限维线性空间 V ,它必
有两个平凡的子空间,即由单个零向量构成的子空
因此
所以
V1
V2 的基为 2 ,维数为 dim(V1
V2 ) 1.
由例1.4.4 由前得
V1 V2 span(1 , 2 , 1 , 2 )
5 2 0 1 l2 2 l 2 1 l 2 2 3 3 5 2 即 2 0 1 2 1 3 3 然而 1 , 2 , 1 线性无关,这样 1 , 2 , 1 是
2
nn
这说明,维数是有限维线性空间的唯一的本质特征。在 同构的意义下,n维向量空间Pn并不只是线性空间V 的一 个特殊例子,而是所有的n维线性空间的代表。即每一个
数域P上的线性空间都与n维向量空间Pn同构。因此n维向
求 V1
V2 、V1 V2 的基与维数。
解 设 V1
所以可令 解关于
V2
,则
V1, V2
k11 k2 2 = l11 l2 2
k1 , k2 , l1 , l2 的齐次方程组,得
5 2 k1 0, k2 l2 , l1 l2 3 3 5 = k1 1 k2 2 l2 2 . 3
4 3 4 2 1 4
23 18 4
例1.3.5 已知矩阵空间 R 2 2 的两组基:
第一章 矩阵论
例 设V为数域P上的线性空间, 1 , 2 ,, m 是V中的一组元素,则
Span 1 , 2 , , m k1 1 k 2 2 k m m k1 , k 2 , , k m P
是V 的子空间,称为 1 , 2 ,, m的生成子空 间, 1 , 2 ,, m称为该子空间的生成元. •
定义1.7 设 1 , 2 ,, n和 1 , 2 ,, n是n维线性空间 V 的两组基,显然它们可以互相线性表示,若
1 c11 1 c 21 2 c n1 n , 2 c12 1 c 22 2 c n 2 n , n c1n 1 c 2n 2 c nn n ,
1 x 3 2 x 2 x 2 x 3 x 2 x 1 3 x 3 2x 2 x 1 4 x 3 x 2 1
求由基 渡矩阵.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若W关于V中的线性运算也 构成数域P上的线性空间,则称W是V的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
二.线性空பைடு நூலகம்的定义与性质
1、线性空间的定义
定义
n 例2 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的数乘都构成实线性空间。
例3 全体 m n实矩阵,在矩阵的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例4 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
矩阵论课件01线性空间
第一讲 线性空间一、 线性空间的定义及性质 [知识预备]★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R )和复数域(C )。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
线性空间的概念是某类事物从量的方面的一个抽象。
1.线性空间的定义:设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。
如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++;(2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =;(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。
则有()x x +-= o 。
(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y k x k y +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。
注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。
(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体集合的表示:枚举、表达式集合的运算:并( ),交( )另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R)和复数域(C)。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
线性空间的概念是某类事物从量的方面的一个抽象。
1. 线性空间的定义:设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k ,l,m 等表示。
如果V 满足[如下8条性质,分两类](I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质(1)结合律 ()()x y z x y z ++=++;(2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。
则有()x x +-= o 。
(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质(5)数因子分配律 ()k x y k x k y +=+;(6)分配律 ()k lx k x l x +=+; (7)结合律 ()()k l x k l x =;(8)恒等律 1x x =; [数域中一定有1]则称V 为数域K 上的线性空间。
注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。
(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。
(3)除了两种运算和八条性质外,还应注意唯一性、封闭性。
唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。
当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。
例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为y=xy , kk x x =o证明:R +是实数域R 上的线性空间。
[证明] 首先需要证明两种运算的唯一性和封闭性 ①唯一性和封闭性 唯一性显然若x>0,y>0, k R ∈,则有x y=xy R +∈ kk x x =o R +∈封闭性得证。
②八条性质(1)x (y z )=x(yz)=(xy)z=(x y)z (2) x y=xy =yx= y x (3)1是零元素x1=1=x x ⋅[x o=x ->x+o=x ->o=1](4)1x是x 的负元素x1x=1x 1x ⋅= [x+y=o ](5) k o (x y )()kkkxy x y ===k oxk oy[数因子分配律](6) ()k lk lk l x xx x ++===o (k o x)(l o x ) [分配律](7) ()()()klklk l x xxkl x ===o o o[结合律](8) 11x x x ==o [恒等律]由此可证,R +是实数域R 上的线性空间。
2.定理:线性空间具有如下性质(1)零元素是唯一的,任一元素的负元素也是唯一的。
(2)如下恒等式成立:0x=o,()()-=-。
1x x[证明](1)采用反证法:①零元素是唯一的。
设存在两个零元素o1和o2,则由于o1和o2 均为零元素,按零元律有[交换律]o1+o2=o1=o2+o1=o2所以o1=o2即o1和o2相同,与假设相矛盾,故只有一个零元素。
②任一元素的负元素也是唯一的。
假设∀∈,存在两个负元素y和z,则根据负元x V律有+=o=x zx y+()()=+=++=++=+= y y o y x z y x z o z[零元律] [结合律] [零元律]即y和z相同,故负元素唯一。
(2) ①:设w=0x ,则 x+w=1x+0x=(1+0)x=x , [恒等律]故 w=o 。
②:设w=(-1)x ,则x+w=1x+(-1)x=[1+(-1)]x=0x=o , 故w=-x 。
3. 线性相关性线性空间中相关性概念与线性代数中向量组线性相关性概念类似。
•线性组合:12m 12m x ,x x V ,c ,c c K ∀∈∈L Lm1122m m i ii 1c x c x c x c x =+++∑L @称为元素组12m x ,x x L 的一个线性组合。
•线性表示:V 中某个元素x 可表示为其中某个元素组的线性组合,则称x 可由该元素组线性表示。
•线性相关性:如果存在一组不全为零的数12m c ,c c K ∈L ,使得对于元素12m x ,x x V ∈L 有miii 1c x 0==∑则称元素组12m x ,x x L 线性相关,否则称其线性无关。
线性相关性概念是个非常重要的概念,有了线性相关性才有下面的线性空间的维数、基和坐标。
4. 线性空间的维数定义:线性空间V 中最大线性无关元素组所含元素个数称为V 的维数,记为dim V 。
本课程只考虑有限维情况,对于无限维情况不涉及 。
例2. 全体m ×n 阶实矩阵的集合构成一个实线性空间(对于矩阵加法和数对矩阵的数乘运算),求其维数。
[解] 一个直接的方法就是找一个最大线性无关组,其元素尽可能简单。
令E ij 为这样的一个m ×n 阶矩阵,其(i, j )元素为1,其余元素为零。
显然,这样的矩阵共有mn 个,构成一个具有mn 个元素的线性无关元素组:{}11121n 21222n m 1m 2mn E ,E ,E ;E ,E ,E ;;E ,E ,E LL L L另一方面,还需说明元素个数最大。
对于任意的()ij m nA a ⨯=,都可由以上元素组线性表示,ijiji ,jA aE =∑ ——>ijij i ,ja E A 0+=∑即{}ij E |i 1m ,j 1n ==::构成了最大线性无关元素组,所以该空间的维数为mn 。
二、 线性空间的基与坐标1. 基的定义:设V 是数域K 上的线性空间,()12r x ,x x r 1≥L 是属于V 的r 个任意元素,如果它满足(1)12r x ,x x L 线性无关;(2)V 中任一向量x 均可由12r x ,x x L 线性表示。
则称12r x ,x x L 为V 的一个基,并称12r x ,x x L 为该基的基元素。
•基正是V 中最大线性无关元素组;V 的维数正是基中所含元素的个数。
•基是不唯一的,但不同的基所含元素个数相等。
例3考虑全体复数所形成的集合C。
如果K=C(复数域),则该集合对复数加法和复数复数的乘法构成线性空间,其基可取为1,空间维数为1;如果取K=R(实数域),则该集合对复数加法及实数对复数的数乘构成线性空间,其基可取为{1,i},空间维数为2。
2. 坐标的定义:称线性空间nV的一个基12n x ,x x L 为nV 的一个坐标系,n x V ∀∈,它在该基下的线性表示为:niii 1x=ξ∑ ()i i K ,x V ,i 1,2,n ξ∈∈=L则称12n ,ξξξL 为x 在该坐标系中的坐标或分量,记为 ()T12n ,ξξξL讨论:(1)一般来说,线性空间及其元素是抽象的对象,不同空间的元素完全可以具有千差万别的类别及性质。
但坐标表示却把它们统一了起来,坐标表示把这种差别留给了基和基元素,由坐标所组成的新向量仅由数域中的数表示出来。
(2)更进一步,原本抽象的“加法”及 “数乘”经过坐标表示就演化为向量加法及数对向量的数乘。
11122n n 1122x y (x x x )(x x +=ξ+ξ++ξ+η+η++L L111222n n()x ()x ()x =ξ+η+ξ+η++ξ+ηL正对应()12n 1122n n 12n x (,,,)x y ,,,y (,,,)=ξξξ⎧→+=ξ+ηξ+ηξ+η⎨=ηηη⎩L L L2()()()()1122n n 1122n nkx k x x x k x k x k x =ξ+ξ++ξ=ξ+ξ++ξL L()12n k ,k ,,k →ξξξL正对应12n x (,,,)=ξξξL()12n k x k ,k ,,k→=ξξξL (3)显然,同一元素在不同坐标系中的坐标是不同的。
后面我们还要研究这一变换关系。
三、 基变换与坐标变换基是不唯一的,因此,需要研究基改变时坐标变换的规律。
设12n x ,x x L 是n V 的旧基,12n y ,y y L 是n V的新基,由于两者都是基,所以可以相互线性表示nj ijii 1y cx ==∑ (i 1,2,n =L )即[][][]11121n 21222n12n 12n 12nn 1n 2nn c c c c c c y ,y y x ,x x x ,x x Cc c c ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦L L L L L M M O M L其中C 称为过渡矩阵,上式就给出了基变换关系,可以证明,C 是可逆的。
设nx V ∈,它在旧基下的线性表示为[]1n2i i 12n i 1n x x x ,x ,x =ξ⎡⎤⎢⎥ξ⎢⎥=ξ=⎢⎥⎢⎥ξ⎣⎦∑L M 它在新基下的线性表示为[]12in ''n'i 12n i 1'x y y ,y ,y =⎡⎤ξ⎢⎥ξ⎢⎥=ξ=⎢⎥⎢⎥⎢⎥ξ⎣⎦∑L M 则[][]12n '1'212n 12n 'n y ,y ,y x ,x ,x ⎡⎤ξξ⎡⎤⎢⎥⎢⎥ξξ⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥ξ⎢⎥ξ⎣⎦⎣⎦L L M M由于基元素的线性无关性,得到坐标变换关系12n '1'2'n C ⎡⎤ξξ⎡⎤⎢⎥⎢⎥ξξ⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥ξ⎢⎥ξ⎣⎦⎣⎦M M→ 12n '1'21'n C -⎡⎤ξξ⎡⎤⎢⎥⎢⎥ξξ⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥ξ⎢⎥ξ⎣⎦⎣⎦M M作业:P25-26 3,5,7,9补充:证明对于线性空间的零元素o ,k K ∀∈,均有k o =o 。