受压构件正截面承载力计算

合集下载

(轴心)受压构件正截面承载力计算

(轴心)受压构件正截面承载力计算

(2)破坏特征 1)螺旋筋或焊接环筋在约束 核心混凝土的横向变形时产生 拉应力,当它达到抗拉屈服强 度时,就不再能有效地约束混 凝土的横向变形,构件破坏。 2)螺旋筋或焊接环筋外的混 凝土保护层在螺旋筋或焊接环 筋受到较大拉应力时就开裂, 故在计算时不考虑此部分混凝 土。
螺旋箍筋柱破坏情况
2.适用条件和强度提高原理 12(短柱) ; (1)适用条件:①l0 / d ②尺寸受到限制。 注意:螺旋箍筋柱不如普遍箍筋柱经济,一般不宜采用。 根据图7-8 所示螺旋箍筋柱截面 受力图式,由平衡条件可得到
150mm或15倍箍筋直径(取较大者)范围,则应设置复合箍 筋。
a)、b)S内设3根纵向受力钢筋
c)S内设2根纵向 受力钢筋
复合箍筋的布置
7.2 螺旋箍筋轴心受压构件
1.受力分析及破坏特征 (1)受力分析 螺旋箍筋或焊接圆环箍筋能约束混凝土在轴向压力作用 下所产生的侧向变形,对混凝土产生间接的被动侧向压力,
d cor As 01
S
As 01
As 0 S d cor
将式(2)代入式(1),则可得到
2
2 f s As 01 2 f s As 0 S 2 f s As 0 f s As 0 f s As 0 2 2 d cor S d cor S d cor 2 Acor d cor d cor 2 4
态、承载力计算;
2.配有纵向钢筋和螺旋箍筋的轴心受压构件的破坏形 态、承载力计算; 3.稳定系数的概念及其影响因素; 4.核心混凝土强度分析及强度计算;
5.普通箍筋柱、螺旋箍筋柱的配筋特点和构造要求。
7.1 普通箍筋轴心受压构件
1.钢筋混凝土轴心受压柱的分类
普通箍筋柱:配有纵筋 和箍筋的柱 (图7-1a)。 螺旋箍筋柱:配有纵筋 和螺旋筋或焊接环筋的 柱,(图7-1b)。 其中:纵筋帮助受压、承 担弯矩、防止脆性破坏。 螺旋筋提高构件的强 度和延性。

5.受压构件的截面承载力

5.受压构件的截面承载力
α1fcbx
x ¢ ¢ N e f b x ( a¢ 或: u 1 c s ) s s As ( h0 a s ) 2 h

1 f ¢ s f y s y ss fy b 1
2
ei a¢ s
当偏心距很小且轴力较大时,能使远离轴向力一侧 纵筋屈服 ——反向破坏。
二、小偏心受压构件的计算
已知截面参数,N和M,求As’和As 。
公式:
未知量个数
¢ ¢ N 1 f cbx f y As s s As
1 ss fy b 1
x ¢ ¢ ¢ N e 1 f c b x (h0 ) f y As (h0 a s ) 2
> b ––– 小偏心受压 ae
偏心受压构件的试验研究
As<< As’时 会有As fy
e0 N e0 N e0 N e0 N
As
ss
As’f y’
fc
As
ss
As’f y’
fc
As
ss
As’f y’
fc
As fy
As’f y’
fc
h0
h0
h0
h0
e0 N e0很小 As适 中
Байду номын сангаас
e0 N
e0较小
f'yA's
Nu b 1 fcbh0b f A f y As
' y ' s
若N N u b则为小偏心受压 若N N u b则为大偏心受压
当ei 0.3h0时,按小偏心受压计算 , 当ei 0.3h0时,可按大偏心受压计 算(但不一定为大偏压 )

第7章 偏心受压构件的正截面承载力

第7章 偏心受压构件的正截面承载力

第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。

压力N的作用点离构件截面形心的距离e称为偏心距。

截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。

根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。

β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。

钢筋混凝土偏心受压构件的截面型式如图7-2所示。

矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。

圆形截面主要用于柱式墩台、桩基础中。

图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。

纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。

对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。

箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。

此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。

但因剪力的数值一般较小,故一般不予计算。

箍筋数量及间距按普通箍筋柱的构造要求确定。

图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。

本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。

7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算
公路规范公式:
0 Nd Nu 0.9( fcd Acor kfsd As0 As fsd )
k —— 间接钢筋的影响系数,混凝土强度C50
及以下时,k=2.0;C50-C80取k=2.0-1.7,中 间直线插入取值。
混凝土 强度
k
≤C50 2.0
C55 C60 C65 C70 C75 C80 1.95 1.90 1.85 1.80 1.75 1.70
例题2:圆形截面轴心受压构件,直径为450mm, 计算长度2.25m, 轴向压力设计组合值Nd=2580kN, 纵筋用HRB335级,箍筋用R235级,混凝土强度等 级为C25。I类环境条件,安全等级二级,试进行构 件的配筋设计。
2.25512 1%
0.45
As1%4 4520 15m 902m
A co r45 420 30 119 m3 2m 99
f s d —— 间接钢筋的强度;
Acor —— 构件的核心截面面积;
A s 0 —— 间接钢筋的换算面积,As0
dcor As01
S

A s 0 1 —— 单根间接钢筋的截面面积;
S —— 间接钢筋的间距;
轴心受压构件正截面承载力计算
6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 四、 螺旋箍筋轴压构件正截面承载力计算
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件 五、正截面承载力计算 2.截面设计之二(尺寸未知):
如果尺寸未知,则 先假设一个ρ′,令稳定系数φ=1; 求出截面面积A,取整; 重新计算φ,求As′.
例题略。
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件
主要和构件的长细比有关,长细比越大,稳定 系数 越小。

7.3 正截面受压承载力计算

7.3  正截面受压承载力计算

7.3 正截面受压承载力计算第7.3.1条钢筋混凝土轴心受压构件,当配置的箍筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.1):N≤0.9φ(fc A+f'yA's) (7.3.1)式中N--轴向压力设计值;φ--钢筋混凝土构件的稳定系数,按表7.3.1采用;fc--混凝土轴心抗压强度设计值,按本规范表4.1.4采用;A--构件截面面积;A's--全部纵向钢筋的截面面积。

当纵向钢筋配筋率大于3%时,公式(7.3.1)中的A应改用(A-A's)代替。

钢筋混凝土轴心受压构件的稳定系数表7.3.1图7.3.1:配置箍筋的钢筋混凝土轴心受压构件第7.3.2条钢筋混凝土轴心受压构件,当配置的螺旋式或焊接环式间接钢筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.2):N≤0.9(fc Acor+f'yA's+2αfyA'ss0) (7.3.2-1)A ss0=πdcorAss1/s (7.3.2-2)式中fy--间接钢筋的抗拉强度设计值;Acor--构件的核心截面面积:间接钢筋内表面范围内的混凝土面积;Ass0--螺旋式或焊接环式间接钢筋的换算截面面积;dcor--构件的核心截面直径:间接钢筋内表面之间的距离;Ass1--螺旋式或焊接环式单根间接钢筋的截面面积;s--间接钢筋沿构件轴线方向的间距;α--间接钢筋对混凝土的约束的折减系数:当混凝土强度等级不超过C50时,取1.0,当混凝土强度等级为C80时,取0.85,其间接线性内插法确定。

注:1按公式(7.3.2-1)算得的构件受压承载力设计值不应大于按本规范公式(7.3.1)算得的构件受压承载力设计值的1.5倍;2当遇到下列任意一种情况时,不应计入间接钢筋的影响,而应按本规范第7.3.1条的规定进行计算:1)当l/d>12时;2)当按公式(7.3.2-1)算得的受压承载力小于按本规范公式(7.3.1)算得的受压承载力时;3)当间接钢筋的换算截面面积Ass0小于纵向钢筋的全部截面面积的25%时。

第五章1 钢筋混凝土受压构件正截面承载力计算w

第五章1 钢筋混凝土受压构件正截面承载力计算w
柱的破坏形态
5-6弯曲变形
5-7轴心受压长柱的破坏形态
试验结果表明长柱的承载力低于相同条件短柱的承载 试验结果表明长柱的承载力低于相同条件短柱的承载 力,目前采用引入稳定系数Ψ的方法来考虑长柱纵向 挠曲的不利影响, 挠曲的不利影响,Ψ值小于1.0,且随着长细比的增大 而减小。 而减小。
表5-1 钢筋混凝土轴心受压构件的稳定系数面承载力计
5.2.1 受力过程及破坏特征 轴心受拉构件从开始加载到破坏, 轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段: 分为三个不同的阶段: 1.第I阶段 开始加载到混凝土开裂前, 属于第I 阶段。 从 开始加载到混凝土开裂前 , 属于第 I 阶段 。 此 纵向钢筋和混凝土共同承受拉力, 时 纵向钢筋和混凝土共同承受拉力,应力与应变大致 成正比,拉力 N与截面平均拉应变 ε 之间基本上是线 成正比, 性关系, 性关系,如图5-2a中的OA段。
当现浇钢筋混凝土轴心受压构件截面长边或直径 小于300㎜时 ,式中混凝土强度设计值应乘以系数0.8 (构件质量确有保障时不受此限)。 4. 构造要求 (1)材料 混凝土强度对受压构件的承载力影响较大, 混凝土强度对受压构件的承载力影响较大,故宜 采用强度等级较高的混凝土 强度等级较高的混凝土, 采用强度等级较高的混凝土,如C25,C30,C40等。 在高层建筑和重要结构中, 在高层建筑和重要结构中,尚应选择强度等级更高的 混凝土。 混凝土。 钢筋与混凝土共同受压时, 钢筋与混凝土共同受压时 , 若钢筋强度过高 ( 如 则不能充分发挥其作用, 高于 0.002Es) , 则不能充分发挥其作用 , 故 不宜用高 强度钢筋作为受压钢筋。同时, 强度钢筋作为受压钢筋。同时,也不得用冷拉钢筋作 为受压钢筋。 为受压钢筋。

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算单筋矩形截面受弯构件是指具有一个纵向钢筋(单筋)和一个矩形截面的构件。

在受弯时,矩形截面受到压力,而钢筋受到拉力,通过计算正截面承载力可以确定该构件的安全性能。

下面将介绍单筋矩形截面受弯构件正截面承载力的计算方法。

首先,计算正截面的受压区高度h和内力矩M。

假设构件受弯时的截面高度为h,宽度为b,截面厚度为d。

根据等截面原则,构件的正截面宽度和截面高度相等,即b=h。

构件的弯矩M由下式计算得出:M=Rd·Z,其中Rd为设计弯矩,Z为正截面抵抗矩。

然后,计算正截面抵抗矩Z。

在单筋矩形截面中,正截面抵抗矩由钢筋和混凝土组成。

钢筋的抵抗矩可由以下公式计算得出:Zs=As·fy·(h-d/2),其中As为钢筋截面面积,fy为钢筋的抗拉强度。

混凝土的抵抗矩可由以下公式计算得出:Zc=0.85·fck·(b·h-(As+Asc)·(h/2-d/2)),其中fck为混凝土的抗压强度,Asc为纵向钢筋表面积。

正截面的抵抗矩由钢筋的抵抗矩和混凝土的抵抗矩之和得出:Z=Zs+Zc。

接下来,计算正截面的承载力。

正截面受弯构件的承载力由以下条件中的最不利情况决定:1.混凝土达到极限压应力或者钢筋达到屈服应力;2. 混凝土达到达到破坏应变时,即混凝土压应力达到0.45fck或者钢筋达到屈服应变。

计算混凝土达到极限压应力的情况下的承载力,可以得到下式:Nc=0.85·fcd0·A+(Rd-Zs)/Rd·fctd0·A,其中fcd0为混凝土的设计强度,fctd0为混凝土的设计抗拉强度,A为截面面积。

计算钢筋达到屈服应力的情况下的承载力,可以得到下式:Ns=(Zs/0.9zτs)·fsd,其中z为混凝土的截面中和高度,τs为混凝土的应力分布系数,fsd为钢筋的设计抗拉强度。

综合两种情况,正截面受弯构件的正截面承载力Fc为较小值:Fc=min{Nc,Ns}。

第06章 轴心受压构件的正截面承载力计算

第06章 轴心受压构件的正截面承载力计算

4、箍筋:减少纵向钢筋的自由长度,减少
纵向压屈,固定纵筋位置。 (1) 构造封闭式; (2) Sv≯b(0.8d),且≯400mm,≯15d; 纵筋搭接范围内,Sv≯200mm,≯10d; 当As’ >3%Ac时,Sv≯200mm,≯10d;
(3) dsv≮8mm,且≮d主/4;
(4) 纵向受力钢筋离角筋的s≯max(150mm,
★计算长度l0与构件两端的约束情况有 关,见P130表6-1。


三、轴心受压构件承载力计算
计算图示如P131图6-6,考虑
到稳定系数 的影响,可得轴心
受压构件承载力计算公式如下:
N 0 Nd Nu 0.9 ( f cd A f sd As )
★纵向配筋率ρ’=As’/ A> 3%时,
考虑实际间接钢筋作用影响,得到螺旋
箍筋柱正截面承载力的计算式:
N 0 Nd Nu 0.9 fcd Acor kf sd As 0 f sd As
式中:k称为间接钢筋影响系数,混凝 土强度等级C50及以下时,取k=2.0;
C50~C80取k=2.0 ~1.70,中间值直线插

' '
Nu fcc Acor f sd As
'



螺旋箍筋柱受力计算图式

螺旋箍筋对其核心混凝土的约束作用,使 混凝土抗压强度提高,根据圆柱体三向受压试 验结果,约束混凝土的轴心抗压强度采用下述 近似表达式:
f cc f c k 2
2 为作用于核心的混凝土的径向压应力值。

' '
A应改为截面净面积An=A-As’。

钢结构受压构件截面承载力计算

钢结构受压构件截面承载力计算

偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。

1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。

受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。

构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。

2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。

(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。

(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。

破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。

破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。

总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。

在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。

它不仅有横向主裂缝,而且比较明显.。

其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。

界限破坏形态也属子受拉破坏形态。

长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。

但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。

对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。

下图是一根长柱的荷载一侧向变形(N -f)实验曲线。

偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。

长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算首先,要计算轴心受压构件的正截面承载力,我们需要了解构件的几何参数,例如截面的尺寸和形状,以及构件的材料特性,如弹性模量和抗压强度等。

下面介绍一种常用的计算方法,即欧拉公式。

欧拉公式适用于细长的杆件,可以计算其承载力。

根据欧拉公式,轴心受压构件的正截面承载力可以表示为:Pcr = (π^2 * E * I) / (Lr)^2其中,Pcr 是构件的临界承载力,E 是构件的弹性模量,I 是构件截面的惯性矩,Lr 是约化长度。

对于不同的构件形状,惯性矩I的计算公式也不同。

以下是一些常见形状的惯性矩计算公式:1.矩形截面:I=(b*h^3)/12,其中b是截面的宽度,h是截面的高度;2.圆形截面:I=π*(d^4)/64,其中d是截面的直径;3.方管截面:I=(b*h^3-(b'*h')^3)/12,其中b是外边框的宽度,h是外边框的高度,b'是内边框的宽度,h'是内边框的高度。

约化长度Lr的计算取决于构件的边界条件。

以下是一些常见边界条件的约化长度计算公式:1.双端固定支承:Lr=L;2.一端固定支承、一端支座支承:Lr=0.7*L;3.双端支座支承:Lr=2*L。

通过使用上述公式,我们可以计算出轴心受压构件的正截面承载力。

需要注意的是,上述公式是基于一些理想化假设和条件下推导得出的,实际工程中还需要考虑一些因素,例如构件的稳定性和局部细部构造等。

因此,在实际设计中,应该根据具体情况综合考虑各种因素,并结合相关的规范和标准进行设计和验证,以确保构件的安全性和可靠性。

总之,轴心受压构件正截面承载力计算是工程设计中的重要环节。

通过合理的参数选择和计算,可以确定构件能够安全承受的最大压力,从而保证结构的安全和可靠性。

混凝土受压构件正截面受压承载力的计算方法

混凝土受压构件正截面受压承载力的计算方法

混凝土受压构件正截面受压承载力的计算方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!混凝土受压构件正截面受压承载力的计算方法引言混凝土结构是建筑工程中常见的结构形式之一,其受力性能直接关系到结构的安全性和稳定性。

第七章-受压构件正截面受压承载力

第七章-受压构件正截面受压承载力

第7章 受压构件正截面受压承载力知识点1.配有纵筋和箍筋的轴心受压柱的受力全过程及其破坏特征;2.配有纵筋和箍筋的轴心受压柱的承载力计算;3.配有纵筋和螺旋筋的轴心受压柱的承载力及计算公式;4.偏心受压构件的破坏形态及其分类,界限破坏,纵向弯曲(二阶弯矩)的影响;5.矩形、工字形截面偏心受压构件的正截面承载力计算,矩形截面不对称和对称配筋的计算方法;6.偏心受压构件斜截面受剪承载力计算;7.双向偏心受压矩形正截面承载力的简化计算方法;8.受压构件的构造要求;9.偏心受压构件的截面延性的特点。

要点1.螺旋箍筋柱较普通箍筋柱承载力提高的原因是螺旋筋约束了混凝土的横向变形。

2.轴心受压构件,配置纵筋的作用是帮助混凝土承受压力,减力构件截面尺寸。

3.《混凝土结构设计规范》规定,配有螺旋式或焊接环式间接钢筋柱的承载能力不能高于配有普通箍筋柱承载能力的50%。

4.偏心受压构件界限破坏的特点:偏心受压构件界限破坏时远离轴向力一侧的钢筋屈服与受压区混凝土压碎同时发生。

5.如何确定大偏心受压构件:计算偏心受压构件,当b ξξ≤时,构件确定属于大偏心受压构件。

6.偏心受压构件的破坏形态有大偏心受压和小偏心受压两种情况。

7.轴心受压承载力的计算公式:N =0.9φ(f c A +f ′′y A ′s )。

8.偏心受压构件斜截面受剪承载力计算公式是在受弯构件斜截面受剪承载力公式基础上多了一项0.07N ,同时要求当轴向力N>0.3f c A 时,取A f N c 3.0=。

9.《混凝土结构设计规范》采用稳定系数ϕ表示长柱承载能力的降低程度,所以,ϕ为长柱的承载力)(l u N 与短柱的承载力)(su N 之比。

<0.55h 0 >2a ′10.轴心受压构件中,配置纵筋的作用是帮助混凝土承受压力,减小构件截面尺寸。

11.偏心受压构件的破坏特征:大偏心受压破坏,属延性破坏;破坏特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。

受压构件正截面承载力计算

受压构件正截面承载力计算

受压构件正截面承载力计算受压构件是指在使用过程中承受压力作用的构件,如柱子、立柱等。

正截面承载力计算是指在已知受压构件材料和几何尺寸的情况下,计算其能够承受的最大压力,以保证结构的安全性。

正截面承载力计算主要包括以下几个步骤:1.确定受压构件截面形状及尺寸:根据结构设计要求和功能要求,确定受压构件的截面形状,如矩形、圆形等,以及截面尺寸,如高度、宽度、直径等。

2.分析受压构件受力状态:根据设计要求,确定受压构件受力状态,即确定压力作用方向、大小及作用点位置等,以便后面的计算。

3.计算受压构件的破坏性能:根据受压构件的材料性能,主要包括材料的强度和稳定性等方面的参数,计算受压构件在受力状态下的破坏性能,即确定截面的抗弯强度和抗屈服强度等。

4.计算受压构件的承载力:根据得到的受力状态和破坏性能,利用相应的理论方法和公式,计算受压构件的正截面承载力。

具体的计算方法分为两类:弯曲承载力计算和屈服承载力计算。

弯曲承载力计算是指根据受压构件的抗弯强度,计算受压构件在受力状态下的抗弯强度,以确定其可承受最大压力。

一般采用挠度控制理论或抗弯承载力计算方法来计算。

屈服承载力计算是指根据受压构件的抗屈服强度,计算受压构件在受力状态下的抗屈服强度,以确定其可承受的最大压力。

一般采用杆件稳定性理论或屈曲承载力计算方法来计算。

需要注意的是,在进行正截面承载力计算时,一般需要考虑钢材的弹性和塑性变形,从而保证受压构件在承受压力时不会发生破坏。

同时,还需要根据设计要求和使用条件,选择适当的安全系数,以确保受压构件的安全可靠。

总的来说,正截面承载力计算是受压构件设计和分析的重要内容,通过合理的计算和设计,可以保证受压构件的力学性能和结构安全,满足使用要求。

(完整版)矩形截面偏心受压构件正截面的承载力计算

(完整版)矩形截面偏心受压构件正截面的承载力计算

矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。

(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。

2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。

(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。

混凝土结构设计原理 第六章 钢筋混凝土受压构件承载力计算

混凝土结构设计原理  第六章  钢筋混凝土受压构件承载力计算
螺旋箍筋对承载力的影响系数α,当fcu,k≤50N/mm2时,取α = 1.0;当fcu,k=80N/mm2时,取α =0.85,其间直线插值。 ; ,其间直线插值。
6.1 轴心受压构件的承载力计算
第六章 受压构件的截面承载力
采用螺旋箍筋可有效提高柱的轴心受压承载力。 采用螺旋箍筋可有效提高柱的轴心受压承载力。 如螺旋箍筋配置过多,极限承载力提高过大, ◆ 如螺旋箍筋配置过多,极限承载力提高过大,则会在远未 达到极限承载力之前保护层产生剥落,从而影响正常使用。 达到极限承载力之前保护层产生剥落,从而影响正常使用。 规范》规定: 《规范》规定: ● 按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载 力的50%。 力的 。 对长细比过大柱,由于纵向弯曲变形较大, ◆ 对长细比过大柱,由于纵向弯曲变形较大,截面不是全部 受压,螺旋箍筋的约束作用得不到有效发挥。 规范》规定: 受压,螺旋箍筋的约束作用得不到有效发挥。《规范》规定: 对长细比l 大于 的柱不考虑螺旋箍筋的约束作用。 大于12的柱不考虑螺旋箍筋的约束作用 ● 对长细比 0/d大于 的柱不考虑螺旋箍筋的约束作用。 螺旋箍筋的约束效果与其截面面积A 和间距s有关 有关, ◆ 螺旋箍筋的约束效果与其截面面积 ss1和间距 有关,为保证 有一定约束效果, 规范》规定: 有一定约束效果,《规范》规定: 螺旋箍筋的换算面积A 不得小于全部纵筋A' 面积的25% ● 螺旋箍筋的换算面积 ss0不得小于全部纵筋 s 面积的 螺旋箍筋的间距s不应大于 不应大于d ● 螺旋箍筋的间距 不应大于 cor/5,且不大于 ,且不大于80mm,同时 , 为方便施工, 也不应小于 也不应小于40mm。 为方便施工,s也不应小于 。
普通钢箍柱 螺旋钢箍柱
6.1 轴心受压构件的承载力计算

钢筋混凝土偏心受压构件正截面承载力计算

钢筋混凝土偏心受压构件正截面承载力计算

2、受压破坏(小偏心受压) As受压不屈服
As受拉不屈服
As受压屈服
As受压屈服时 As受压屈服判断条件
大小偏心近似判据 真实判据
不对称配筋
大偏心受压不对称配筋 小偏心受压不对称配筋
实际工程中,受压构件常承受变号弯矩作用,所以采用对 称配筋 对称配筋不会在施工中产生差错,为方便施工通常采用对 称配筋
随l 0/h的增加而减小,通过乘一个修正系数ζ2(称为偏
心受压构件长细比对截面曲率的影响系数)
实际考虑是在初始偏心距ei 的基础上×η
上节课总结
一、初始偏心距
e0=M/N
附加偏心距ea取20mm与h/30 两者中的较大值, h是指偏心方向的截面尺寸。
二、两类偏心受压破坏的界限
ξ ≤ξb, 受拉钢筋先屈服,然后混凝土压碎-
1、大偏心受压 x=N/a1 fcb
若x=N /a1 fcb<2a",可近似取x=2a",对受压钢筋合力点取矩可
e" = hei - 0.5h + a"
2、小偏心受压 x=N /a1 fcb>
对称配筋截面设计
对称配筋截面校核 例5-9、5-10及5-11 构造要求(配筋率问题讲解) 作业:5.4、5.5、5.6、5.7、5.8
对称配筋
大偏心受压对称配筋 小偏心受压对称配筋
非对称配筋矩形截面
截面设计
按e i ≤ 0.3h0按小偏心受压计算
若ei > 0.3h0先按大偏心受压计算, (ξ≤ξb确定 为大偏心受压构件。若求得的ξ>ξb时,按小
偏心受压计算。) 强度复核
一s 不对称配筋截面设计 1 s 大偏心受压(受拉破坏)
受压构件正截面承载力计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由混凝土向钢筋转移,从而使钢筋压应力不
断增长。压箍应筋力的的作增用长幅度随配筋率的减小 而增大,(如1果)与不纵给筋配形筋成率骨规架定,一便个于施下工限;,钢 筋中的压(应2力)防就止可纵能筋在的持压续屈使;用荷载下增长 到屈服应(力3水)对准核。心混凝土形成约束,提高混
凝土的抗压强度,增加构件的延性。
第6章 受压构件正截面承载力计算
混凝土保护层厚度c
混凝土结构设计规范GB 50010_2002对混凝土保护层厚度的规定:
1.纵向受力钢筋与预应力钢筋
同时,保护层厚度不得小于钢筋直径。
1
第6章 受压构件正截面承载力计算
2.板、墙、壳中分布钢筋
保护层厚度不应小于表9.2.1中相应数值减10mm,且不应 小于10mm。
(a)轴心受压
(b)单向偏心受压 (c) 双向偏心受压
轴向力的作用线和构件截面几何形心的关系
5
实际工程中,典型的轴心受压构件有:承受节点荷载的屋 架腹杆和上弦杆;对称框架结构中的内柱;桩基等。在钢筋混 凝土结构中,严格意义上的轴心受力构件是不存在的。但当外 加荷载的偏心很小时,可近似按轴压构件来计算。
fy=300MPa
c
0.002
11
第6章 受压构件正截面承载力计算 2.2 受压构件中钢筋的作用?
普通钢箍柱
螺旋钢箍柱
纵筋的作用
(1)协助混凝土受压,减小截面面积; (2)当柱偏心受压时,承担弯矩产生的拉力; (3)减小持续压应力下混凝土收缩和徐变的影响。 (4)增加破坏时,构件的延性。
实验表明,收缩和徐变能把柱截面中的压力
fc A
f
' y
As'
0.9 0.9511.9
5002 4
300 7854.4
4011.4 103 N
1.5 4011.4 6017.1kN 4600kN >4011.4kN
满足要求,配筋合适。
29
偏心受压构件正截面的受力过程和破坏形态
偏压构件是同时受到轴向压力N和弯矩M的作 用,等效于对截面形心的偏心距:e0=M/N的偏心压力 的作用。
(a)
(b)
s
(c)
s
f1 fc 1
2sd cor 2 f y Ass1
2
2 f y Ass1 s dcor
f1
fc
8 f y Ass1 s dcor
达到极限状态时(保护层已剥落,不考虑)
Nu
f1 Acor
f yAs
fc Acor
f
yAs
3.梁、柱中箍筋和构造钢筋
保护层厚度不应小于15mm。
混凝土结构设计规范GB 50010_2002还有一些其他规定。
例题:矩形截面受扭构件,承受扭矩设计值T =41.5 kN·m ,
截面尺寸b×h=300 mm×500 mm ,保护层厚度 C=30 mm。混凝土强度等级选用C25,箍筋为HPB235级。纵筋为 HRB335级。
l
第一阶段:加载至钢筋 屈服 第二阶段:钢筋屈服至 混凝土压碎
短柱:混凝土压碎,钢筋压屈
14
轴心受压长柱的破坏形态及其应力重分布
(相同材料、截面尺寸 和配筋) 长柱的承载力<短柱的 承载力原因?
长柱受轴力和弯 矩(二次弯矩) 的共同作用
长柱:构件压屈
初始偏心产生附加弯矩附加弯矩引起挠度 加大初始偏心,最终构件是在M,N共同作用下破坏。
15
第6章 受压构件正截面承载力计算
2.3 普通箍筋当轴纵压筋柱正配截筋面率承大载于力3%时,A中应扣 除纵筋截面的面积。
轴心受压短柱
Nus fc A f yAs
轴心受压长柱
N
l u
N
s u
稳定系数
Nul
Nus
稳定系数主要与柱的
长细比l0/b有关
L0为柱的计算高度; b为矩形截面短边尺寸;
12
2.3 普通箍筋轴压柱正截面承载力
轴心长柱和短柱破坏比较
对于长细比较大的柱子,由各种偶然因素造成的初始偏心距 的影响是不可忽略的,对于长细比较小的柱子,同样存在初始偏 心和侧向挠度,但是影响非常小,可以忽略的。
13
轴心受压短柱的破坏形态
钢筋屈服 混凝土压碎
N
N
As
h
b
A
N
混凝土压碎
钢筋凸出
o
25
第6章 受压构件正截面承载力计算
例6.2 某展示厅内一根钢筋混凝土柱,按建筑设计要求截面 为圆形,直径不大于500mm,该柱承受的轴心压力设计值 N=4600kN,柱的计算长度l0=5.25m, 混凝土强度等级为 C25,纵筋用HRB335级钢筋,箍筋用HPB235级钢筋。试 进行该柱的设计。
《规范》规定: (1)按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力的50%,
同时不应小于按普通箍筋柱计算的受压承载力; (2)对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受压,螺
旋箍筋的约束作用得不到有效发挥。因此,对长细比l0/d大于12的柱 不考虑螺旋箍筋的约束作用; (3)螺旋箍筋的约束效果与其截面面积Ass1和间距S有关,为保证约束效 果,螺旋箍筋的换算面积Ass0不得小于全部纵筋A's面积的25%; (4)螺旋箍筋的间距S不应大于dcor/5,且不大于80mm,同时为方便施工, S也不应小于40mm。
工程中的屋架、排架柱、牛腿柱、框架柱等都是偏心受压 构件受。压构件在结构中具有重要作用,一旦破坏将导致整个结构的
损坏甚至倒塌。
6
第6章 受压构件正截面承载力计算
7
第6章 受压构件正截面承载力计算
强柱弱梁
8
第6章 受压构件正截面承载力计算
2. 轴心受压构件正截面承载力 N
在实际结构中,理想的轴心受压构件是不存在的
变形条件: s c
物理关系: s Es
s fy
c
fc
2
0
0
2
y
fy Es
y
0 0
c fc 0
平衡条件: N c Ac s As
10
第6章 受压构件正截面承载力计算
s c
500
100
400
80
300
60
200
40
100
20
0
0.001
fy=540MPa
0.92
As'
N
0.9
f
' y
fc A
2500 103 0.9 0.92
14.3 400 400 300
2438mm2
配置8Φ20纵向受力钢筋,面积2513mm2 20
第6章 受压构件正截面承载力计算
3) 验算纵筋配筋率
'
As' bh
2513 400 400
1.6%
min
0.6%
故配置8Φ20纵向受力钢筋(图)
2.3 螺旋箍筋面积与间距
假定螺旋箍筋直径 d 10mm Ass1 78.5mm 2
s dcor Ass1 3.14 440 78.5 48mm
Ass 0
2250 .85
实取螺旋箍筋为Φ10@45。
28
第6章 受压构件正截面承载力计算
2.4求普通箍筋柱的承载力,判断1.5倍关系
Nu 0.9
➢ 掌握矩形截面非对称和对称偏心受压构件的正截面承
载力的计算公式、适用条件及公式应用。
➢ 了解偏心受压构件斜截面承载力的计算。
4
第6章 受压构件正截面承载力计算
1. 受压构件概述
轴心受压承载力是正截面受压承载力 的上限。 先讨论轴心受压构件的承载力计算,然后重点讨论单向偏心受压的 正截面承载力计算。
Acor
d
2 cor
4
440 2 4
152053 mm 2
27
第6章 受压构件正截面承载力计算
Ass0 N 0.9
f c Acor
f
' y
As'
2fy
4600103 0.9 11.9 152053 300 7854.4
2 210
2250.85mm2
Ass0 2250 .85mm 2 0.25 As' 1963 .6mm 2 可以采用。
矩形箍筋柱限制条件 1、柱纵向钢筋直径不小于12mm,纵筋根数不少于4根。 2、试验表明,如果纵筋配筋过小,对提高柱的承载力不
大。因此对于轴心受压构件,偏心受压构件全部纵向钢筋 配筋率不应小于0.6%,同一侧的配筋率不应小于0.2%. 3、规定柱的全部纵向受压钢筋配筋率不宜大于5%.
19
第6章 受压构件正截面承载力计算
由于施工制造误差、荷载位置的偏差、混凝土不 均匀性等原因,往往存在一定的初始偏心距
以恒载为主的等跨多层房屋内柱、桁架中的受压 腹杆等,主要承受轴向压力,可近似按轴心受压 构件计算
9
第6章 受压构件正截面承载力计算
2.1 轴压构件性能
Behavior of Axial Compressive Member
2
第6章 受压构件正截面承载力计算
第6章 受压构件正截面承载力
3
本章重点
➢ 掌握受压构件的构造要求。 ➢ 掌握轴心受压构件的受力特点及承载力计算方法。重
点掌握普通配箍构件轴心受压构件的计算;理解配置 螺旋箍筋轴压构件承载力提高的原理。
➢ 掌握偏心受压构件的受力特性;两类偏压构件的特点
与判别;受压构件纵向弯曲的影响。
1)按普通箍筋柱设计
l0 d 5250 500 10.5
0.95
As'
1
f
' y
N
0.9
相关文档
最新文档