1.3.1 单调性与最大最小值练习题及答案(2)必修1
人教版高中数学必修1同步章节训练题及答案全册汇编
高中数学必修1全册同步练习题目录1.1.1集合的含义与表示同步练习1.1.2集合间的基本关系同步练习1.1.3集合的基本运算同步练习1.2.1函数的概念同步练习1.3.1单调性与最大(小)值同步练习1.3.2奇偶性同步练习2.0基本初等函数同步练习2.1.1指数与指数幂的运算同步练习2.1.2指数函数及其性质同步练习2.2.1对数与对数的运算同步练习2.3幂函数同步练习3.1.1方程的根与函数的零点同步练习3.1.2用二分法求方程的近似解同步练习3.2.1几类不同增长的函数模型同步练习3.2.2函数模型的应用实例同步练习1.1.1集合的含义与表示 同步练习一、选择题1、给出下列表述:1)联合国常任理事国2的实数的全体;3)方程210x x +-= 的实数根4)全国著名的高等院校。
以上能构成集合的是( )A 、1)3)B 、1)2)C 、1)3)4)D 、1)2)3)4)2、集合{21,1,2x x --}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、53、下列集合中表示同一集合的是( ) A 、{(3,2)},{(2,3)}M N == B 、{1,2},{(1,2)}M N ==C 、{(,)|1},{|1}M x y x y N y x y =+==+=D 、{3,2},{2,3}M N ==4、下列语句:(1)0与{0}表示同一个集合(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2};(4)集合}54{<<x x 是有限集,正确的是( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对5、如果3x y ==+,集合{|,}M m m a a b Q ==+∈,则有( )A 、x M y M ∈∈且B 、x M y M ∉∈且C 、x M y M ∈∉且D 、x M y M ∉∉且 6、集合A={xZk k x ∈=,2} B={Zk k x x ∈+=,12} C={Zk k x x ∈+=,14}又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、(a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个 7、下列各式中,正确的是( ) A 、-2{2}x x ∈≤ B 、{12<>x x x 且}C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠ D 、{Zk k x x ∈+=,13}={Zk k x x ∈-=,23}二、填空题8、由小于10的所有质数组成的集合是 。
1.3.1函数的单调性与导数( 二)
§1.3.1函数的单调性与导数(二) 学习目标1.会利用函数单调性与导数的关系,求参数的范围;2.会利用函数单调性与导数的关系,证明简单的不等式.3.会求复合函数的单调区间.学习过程1.复习:导数求函数单调区间的步骤2..例题展示:【例1】求下列函数的单调区间:(1))1ln()(-=x x f ; (2)x x x f ln )(-=. (3));2ln()(2--=x x x f (4)2)(-=x e x f x【例2】试利用函数单调性证明下面不等式:(1));,0(,sin π∈<x x x(2));1,0(,02∈>-x x x (3);0,1≠+>x x e x(4).0,ln ><<x e x x x练习:已知,1>x 求证:).1ln(+>x x【例3】►已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )的单调区间.小结:函数在指定区间上单调递增(减),函数在这个区间上的导数大于或等于0(小于或等于0),只要不在一段连续区间上恒等于0即可,求函数的单调区间解f ′(x )>0(或f ′(x )<0)即可.【例4】已知函数).0(2)1ln()(2≥+-+=k x k x x x f (1)当,2=k 求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)求)(x f 的单调区间.巩固练习:1.函数x x y cos +=在),(+∞-∞内是( )A 增函数B 减函数C 有增有减D 不能确定2.函数c ax y +=2在区间),0(+∞内单调递增,则c a ,应满足( )A.0c =<且0a . B .是任意实数且c 0>a . C .0c 0,a ≠<且. D.是任意实数且c 0<a 3.对于R上的可导的任意函数,若满足,0)()1(≥'-x f x 则必有( ) A.)1(2)2()0(f f f <+ B.)1(2)2()0(f f f >+ C.)1(2)2()0(f f f ≥+ D.)1(2)2()0(f f f ≤+4.函数),1()(<<-=b a ex x f x 则( ) A .)()(b f a f =.B.)()(b f a f <.C.)()(b f a f >.D.)(),(b f a f 大小不确定 5.“0>a ”是“函数ax x x f +=3)(在区间),0(+∞上是增函数”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件6.已知定义在R 上的函数)(x f 是奇函数,且,0)2(=f 当0>x 时有,0)()(2<-'xx f x f x 则不等式0)(2>x f x 的解集是( ) A.),2()0,2(+∞- B.)2,0()2,( --∞ C.)2,0()0,2( - D.),2()2,2(+∞-7.函数[],2,0,sin 21)(π∈-=x x x x f 则其单调增区间为 . 8.若函数2)(p x p x x f +-=在),1(+∞上是增函数,则实数p 的取值范围是 .9.已知x e x x x f 211)(+-=,求)(x f 的单调区间.10.已知下列函数①);0()(>+=a x ax x f ②)0(13)(23≥+-=k x kx x f ;③).(ln )(R a x a x x f ∈-=试分别讨论它们的单调区间.11.已知函数).(21)()(2R b x b bx x x f ∈-++=若其在区间)31,0(上单调递增,求b 的取值范围.。
新人教A版高中数学必修1 函数的最大(小)值
函数的基本性质1.3.1单调性与最大(小)值第二课时函数的最大(小)值[新知初探]函数的最大(小)值小值是0,有f (0)=0.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) 答案:(1)× (2)√2.函数y =f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 答案:C3.设函数f (x )=2x -1(x <0),则f (x )( ) A .有最大值 B .有最小值C .既有最大值又有最小值D .既无最大值又无最小值 答案:D4.函数f (x )=2x ,x ∈[2,4],则f (x )的最大值为______;最小值为________.答案:112[例1] 如图为函数y =f (x ),x ∈[-4,7]的图象,指出它的最大值、最小值.[解] 观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2), 所以当x =3时,函数y =f (x )取得最大值,即y max =3;当x =-1.5时,函数y =f (x )取得最小值,即y min =-2.用图象法求最值的3个步骤[活学活用]1.求函数f (x )=⎩⎪⎨⎪⎧1x ,0<x <1,x ,1≤x ≤2的最值.解:函数f (x )的图象如图所示.由图象可知f (x )的最小值为f (1)=1,无最大值.[例2] 已知函数f (x )=x +1x .(1)证明:f (x )在(1,+∞)内是增函数; (2)求f (x )在[2,4]上的最值.[解] (1)证明:设对于任意x 1,x 2∈(1,+∞),且x 1<x 2.则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)·⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)(x 1x 2-1)x 1x 2. ∵x 2>x 1>1,∴x 1-x 2<0, 又∵x 1x 2>1,∴x 1x 2-1>0,图象法求函数的最值利用单调性求函数的最值故(x 1-x 2)·(x 1x 2-1)x 1x 2<0,即f (x 1)<f (x 2),所以f (x )在(1,+∞)内是增函数. (2)由(1)可知f (x )在[2,4]上是增函数, ∴当x ∈[2,4]时,f (2)≤f (x )≤f (4). 又f (2)=2+12=52,f (4)=4+14=174,∴f (x )在[2,4]上的最大值为174,最小值为52.[活学活用] 2.已知函数f (x )=2x -1(x ∈[2,6]),求函数的最大值和最小值. 解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1-2x 2-1=2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1).由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以函数f (x )=2x -1是区间[2,6]上的减函数. 因此,函数f (x )=2x -1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x =2时取得最大值,最大值是2,在x =6时取得最小值,最小值是0.4.[例3] 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:实际应用中的最值R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400.其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)[解] (1)设月产量为x 台,则总成本为20 000+100x ,从而 f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时, f (x )=-12(x -300)2+25 000,∴当x =300时,[f (x )]max =25 000. 当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,[f (x )]max =25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.[活学活用]3.将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?解:设售价为x 元,利润为y 元,单个涨价(x -50)元,销量减少10(x -50)个,销量为500-10(x -50)=(1 000-10x )个,则y =(x -40)(1 000-10x )=-10(x -70)2+9 000≤9 000.故当x =70时,y max =9 000.即售价为70元时,利润最大值为9 000元.[例4] 求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值. [解] ∵函数图象的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2. ∴f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.[一题多变]1.[变设问]在本例条件下,求f (x )的最大值. 解:∵函数图象的对称轴是x =a , ∴当a ≤3时,f (x )max =f (4)=18-8a , 当a >3时,f (x )max =f (2)=6-4a .∴f (x )max =⎩⎪⎨⎪⎧18-8a ,a ≤3,6-4a ,a >3.2.[变设问]在本例条件下,若f (x )的最小值为2,求a 的值. 解:由本例解析知f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.当a <2时,6-4a =2,a =1; 当2≤a ≤4时,2-a 2=2,a =0(舍去); 当a >4时,若18-8a =4,a =74(舍去).∴a 的值为1.3.[变条件,变设问]本例条件变为,若f (x )=x 2-2ax +2,当x ∈[2,4]时,f (x )≤a 恒成立,求实数a 的取值范围.解:在[2,4]内,f (x )≤a 恒成立, 即a ≥x 2-2ax +2在[2,4]内恒成立, 即a ≥f (x )max ,x ∈[2,4].二次函数的最大值,最小值由本例探究1知f (x )max =⎩⎪⎨⎪⎧18-8a ,a ≤3,6-4a ,a >3.(1)当a ≤3时,a ≥18-8a ,解得a ≥2,此时有2≤a ≤3. (2)当a >3时,a ≥6-4a ,解得a ≥65,此时有a >3.综上有实数a 的取值范围是[2,+∞).层级一 学业水平达标1.函数y =f (x )(-2≤x ≤2)的图象如下图所示,则函数的最大值、最小值分别为( )A .f (2),f (-2)B .f ⎝⎛⎭⎫12,f (-1)C .f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫-32D .f ⎝⎛⎭⎫12,f (0)解析:选C 根据函数最值定义,结合函数图象可知,当x =-32时,有最小值f ⎝⎛⎭⎫-32;当x =12时,有最大值f ⎝⎛⎭⎫12. 2.函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1D .以上都不对解析:选B 因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,y min =1,当x =-2时,y max =(-2-1)2+1=10.故选B.3.设函数f (x )=2x x -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M =( )A.23B.38C.32D.83解析:选D 易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83.4.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2D .0解析:选C 由题意知a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2.综上知a =±2.5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .(-∞,0)D .(0,+∞)解析:选C 令f (x )=-x 2+2x , 则f (x )=-x 2+2x =-(x -1)2+1. 又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0. ∴a <0.6.函数y =-1x ,x ∈[-3,-1]的最大值与最小值的差是________. 解析:易证函数y =-1x 在[-3,-1]上为增函数,所以y min =13,y max =1,所以y max -y min =1-13=23.答案:237.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________.解析:函数f (x )=-x 2+4x +a =-(x -2)2+4+a ,x ∈[0,1],且函数有最小值-2. 故当x =0时,函数有最小值, 当x =1时,函数有最大值.∵当x =0时,f (0)=a =-2,∴f (x )=-x 2+4x -2, ∴当x =1时,f (x )max =f (1)=-12+4×1-2=1. 答案:18.函数y =f (x )的定义域为[-4,6],若函数f (x )在区间[-4,-2]上单调递减,在区间(-2,6]上单调递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________.解析:作出符合条件的函数的简图(图略),可知f (x )min =f (-2),f (x )max =f (6). 答案:f (-2) f (6)9.求函数f (x )=xx -1在区间[2,5]上的最大值与最小值. 解:任取2≤x 1<x 2≤5, 则f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1). 因为2≤x 1<x 2≤5,所以x 1-x 2<0,x 2-1>0,x 1-1>0. 所以f (x 2)-f (x 1)<0. 所以f (x 2)<f (x 1). 所以f (x )=xx -1在区间[2,5]上是单调减函数. 所以f (x )max =f (2)=22-1=2,f (x )min =f (5)=55-1=54. 10.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,f (x )max =f (1)=a ; 当0<a <1时,f (x )max =f (a )=a 2-a +1; 当a ≤0时,f (x )max =f (0)=1-a .根据已知条件得,⎩⎪⎨⎪⎧ a ≥1,a =2或⎩⎪⎨⎪⎧ 0<a <1,a 2-a +1=2或⎩⎪⎨⎪⎧a ≤0,1-a =2,解得a =2或a =-1.层级二 应试能力达标1.下列函数在[1,4]上最大值为3的是( ) A .y =1x +2B .y =3x -2C .y =x 2D .y =1-x解析:选A B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1],则f (x )的最大值与最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A ∵x ∈[1,2]时,f (x )max =2×2+6=10,f (x )min =2×1+6=8;x ∈[-1,1]时,f (x )max =1+7=8,f (x )min =-1+7=6, ∴f (x )max =10,f (x )min =6.3.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .(-∞,2]D .[1,2]解析:选D f (x )=(x -1)2+2,∵f (x )min =2,f (x )max =3,且f (1)=2,f (0)=f (2)=3,∴1≤m ≤2,故选D.4.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析:选C 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎫x -1922+30+1924, ∴当x =9或10时,L 最大为120万元.5.已知-x 2+4x +a ≥0在x ∈[0,1]上恒成立,则实数a 的取值范围是________. 解析:法一:-x 2+4x +a ≥0,即a ≥x 2-4x ,x ∈[0,1],也就是a 应大于或等于f (x )=x 2-4x 在[0,1]上的最大值,函数f (x )=x 2-4x 在x ∈[0,1]的最大值为0,∴a ≥0.法二:设f (x )=-x 2+4x +a ,由题意知⎩⎪⎨⎪⎧f (0)=a ≥0,f (1)=-1+4+a ≥0,解得a ≥0.答案:[0,+∞)6.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.解析:如图可知f (x )在[1,a ]内是单调递减的, 又∵f (x )的单调递减区间为(-∞,3], ∴1<a ≤3.答案:(1,3]7.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:(1)确定x 与y (2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解:(1)因为f (x )是一次函数,设f (x )=ax +b ,由表格得方程组⎩⎪⎨⎪⎧ 45a +b =27,50a +b =12, 解得⎩⎪⎨⎪⎧a =-3,b =162, 所以y =f (x )=-3x +162.又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54].(2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860=-3(x -42)2+432,x ∈[30,54].当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.8.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )是R 上的单调减函数.(2)求f (x )在[-3,3]上的最小值.解:(1)证明:设x 1,x 2是任意的两个实数,且x 1<x 2,则x 2-x 1>0,因为x >0时,f (x )<0,所以f (x 2-x 1)<0,又因为x 2=(x 2-x 1)+x 1,所以f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1),所以f (x 2)-f (x 1)=f (x 2-x 1)<0,所以f (x 2)<f (x 1).所以f (x )是R 上的单调减函数.(2)由(1)可知f (x )在R 上是减函数, 所以f (x )在[-3,3]上也是减函数, 所以f (x )在[-3,3]上的最小值为f (3).而f (3)=f (1)+f (2)=3f (1)=3×⎝⎛⎭⎫-23 =-2. 所以函数f (x )在[-3,3]上的最小值是-2.。
2014年高中数学 1.3.1 单调性与最大(小)值第2课时同步测试(含解析,含尖子生题库)新人教A版必修1
2014年高中数学 1.3.1 单调性与最大(小)值第2课时同步测试(含解析,含尖子生题库)新人教A 版必修1(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.函数y =1x 2在区间⎣⎡⎦⎤12,2上的最大值是( ) A.14B .-1C .4D .-4解析: ∵函数y =1x 2在⎣⎡⎦⎤12,2上是减函数, ∴y max =1⎝⎛⎭⎫122=4. 答案: C2.函数f (x )=⎩⎪⎨⎪⎧2x +6,(x ∈[1,2])x +7,(x ∈[-1,1))则f (x )的最大值、最小值分别为( ) A .10,6 B .10,8C .8,6D .以上都不对 解析: f (x )在[-1,2]上单调递增,∴最大值为f (2)=10,最小值为f (-1)=6.答案: A3.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .2解析: f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a .∴函数f (x )图象的对称轴为x =2,∴f (x )在[0,1]上单调递增.又∵f (x )min =-2,∴f (0)=-2,即a =-2.∴f (x )max =f (1)=-1+4-2=1.答案: C4.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,0)C .(-∞,0]D .(0,+∞)解析: a <-x 2+2x 恒成立,则a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值,而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,故a <0.答案: B二、填空题(每小题5分,共10分)5.函数f (x )=x x +2在区间[2,4]上的最大值为________,最小值为________. 解析: ∵f (x )=x x +2=x +2-2x +2=1-2x +2, ∴函数f (x )在[2,4]上是增函数,∴f (x )min =f (2)=22+2=12, f (x )max =f (4)=44+2=23.答案: 23 126.在已知函数f (x )=4x 2-mx +1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f (x )在[1,2]上的值域________.解析: 由题意知x =-2是f (x )的对称轴,则m 2×4=-2,m =-16, ∴f (x )=4x 2+16x +1=4(x +2)2-15.又∵f (x )在[1,2]上单调递增.f (1)=21, f (2)=49,∴在[1,2]上的值域为[21,49].答案: [21,49]三、解答题(每小题10分,共20分)7.已知函数f (x )=x 2-2x +2,x ∈A ,当A 为下列区间时,分别求f (x )的最大值和最小值.(1)A =[-2,0];(2)A =[2,3].解析: f (x )=x 2-2x +2=(x -1)2+1,其对称轴为x =1.(1)A =[-2,0]为函数的递减区间,∴f (x )的最小值是2,最大值是10;(2)A =[2,3]为函数的递增区间,∴f (x )的最小值是2,最大值是5.8.已知函数f (x )=x -1x +2,x ∈[3,5], (1)判断函数f (x )的单调性并证明.(2)求函数f (x )的最大值和最小值.解析: (1)任取x 1,x 2∈[3,5]且x 1<x 2,则f (x 1)-f (x 2)=x 1-1x 1+2-x 2-1x 2+2=(x 1-1)(x 2+2)-(x 2-1)(x 1+2)(x 1+2)(x 2+2)=x 1x 2+2x 1-x 2-2-x 1x 2-2x 2+x 1+2(x 1+2)(x 2+2)=3(x 1-x 2)(x 1+2)(x 2+2). ∵x 1,x 2∈[3,5]且x 1<x 2,∴x 1-x 2<0,x 1+2>0,x 2+2>0,∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),∴函数f (x )=x -1x +2在x ∈[3,5]上为增函数. (2)由(1)知,当x =3时,函数f (x )取得最小值为f (3)=25; 当x =5时,函数f (x )取得最大值为f (5)=47. 尖子生题库☆☆☆9.(10分)如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m ,问:每间笼舍的宽度x 为多少时,才能使得每间笼舍面积y 达到最大?每间笼舍最大面积为多少?解析: 设总长为b ,由题意知b =30-3x ,可得y =12xb , 即y =12x (30-3x ) =-32(x -5)2+37.5,x ∈(0,10). 当x =5时,y 取得最大值37.5,即每间笼舍的宽度为5 m 时,每间笼舍面积y 达到最大,最大面积为37.5 m 2.。
《1.3.1函数的单调性(1)》同步练习2
《1.3.1函数的单调性(1)》同步练习2一、选择题1.设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是( ) A .f (x 1)<f (x 2) B .f (x 1)>f (x 2) C .f (x 1)=f (x 2) D .不能确定[答案] D2.下列函数在区间[0,+∞)上是增函数的是( ) ①y =2x ②y =x 2+2x -1 ③y =|x +2| ④y =|x |+2 A .①② B .①③ C .②③④ D .①②③④[答案] D3.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0x -1,x <0在R 上是( )A .减函数B .增函数C .先减后增D .无单调性[答案] B4.定义在R 上的函数f (x )对任意两个不相等实数a ,b ,总有f a -f b a -b>0成立,则必有( )[来源:学.科.网] A .函数f (x )是先增加后减少 B .函数f (x )是衔减少后增加 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数[答案] C5.已知函数f (x )=2x 2-ax -1,在[-1,2]上单调,则实数a 的取值范围是( ) A .[-4,8] B .(-∞,-4]C .[8,+∞]D .(-∞,-4]∪[8,+∞)[答案] D[解析] 由已知得二次函数f (x )=2x 2-ax -1的对称轴为x =a4,若在[-1,2]上单调则满足:a 4≤ -1或a4≥2,∴a ≤-4或9≥8,故选D .6.(2013~2014南阳市一中月考试题)若在[1,+∞)上函数y =(a -1)x 2+1与y =ax 都单调递减,则a 的取值范围是( ) A .a >0B .a >1C .0≤a ≤1D .0<a <1[答案] D[解析] 由于两函数在(1,+∞)上递减应满足⎩⎪⎨⎪⎧a -1<0a >0∴0<a <1.故选D .二、填空题7.写出下列函数的单调区间. (1)y =|x |+1________________. (2)y =-x 2+ax ________________. (3)y =|2x -1|________________. (4)y =-1x +2________________.[答案] (1)增区间[0,+∞),减区间(-∞,0];(2)增区间(-∞,a 2],减区间[a2,+∞);(3)增区间[12,+∞),减区间(-∞,12];(4)增区间 (-∞,-2)和(-2,+∞),无减区间.8.若函数y =-2x 2+mx -3在[-1,+∞)上为减函数,则m 的取值范围是________. [答案] m ≤-4[解析] 由条件知-m2×-2≤-1,∴m ≤-4.9.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为________.[答案] f (a 2-a +1)≤f (34)[解析] ∵a 2-a +1=(a -12)2+34≥34>0,又f (x )在(0,+∞)上为减函数,∴f (a 2-a +1)≤f(34). 三、解答题10.证明函数f (x )=x 2-4x -1在[2,+∞)上是增函数.[证明] 设x 1,x 2是区间[2,+∞)上的任意两个实数,且x 2>x 1≥2,则f (x 1)-f (x 2)=(x 21-4x 1-1)-(x 22-4x 2-1)=x 21-x 22-4x 1+4x 2=(x 1-x 2)(x 1+x 2)-4(x 1-x 2)=(x 1-x 2)(x 1+x 2-4).∵x 2>x 1≥2,∴x 1-x 2<0,x 1+x 2>4, 即x 1+x 2-4>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数f (x )=x 2-4x -1在[2,+∞)上是增函数.11.若函数f (x )=⎩⎪⎨⎪⎧2b -1x +b -1,x >0-x 2+2-b x ,x ≤0在R 上为增函数,求实数b 的取值范围.[分析] 分别考虑两个分段解析式的单调性→再根据整体的单调性求b 的取值范围 [来源:学科网][解析] 由题意得⎩⎪⎨⎪⎧2b -1>02-b ≥0b -1≥f 0,解得1≤b ≤2①[注释] ①本题在列不等式组时很容易忽略b -1≥f (0),即只考虑到了分段函数在各自定义域上的单调性,忽略了f (x )在整个定义域上的单调性.[方法探究] 解决此类问题,一般要从两个方面思考:一方面每个分段区间上函数具有相同的单调性,由此列出相关式子;另一方面要考虑端点处的衔接情况,由此列出另一部分的式子.12.(能力拔高题)(1)写出函数y =x 2-2x 的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?(2)写出函数y =|x |的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?(3)定义在[-4,8]上的函数y =f (x )的图象关于直线x =2对称,y =f (x )的部分图象如图所示,请补全函数y =f (x )的图象,并写出其单调区间,观察:在函数图象对称轴两侧的单调性有什么特点?(4)由以上你发现了什么结论?(不需要证明)[解析] (1)函数y =x 2-2x 的单调递减区间是(-∞,1],单调递增区间是[1,+∞);其图象的对称轴是直线x =1;区间(-∞,1]和区间[1,+∞)关于直线x =1对称,函数y =x 2-2x 在对称轴两侧的单调性相反.(2)函数y =|x |的单调减区间为(-∞,0],增区间为[0,+∞),图象关于直线x =0对称,在其两侧单调性相反..(3)函数y =f (x ),x ∈[-4,8]的图象如图所示.函数y=f(x)的单调递增区间是[-4,-1],[2,5];单调递减区间是[5,8],[-1,2];区间 [-4,-1]和区间[5,8]关于直线x=2对称.区间[-1,2]和区间[2,5]关于直线x =2对称,函数y=f(x)在对称轴两侧的对称区间内的单调性相反.(4)发现结论:如果函数y=f(x)的图象关于直线x=m对称,那么函数y=f(x)在直线x=m两侧对称区间内的单调性相反.。
人教A版高一数学必修1课后习题及答案(全部三章)
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ; (2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <. 人教A 版高中数学必修1课后习题及答案1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =. 人教A 版高中数学必修1课后习题及答案1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?. 4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 人教A 版高中数学必修1课后习题及答案1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形. 5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B . 4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.人教A 版高中数学必修1课后习题及答案第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 人教A 版高中数学必修1课后习题及答案1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1,y ==050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与A的B 中的元素是什么?与B相对应的A 中元素是什么?(A )(B )(C )(D )4.解:因为3sin 60=,所以与A 中元素60相对应的B因为2sin 45=,所以与B 相对应的A 中元素是45. 人教A 版高中数学必修1课后习题及答案1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x =. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x =.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域. (1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗? (2)当4x =时,求()f x 的值; (3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t d π=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个? 并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应? 1.解:(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235xt -=+,(012)x ≤≤,即1235xt -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=+≈.人教A 版高中数学必修1课后习题及答案第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,3.解:该函数在[1,0]在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 . 5.最小值.人教A 版高中数学必修1课后习题及答案1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =-(3)21()x f x x+=; (4)2()1f x x =+.1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.人教A 版高中数学必修1课后习题及答案习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)(,0)-∞上递增;函数在[0,)+∞上递减.函数在2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次 慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.人教A 版高中数学必修1课后习题及答案复习参考题A 组1.用列举法表示下列集合: (1)2{|9}A x x ==; (2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求AB ,A C ,()()AB BC .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭;则39()(){(0,0),(,)}55AB BC =-.6.求下列函数的定义域:(1)y =(2)y =6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.设221()1x f x x+=-,求证: (1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---,即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数? 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =ð,(){2,4}U A B =ð,求集合B .3.解:由(){1,3}U A B =ð,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =. 4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数? (2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数? 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.人教A 版高中数学必修1课后习题及答案新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32,(4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m ∙∙∙=4165413121mm m m m ∙∙=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rts -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x .所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z=-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)22211lglg()lg (lg lg )lg 2lg lg 22y z x y z x y z y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x =(5) 100.3x = (6) xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=-5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)x c =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭。
【高中数学必修一】1.3.1 单调性与最大(小)值-高一数学人教版(必修1)(解析版)
第一章 集合与函数概念1.3.1 单调性与最大(小)值一、选择题1.集合{x |x ≤–1}用区间形式表示正确的是A .(–∞,–1]B .(–∞,–1)C .[–1,+∞)D .(–1,+∞)【答案】A【解析】集合{x |x ≤–1}用区间表示为(–∞,–1],故选A . 2.区间(–3,2]用集合表示为A .{–2,–1,0,1,2}B .{x |–3<x <2}C .{x |–3<x ≤2}D .{x |–3≤x ≤2}【答案】C【解析】由开区间闭区间的概念,可得区间(–3,2]可表示为{x |–3<x ≤2},故选C . 3.设集合A ={x |–4<x <3},B ={x |x ≤2},则A ∩B =A .(–4,3)B .(–4,2]C .(–∞,2]D .(–∞,3)【答案】B【解析】∵集合A ={x |–4<x <3},B ={x |x ≤2},∴A ∩B ={x |–4<x ≤2},故选B . 4.函数f (x )=1xx-的单调增区间是 A .(–∞,1)B .(1,+∞)C .(–∞,1),(1,+∞)D .(–∞,–1),(1,+∞)【答案】C 【解析】()()111111x f x xx --+==-+--,∴f (x )的图象是由y =1x-的图象沿x 轴向右平移1个单位,然后沿y 轴向下平移一个单位得到,而y =1x-的单调增区间为(–∞,0),(0,+∞),∴f (x )的单调增区间是(–∞,1),(1,+∞).故选C .5.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)【答案】B6.函数254y x x =-+A .52⎡⎫+∞⎪⎢⎣⎭,B .542⎡⎫⎪⎢⎣⎭,C .[4,+∞)D .[)5142⎡⎫+∞⎪⎢⎣⎭,,,【答案】C【解析】令x 2–5x +4≥0,解得x ≥4或x ≤1,而函数y =x 2–5x +4的对称轴是x =52,由复合函数同增异减的原则,可得函数254y x x =-+[4,+∞),故选C . 7.f (x )是定义在(0,+∞)上的增函数,则不等式f (x )>f [8(x –2)]的解集是A .(0,+∞)B .(0,2)C .(2,+∞)D .(2,167) 【答案】D【解析】由f (x )是定义在(0,+∞)上的增函数,得()()82082x x x x ⎧>⎪->⎨⎪>-⎩,解得2<x <167,故选D .8.已知y =ax +1,在[1,2]上的最大值与最小值的差为2,则实数a 的值是A .2B .–2C .2,–2D .0【答案】C【解析】①当a =0时,y =ax +1=1,不符合题意;②当a >0时,y =ax +1在[1,2]上递增,则(2a +1)–(a +1)=2,解得a =2;③当a <0时,y =ax +1在[1,2]上递减,则(a +1)–(2a +1)=2,解得a =–2.综上,得a =±2,故选C .9.函数y =(k +2)x +1在实数集上是减函数,则k 的范围是A .k ≥–2B .k ≤–2C .k >–2D .k <–2【答案】D【解析】要使函数y =(k +2)x +1在实数集上是减函数,则k +2<0,∴k <–2,故选D . 二、填空题10.函数f (x )=–x 2+2(a –1)x +2在(–∞,4)上为增函数,则a 的范围是__________.【答案】a ≥511.已知f (x )在R 上是增函数,且f (2)=0,则使f (x –2)>0成立的x 的取值范围是__________.【答案】(4,+∞)【解析】∵f (x )在R 上是增函数,且f (2)=0,要使f (x –2)>0,则有x –2>2,即x >4,成立的x 的取值范围是(4,+∞),故答案为:(4,+∞).12.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是__________.【答案】(–∞,2]【解析】由题意,得m +3≤5,解得m ≤2,故答案为:(–∞,2].13.已知y =f (x )在定义域R 上是减函数,且f (1–a )<f (2a –1),则a 的取值范围是__________.【答案】(–∞,23) 【解析】因为y =f (x )在定义域R 上是减函数,且f (1–a )<f (2a –1),所以1–a >2a –1,解得a <23.所以a 的取值范围是(–∞,23).故答案为:(–∞,23). 14.已知函数f (x )=246222x x x ax x -<⎧⎨-≥⎩,,是R 上的增函数,则实数a 的取值范围是__________. 【答案】12⎛⎤-∞ ⎥⎝⎦,【解析】∵函数f (x )=246222x x x ax x -<⎧⎨-≥⎩,,是R 上的增函数,∴24486a a ≤⎧⎨-≥-⎩,∴a ≤12,故答案为:12⎛⎤-∞ ⎥⎝⎦,. 三、解答题15.用单调性定义证明函数f (x )=21x x +-在(1,+∞)上单调递减. 【解析】任取x 1、x 2,且1<x 1<x 2≤+∞, 则f (x 1)–f (x 2)=121221121222233–11(1)(1)x x x x x x x x x x +++-=----. ∵1<x 1<x 2<+∞,∴x 1–1>0,x 2–1>0,x 1x 2>0,x 2–x 1>0, ∴f (x 1)–f (x 2)>0. ∴f (x 1)>f (x 2).∴f (x )=在(1,+∞)上是单调减函数. 16.若函数f (x )=1axx +在(2,+∞)上为增函数,求实数a 的取值范围. 【解析】f (x )=1ax x +=a –1ax +由于函数f (x )在(2,+∞)上为增函数,所以a >0, 故所求的a 的范围为(0,+∞).17.函数f (x )=x 2–ax +b 在(–∞,1)上是减函数,在(1,+∞)上是增函数,求a .【解析】∵函数f (x )=x 2–ax +b 在(–∞,1)上是减函数,在(1,+∞)上是增函数 ∴函数f (x )=x 2–ax +b 的对称轴为x =2a=1, 解得a =2.18.已知f (x )的定义域为(0,+∞),且在其定义域内为增函数,满足f (xy )=f (x )+f (y ),f (2)=1,试解不等式f (x )+f (x –2)<3.【解析】∵f (xy )=f (x )+f (y ),f (2)=1, ∴f (2×2)=f (2)+f (2)=2, f (2×4)=f (2)+f (4)=3, 由f (x )+f (x –2)<3,又f(x)的定义域为(0,+∞),得()()2820f x x fxx⎧⎡⎤-<⎣⎦⎪⎪>⎨⎪->⎪⎩,又在其上为增函数所以()2820x xxx⎧-<⎪>⎨⎪->⎩解得,2<x<4.所以不等式f(x)+f(x–2)<3的解集为{x|2<x<4}.19.已知函数()28f x x x=-.(1)求函数f(x)的单调区间;(2)求函数f(x)的最值.(2)由8x–x2=0求得x=0,或x=8,所以,当x=0,或x=8时,f min(x)=0;当x=4时,u max=16,这时()max 164f x==.。
1.3.1单调性与最大(小)值
• [分析] 由定义作差f(x1)-f(x2),通过a的 不同取值对差的符号的影响进行讨论.
[解析]
设-1<x1<x2<1,
a(x1x2+1)(x2-x1) ax1 ax2 则 f(x1)-f(x2)= 2 - = 2 x1-1 x2 - 1 (x2 2 1-1)(x2-1) 因为-1<x1<x2<1,
课题导入
函数是描述事物运动变化规律的数学模型,了 解函数的变化规律势在必得。观察下面函数的图象, 能说出它们的变化规律吗? y
2 -2
y
2 2
0
-2
x
-2
0
-2
2
x
保持量(百分数)
100 80 60 40 20 0 1 2 3 4 5 6
天数
某市一天的温度变化图:
y=f(x),x∈[0,24]
说出气温在哪些时间段内是逐渐升高或下降的?
2 所以 x1x2+1>0,x2-x1>0,x2 - 1 < 0 , x 1 2-1<0.
当 a>0 时,f(x1)-f(x2)>0,即 f(x1)>f(x2),f(x)为减函 数. 当 a<0 时,f(x1)-f(x2)<0,即 f(x1)<f(x2),f(x)为增函 数.
• 已知函数f(x)=-x2+(3a-1)x+1-2a在区 间 ( - ∞ , 4] 上是增函数,求实数 a 的取值 范围. • [分析] 二次函数的二次项系数小于0,其 图象开口向下,因而只要区间(-∞,4]在 对称轴的左侧,即可满足题设要求.
当x1<x2时,都有f(x1)>f(x2) ,那么就说f(x)在区间D
上是减函数 ,如图2.
y
y=f(x) f(x1) f(x2) x x2
y
1:1.3.1单调性与最大小值
函数的单调性
(第二课时)
1.增函数: 如果对于区间 D 上的任意两个 x 的 y x1<x2 时, f(x1)<f(x2) , 值 x1, x2, 当_________ 都有_______________
那么就说函数 f(x)在区间 D 上是增函数. 图象特征:由左至右,图象上升。
y f ( x)
定义法判断函数增减性的步骤:
1.设变量:任取区间上的x1,x2,设x1<x2;
2. 作差变形 3.定号:判断f(x1) – f(x2)的正、负情况 4.下结论
疑难辨析
1.在增、减函数定义中,能否把“任取两个自变量的值x1, x2”改为“存在两个自变量的值x1,x2”? 答案:不能.如图所示. 能改为“任取两个自变量的值 x1,x1+a(a>0) 吗?
y
1 y x
O
x
(1)试求函数在区间[2,4]上的最大值和最小值; (2)试求函数在区间[-2,4]上的最大值和最小值。
m
nx
如 果 函 数 y = f(x) 在 区 间 D 上 是
增函数或减函数,那么就说函数 y=f(x)在这一区间具有单调性, _______________ 单调区间 区间 D 叫做 y=f(x)的_____________A.函数y 2 x 1的单调增区间是(- ,+) B.函数y 2 x 1在区间 [3,3]上是增函数 C.函数y x 2是R上的增函数 D.若函数y kx b是R上的减函数,则 k 0, b 0
x1
x2
例1、 根据下图象说出y=f(x)的单调区间
y
3 2 1 -5 -4 -3 -2 -1 O 1 2 3 4 5 x 作图是判断 函数单调性 的方法之一.
人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值
k≠0)与一次函数(y= kx+b,k≠0)
k<0
无
R
反比例函数 (y=kx,k≠0)
k>0
无
k<0 (-∞,0)和 (0,+∞)
(-∞,0)和 (0,+∞)
无
二次函数 (y=ax2+bx+c,
a≠0)
a>0 a<0
[-2ba,+∞) (-∞,-2ba]
(-∞,-2ba] [-2ba,+∞)
• 1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),
• 『规律方法』 利用函数的单调性解函数值的不等式就是 利用函数在某个区间内的单调性,去掉对应关系“f”,转
化为自变量的不等式,此时一定要注意自变量的限制条件, 以防出错.
• 〔跟踪练习3〕 • 已知函数g(x)是定义在R上为增函数,且g(t)>g(1-2t),求
实数t的取值范围.
[解析] ∵g(x)在R上为增函数,且g(t)>g(1-2t), ∴t>1-2t,∴t>13,即所求t的取值范围为(13,+∞).
• 『规律方法』 1.函数单调性的证明方法——定义法 • 利用定义法证明或判断函数单调性的步骤是:
• 2.用定义证明函数单调性时,作差f(x1)-f(x2)后,若f(x)为 多项式函数,则“合并同类项”,再因式分解;若f(x)是 分式函数,则“先通分”,再因式分解;若f(x)解析式是 根式,则先“分子有理化”再分解因式.
(2)设x1>x2>-1, 则x1-x2>0,x1+1>0, x2+1>0, y1-y2=x12+x11-x22+x21 =x12+x11-xx2+2 1>0, ∴y1>y2, ∴函数y=x+2x1在(-1,+∞)上为增函数.
1.3.1(1)函数的单调性知识点及 例题解析
函数的单调性知识点及例题解析知识点一:基本概念(增减函数、增减区间、最大最小值)知识点二:函数单调性的判定方法(常用的)(1) 定义法(基本法);①取值:任取,且;②作差:;③变形:通常是因式分解或配方;④定号:即判断差的正负;⑤下结论:即指出函数在给定区间上的单调性.(2) 利用已知函数的单调性;(现所知道的一次函数,一元二次函数,反比例函数,能够画出图像的函数)(3)利用函数的图像;,,.(4) 依据一些常用结论及复合函数单调性的判定方法;①两个增(减)函数的和仍为增(减)函数;②一个增(减)函数与一个减(增)函数的差是增(减)函数;如果单调性相同,那么是增函数;如果单调性相反,那么是减函数.对于复合函数的单调性,列出下表以助记忆.上述规律可概括为“同增,异减”知识点三:函数单调性的应用利用函数的单调性可以比较函数值的大小;利用函数的单调性求参数的取值范围;附加:①的单调性:增函数,减函数;②的单调性:减区间;增区间;③的单调性:,减区间,增区间;,增区间,减区间;④在区间上是增(减)函数,则时,在上是增(减)函数;时则相反;⑤若、是区间上的增(减)函数,则在区间上是增(减)函数;⑥若且在区间上是增(减)函数,则在上是减(增)函数,在上是增(减)函数;1.函数y=x2+4x﹣1的递增区间是什么?分析:根据二次函数的开口方向和对称轴可判断出在对称轴右侧单调递增解:∵函数y=x2+4x﹣1的图象开口向上,对称轴为x=﹣2,∴y=x2+4x﹣1在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增.故答案为(﹣2,+∞).2. 函数y=x2﹣6x+5在区间(0,5)上是( )A递增函数B递减函数C先递减后递增D先递增后递减分析:本题考察函数单调性的判断与证明,根据二次函数的图象与性质直接进行求解即可解:∵y=x2﹣6x+5⇒y=(x﹣3)2﹣4,∴对称轴为x=3,根据函数y=x2﹣6x+5可知a=1>0,抛物线开口朝上,∴函数图象在(﹣∞,3]上单调递减,在(3,+∞)上单调递增,∴在函数在(0,5)上先递减后递增,故选C3.如图,已知函数y=f(x),y=g(x)的图象(包括端点),根据图象说出函数的单调区间,以及在每一个区间上,函数是增函数还是减函数.分析:本题考察函数单调性的性质,根据函数单调性和图象之间的关系进行求解即可解:(1)由图象知函数在[﹣2,﹣1],[0,1]上为减函数,则[-1,0],[1,2]上为增函数,即函数的单调递增区间为[-1,0],[1,2],函数单调递减区间为[-2,-1],[0,1]2) 由图象知函数在[-3,-1.5],[1.5,3]上为减函数,则[﹣1.5,1.5]上为增函数,即函数的单调递增区间为[-3,-1.5],[1.5,3],函数单调递减区间为[﹣1.5,1.5]4.已知函数f(x)=x2﹣2ax+1在(-∞,1〕上是减函数,求实数a的取值范围分析:如图,先求出对称轴方程,利用开口向上的二次函数在对称轴右边递增,左边递减,比较区间端点和对称轴的大小即可解:因为开口向上的二次函数在对称轴右边递增,左边递减;而其对称轴为x=a,又在(-∞,1〕上是减函数,故须a≥15.已知函数f(x)=x2+4(1﹣a)x+1在[1,+∞)上是增函数,求a的取值范围分析:通过二次函数的解析式观察开口方向,再求出其对称轴,根据单调性建立不等关系,求出a的范围即可解:函数f(x)=x2+4(1﹣a)x+1是开口向上的二次函数,其对称轴为x=2(a﹣1),根据二次函数的性质可知在对称轴右侧为单调增函数,所以2(a﹣1)≤1,解得a≤1.56.若函数y=x2+2(a﹣1)x+2在区间(﹣∞,6)上递减,求a的取值范围分析:由f(x)在区间(﹣∞,6]上递减知:(﹣∞,6]为f(x)减区间的子集,由此得不等式,解出即可.解:f(x)的单调减区间为:(﹣∞,1﹣a],又f(x)在区间(﹣∞,6]上递减,所以(﹣∞,6]⊆(﹣∞,1﹣a],则1﹣a≥6,解得a≤﹣5,所以a的取值范围是(﹣∞,﹣5]7.如图,分析函数y=|x+1|的单调性,并指出单调区间分析:去掉绝对值,根据基本初等函数的图象与性质,即可得出函数y 的单调性与单调区间.解:∵函数y=|x+1|=;∴当x>﹣1时,y=x+1,是单调增函数,单调增区间是(0,+∞);当x<﹣1时,y=﹣x﹣1,是单调减函数,单调减区间是(﹣∞,0)8.求函数f(x)=x4﹣2x2+5在区间[﹣2,2]上的最大值与最小值分析:本题考察二次函数在闭区间上的最值,菁令t=x2,可得0≤t≤4,根据二次函数g(t)=f(x)=x4﹣2x2+5=(t﹣1)2+4 的对称轴为t=1,再利用二次函数的性质求得函数g(t) 在区间[0,4]上的最值.解:令t=x2,由﹣2≤x≤2,可得0≤t≤4,由于二次函数g(t)=f(x)=x4﹣2x2+5=t2﹣2t+5=(t﹣1)2+4 的对称轴为t=1,则函数g(t) 在区间[0,4]上的最大值是g(4)=13,最小值为 g(1)=4,故答案为 13,4.9.证明函数在[﹣2,+∞)上是增函数分析:本题考查的是函数单调性的判断与证明,在解答时要根据函数单调性的定义,先在所给的区间上任设两个数并规定大小,然后通过作差法即可分析获得两数对应函数值之间的大小关系,结合定义即可获得问题的解答证明:任取x1,x2∈[﹣2,+∞),且x1<x2,则f(x1)-f(x2)=-==,因为x1-x2<0,+>0,得f(x1)<f(x2)所以函数在[﹣2,+∞)上是增函数.10. 函数f(x)=,①用定义证明函数的单调性并写出单调区间;②求f(x)在[3,5]上最大值和最小值分析:①分离常数得到f(x)=,根据反比例函数的单调性便可看出f(x)的单调递增区间为(﹣∞,﹣1),(﹣1,+∞),根据单调性的定义证明:设任意的x1,x2≠﹣1,且x1<x2,然后作差,通分,说明x1,x2∈(﹣∞,﹣1),或x1,x2∈(﹣1,+∞)上时都有f(x1)<f(x2),这样即可得出f(x)的单调区间;②根据f(x)的单调性便知f(x)在[3,5]上单调递增,从而可以求出f(x)的值域,从而可以得出f(x)在[3,5]上的最大、最小值.解:①f(x)===2-;该函数的定义域为{x|x≠﹣1},设x1,x2∈{x|x≠﹣1},且x1<x2,则:f(x1)- f(x2)=-=;∵x1<x2;∴x1﹣x2<0;∴x1,x2∈(﹣∞,﹣1)时,x1+1<0,x2+1<0;x1,x2∈(﹣1,+∞)时,x1+1>0,x2+1>0;∴(x1+1)(x2+1)>0;∴f(x1)<f(x2);∴f(x)在(﹣∞,﹣1),(﹣1,+∞)上单调递增,即f(x)的单调增区间为(﹣∞,﹣1),(﹣1,+∞);②由上面知f(x)在[3,5]上单调递增;∴f(3)≤f(x)≤f(5);∴7/4≤f(x)≤11/6;∴f(x)在[3,5]上的最大值为11/6,最小值为7/411.已知f(x)+2f()=3x.(1)求f(x)的解析式及定义域;(2)指出f(x)的单调区间并加以证明解:(1)由 f(x)+2f()=3x ①,用代替x,得 f()+2f(x)= ②;②×2-①,得 3f(x)=-3x,所以 f(x)=-x(x≠0)(2) 由(1),f(x)=-x(x≠0)其递减区间为(-∞,0)和(0,+∞),无增区间.事实上,任取x1,x2∈(-∞,0)且x1<x2,则f(x1)-f(x2)=-x1-+x2=-(x1-x2)=(x2-x1)• ,∵x1<x2<0∴x2-x1>0,x1x2>0,2+x1x2>0,所以 (x2-x1)• >0,即f(x1)>f(x2)故f(x)在(-∞,0)上递减.同理可证其在(0,+∞)上也递减12.证明:f(x)=x+在(3,+∞)上是增函数,在(2,3]上是减函数分析:利用函数单调性的定义证明.证明:设任意的x1,x2∈(3,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)-(x2+)=(x1﹣x2)•,∵x1,x2∈(3,+∞),且x1<x2,∴x1﹣x2<0,x1﹣2>1,x2﹣2>1,(x1﹣2)(x2﹣2)>1,∴(x1﹣x2)•<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)=x+在(3,+∞)上是增函数.同理可证,f(x)=x+在(2,3]上是减函数解定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x1、x2,且x1<x2.∴当0<x1<x2≤1或-1≤x1<x2<0时,有x1x2-1<0,x1x2>0,f(x1)>f(x2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x1<x2或x1<x2≤-1时,有x1x2-1>0,x1x2>0,f(x1)>f(x2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x>0时,f(x)min=f(1)=2,当x<0时,f(x)max=f(-1)=-2.由上述的单调区间及最值可大致画出图像。
人教版高中数学必修一1.3.1__单调性与最大(小)值_第2课时__函数的最大值、最小值ppt课件
15
3.求函数 f ( x)在区x间2[-1,3]上的最大值和最小值.
【提示】根据二次函数的性质,函数在区间[-1,0]上是减函数,在区间(0,3] 上是增函数,最小值一定在x=0时取得,最大值就是区间的两个端点的函数 值中最大的. 【答案】最大值是9,最小值是0.
对基本的函数如一次函数、二次函数、反比例函数等,今后可以不加证明 地使用他们的单调性求函数最值
在科学上进步而道义上落后的人,不是前进,而是 后退.
——亚里士多德
22
ห้องสมุดไป่ตู้
19
1.函数的最值是函数的基本性质之一,函数的最值是函数在其定义域上的整体 性质. 2.根据函数的单调性确定函数最值时,如果是一般的函数要证明这个函数的单 调性,若是基本的函数可以直接使用函数的单调性. 3.含有字母系数的函数,在求其最值时要注意分情况讨论,画出函数的图象有 利于问题的解决.
20
谢谢观看!
13
求函数 f (x) 在区3x间[-1,3]的最大值和最小值。
【提示】证明函数在区间[-1,3]上是增函数. 【答案】最大值是9,最小值是-3.
14
1. 函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是(
)
(A)a≥3
D
(C)a≥-3
(B)a≤3 (D)a≤-3
2.已知函数f(x)=4x2-mx+1在(-∞,-2]上递减,在[-2, +∞)上递增,则f(x)在[1,2]上的值域为____________. [21,49]
17
5.求函数 f (x) x2在区2间ax[0,4]上的最小值.
【提示】二次函数的对称轴x=a是函数单调区间的分界 点.根据二次函数的对称轴和区间[0,4]的关系,分
高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1
1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。
单调性练习题
1.3.1 单调性与最大(小)值1.若函数y=ax 与y=-xb 在(0,+∞)上都是减函数,则函数y=ax 2+bx 在(0,+∞)上是单调递增函数还是单调递减函数?思路解析:确定a 、b 符号,求出y=ax 2+bx 的单调区间.由已知得a<0,b<0,∴-a b 2<0. ∵y=ax 2+bx 在[-ab 2,+∞]上单调递减, ∴y=ax 2+bx 在(0,+∞)上是单调递减函数.2.如果函数f(x)在[a ,b ]上是增函数,对于任意的x 1、x 2∈[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.2121)()(x x x f x f -->0 B.(x 1-x 2)[f(x 1)-f(x 2)]>0 C.f(a)<f(x 1)<f(x 2)<f(b) D.)()(2121x f x f x x -->0 思路解析:2121)()(x x x f x f -->0 ⇔⎩⎨⎧>>⎩⎨⎧<<)()(,)()(,21212121x f x f x x x f x f x x 或 ⇔f(x)在[a ,b ]上为增函数. 又2121)()(x x x f x f -->0⇔ (x 1-x 2)[f(x 1)-f(x 2)]>0⇔)()(2121x f x f x x -->0, ∴A 、B 、D 正确,C 不正确.答案:C3.函数y=1-+x x 的值域为_________.思路解析:考查函数的单调性和值域的求法.由x ≥1和函数是增函数,可知y ≥1,所以函数的值域是[1,+∞].答案:[1,+∞]4.已知函数y=f(x)在(-∞,+∞)上是减函数,则y=f(|x +2|)的单调递减区间是( )A.(-∞,+∞)B.[-2,+∞]C.[2,+∞]D.(-∞,-2)思路解析:∵u=|x +2|≥0,且u=|x +2|在[-2,+∞)上为增函数,在(-∞,-2]上为减函数.又y=f(x)在(-∞,+∞)上是减函数,∴y=f(u)在[0,+∞)上也是减函数.∴y=f(|x +2|)在[-2,+∞)上为减函数,在(-∞,-2]上为增函数.答案:B5.若函数f(x)=x 2+2(a-1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是…( )A.a ≤-3B.a ≥-3C.a ≤5D.a ≥3思路解析:因为函数f(x)=x 2+2(a-1)x +2有两个单调区间,它在(-∞,-(a-1)]上是减函数,又因为f(x)在区间(-∞,4)上是减函数,因此必有4≤-(a-1),解得a ≤-3.答案:A6.设f(x)是定义在A 上的减函数,且f(x)>0,则下列函数中为增函数的个数是( ) ①y=3-f(x) ②y=1+)(2x f ③y=[f(x)]2 ④y=1-)(x fA.1B.2C.3D.4思路解析:∵f(x)是定义在A 上的减函数,且f(x)>0,设x 1、x 2∈A ,且x 1<x 2,则f(x 1)>f(x 2)>0,∴3-f(x 1)<3-f(x 2),即y=3-f(x)在A 上为增函数.)(11x f < )(12x f ,1+)(21x f <1+)(22x f ,即y=1+)(2x f 在A 上为增函数.f 2(x 1)>f 2(x 2),即y=f 2(x)在A 上是减函数. )()(21x f x f ,1-)(1x f <1-)(2x f ,即y=1-)(x f 在A 上为增函数.答案:C7.若函数f(x)在区间[m ,n ]上是增函数,在区间[n ,k ]上也是增函数,则函数f(x)在区间(m ,k)上( )A.必是减函数B.是增函数或减函数C.必是增函数D.未必是增函数或减函数思路解析:任取x 1、x 2∈(m ,k),且x 1<x 2,若x 1、x 2∈(m ,n ],则f(x 1)<f(x 2).若x 1、x 2∈[n ,k),则f(x 1)<f(x 2).若x 1∈(m ,n ],x 2∈(n ,k),则x 1≤n <x 2.∴f(x 1)≤f(n)<f(x 2). ∴f(x)在(m ,k)上必为增函数.答案:C8、若函数y=(2k+1)x+b 在R 上是减函数,则( )A.k >21 B.k <21 C.k >-21 D.k <-21 思路解析:利用一次函数的单调性解决此题.由已知,2k+1<0,解得k <-21,选D. 答案:D6.求函数y=x 2-2x+3在x ∈[-1,2]上的最大值、最小值.思路解析:函数f (x )为二次函数,在区间[-1,2]上的图象已确定,可结合图象求函数最值.解:原函数变形为y=(x-1)2+2,x ∈[-1,2],对称轴方程为x=1.作出函数y=(x-1)2+2在x ∈[-1,2]上的图象,如上图实线部分,可以看出y 的最小值在x=1时取到,为2,y 的最大值在x=-1时取到,为6.7.借助计算机作出函数y=-x 2+2|x|+3的图象并指出它的单调区间.思路解析:计算机中有好多程序可以画图,但要注意的是,选用最常用的比较方便,如选用《几何画板》.解:用《几何画板》画的函数图象如下图,由图象可知,函数的单增区间为(-∞,-1)、(0,1);函数的单调减区间为(-1,0)、(1,+∞).30分钟训练 (巩固类训练,可用于课后)1.已知f(x)是R 上的增函数,若令F(x)=f(1-x)-f(1+x),则F(x)是R 上的( )A.增函数B.减函数C.先减后增的函数D.先增后减的函数思路解析:因为已知f(x)是R 上的增函数.采用特殊函数法变换.取f(x)=x,则F(x)=(1-x)-(1+x)=-2x 为减函数.答案:B2.函数f(x)在区间(-4,7)上是增函数,则y=f(x-3)的递增区间是( )A.(-2,3)B.(-1,10)C.(-1,7)D.(-4,10)思路解析:∵f(x)在(-4,7)上是增函数,由-4<x-3<7,得-1<x <10.且u=x-3,在(-1,10)上也为增函数,∴f(x-3)在(-1,10)上为增函数.答案:B3.在(0,2)上为增函数的是( )A.y=-x+1B.y=xC.y=x 2-4x+5D.y=x2 答案:B4.f (x )=x 2+2(a-1)x+2在(-∞,4)上是减函数,则a 的范围是_________.思路解析:只需对称轴1-a ≥4便可,∴a ≤-3.答案:a ≤-35.函数y=62+--x x 单调递增区间是_________,单调递减区间是_________.思路解析:由-x 2-x +6≥0,即x 2+x-6≤0,解得-3≤x ≤2.∴y=62+--x x 的定义域是[-3,2].又u=-x 2-x +6的对称轴是x=-21, ∴u 在x ∈[-3,-21]上递增,在x ∈[-21,2]上递减.又y=u 是[0,+∞]上的增函数,∴y=62+--x x 的递增区间是[-3,-21],递减区间是[-21,2]. 答案:[-3,-21] [-21,2] 6.函数y=f(x)是定义在R 上的减函数,则y=f(|x +2|)的单调减区间是_________.思路解析:∵y=f(u)在R 上递减,u=|x +2|在[-2,+∞)上递增,在(-∞,-2]上递减,∴y=f(|x +2|)在[-2,+∞]上递减.答案:[-2,+∞]7.已知f(x)=x 3+x(x ∈R ),(1)判断f(x)在(-∞,+∞)上的单调性,并证明;(2)求证:满足f(x)=a(a 为常数)的实数x 至多只有一个.思路解析:证明二次函数在给定区间上的单调性时,变形的主要手段是配方,通过配方达到判断符号的目的.(1)解:设x 1<x 2,即x 1-x 2<0,∴f(x 1)-f(x 2)=(x 13+x 1)-(x 23+x 2)=(x 13-x 23)+(x 1-x 2)=(x 1-x 2)(x 12+x 1x 2+x 22+1)=(x 1-x 2)[(x 1+22x )2+43x 23+1]<0. ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).因此f(x)=x 3+x 在R 上是增函数.(2)证明:假设x 1<x 2且f(x 1)=f(x 2)=a,由f(x)在R 上递增,∴f(x 1)<f(x 2),此与f(x 1)=f(x 2)矛盾.∴原命题正确.8.已知f (x )是定义在R 上的函数,其图象关于y 轴对称,且在[a ,b ](a 、b >0)上是增函数,证明f (x )在[-b ,-a ]上是减函数.思路解析:考查函数的性质及推理能力.判断或证明函数的单调性,最基本的方法是用定义,即函数f (x )在区间[-b ,-a ]上,若对任意x 1、x 2,且-b ≤x 1<x 2≤-a ,如果f (x 1)<f (x 2),则函数f (x )为增函数;如果f (x 1)>f (x 2),则函数f (x )为减函数.有时会结合函数的奇偶性来解决.证明:设-b ≤x 1<x 2≤-a ,则a ≤-x 2<-x 1≤b.∵f (x )在[a ,b ](a 、b >0)上是增函数,∴f (-x 2)<f (-x 1).又f (x )的图象关于y 轴对称,∴f (x )是偶函数,即f (-x )=f (x ). ∴f (x 2)<f (x 1).∴f (x )在[-b ,-a ]上是减函数.9.函数f (x )=4x 2-4ax+a 2-2a+2在区间[0,2]上有最小值3,求a 的值.解:∵f (x )=4(x-2a )2-2a+2, ①当2a ≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a+2.由a 2-2a+2=3,得a=1±2.∵a<0,∴a=1-2.②当0<2a <2,即0<a<4时,f (x )min =f (2a )=-2a+2.由-2a+2=3,得 a=-21∉(0,4),舍去. ③当2a ≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a+18. 由a 2-10a+18=3,得a=5±10.∵a ≥4,∴a=5+10.综上所述,a=1-2或a=5+10.11.已知函数f (x )=xa x x ++22,x ∈[1,+∞). (1)a=21时,求函数的最小值; (2)若对任意x ∈∈[1,+∞],f(x)>0恒成立,试求实数a 的取值范围. 思路解析:先来解决第(1)问,当a 的值给定时,函数变为f (x )=x+x 21+2,它类似于函数f (x )=x+x1,所以可以利用函数的单调性来判断最值. 解:(1)当a=21时,f (x )=x+x21+2.f (x )在[1,+∞)上为增函数,所以f (x )在[1,+∞)上的最小值为f (1)=27. (2)f (x )=x+xa +2,x ∈[1,+∞). 当a ≥0时,函数f (x )在值恒为正.当a<0时,函数f(x)在[1,+∞)上为增函数,故当x=1时,f(x)有最小值3+a,于是当3+a>0时,函数f(x)>0恒成立,故0>a>-3.综上,可知当a>-3时,f(x)>0恒成立.。
《金版新学案》高一数学 第一章1.3.1单调性与最大(小)值(第2课时函数的最大值、最小值)练习题
1.函数f(x)(-2≤x ≤2)的图象如下图所示,则函数的最大值、最小值分别为( )A .f(2),f(-2)B .f(12),f(-1)C .f(12),f(-32)D .f(12),f(0)【解析】 根据函数最值定义,结合函数图象知,当x =-32时,有最小值f(-32);当x =12时,有最大值f(12).【答案】 C2.y =2x 在区间[2,4]上的最大值、最小值分别是( )A .1,12 B.12,1C.12,14D.14,12【解析】 因为y =2x 在[2,4]上单调递减,所以y max =22=1,y min =24=12.【答案】 A3.函数y =ax +1在区间[1,3]上的最大值为4,则a =________.【解析】 若a<0,则函数y =ax +1在区间[1,3]上是减函数,则在区间左端点处取得最大值,即a +1=4,a =3不满足a<0;若a>0,则函数y=ax+1在区间[1,3]上是增函数,则在区间右端点处取得最大值,即3a+1=4,a=1,满足a>0,所以a=1.【答案】 14.已知函数y=-x2+4x-2,x∈[0,5].(1)写出函数的单调区间;(2)若x∈[0,3],求函数的最大值和最小值.【解析】y=-x2+4x-2=-(x-2)2+2,x∈[0,5].所以(1)此函数的单调区间为[0,2),[2,5];(2)此函数在区间[0,2)上是增函数,在区间[2,3]上是减函数,结合函数的图象知:当x=2时,函数取得最大值,最大值为2;又x=3时,y=1,x=0时,y=-2,所以函数的最小值为-2.一、选择题(每小题5分,共20分)1.函数y=|x-1|在[-2,2]上的最大值为()A.0 B.1C.2 D.3【解析】函数y=|x-1|的图象,如右图所示可知y max=3.【答案】 D2.函数f(x)=⎩⎨⎧2x +6 x ∈[1,2]x +8 x ∈[-1,1],则f(x)的最大值、最小值为( ) A .10,7 B .10,8C .8,6D .以上都不对【解析】 本题为分段函数最值问题,其最大值为各段上最大值中的最大值,最小值为各段上最小值中的最小值.当1≤x ≤2时,8≤2x +6≤10,当-1≤x ≤1时,7≤x +8≤9.∴f(x)min =f(-1)=7,f(x)max =f(2)=10.【答案】 A3.函数f(x)=x 2+3x +2在区间(-5,5)上的最大值、最小值分别为( )A .42,12B .42,-14C .12,-14D .无最大值,最小值-14【解析】 f(x)=x 2+3x +2=(x +32)2-14,∵-5<-23<5,∴无最大值f(x)min =f(-32)=-14.【答案】 D4.已知函数f(x)=-x 2+4x +a(x ∈[0,1]),若f(x)有最小值-2,则f(x)的最大值为( )A .-1B .0C.1 D.2【解析】函数f(x)=-x2+4x+a的图象开口向下,对称轴为直线x=2,于是函数f(x)在区间[0,1]上单调递增,从而f(0)=-2,即a=-2,于是最大值为f(1)=-1+4-2=1,故选C.【答案】 C二、填空题(每小题5分,共10分)5.函数y=-3x,x∈(-∞,-3]∪[3,+∞)的值域为________.【解析】y=-3x在(-∞,-3]及[3,+∞)上单调递增,所以值域为(0,1]∪[-1,0).【答案】(0,1]∪[-1,0)6.已知二次函数f(x)=ax2+2ax+1在区间[-2,3]上的最大值为6,则a的值为________.【解析】f(x)=ax2+2ax+1=a(x+1)2+1-a,对称轴x=-1,当a>0时,图象开口向上,在[-2,3]上的最大值为f(3)=9a+6a+1=6,所以a=1 3,当a<0时,图象开口向下,在[-2,3]上的最大值为f(-1)=a-2a+1=6,所以a=-5.【答案】13或-5三、解答题(每小题10分,共20分)7.求函数y=2x-1在区间[2,6]上的最大值和最小值.【解析】设x1、x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)= -== .由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,f(x1)-f(x2)>0,即f(x1)>f(x2).所以,函数y= 是区间[2,6]上的减函数.如上图.因此,函数y= 在区间[2,6]的两个端点上分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.8.求f(x)=x2-2ax+2在[2,4]上的最小值.【解析】f(x)=(x-a)2+2-a2,当a≤2时,f(x)min=f(2)=6-4a;当2<a<4时,f(x)min=f(a)=2-a2;当a≥4时,f(x)min=f(4)=18-8a.综上可知,f(x)min =⎩⎪⎨⎪⎧ 6-4a (a ≤2)2-a 2 (2<a<4)18-8a (a ≥4)9.(10分)某市一家报刊摊点,从该市报社买进该市的晚报价格是每份0.40元,卖出价格是每份0.60元,卖不掉的报纸以每份0.05元的价格退回报社.在一个月(按30天计算)里,有18天每天可卖出400份,其余12天每天只能卖出180份.摊主每天从报社买进多少份,才能使每月获得最大利润(设摊主每天从报社买进的份数是相同的)?【解析】 若设每天从报社买进x(180≤x ≤400,x ∈N )份,则每月(按30天计算)可销售(18x +12×180)份,每份获利0.20元,退回报社12(x -180)份,每份亏损0.35元,建立月纯利润函数,再求它的最大值.设每天从报社买进x 份报纸,每月获利为y 元,则有y =0.20(18x +12×180)-0.35×12(x -180)=-0.6x +1 188,180≤x ≤400,x ∈N .函数y =-0.6x +1 188在区间[180,400]上是减函数,所以x =180时函数取最大值,最大值为y =-0.6×180+1 188=1 080.即摊主每天从报社买进180份时,每月获得的利润最大,最大利润为1 080元.。
必修1课件1.3.1-2单调性与最大(小)值 (二)
思考3:设函数f(x)=1-x2,则 f ( x ) 2 成立吗? f(x)的最大值是2吗?为什么?
f ( x) 思考4:怎样定义函数f(x)的最大值?用什么符号 表示?
一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值
理论迁移
2 例2.求函数 y 在区间[2,6]上的最大值和 x 1 最小值.
解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则
2 2 f ( x1 ) f ( x2 ) x1 1 x2 1 2[( x2 1) ( x1 1)] 2( x2 x1 ) ( x2 1)( x1 1) ( x2 1)( x1 1)
记作:
f ( x )max M
思考5:函数的最大值是函数值域中的一个元素吗? 如果函数y=f(x)的值域是(a,b),则函数y=f(x)存在 最大值吗? 思考6:函数 f ( x ) 2 x 1, x (1, ) 有最大值吗?为什么?
思考:仿照函数最大值的定义,怎样定义函数y=f(x) 的最小值?
§1.3.1-2单调性与最大(小)值 (二)
问题提出
1.确定函数的单调性有哪些手段和方法? 2.函数图象上升与下降反映了函数的单调性, 如果函数的图象存在最高点或最低点,它又 反映了函数的什么性质?
知识探究(一)
观察下列两个函数的图象: y M x o x0 o
y M
x0 图2
x
图1
思考1:这两个函数图象有何共同特征? 函数图象上最高点的纵坐标叫什么名称? 思考2:设函数y=f(x)图象上最高点的纵坐标为M, 则对函数定义域内任意自变量x,f(x)与M的大小 关系如何?
高中数学必修1全册课时训练含答案
人教A版高中数学必修1 全册课时训练目录1.1.1(第1课时)集合的含义1.1.1(第2课时)集合的表示1.1.2集合间的基本关系1.1.3(第1课时)并集、交集1.1.3(第2课时)补集及综合应用1.2.1(第1课时)函数的概念1.2.1(第2课时)函数概念的综合应用1.2.2(第1课时)函数的表示法1.2.2(第2课时)分段函数及映射1.3.1(第1课时)函数的单调性1.3.1(第2课时)函数的最大值、最小值1.3.2(第1课时)函数奇偶性的概念1.3.2(第2课时)函数奇偶性的应用集合与函数的概念-单元评估试题2.1.1(第1课时)根式2.1.1(第2课时)指数幂及运算2.1.2(第1课时)指数函数的图象及性质2.1.2(第2课时)指数函数及其性质的应用2.2.1(第1课时)对数2.2.1(第2课时)对数的运算2.2.2(第1课时)对数函数的图象及性质2.2.2(第2课时)对数函数及其性质的应用2.3幂函数基本初等函数-单元评估试题3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解3.2.1几类不同增长的函数模型3.2.2(第1课时)一次函数、二次函数应用举例3.2.2(第2课时)指数型、对数型函数的应用举例函数的应用-单元评估试题第1-3章-全册综合质量评估试卷课时提升卷(一)集合的含义(45分钟 100分)一、选择题(每小题6分,共30分)1.下列各项中,不能组成集合的是( )A.所有的正整数B.等于2的数C.接近于0的数D.不等于0的偶数2.(2013·冀州高一检测)若集合M中的三个元素a,b,c是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是( )A.1B.0C.-2D.24.已知2a∈A,a2-a∈A,若A只含这2个元素,则下列说法中正确的是( )A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D.a可取除去0和3以外的所有实数5.下列四种说法中正确的个数是( )①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合.A.0B.1C.2D.3二、填空题(每小题8分,共24分)6.(2013·天津高一检测)设集合A中含有三个元素2x-5,x2-4x,12,若-3∈A,则x的值为.7.(2013·济宁高一检测)若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a= .8.若a,b∈R,且a≠0,b≠0,则+的可能取值所组成的集合中元素的个数为.三、解答题(9题,10题14分,11题18分)9.集合A的元素由kx2-3x+2=0的解构成,其中k∈R,若A中的元素只有一个,求k的值.10.数集M满足条件,若a∈M,则∈M(a≠±1且a≠0),已知3∈M,试把由此确定的集合M的元素全部求出来.11.(能力挑战题)设P,Q为两个数集, P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,求P+Q中元素的个数.答案解析1.【解析】选C.怎样才是接近于0的数没有统一的标准,即不满足集合元素的确定性,故选C.2.【解析】选D.由集合元素的互异性可知,a,b,c三个数一定全不相等,故△ABC一定不是等腰三角形.3.【解析】选C.∵-1∈M,∴2×(-1)∈M,即-2∈M.4.【解析】选D.由集合元素的互异性可知,2a≠a2-a,解得a≠0且a≠3,故选D.5.【解析】选A.①中最小数应为0;②中a=0时,- a∈N;③中a+b的最小值应为0;④中“小的正数”不确定.因此①②③④均不对.6.【解析】∵-3∈A,∴-3=2x-5或-3=x2-4x.①当-3=2x-5时,解得x=1,此时2x-5=x2-4x=-3,不符合元素的互异性,故x≠1;②当-3=x2-4x时,解得x=1或x=3,由①知x≠1,且x=3时满足元素的互异性.综上可知x=3.答案:37.【解析】由于P,Q相等,故a2=2,从而a=±.答案:±8.【解题指南】对a,b的取值情况分三种情况讨论求值,即同正,一正一负和同负,以确定集合中的元素,同时注意集合元素的互异性.【解析】当a>0,b>0时,+=2;当ab<0时,+=0;当a<0,b<0时,+=-2.所以集合中的元素为2,0,-2.即集合中元素的个数为3.答案:39.【解析】由题知A中元素即方程kx2-3x+2=0(k∈R)的解,若k=0,则x=,知A中有一个元素,符合题意;若k≠0,则方程为一元二次方程.当Δ=9-8k=0即k=时,kx2-3x+2=0有两个相等的实数解,此时A中有一个元素.综上所述,k=0或.10.【解析】∵a=3∈M,∴==-2∈M,∴=-∈M,∴=∈M,∴=3∈M.再把3代入将重复上面的运算过程,由集合中元素的互异性可知M中含有元素3,-2,-,.【拓展提升】集合中元素互异性的应用集合中的元素是互异的,它通常被用作检验所求未知数的值是否符合题意.只要组成两个集合的元素是一样的,这两个集合就是相等的,与两个集合中元素的排列顺序无关.11.【解析】∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11,共8个.课时提升卷(二)集合的表示(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·临沂高一检测)设集合M={x∈R|x≤3},a=2,则( )A.a∉MB.a∈MC.{a}∈MD.{a}∉M2.集合{x∈N*|x-3<2}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}3.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}4.下列集合的表示法正确的是( )A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.整数集可表示为{全体整数}D.实数集可表示为R5.设x=,y=3+π,集合M={m|m=a+b,a∈Q,b∈Q},那么x,y与集合M的关系是( )A.x∈M,y∈MB.x∈M,y∉MC.x∉M,y∈MD. x∉M,y∉M二、填空题(每小题8分,共24分)6.设A={4,a},B={2,ab},若A=B,则a+b= .7.已知集合A={x|∈N,x∈N},则用列举法表示为.8.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a 为.三、解答题(9题,10题14分,11题18分)9.用适当的方法表示下列集合:(1)所有被3整除的整数.(2)满足方程x=|x|的所有x的值构成的集合B.10.下面三个集合:A={x|y=x2+1}; B={y|y=x2+1};C={(x,y)|y=x2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?11.(能力挑战题)集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b ∈M,设c=a+b,则c与集合M有什么关系?答案解析1.【解析】选B.(2)2-(3)2=24-27<0,故2<3.所以a∈M.2.【解析】选B.集合中元素满足x<5且x∈N*,所以集合的元素有1,2,3,4.3.【解析】选D.A是列举法,B,C是描述法,而D表示该集合含有一个元素,即“x=0”.4.【解析】选D.选项A中应是xy<0;选项B的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x;选项C的“{ }”与“全体”意思重复.5.【解析】选B.∵x==--.y=3+π中π是无理数,而集合M中,b ∈Q,得x∈M,y M.6.【解析】两个集合相等,则两集合的元素完全相同,则有a=2,ab=4,将a=2代入ab=4,得b=2.∴a+b=4.答案:47.【解题指南】结合条件,可按x的取值分别讨论求解.【解析】根据题意,5-x应该是12的正因数,故其可能的取值为1,2,3,4,6,12,从而可得到对应x的值为4,3,2,1,-1,-7.因为x∈N,所以x 的值为4,3,2,1.答案:{1,2,3,4}8.【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).答案:(2,5)9.【解析】(1){x|x=3n,n∈Z}.(2)B={x|x=|x|,x∈R}.【变式备选】集合A={x2,3x+2,5y3-x},B={周长为20cm的三角形},C={x|x-3<2,x∈Q},D={(x,y) |y=x2-x-1}.其中用描述法表示的集合个数为( ) A.1 B.2 C.3 D.4【解析】选C.集合A为列举法表示集合,集合B,C,D均为描述法表示集合,其中B选项省略了代表元素和竖线.10.【解析】(1)在A,B,C三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A的代表元素是x,满足y=x2+1,故A={x|y=x2+1}=R.集合B的代表元素是y,满足y=x2+1,所以y≥1,故B={y|y=x2+1}={y|y≥1}.集合C的代表元素是(x,y),满足条件y=x2+1,即表示满足y=x2+1的实数对(x,y);也可认为是满足条件y=x2+1的坐标平面上的点.【拓展提升】三种集合语言的优点及应用集合语言包括符号语言、图形语言和自然语言三种.(1)符号语言比较简洁、严谨且内涵丰富有利于推理计算.(2)图形语言能够引起直观的视觉感受,便于理清关系,有利于直观地表达概念、定理的本质及相互关系,使得抽象的思维关系明朗化. (3)自然语言往往比较生动,能将问题研究对象的含义更加明白地叙述出来.集合的三种语言之间相互转化,在解决集合问题时,一般是将符号语言转化为图形语言、自然语言,这样有助于弄清集合是由哪些元素构成的,有助于提高分析问题和解决问题的能力.11.【解析】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∴c∈M.课时提升卷(三)集合间的基本关系(45分钟 100分)一、选择题(每小题6分,共30分)1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0=∅2.(2013·宝鸡高一检测)如果M={x|x+1>0},则( )A.∅∈MB.0MC.{0}∈MD.{0}⊆M3.(2013·长沙高一检测)已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个4.设A={a,b},B={x|x∈A},则( )A.B∈AB.B AC.A∈BD.A=B5.(2013·潍坊高一检测)设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2二、填空题(每小题8分,共24分)6.(2013·汕头高一检测)已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m= .7.已知集合A={x|x<3},集合B={x|x<m},且A B,则实数m满足的条件是.8.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P 的关系为.三、解答题(9题,10题14分,11题18分)9.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠ ,B⊆A,求a,b的值.10.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围.(2)若B⊆A,求a的取值范围.11.(能力挑战题)已知A={x||x-a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B?若存在,求出对应的a的值;若不存在,说明理由.答案解析1.【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2.【解析】选D.M={x|x+1>0}={x|x>-1},∴{0}⊆M.3.【解析】选C.由题意知,x=-2或2,即A={-2,2},故其真子集有3个. 【误区警示】本题易忽视真子集这一条件而误选D.4.【解析】选D.因为集合B中的元素x∈A,所以x=a或x=b,所以B={a,b},因此A=B.5.【解析】选D.∵A⊆B,∴a≥26.【解析】∵B⊆A,∴m2=2m-1,∴m=1.答案:17.【解析】将数集A标在数轴上,如图所示,要满足A B,表示数m的点必须在表示3的点的右边,故m>3.答案: m>38.【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.答案:M=P9.【解析】由B⊆A知,B中的所有元素都属于集合A,又B≠ ,故集合B有三种情形:B={-1}或B={1}或B={-1,1}.当B={-1}时,B={x|x2+2x+1=0},故a=-1,b=1;当B={1}时,B={x|x2-2x+1=0},故a=b=1;当B={-1,1}时,B={x|x2-1=0},故a=0,b=-1.综上所述,a,b的值为或或10.【解题指南】利用数轴分析法求解.【解析】(1)若A B,由图可知,a>2.(2)若B⊆A,由图可知,1≤a≤2.11.【解析】不存在.要使对任意的实数b都有A⊆B,所以1,2是A中的元素,又∵A={a-4,a+4},∴或这两个方程组均无解,故这样的实数a不存在.课时提升卷(四)并集、交集(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·衡水高一检测)若集合A,B,C满足A∩B=A,B∪C=C,则A与C 之间的关系为( )A.C AB.A CC.C⊆AD.A⊆C2.已知M={0,1,2, 4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M ∩P)等于( )A.{1,4}B.{1,7}C.{1, 4,7}D.{4,7}3.(2013·本溪高一检测)A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}4.(2013·德州高一检测)设集合A={x|x≤1},B={x|x>p},要使A∩B=∅,则p应满足的条件是( )A.p>1B.p≥1C.p<1D.p≤15.(2012·新课标全国卷)已知集合A={1,3,},B={1,m},A∪B=A,则m=( )A.0或B.0或3C.1或D.1或3二、填空题(每小题8分,共24分)6.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N= .7.(2013·清远高一检测)已知集合A={x|x≤1},集合B={x|a≤x},且A∪B=R,则实数a的取值范围是.8.(2013·西安高一检测)设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .三、解答题(9题,10题14分,11题18分)9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A ∩B.10.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=∅,求a的取值范围.11.(能力挑战题)已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.答案解析1.【解析】选D.∵A∩B=A,B∪C=C,∴A⊆B,B⊆C,∴A⊆C.2.【解析】选C.M∩N={1,4},M∩P={4,7},故(M∩N)∪(M∩P)={1,4,7}.3.【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.4.【解析】选B.∵A∩B= ,∴结合数轴分析可知应满足的条件是p≥1. 【误区警示】本题易漏掉p=1的情况而误选A.5.【解析】选B.由A∪B=A得B⊆A,所以有m=3或m=.由m=得m=0或1,经检验,m=1时B={1,1}不符合集合元素的互异性,m=0或3时符合.6.【解析】由题意联立方程组得x=3,y=-1,故M∩N={(3,-1)}.答案:{(3,-1)}7.【解析】∵A∪B=R,∴a≤1.答案:a≤18.【解析】∵A∩B={2},∴2∈A,故a+1=2,a=1,即A={5,2};又2∈B,∴b=2,即B={1,2},∴A∪B={1,2,5}.答案:{1,2,5}9.【解析】∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.【解题指南】通过数轴直观表示,并结合A∩B=∅分析列不等式(组)求解.【解析】A∩B=∅,A={x|2a≤x≤a+3}.(1)若A=∅,有2a>a+3,∴a>3.(2)若A≠∅,如图所示.则有解得-≤a≤2.综上所述,a的取值范围是-≤a≤2或a>3.【拓展提升】数轴在解含参不等式(组)中的作用数轴是解不等式(组)的重要工具,它是实现数形结合解决数学问题的桥梁,在求解不等式(组)待定字母值或范围时,借助数轴的直观性,很轻松地将各变量间的关系表示出来,进而列出不等式(组),更能显示出它的优越性.11.【解析】(1)A={-4,0},若A∪B=B,则B=A={-4,0},解得a=1.(2)若A∩B=B,则①若B为空集,则Δ=4(a+1)2-4(a2-1)=8a+8<0,则a<-1;②若B为单元素集合,则Δ=4(a+1)2-4(a2-1)=8a+8=0, 解得a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0,得x2=0得,x=0,即B={0},符合要求;③若B=A={-4,0},则a=1,综上所述,a≤-1或a=1.课时提升卷(五)补集及综合应用(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则ð(A∪B)=( )UA.{1,4}B.{1,5}C.{2,4}D.{2,5}2.已知全集U=R,集合A={x|-1≤x≤2},B={x|x<1},则A∩(ðB)=( )RA.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}3.已知全集U={1,2,3,4,5,6,7},A={1,3,5,7},B={3,5},则下列式子一定成立的是( )A.ðB⊆UðA B.(UðA)∪(UðB)=UUC.A∩ðB=∅ D.B∩UðA=∅U4.设全集U(U≠∅)和集合M,N,P,且M=UðN,N=UðP,则M与P的关系是( )A.M=ðP B.M=PUC.M PD.M P5.(2013·广州高一检测)如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(ðA∩B)∩C B.(IðB∪A)∩CIC.(A∩B)∩ðC D.(A∩IðB)∩CI二、填空题(每小题8分,共24分)6.已知集合A={1,3,5,7,9},B={0,3,6,9, 12},则A∩(ðB)= .N7.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆ðP,则Ra的取值范围是.8.设集合A,B都是U={1,2,3,4}的子集,已知(ðA)∩(UðB)={2},(UðA)U∩B={1},且A∩B=∅,则A= .三、解答题(9题,10题14分,11题18分)9.(2013·济南高一检测)已知全集U=R,集合A={x|1≤x≤2},若B∪ðA=R,RB∩ðA={x|0<x<1或2<x<3},求集合B.R10.已知集合A={x|2a-2<x<a},B={x|1<x<2},且AðB,求a的取值范R围.11.(能力挑战题)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(ðA)∩B=∅,求m的值.U答案解析1.【解析】选C.由题知U={1,2,3,4,5},A∪B={1,3,5},故ð(A∪B)={2,4}.U2.【解析】选D.∵B={x|x<1},∴ðB={x|x≥1},R∴A∩ðB={x|1≤x≤2}.R3.【解析】选D.逐一进行验证.ðB={1,2,4,6,7},UðA={2,4, 6},显然UðAU⊆ðB,显然A,B错误;A∩UðB={1,7},故C错误,所以只有D正确.U4.【解析】选B.利用补集的性质:M=ðN=Uð(UðP)=P,所以M=P.U【拓展提升】一个集合与它的补集的关系集合与它的补集是一组相对的概念,即如果集合A是B相对于全集U 的补集,那么,集合B也是A相对于全集U的补集.同时A与B没有公共元素,且它们的并集正好是全集,即A∪B=U,A∩B= .5.【解析】选D.由图可知阴影部分是A的元素,且是C的元素,但不属于B,故所表示的集合是(A∩ðB)∩C.I6.【解析】∵A={1,3,5,7,9},B={0,3,6,9,12},∴ðB={1,2,4,5,7,8,…}.N∴A∩ðB={1,5,7}.N答案:{1,5,7}7.【解析】M={x|-2<x<2},ðP={x|x<a}.R∵M⊆ðP,∴由数轴知a≥2.R答案:a≥28.【解析】根据题意画出Venn图,得A={3,4}.答案:{3,4}9.【解析】∵A={x|1≤x≤2},∴ðA={x|x<1或x>2}.R又B∪ðA=R,A∪RðA=R,可得A⊆B.R而B∩ðA={x|0<x<1或2<x<3},R∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.10.【解题指南】解答本题的关键是利用AðB,对A=∅与A≠∅进行R分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题. 【解析】ðB={x|x≤1或x≥2}≠∅,R∵AðB.R∴分A=∅和A≠∅两种情况讨论.(1)若A=∅,则有2a-2≥a,∴a≥2.(2)若A≠∅,则有或∴a≤1.综上所述,a≤1或a≥2.11.【解题指南】本题中的集合A,B均是一元二次方程的解集,其中集合B中的一元二次方程含有不确定的参数m,需要对这个参数进行分类讨论,同时需要根据(ðA)∩B=∅对集合A,B的关系进行转化.U【解析】A={-2,-1},由(ðA)∩B=∅,得B⊆A,U∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或m=2.【变式备选】已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且ðA⊆RðB,R求实数a的取值集合.【解析】∵A={x|x2-5x+6=0},∴A={2,3}.又ðA⊆RðB,R∴B⊆A,∴有B=∅,B={2},B={3}三种情形.当B={3}时,有3a-6=0,∴a=2;当B={2}时,有2a-6=0,∴a=3; 当B= 时,有a=0,∴实数a的取值集合为{0,2,3}.课时提升卷(六)函数的概念(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U=R,集合A=[3,7),B=(2,10),则ð(A∩B)=( )RA.[3,7)B.(-∞,3)∪[7,+∞)C.(-∞,2)∪[10,+∞)D.2.(2013·西安高一检测)下列式子中不能表示函数y=f(x)的是( )A.x=y2+1B.y=2x2+1C.x-2y=6D.x=3.(2013·红河州高一检测)四个函数:(1)y=x+1.(2)y=x3.(3)y=x2-1.(4)y=.其中定义域相同的函数有( )A.(1),(2)和(3)B.(1)和(2)C.(2)和(3)D.(2),(3)和(4)4.下列集合A到集合B的对应f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值5.(2013·盘锦高一检测)函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=( )A.[-2,+∞)B.[-2,2)C.(-2,2)D.(-∞,2)二、填空题(每小题8分,共24分)6.若[a,3a-1]为一确定区间,则a的取值范围是.7.函数y=f(x)的图象如图所示,那么f(x)的定义域是;其中只与x的一个值对应的y值的范围是.8.函数f(x)定义在区间[-2,3]上,则y=f(x)的图象与直线x=a的交点个数为.三、解答题(9题,10题14分,11题18分)9.(2013·烟台高一检测)求下列函数的定义域.(1)y=+.(2)y=.10.已知函数f(x)=,(1)求f(x)的定义域.(2)若f(a)=2,求a的值.(3)求证:f()=-f(x).11.(能力挑战题)已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.答案解析1.【解析】选B.∵A∩B=[3,7),∴ð(A∩B)=(-∞,3)∪[7,+∞).R2.【解析】选A.一个x对应的y值不唯一.3.【解析】选A.(1),(2)和(3)的定义域都是R,(4)的定义域是{x∈R|x≠0}.4.【解析】选A.按照函数定义,选项B中,集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.5.【解析】选B.由题意得M=(-∞,2),N=[-2,+∞),所以M∩N=(-∞,2)∩[-2,+∞)=[-2,2).6.【解析】由题意3a-1>a,则a>.答案:(,+∞)【误区警示】本题易忽略区间概念而得出3a-1≥a,则a≥的错误.7.【解析】观察函数图象可知f(x)的定义域是[-3,0]∪[2,3];只与x的一个值对应的y值的范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,2)∪(4,5]【举一反三】本题中求与x的两个值对应的y值的范围.【解析】由函数图象可知y值的范围是[2,4].8.【解题指南】根据函数的定义,对应定义域中的任意一个自变量x 都有唯一的函数值与之对应.利用此知识可以结合函数图象分析. 【解析】当a∈[-2,3]时,由函数定义知,y=f(x)的图象与直线x=a只有一个交点;当a [-2,3]时,y=f(x)的图象与直线x=a没有交点.答案:0或19.【解析】(1)由已知得∴函数的定义域为[-,].(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞).10.【解析】(1)要使函数f(x)=有意义,只需1-x2≠0,解得x≠±1,所以函数的定义域为{x|x≠±1}.(2)因为f(x)=,且f(a)=2,所以f(a)==2,即a2=,解得a=±.(3)由已知得f()==,-f(x)=-=,∴f()=-f(x).11.【解题指南】由题意得,(-∞,1]是函数y=的定义域的子集. 【解析】函数y=(a<0且a为常数).∵ax+1≥0,a<0,∴x≤-,即函数的定义域为(-∞,-].∵函数在区间(-∞,1]上有意义,∴(-∞,1] (-∞,-],∴-≥1,而a<0,∴-1≤a<0.即a的取值范围是[-1,0).关闭Word文档返回原板块。
《1.3.1单调性与最大(小)值》课件 必修1
类型一 函数单调性的判断与证明 9 【例1】 求证:y=x+ (0<x≤3)为减函数. x
证明:任取 x1,x2∈(0,3]且 x1<x2(即 x2-x1>0), 9(x1-x2) 9 9 则 f(x2)-f(x1)=x2+ -(x1+ )=x2-x1+ x2 x1 x1x2 x1x2-9 9 =(x2-x1)(1- )=(x2-x1)· . x1x2 x1x2 ∵x2-x1>0,x1x2>0,0<x1<x2≤3, ∴x1x2<9,有 x1x2-9<0, ∴f(x2)-f(x1)<0,故 f(x)在(0,3]上为减函数.
)
A.[-4,4]
B.[-4,-3]∪[1,4] C.[-3,1] D.[-3,4] 答案:C
3.函数f(x)在R上是减函数,则有
(
)
A.f(3)<f(5)
C.f(3)>f(5) ∴f(3)>f(5). 答案:C
B.f(3)≤f(5)
D.f(3)≥f(5)
解析:∵函数f(x)在R上是减函数,3<5,
类型二 求函数的单调区间 【例2】 求函数f(x)=-2 9-4x2的单调区间.
解:设9-4x2=t(t≥0), 3 3 2 由9-4x ≥0,得- ≤x≤ . 2 2 3 当- ≤x≤0时,随着x增大,t增大; 2 3 当0<x≤ 时,随着x增大,t减小. 2 又函数y=-2 t在[0,+∞)上是减函数, 3 2 所以,f(x)=-2 9-4x 在[- ,0]上是减函数,在 2 3 (0, ]上是增函数. 2 3 即函数f(x)的单调减区间为[- ,0],单调增区间为 2 3 (0, ]. 2
求下列函数的单调区间: 1 2 (1)y= -x +2x;(2)y= . x+1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )
A .9
B .9(1-a )
C .9-a
D .9-a 2
解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9.
2.函数y =x +1-x -1的值域为( )
A .(-∞, 2 ]
B .(0, 2 ]
C .[2,+∞)
D .[0,+∞)
解析:选B.y =x +1-x -1,∴⎩
⎪⎨⎪⎧
x +1≥0x -1≥0, ∴x ≥1.
∵y =2x +1+x -1
为[1,+∞)上的减函数, ∴f (x )max =f (1)=2且y >0.
3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( )
A .0或1
B .1
C .2
D .以上都不对
解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2, 对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3, ,且满足x 3+y 4
=1.则xy 的最大值为________.
)知,
( ) C .8,6 D .以上都不对
解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6.
3.函数y =-x 2+2x 在[1,2]上的最大值为( )
A .1
B .2
C .-1
D .不存在
解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]
上为单调递减函数,所以y max =-1+2=1.
4.函数y =1x -1
在[2,3]上的最小值为( ) A .2 B.12
C.13 D .-12
解析:选B.函数y =1x -1
在[2,3]上为减函数, ∴y min =13-1=12
.X k b 1 . c o m 5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )
A .90万元
B .60万元
C .120万元
D .120.25万元
解析:选C.设公司在甲地销售x 辆(0≤x ≤15,x 为正整数),则在乙地销售(15-x )辆,∴公司获得利润L =-x 2+21x +2(15-x )=-x 2+19x +30.∴当x =9或10时,L 最大为120万元,故选C.
6.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )
A .-1
B .0
C .1
D .2
解析:选C.f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a .
∴函数f (x )图象的对称轴为x =2,
∴f (x )在[0,1]上单调递增.
1.
(x )的最小值为f (a ),则实数a 的取值范
;最小值为________. ∴f (x )min =f (2)=22+2=12
, f (x )max =f (4)=44+2=23
. 答案:23 12
10.已知函数f (x )=⎩⎨⎧ x 2 (-12≤x ≤1)1x (1<x ≤2),
求f (x )的最大、最小值.
解:当-12
≤x ≤1时,由f (x )=x 2,得f (x )最大值为f (1)=1,最小值为f (0)=0; 当1<x ≤2时,由f (x )=1x
,得f (2)≤f (x )<f (1), 即12
≤f (x )<1. 综上f (x )max =1,f (x )min =0.
11.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金为3600元时,能租出多少辆车?
(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?
解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050
=12.所以这时租出了88辆车.
(2)设每辆车的月租金为x 元.则租赁公司的月收益为f (x )=(100-x -300050
)(x -150)-x -300050
×50, 整理得
f (x )=-x 250+162x -21000=-150
(x -4050)2+307050. 所以,当x =4050时,f (x )最大,最大值为f (4050)=307050.即当每辆车的月租金为4050元时,租赁公司的月收益最大.最大月收益为307050元.
12.求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.
解:f (x )=(x -a )2-1-a 2,对称轴为x =a . w w w .x k b 1.c o m
①当a <0时,由图①可知,
f (x )min =f (0)=-1,
f (x )max =f (2)=3-4a .
②当0≤a <1时,由图②可知,
f (x )min =f (a )=-1-a 2,
f (x )max =f (2)=3-4a .
③当1≤a≤2时,由图③可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(0)=-1.
④当a>2时,由图④可知,
f(x)min=f(2)=3-4a,
f(x)max=f(0)=-1.
综上所述,当a<0时,f(x)min=-1,f(x)max=3-4a;
当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;
当1≤a≤2时,f(x)min=-1-a2,f(x)max=-1;
当a>2时,f(x)min=3-4a,f(x)max=-1.。