导数的几何意义说课稿及教学反思
“导数的几何意义”教学实录、反思与点评.doc
“导数的几何意义”教学实录、反思与点评1教学预设11教学标准(1)通过《几何画板》动态演示割线“逼近”切线的过程,让学生认识平均变化率与割线斜率之间的关系,知道其关系就是指平均变化率的儿何意义;(2)通过实验探究,帮助学生归纳出导数的几何意义,知道函数处的导数的几何意义就是函数f (x)的图象在处的切线的斜率,体会“数形结合,以直代曲”的思想方法;(3)通过函数的图象直观地感知导数的几何意义,学生会利用导数的儿何意义解释实际生活问题,体会导数在刻画函数性质中的作用.12标准解析(1)内容解析:本节课要学的内容导数的几何意义,指的是平均变化率与割线斜率之间的关系、曲线的切线的概念、导数的几何意义,其核心是导数的几何意义,理解它关键就是要在平均变化率的几何意义的均础上通过逼近的思想来理解学生已经学过平均变化率的儿何意义、导数的概念,本节课的内容导数的几何意义就是在此基础上的发展由于它是从形上理解导数的概念,所以在本学科有重要的地位,并有代数与几何沟通的作用,是本学科导数部分的核心内容教学的重点是导数的几何意义,解决重点的关键是从割线出发,理解切线定义,从而获得导数的几何意义.根据以上分析,本节课的教学重点确定为:体会并概括导数的几何意义及“数形结合,以直代曲”的思想方法.(2)学情诊断:在本节课的教学中,学生可能遇到的问题是导数的几何意义,产生这一问题的原因是其中“以直代曲”思想的理解要解决这一问题,就要通过对曲线的直观观察来体会,其中关键是利用信息技术动态演示.根据以上分析,本节课的教学难点确定为:发现、感知、概括导数的儿何意义并应用导数的儿何意义.(3)教学对策:本节课是导数的几何意义的探究课第一,注重探究活动的流程设置自然本节课围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开首先,教师从复习导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的儿何意义;然后,类比“平均变化率一一瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义一一“导数是曲线上某点处切线的斜率” 第二,注意引导学生进行探究活动实施环节的设置设计的问题围绕“怎样想到导数的几何意义就是切线的斜率”而进行,引导学生充分经历“提出问题(从数的角度研究了导数后,从形的角度如何研究导数?)一一寻求想法一一实施想法一一发现规律一一给出定义一一应用定义解释现象(如何估计切线的斜率)”这一完整的探究活动,让学生感受到数学知识的产生是水到渠成的第三,充分利用《儿何画板》辅助探究教师恰当地应用《儿何画板》进行动画演示,让学生从直观上强烈感受到由割线逼近切线、产生切线的过程,再从理性的角度思考“切线产生”的深层原因,较好地培养了学生的观察能力和分析能力.(4)教学流程:设置情境一探究问题一例题剖析一概括小结一课后延伸2教学简录21创设情境,引发探究让学生回忆导数的概念及其本质(承上启下,自然过渡)师:导数的本质是什么?写出它的表达式.生:导数f' (xO)的本质是函数f (x)在x=xO处的瞬时变化率,即:评析教师不能替代学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的儿何意义奠定基础.评析教师引导学生:数形结合是重要的思想方法要研究“形。
北师大版高中数学 《导数的几何意义》说课稿
北师大版高中数学《导数的几何意义》说课稿【小编寄语】查字典数学网小编给大家整理了北师大版高中数学《导数的几何意义》说课稿,希望能给大家带来帮助!课题:导数的几何意义教材:北师大版选修2-2一、说教材:1、教材的地位与作用导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。
2、教学的重点、难点、关键教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵1) 从割线到切线的过程中采用的逼近方法;2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.二、说教学目标:根据新课程标准的要求、学生的认知水平,确定教学目标如下:1、知识与技能 :通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
过程与方法:经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。
3、情感态度与价值观:渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值说教法与学法对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。
高中数学_导数的几何意义教学设计学情分析教材分析课后反思
3.1.3导数的几何意义教学三维目标:1.知识与技能:了解平均变化率与割线斜率之间的关系;2.过程与方法:理解曲线的切线的概念;3.情态与价值:通过函数的图像直观地理解导数的几何意义并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;教学难点:导数的几何意义.教学方法:讨论法教学工具:多媒体教学课时:1课时教学过程:创设情景(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢?新课讲授(一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?⑵切线PT 的斜率k 为多少?图3.1-2容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x∆→+∆-'==∆ 说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.这个概念: ①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在0x x =处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,即 0000()()()lim x f x x f x f x k x∆→+∆-'==∆ 说明:求曲线在某点处的切线方程的基本步骤:①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.典例分析例1:(1)求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.(2)求函数y =3x 2在点(1,3)处的导数.解:(1)222100[(1)1](11)2|lim lim 2x x x x x x y x x=∆→∆→+∆+-+∆+∆'===∆∆, 所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -=(2)因为222211113313(1)|lim lim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- 所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --=(2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数. 解:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2200(1)(1)2(1)lim lim (3)3x x y x x f x x x→→∆--+∆+-+∆-'-===-∆=∆∆ 例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况.解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况.(1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线比较平坦,几乎没有升降.(2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近曲线下降,即函数2() 4.9 6.510h x x x =-++在1t t =附近单调递减.(3) 当2t t =时,曲线()h t 在2t 处的切线2l 的斜率2()0h t '<,所以,在2t t =附近曲线下降,即函数2() 4.9 6.510h x x x =-++在2t t =附近单调递减.从图3.1-3可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度,这说明曲线在1t 附近比在2t 附近下降的缓慢. 课堂练习:1.求曲线y =f (x )=x 3在点(1,1)处的切线;2.求曲线y x =在点(4,2)处的切线.回顾总结:1.曲线的切线及切线的斜率;2.导数的几何意义布置作业:课本P79 A 组2、3板书设计:主板 副板1、曲线的切线 2、切线的斜率 举例 3、导数的几何意义学情分析从知识上看,学生通过学习平均变化率,特别是导数的瞬时变化率及导数的概念,对导数概念有一定的理解与认识,也在思考导数的另外一种体现形式——形,学生对曲线的切线有一定的认识,特别是对抛物线的切线的概念在学习圆锥曲线与直线关系时有很深的了解与认识。
高中数学_3.1.3 导数的几何意义教学设计学情分析教材分析课后反思
3.1.3导数的几何意义高二数学人教B版教材(选修1-1)一、教材分析本节课选自人教B版选修1-1第三章3.1.3导数的几何意义。
教材通过数形结合的方法,演示了割线斜率到切线斜率的变化过程,用形象直观的逼近方法定义了切线,引出了导数的几何意义,适合学生的认知规律,在学生学习中有着明确的学习方法指引,通过本节课的学习,学生们进一步认识了“逼近思想”在数学中的应用。
例题设计难度适中,既有简单求解切线斜率、切点的题目,又有求切线方程题型。
例题设计了“在一点处”型和“过一点”型的切线方程,可以培养学生思维全面严谨、分类讨论的能力。
二、教学目标知识与技能:理解导数的几何意义、熟练掌握求切点及函数“在一点处”型、“过一点”型的切线斜率的求法。
过程与方法:让学生体会割线斜率到切线斜率的过程,熟练掌握数形结合、分类讨论等数学思想方法。
情感态度与价值观:能够从生活中抽象出数学问题,在学习中养成积极探究,合作分享的学习态度。
通过认真训练,达到举一反三、融会贯通的目的。
三、重点、难点导数几何意义的理解与应用,“过一点”型的切线斜率的求解过程。
突出重点方法:“抓三线、突重点”,即(一)知识技能线:实例引入→抽象为数学问题→动态演示→形成概念;(二)过程与方法线:具体到抽象、数形结合、分类讨论的应用;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度.教学难点:导数的几何意义,从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。
从知识本身特点来看,导数的几何意义是在平均变化率、瞬时速度与导数的基础上结合切线斜率再生成的一个知识点。
特别是在求“在一点处”型、“过一点”型的切线斜率,这是学生的难点,刚开始接触,好多学生可能不理解。
突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导。
人教A版选修2《导数的几何意义》教案及教学反思
人教A版选修2《导数的几何意义》教案及教学反思一、教师教学设计1.1 教学目标1.理解导数的定义及几何意义;2.掌握导数的概念、符号和实质;3.能够利用导数求一元函数的单调性和极值;4.能够应用导数求解相关最值问题。
1.2 教学内容导数的概念及几何意义1.3 教学重点1.导数的概念的理解;2.导数的几何意义的掌握。
1.4 教学难点1.导数的符号的理解;2.导数的实质的理解。
1.5 教学方法1.讲授法:讲解导数的定义及几何意义,并通过实例演示导数的计算方法;2.案例法:通过一些简单的案例,帮助学生理解导数的概念;3.组织讨论法:通过讨论和合作,帮助学生更好地掌握导数的概念和几何意义。
1.6 教学过程第一步:导入导数的概念1.在黑板上写出导数的定义;2.带领学生探讨“速度”和“斜率”之间的关系。
第二步:导数的符号及实质1.介绍导数的符号及意义;2.帮助学生理解导数的实质。
第三步:导数的几何意义1.通过实际图形,帮助学生理解导数的几何意义;2.分组讨论,让学生自己发现导数的几何意义。
第四步:导数的应用1.通过实例演示如何应用导数求解单调性和极值问题;2.让学生结合实际应用场景,自己解决相关最值问题。
1.7 教学评价1.通过讨论和合作,学生能够更好地掌握导数的概念和几何意义;2.学生能够熟练地运用导数,求解一元函数的单调性和极值;3.学生能够应用导数求解相关最值问题。
二、教学反思本节课使用了讲授法、案例法和组织讨论法,让学生更好地理解了导数的概念和几何意义。
在实践中,我发现不同的学生适合不同的教学方法。
一些学生更适合案例法,因为这可以让他们通过具体案例更深入地理解导数的概念。
另一些学生更适合组织讨论法,因为他们更喜欢合作学习,并通过讨论和交流来理解概念。
此外,通过案例和实例分析的模式,学生的学习兴趣得到了增强。
在处理实际问题时,学生能够更快地反应和解决问题。
另外,导数的公式计算也是学生较难掌握的部分。
为了更好地帮助学生掌握计算步骤,我在教学过程中设计了许多具体例子,并兼顾训练学生的能力,即教师既要根据学生的实际情况进行启发式讲解,也要有目的地培养学生的计算能力。
导数的几何意义 说课稿 教案 教学设计
导数的几何意义预习目标:导数的几何意义是什么? (预习教材P 78~ P 80,找出疑惑之处)复习1:曲线上向上11111(,),(,)P x y P x x y y +∆+∆的连线称为曲线的割线,斜率yk x∆==∆ 复习2:设函数()y f x =在0x 附近有定义当自变量在0x x =附近改变x ∆时,函数值也相应地改变y ∆= ,如果当x ∆ 时,平均变化率趋近于一个常数l ,则数l 称为函数()f x 在点0x 的瞬时变化率. 记作:当x ∆ 时, →l 上课学案 学习目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数.学习重难点: 导数的几何意义 学习过程: 学习探究探究任务:导数的几何意义问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化趋是什么?新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k =当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x∆→+∆-'==∆新知:函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()limx f x x f x f x x∆→+∆-'=∆典型例题例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况.例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)有效训练练1. 求双曲线1y x =在点1(,2)2处的切线的斜率,并写出切线方程. 练2. 求2y x =在点1x =处的导数. 反思总结函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()limx f x x f x f x x∆→+∆-'=∆其切线方程为。
高中数学_导数的概念及其几何意义教学设计学情分析教材分析课后反思
吹气球的理想化数学模型:
其体积公式为:
气球半径与体积的关系为:
当空气容量V从0L增加到1L时,气球半径增加了:
当空气容量V从1L增加到2L时,气球半径增加了:
当空气容量V从2L增加到3L时,气球半径增加了:
探究3:向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如右图所示,
基本思想:无限分割,以直代曲.
思考:(2)如何求函数 在点 处的瞬时变化率?
一差、二比、三极限
(设计意图:体会瞬时变化率的概念,体会极限的思想)
三、例题讲解,神话概念
将原油精炼为汽油、柴油、塑胶等各种产品,需要对原油进行冷却或者加热,如果在第x h时,原油的温度为 。计算第2 h与第6 h时,原油温度的瞬时变化率,并说明它们的意义。
问题1:假设一辆马车行驶的路程s与时间t满足s=t2,求马车在5~6s,5~5.1s,5~5.001s,
5~5.00001s内的平均速度.根据结果,你有什么发现?
学生通过计算得出结论,时间间隔越小,平均速度越接近于10m/s.
(设计意图:通过计算、观察结论,初步引导学生产生瞬时速度的意识)
问题2:速率的本质是什么?:生活中还有什么变化率的问题?你能举例说明吗?
(设计意图:联系生活实例,帮助学生联系平均变化率的概念)
问题3:回忆吹气球的过程,有什么变化现象?
这些变化的快慢怎样?你能从数学的角度,描述和解析这种变化快慢的现象吗?
(设计意图:播放视频,仿照问题1,探究气球半径的变化规律,体会数学建模的思想)
问题4:根据以上两个例子,你能推出更一般的概念吗?
(设计意图:学生尝试给出概念,建立总结与归纳的能力)
例2:例2:向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如右图所示,那么水瓶的形状是?你能试着画出其余三个选项的图像吗?
导数的几何意义说课精选文档
5
学情分析
1、从知识上看,学生已经理解了导数的概念,但 这是建立在“数”的基础上的,缺乏从“形”上去理 解导数. 2、从学习能力上看,学生具备了一定的探究问题 的能力,但缺乏自主探究的主动性,并且学生对 切线的认识有着一定的思维定势 .
(
二
) 活动 2.表示出割线 PQ 的斜率并讨论分析在? x ? 0 的
自 过程中,割线PQ 的斜率变化规律.
主 探 究
针对学生在这个活动中可能出现的情况作出如下预设:
预设(1) 如果学生通过组内互相讨论分析得出结论,则 让小组选一名代表上讲台给大家展示
,
合 预设(2) 如果学生在小组讨论过程中不能发现规律并
6
教法与学法
教法
学法
情景 教学
问题 驱动
多媒 体辅 助
动手 尝试
观察 发现
合作 学习
7
教学过程
1 创设情境 导入新课
2
自主探究 合作学习 3 学以致用 强化落实
4 归纳小结 深化提高
5 布置作业 课后延伸
8
(
一
) 求导数 f ?( x0 ) 的步骤是什么?
创 第一步:求平均变化 率 f (x0 ? ? x) ? f (x0 ) ;
升 华
(2 )若点P在曲线上,由于 P点不一定是切点, 一般方法也同上
设计意图:在例题的解决过程中,层层递进,一步步 提升学生的思维.最终掌握利用导数的几何意义研究曲 线的切线问题,从而轻松地解决本节重点。
19
课堂小测
1、下列说法正确的是 ( )
A 若f ?(x)不存在,则曲线y ? f (x)在点(x0, f (x0))处有 B 若曲线y ? f (x)在点(x0 , f (x0 ))处有切线 f ?(x)必存 C 若f?(x)不存在,则曲y线? f (x)在点(x0, f (x0))处切
导数的几何意义说课稿
《导数的几何意义》说课稿一、说教材本节内容选自北师大版选修2-2第二章“变化率与导数”的第二节的第二课时的内容“导数的几何意义”。
导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 教材从形和数的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,学生通过观察、思考、发现、归纳、运用形成完整概念,有利于学生对知识的理解和掌握. 通过本节的学习,可以帮助学生进一步理解导数的定义,并更好的体会导数是研究函数的单调性、求解函数的极值和最值,探讨函数值变化快慢等性质最有效的工具.二、说学情选修2-2是理科学生学习的内容,学生学习兴趣不是很浓,独立探索,解决问题的能力差,数学语言的表达及数形结合的能力、对知识灵活运用的能力仍有不足.通过前两节对函数平均变化率和导数定义的学习,学生对有关导数的问题已经有了初步的认识,但是由于导数定义的抽象性,学生理解起来仍具有一定的困难。
三、说教学目标1.了解平均变化率与割线斜率之间的关系,理解曲线的切线的概念;(重点)2.通过函数的图像直观地理解导数的几何意义.(难点)四、学法与教法学法:(1) 自主学习 (2) 合作学习 (3) 探究学习教法:在教学过程中始终以学生为主体开展一切教学活动,注重师生互动,共同探索;教师精心设计问题,引导学生循序渐进,获得知识。
五、说教学过程(一)旧知回顾、新课引入1.平均变化率定义:xy ∆∆=x x f x x f ∆-∆+)()(00; 2.导数的定义:xx f x x f x y x f x ∆-∆+=∆∆='→∆)()(lim )(0000 4.导数的物理意义:物理中,导数的一种意义就是瞬时速度,反映物体某一时刻运动的快慢程度.那么,导数的几何意义是什么呢?设计意图:通过提问,学生复习,实施类比迁移,引入本节课题,并为探寻导数的几何意义作好准备.(二)导数几何意义的探求过程1.切线的定义通过ppt 展示给出切线的定义问题:已知点P,Q,当点Q 趋近于点P 时,割线PQ 的变化趋势是什么?设计意图:通过PPT 课件演示割线的动态变化趋势,为学生观察、思考提供平台,引导学生共同分析,直观获得切线定义.通过逼近方法,将割线趋于确定位置的直线定义为切线, 使学生体会这种定义适用于各种曲线.反映了切线的直观本质.2.导数的几何意义问题1、观察割线PQ 斜率(平均变化率)与切线PT 斜率k 有什么的关系?设计意图:要求学生数与形结合,将切线斜率和导数相联系,观察、思考获得导数的几何意义. 板书课题:导数的几何意义对导数几何意义的细节问题进行分析归纳⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧的曲线的切线”处切线”与“过点区别:“曲线上点有多个甚至无穷个;线只有一个交点,可以曲线的切线不一定与曲是否有切线;位置来判断曲线在某点要根据割线是否有极限注意问题:那些问题。
导数的几何意义教案(后附教学反思
导数的几何意义教案(后附教学反思)一、教学目标1. 让学生理解导数的定义,掌握导数的几何意义。
2. 能够运用导数求解曲线的切线斜率。
3. 培养学生的逻辑思维能力和空间想象能力。
二、教学内容1. 导数的定义2. 导数的几何意义3. 导数与切线斜率的关系4. 求解曲线的切线斜率5. 应用实例三、教学重点与难点1. 重点:导数的定义,导数的几何意义,求解曲线的切线斜率。
2. 难点:导数的几何意义的理解,求解曲线的切线斜率的应用。
四、教学方法1. 采用讲解法、问答法、案例分析法、互动讨论法等。
2. 通过图形演示、实例分析,引导学生直观理解导数的几何意义。
3. 以学生为主体,鼓励学生主动探究、积极参与,培养学生的动手能力和思考能力。
五、教学过程1. 导入:回顾初中阶段学习的函数图像,引导学生思考如何描述曲线的变化率。
2. 讲解导数的定义:引入极限的概念,讲解导数的定义,强调导数表示的是函数在某一点的瞬时变化率。
3. 导数的几何意义:通过图形演示,解释导数表示的是曲线在某一点的切线斜率。
引导学生直观理解导数的几何意义。
4. 导数与切线斜率的关系:讲解导数与切线斜率的关系,引导学生掌握求解曲线的切线斜率的方法。
5. 应用实例:分析实际问题,运用导数求解曲线的切线斜率,巩固所学知识。
6. 课堂练习:布置练习题,让学生巩固导数的几何意义及求解切线斜率的方法。
7. 总结:对本节课的内容进行总结,强调导数的几何意义及求解切线斜率的方法。
8. 布置作业:布置课后作业,巩固所学知识。
教学反思:1. 讲解导数的定义时,要注重极限思想的理解,引导学生明白导数表示的是函数在某一点的瞬时变化率。
2. 通过图形演示,让学生直观地理解导数的几何意义,强化空间想象能力。
3. 结合实际问题,让学生学会运用导数求解曲线的切线斜率,提高学生的应用能力。
4. 课堂练习环节,要注意引导学生主动思考,培养学生的解决问题能力。
5. 教学过程中,关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够扎实掌握所学知识。
《导数的几何意义》说课稿(2篇)
《导数的几何意义》说课稿(2篇)《导数的几何意义》说课稿(篇1)一、说教材:1、教材的地位与作用导数是微积分的核心概念之一,它为研究函数提供了有效的方法、在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵、这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念、通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的'工具,是本章的关键内容。
2、教学的重点、难点、关键教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵1) 从割线到切线的过程中采用的逼近方法;2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等、二、说教学目标:根据新课程标准的要求、学生的认知水平,确定教学目标如下:1、知识与技能:通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
过程与方法:经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。
3、情感态度与价值观:渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值三、说教法与学法对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。
而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:教法:从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,通过几何画板的动画演示,得出曲线的切线的“逼近”法的定义、同样通过几何画板的实验观察得到导数的几何意义和直观感知“逼近”的数学思想、因此,我采用实验观察法、探究性研究教学和信息技术辅助教学法相结合,以突出重点和突破难点;学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了自主、合作、探究的学习方法。
导数的几何意义教学反思
《导数的几何意义》教学反思
1、使用信息技术让学生直观感知无限逼近过程,直观定义切线,能很好的借助图形直观对概念实行辨析,使学生理解切线定义的直观本质;重视对概念的深度剖析,使学生对核心概念切线定义的理解能一步到位;
2、注重让学生意识到数与形的结合,获得导数的几何意义,动态演示增强几何意义的“视觉化”效果. 导数的几何意义的学习,例1的分析和解决、导函数的概念分析特别注重形与数的结合。
3、例题及其拓展问题目的是使学生体会以直代曲的方法在解决问题中的作用,加深学生对导数概念及其几何意义的理解、掌握和应用,培养学生读图、读表水平、同时注意了将导数多方面的意义联系起来,有效突破难点.
直观本质;平均变化率(曲线的割线斜率)与瞬时变化率(一点处的导数,曲线上一点处的切线斜率)的关系,数形结合,直观获得导数几何意义;体会以直代曲思想方法的应用.
5、问题10无法完成,每次备课总是内容太多,有些老师认为问题设置太多,讲得太多,这是很值得认真研究的问题,新课程重视学生自我的感悟与建构,课堂上怎么样让学生有效的“动”起来,我一直在思考,并努力改变自己的教学理念——教学是为了学生的学,而不是教师的教!
6、本次公开课听课老师比较多,刚开始学生不是很进入状态,虽任教的学生在年段属中上水准,学生学习兴趣较高,但数学语言的表达及数形结合的水平、读表的水平仍有不足.课堂教学能给予时间让学生学会用准确地用数学语言表达概念,如切线定义,描述函数在一点附近的变化情况等等,所以随着教师的提问、教学的推动,绝大部分学生越来越深度参与。
“我在想,一个学生的数学功夫要好,是只掌握解题中的“一招一式”就行呢,还是要更多地注重“招式”中的数学思想呢?”。
最新导数的几何意义教案(后附教学反思)
导数的几何意义教案(后附教学反思)导数的几何意义教案(后附教学反思)永嘉中学数学组周瑛 08.4.13【教学目标】知识与技能目标:(1)使学生掌握函数«Skip Record If...»在«Skip Record If...»处的导数«Skip Record If...»的几何意义就是函数«Skip Record If...»的图像在«Skip Record If...»处的切线的斜率。
(数形结合),即:«Skip Record If...»=切线的斜率(2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。
过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。
情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。
培养学生学数学,用数学的意识。
【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。
【课型】探究课【教学重点与难点】重点:导数的几何意义及“数形结合,以直代曲”的思想方法。
难点:发现、理解及应用导数的几何意义【教学过程】(一)课题引入,类比探讨:让学生回忆导数的概念及其本质。
(承上启下,自然过渡)。
师:导数的本质是什么?写出它的表达式。
(一位学生板书),其他学生在“学案”中写:导数«Skip Record If...»的本质是函数«Skip Record If...»在«Skip Record If...»处的瞬时变化率.....,即:«Skip Record If...»(注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意义奠定基础)师:导数的本质仅是从代数(数)的角度来诠释导数,若从图形(形)的角度来探究导数的几何意义(板书课题),应从哪儿入手呢?(教师引导学生:数形结合是重要的思想方法。
导数的几何意义说课稿
《导数的几何意义》说课稿临泉二中姚艳我说课的内容是北师大版高中数学选修2-2中第二章第二节第二课时——导数的几何意义。
下面我将从教材分析,教法分析,教学目标,教学过程等几部分进行说课。
一.教材分析1.教材的地位和作用微积分学是人类思维的伟大成果之一,它开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法。
导数是微积分的核心概念之一,有极其丰富的实际背景和广泛的应用。
导数的几何意义作为导数的概念的下位概念课,是学生掌握了上位概念——平均变化率、瞬时变化率以及导数的定义的基础上进一步从几何意义的角度理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探索的内容。
同时,本节的学习也为下位内容——常见函数导数的计算以及导数在实际中的应用等知识奠定了坚实的基础。
因此,导数的几何意义具有承前启后的重要作用,是本章的关键内容。
2.教材的重点和难点重点:导数的几何意义及其应用.难点:导数几何意义的推导过程。
3.课时安排导数的几何意义安排一课时。
重在探求曲线上某点处切线的斜率和导数的关系,理解导数的几何意义,体会几何意义在研究函数性质应用中的作用。
二.教法分析1.学情分析从知识上看,学生已经通过实例经历了由平均变化率到瞬时变化率刻画现实问题的过程,理解了瞬时变化率就是导数,体会了导数的思想和实际背景,但是这些都是建立在数的基础上的,学生也渴求了解导数的另一种体现形式——形;从学习能力上看,通过一年多的学习实践,学生掌握了一定的探究问题的经验,具有一定的想象能力和研究问题的能力;从学习心理上看,学生对曲线的切线认识有一定的思维定式——“与曲线仅有一个公共点的直线是曲线的切线”。
在本节课中,我们要在概念上上升一个层次,不是从公共点上定义切线,而是由割线的逼近来定义曲线的切线,把曲线的切线上升到新的思维层面上,以此激发学生的好奇心和兴趣点。
2.教学方法(1)现代多媒体技术辅助教学. 通过几何画板的动态演示,让学生充分体会逼近的思想方法,这能使学生更好的理解导数的几何意义,有利于难点的突破。
导数的几何意义评课稿
导数的几何意义评课稿
导数的几何意义评课稿
《导数的几何意义》教学反思
听了应老师的《导数的几何意义》,下面我谈谈自己在这节课中一点想法。
?1.设计贴切
学案的设计符合新课标的要求,设计中体现了教师对教材的理解和处理,?牢牢地抓住了以教材为“生长点”,问题的设置很好地放在了引导学生如何学上,充分体现了授课教师力求做到:启发与发现的结合;动手与动脑的结合;智力与非智力因素的结合。
2.实施大胆
30多分钟时间大胆得让学生自主探究,充分体现了学生的主体地位,使每?位学生都能参与到课堂中来,快者快学,慢者慢学,每位同学都能在这堂中有所收获,同时有利于学生自主能力的培养。
3..适时点拨
在学案实施过程中,教师是巡视,观察,对自学比较薄弱的同学进行个辅?导,而辅导形式采用“点而不破”,另对发现自学过程中多数学生难以解决的一个或几个带共性的问题,能够适时地给学生指出如何寻找解决问题恰当得认识条件和方法。
4.技术娴熟
能熟练地应用几何画板,让学生形象直观地发现割线逼近的方法得到切线,突破当时,对割线变化趋势的研究。
导数的几何意义教学导案后附教学反思
导数的几何意义教案(后附教学反思)作者: 日期:导数的几何意义教案 (后附教学反思)永嘉中学数学组 周瑛 08413 【教学目标】知识与技能目标:(1)使学生掌握函数f (x )在x X o 处的导数f / X 0的几何意义就是函数f (x )的 图像在X X o 处的切线的斜率。
(数形结合),即:(2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方 法。
过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问 题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力 的目的。
情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与 形的结合;同时又是知识在几何学,物理学方面的迁移应用。
培养学生学数学, 用数学的意识。
【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有 效提高教学效率和教学质量。
【课型】探究课【教学重点与难点】重点:导数的几何意义及“数形结合,以直代曲”的思想方法。
难点:发现、理解及应用导数的几何意义【教学过程】(一)课题引入,类比探讨:让学生回忆导数的概念及其本质。
(承上启下,自然过渡)。
师:导数的本质是什么?写出它的表达式。
(一位学生板书),其他学生在 “学案”中写:导数f /(X o )的本质是函数f (x )在X X o 处的瞬时变化率,即:(注记:教师不能代替学生的思维活动, 学生将大脑中已有的经验、认识转换成 数学符号,有利于学生思维能力的有 效提高,为学生“发现” 感知导数的几何意f / X olim 4—x f(Xo)=切线的斜率x 0 f / X of X o x f(X o ) X义奠定基础)师:导数的本质仅是从代数(数)的角度来诠释导数,若从图形(形)的角 度来探究导数的几何意义(板书课题),应从哪儿入手呢?(教师引导学生:数形结合是重要的思想方法。
要研究“形”自然要结合“数”) 生1:研究导数的代数表达式。
(整理)导数的几何意义说课稿(中职教育).
导数的几何意义说课稿郯城职业中专2010/3/12尊敬的各位评委老师大家上午好:今天我说课的题目是中等职业教育规划教材数学第三册第十六章第一单元第三节《导数的几何意义》。
下面我从七个方面来说一说这节课的构思:一、设计理念数学概念教学的核心价值是“凸现数学本质,强化问题教学,营造思维过程,实现育人价值”,思维教学过程的主要过程是问题教学过程,事实上数学概念教学就是思维教学,即为问题教学.本节课的设计通过多媒体的动态演示,给予学生观察、思考的时间,并引导学生共同分析、直观获得切线定义;动态演示增强导数几何意义的“视觉化”效果,注重数与形的结合,从而理解导数的几何意义;利用动画演示感受以直代曲的几何直观. 采用“问题串”的形式实现教学过程,引导学生“观察-思考-发现-思维—运用”的方法组织教学.二、教材、学情分析本节课是本章的第一单元的第三节,作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率、瞬时变化率的基础上,进一步从几何图形上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——为后面学习常见函数导数的计算,导数在研究函数中的应用打下基础.因此,导数的几何意义有承前启后的作用,是本节的重要概念.从知识上看,学生通过学习平均变化率,特别是函数的瞬时变化率及导数的概念,对导数概念有一定的理解和认识,导数是对变化率的一种“度量”,也在思考导数的另一种体现形式——形,学生对曲线的切线有一定的认识,特别是初中学习圆与直线关系时,对切线有一定的了解与认识.从学习能力上看,通过一年多的学习实践,学生掌握了一定的探究问题的经验,具有一定的想象能力和研究问题的能力.从学习心理上看,学生已经掌握了圆的切线,只是它的含义是公共点个数方面了解的,在思维方面,形成了定势:直线与圆相切,直线与圆只有一个公共点.本节课切线的含义,不是从公共点上定义切线,而是由“割线”的“逼近”来定义曲线的切线,把曲线的切线上升到新的思维层面上.通过概念的建立,概念的辨析,问题的探究来激动学生的好奇和兴趣.本节课内容蕴含着导数的数、形两种体现形式,“逼近”的思想、“以直代曲”思想、“数形结合”思想和用已知探究未知的思考方法.在教学过程中应重视并体现这些数学思想方法.根据本节课内容特点,教学过程中可充分借用信息技术这一辅助手段,利用FLASH 的动态作图这一优势平台为学生的问题探究,概念形成,思维过程提供支持.三、教学目标1、知识目标:(1)理解导数的几何意义,初步体会“以直代曲”的辩证思想;(2)掌握求曲线上一点出的切线的斜率地方法。
导数的几何意义-高中数学说课稿
导数的几何意义说课稿尊敬的各位专家,各位同仁,下午好!首先我对各位从百忙之中抽出时间来二十三中指导高三复习备课工作表示欢迎,也表示感谢。
下面我把导数的几何意义这节课的教学设计,给大家做一个交流和分享,不当之处,希望大家批评指正。
一、说教材导数是微积分的核心概念之一,它为研究函数性质提供了有效的工具。
导数的几何意义是从导数的概念学习到导数的应用研究过渡中非常重要的一环。
近年来高考对导数加大了考察的力度,不仅体现在解题工具上,更着力于思维能力的考察。
高考中选填题对导数的考察,不仅要求我们对导数的概念和几何意义有准确,深刻的理解,而且要求我们能够从宏观方向和微观细节上把握函数图像的变化特征。
二、说学情我们学校特别是本班(文科班)学生数学基础较为薄弱,对函数与导数中抽象的概念理解非常吃力。
学生存在对切线概念的片面理解,对导数几何特征认识不到位,处理动态图像问题能力不足等等问题。
以上问题导致很多学生对付导数问题只会简单模仿,无法实时变通,准确迁移。
另外这些问题高度抽象,因此很多学生无法在脑海中形成具体可感知的意象,无形之中也加大了学生学习这一章节的困难。
另外,我们还注意到大多数学生对数学充满恐惧,很多学生不敢在数学课上表达自己的疑惑和见解,这在一定程度上也导致了我们的数学课堂效率的降低。
三、说教法本堂课从概念辨析入手,试图帮助学生多角度,多层次理解导数的几何意义的内涵,引导学生从整体和局部细节思考函数图像的特征。
接着通过5道高考题和调考题启发学生在具体问题中感悟导数的方法。
同时还通过类比思维,鼓励学生大胆对问题进行改编和探索,促使其了解函数问题本质。
同时,为了突破本节课的难点,我们多次借助GGB作图软件,让学生看见图像变化的过程,进而帮助学生树立数形结合解决数学问题的意识。
最后通过总结归纳,引导学生内化所学的知识和方法,提升应用方法解决问题的主动性。
针对学生对数学学习缺少自信的实际情况,我积极倡导和鼓励学生参与到课堂实践中,展示对数学问题的思考,引导构建和谐的师生关系和生生关系,努力创设人人参与,互帮互助,积极大胆的数学课堂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的几何意义说课稿及教学反思
上传: 董永芳更新时间:2012-5-4 17:38:16
课题:导数的几何意义
教材:北师大版选修2-2
各位老师,大家好!
今天我说课的题目是《导数的几何意义》,下面我将从四个个方面来阐述我对这节课的教学认识,分别是,教学背景分析、教法学法分析、和教学过程与设计.
首先,我对本节课的教学背景进行一些分析:在这里我分四小点进行说明.
一教学背景分析
1、教材的地位与作用
导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义。
通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具。
本节课所蕴含的数形结合,逼近的数学思想方法也是非常重要的。
所以本节内容无论在知识上还是方法上都有着积极的意义,在整章内容中起着承前启后的作用.
1.学情分析:在学习变化率时,学生知道了对于一次函数来说它的导数就是它的斜率,
学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。
而且刚刚学过
了圆锥曲线,学生对曲线的切线的概念也有了一些认识。
这为学习新知识奠定了很
好的基础。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3、教学目标:
(1)知识与技能:
通过实验探究理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
(2)过程与方法:
经历导数的几何意义的形成过程,培养学生分析、抽象、概括等思维能力,体会导数的思想及内涵,完善对切线的认识和理解,了解科学的数学思维方法。
(3)情感态度与价值观:
渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4、教学的重点、难点
教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
二、教法与学法分析
教法:从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,借助于几何画板的动态演示,得出导数的几何意义,让学生直观感知“逼近、数形结合”的思想方法,有助于学生对导数概念的理解.因此,我采用探究性研究教学和信息技术辅助教学法相结合,以突出重点和突破难点;
学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了自主、合作、探究的学习方法。
下面我就对具体的教学过程和设计加以说明,整个教学过程由五个环节构成,
三、教学程序
1.创设情境
学生活动——问题系列
圆的切线的概念是什么呢?
如果直线与曲线只有一个公共点,那直线与曲线相切吗?
对于一般的曲线,它的切线定义是怎样的呢?
【设计意图】:这个问题在学习直线与圆锥曲线的位置关系时,学生就已经发现了,现在把它提出来,激起学生的学习兴趣进入后面的新课。
学生活动——复习回顾
平均变化率瞬时变化率导数的定义
【设计意图】:从理论和知识基础两方面为本节课作铺垫。
2.探索求知
学生活动——试验探究
问一;你能借助图像说明平均变化率表示什么吗?
通过学生动手实践得到平均变化率表示割线pq的斜率。
【设计意图】:先让学生探究平均变化率的几何意义,为导数的几何意义做好准备
问二;在的过程中,你能描述一下割线pq的变化情况吗?
【设计意图】:这里引导学生分别从“形”和“数”的角度描述的过程情况。
从形的角度看,的过程中,q点向p点无限趋近,割线pq趋近于确定的位置,这里引导学生思考及猜想这个确定位置的直线与曲线有什么关系,进而得到曲线的切线定义。
前面我们从形的角度观察得到,割线pq 切线pt,而从数的角度我们可以得到割线pq的斜率切线pt的斜率。
因此,=切线pt的斜率。