《数学研究》第六章_微分中值定理及其应用

合集下载

数学分析第六章微分中值定理及其应用课件1

数学分析第六章微分中值定理及其应用课件1
即 f '() 0
例如, f ( x) x2 2x 3 ( x 3)(x 1).
在[1,3]上连续, 在(1,3)上可导, 且 f (1) f (3) 0,
f ( x) 2( x 1), 取 1, (1 (1,3)) f () 0.
几何解释:
y
C
在曲线弧AB上至少有一
点C , 在该点处的切线是
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 (1)如果函数 f(x)在 闭区间[a, b]上连续(,2在) 开区间(a, b) 内可导,那末在 (a, b)内至少有一点(a b),使等式
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
使 f ( x) 0.
又例如,
y
1 0,
x, x
x 0
(0,1] ;
y x, x [0,1].
例1 证明方程 x5 5x 1 0 有且仅有一个小于
1 的正实根.
证 设 f ( x) x5 5x 1, 则 f ( x)在[0,1]连续,
且 f (0) 1, f (1) 3.
由介值定理
所得曲线a, b两端点的函数值相等.
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F ( x) 满足罗尔定理的条件,
则在(a, b)内至少存在一点, 使得 F () 0.
即 f () f (b) f (a) 0 ba
或 f (b) f (a) f ()(b a).
拉格朗日中值公式

微分中值定理及其应用

微分中值定理及其应用

微分中值定理及其应用微分中值定理是微积分中的一个重要定理,也是微分学中的基本定理之一。

该定理通常用于研究函数在某一点的变化情况,可以推导出许多与函数极值、单调性、零点和曲率等相关的性质。

微分中值定理的数学表述如下:若函数f(x)在[a, b]区间内满足以下条件:1、f(x)在[a, b]区间内可导;2、f(a)和f(b)存在;则在[a, b]内必有一个点c满足:f'(c) = [f(b) - f(a)] / (b - a)其中,f'(c)表示在点c处的导数。

这个定理的意义可以用图示表示为以下:此外,微分中值定理也可以用于求函数的 Taylor 展开式和曲率等问题。

下面我们来看一些微分中值定理的应用实例。

例1:证明一次函数f(x) = kx + b的图像线性。

我们知道,要证明一条直线呈现线性图像,需要证明其斜率k是恒定不变的。

因此,我们可以利用微分中值定理进行证明。

由于f(x)是一个一次函数,因此它在[a, b]区间内可导。

我们设该区间的两个端点为a和b,于是由微分中值定理可知,在[a, b]区间内必有一个点c满足:f'(c) = [f(b) - f(a)] / (b - a)根据f(x) = kx + b的定义,我们可以计算出其导数:f'(x) = k因此,有:即k是[b, a]区间上两个点间f(x)的变化率的平均值。

也就是说,k是线性函数在任何两个点间斜率的平均值,从而证明了一次函数的图像呈现线性。

例2:证明一段周期函数的平均值等于零。

假设f(x)是一个具有周期T的函数,即f(x+T) = f(x),我们需要证明其平均值为0,即:(1/T) * ∫f(x)dx = 0 (其中,积分区间为一个周期)我们首先对函数进行平移(或反演)操作,得到:由于g(x)的平均值为0,那么根据微分中值定理,我们可以得到:∃c∈[x, x+T],使得g'(c) = g(x+T) - g(x) / T = 0即:由此可得:因此,f(x)的周期平均值为f(c),而由于函数具有周期性,因此f(c)等于函数的平均值,即证明了我们的论点。

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用在这一章里,讨论了怎样由导数f ′的已知性质来推断函数所应具有的性质.微分中值定理正是进行这一讨论的有效工具.f 一、拉格朗日中值定理1.罗尔定理定理 设函数在区间满足:f ],[b a i)在区间上连续,f ],[b a ii)在区间上可导,f ),(b a iii),)()(b f a f =则在内至少存在一点),(b a ξ,使得0)(=′ξf .几何意义:在每一点都可导的一段连续曲线上,如果曲线的两端高度相同,则至少存在一条水平切线.例1 设f 为上的可导函数,证明:若方程R 0)(=′x f 没有实根,则方程至多只有一个实根.0)(=x f 2.拉格朗日定理:设函数在区间满足:f ],[b a i)在区间上连续f ],[b a ii)在区间上可导f ),(b a 则在内至少存在一点),(b a ξ,使得ab a f b f f −−=′)()()(ξ (拉格朗日公式) 注:几何意义:在满足条件的曲线上至少存在一点,曲线在该点处的切线平行于曲线端点的连线.拉格朗日公式的几种等价表示:))(()()(a b f a f b f −′=−ξ)))((()()(a b a b a f a f b f −−+′=−θ , 10<<θh h a f a f h a f )()()(θ+′=−+ , 10<<θ推论 (1)若函数在区间f I 上可导,且0≡′)(x f ,则为区间f I 上的常值函数.(2)若函数和f g 均在区间I 上可导,且)()(x g x f ′≡′,则在区间I 上和f g 只相差一个常数,即c x g x f +=)()((3)导数的极限定理:设函数在点的某邻域连续,在内可导,且存在,则在可导,且 f 0x )(0x U )(0x U o )(lim 0x f x x ′→f 0x )(0x f ′= )(lim x f x x ′→0注:这个定理给出的是充分条件,即当)(lim x f x x ′→0不存在的时候,也可能存在.例如 )(0x f ′⎪⎩⎪⎨⎧=≠=00012x x x x y ,,sin .但是也要注意的是如果的左右极限都存在当不相等,则一定不存在.这一点也说明了若在区间)(lim x f x x ′→0)(0x f ′f I 上可导,那么要么连续,要么只可能有第二类间断点.)(x f ′3.拉格朗日定理的一些应用:(证明不等式)例 证明对一切0,1≠−>h h ,下列不等式成立h h hh <+<+)ln(11 (根的存在及个数的估计) 例 设为多项式,)(x p α为0)(=x p 的r 重根,证明α为0)(=′x p 的1−r 重根. (利用导数的极限定理求分段函数的导数)例 求分段函数⎩⎨⎧>+≤+=0),1ln(0,sin )(2x x x x x x f 的导数.(关于函数的单调性的讨论)定理 设函数在区间f I 上可导,则在区间f I 上递增(减)的充要条件是: ))(()(00≤′≥′x f x f例 讨论的单调区间.x x x f −=3)(定理 若函数在上可导,则在上严格递增(减)的充要条件是:f ),(b a f ),(b a i)对一切,有),(b a x ∈))(()(00≤′≥′x f x fii)在内的任何子区间上),(b a 0≠′)(x f .推论 若函数在上可导,且f ),(b a 0>′)(x f (0<′)(x f ),则在上严格递f ),(b a增(减).注:若函数在上(严格)递增(减)且在点a 右连续,则在上(严格)递增(减),对右端点的讨论类似.(利用单调性证明不等式) f ),(b a f ),[b a 例 证明,0,1≠+>x x e x )2,0(,sin 2ππ∈<<x x x x 二 、柯西中值定理和不定式的极限1.定理(柯西中值)设函数和f g 满足:1)在区间上连续,],[b a 2)在区间上都可导,),(b a 3)与不同时为0,)(x f ′)(x g ′4),)()(b g a g ≠则至少存在一点),(b a ∈ξ,使得:)()()()()()(b g a g a f b f g f −−=′′ξξ 几何意义:与拉格朗日的类似.例 设函数在()上连续,在内可导,则至少存在一点f ],[b a 0>a ),(b a ),(b a ∈ξ,使得ab f a f b f ln )()()(ξξ′=− 2.不定式的极限0型的不定式 定理 若函数和f g 满足:1) . =→)(lim x f x x 000=→)(lim x g x x 2)在点的某空心邻域内二者都可导,且0x )(0x U o 0)(≠′x g .3) A x g x f x x =′′→)()(lim 0(A 可为实数,也可为无穷大). 则)()(lim0x g x f x x →=A x g x f x x =′′→)()(lim 0 例 求xx x 21tan cos lim +→π )1ln()21(lim 2210x x e x x ++−→ x x e x −+→1lim 0∞∞型的不定式 定理 若函数和f g 满足:1) . =→)(lim x f x x 0∞=→)(lim x g x x 02)在点的某空心邻域内二者都可导,且0x )(0x U o 0≠′)(x g .3) A x g x f x x =′′→)()(lim 0(A 可为实数,也可为无穷大). 则 )()(lim x g x f x x 0→=A x g x f x x =′′→)()(lim 0 例 x x x ln lim+∞→ (αx x x ln lim +∞→,只要0>α) 3lim x e xx +∞→注:在)()(lim x g x f x x ′′→0不存在的时候,并不能说明)()(lim x g x f x x 0→不存在. 比如以下几个不能使用罗比达法则的例子:x x x x sin lim +∞→ xx x x x sin sin lim −+∞→ 其他类型的不定式极限:型 ∞⋅0x x x ln lim +→0型 ∞121x x x )(cos lim → 型 00x k x x ln )(sin lim +→+10型 0∞x x x x ln )(lim 121+++∞→型 ∞−∞)ln 111(lim 1xx x −−→ 对于数列的极限也可以用罗比达法则来求.例 n n n n )(lim 2111+++∞→ → x x xx )(lim 2111+++∞→ 三、泰勒公式多项式是各种函数中最简单的一种,本节是考虑如何用多项式去逼近函数,因此是近似计算的重要内容.1.带有皮亚诺型余项的泰勒公式考察下列多项式n n n x x a x x a x x a a x p )()()()(0202010−++−+−+=L则不难发现,)(00x p a n =!)(101x p a n ′=, !2)("01x p a n = ,… , !)()(n x p a n n n 0= 那么对于一般函数,设它在点具有直到阶的导数,由这些导数可以构造一个多项式f 0x n n n n x x n x f x x x f x x x f x f x T )(!)()(!)()(!)()()()(0020000021−++−′′+−′+=L 称其为在的泰勒多项式,系数为泰勒系数.不难发现f 0x )()()()(00x T x f k n k = ),,,(n k L 10=定理 函数在点存在直到阶的导数,则有,即f 0x n ))(()()(n n x x o x T x f 0−+=n n x x n x f x x x f x x x f x f x f )(!)()(!)()(!)()()()(0020000021−++−′′+−′+=L ……… 带有皮亚诺型余项的泰勒公式))((n x x o 0−+当时,称00=x )(!)(!)(!)()()()(n n n x o x n f x f x f f x f +++′′+′+=0201002L 为带有皮 亚诺型余项的麦克劳林公式.以下是几个常用函数的麦克劳林公式:)(!!n n x x o x n x x e +++++=12112L )()!()(!!sin !222531215131++++−+++−=m m m x o x m x x x x L)()!()(!!cos 122422141211++−+++−=m m mx o x m x x x L )()()ln(n n n x o x n x x x x +−+++−=+−132131211L )(n n x o x x x x+++++=−L 2111 利用上述麦克劳林公式,可间接求得一些函数的麦克劳林公式或泰勒公式以及求某种类型的函数极限.例 写出22x e x f −=)(的麦克劳林公式,并求,.)()(098f )()(099f 例 求在处的泰勒公式.x ln 2=x 例 求4202x e x x x −→−cos lim . 2.带有拉格朗日型余项的泰勒公式 定理 若函数f 在上存在直至阶的连续导函数,在内存在阶的导数,则对任给的,至少存在一点],[b a n ),(b a 1+n ],[,b a x x ∈0),(b a ∈ξ,使得n n x x n x f x x x f x x x f x f x f )(!)()(!)()(!)()()()(0020000021−++−′′+−′+=L 1011++−++n n x x n f )()!()()(ξ ………………带有拉格朗日型余项的泰勒公式 当时,称00=x n n x n f x f x f f x f !)(!)(!)()()()(0201002++′′+′+=L 111++++n n x n x f )!()()(θ 为带有拉格朗日型余项的泰勒公式.1211211+++++++=n xn xx n e x n x x e )!(!!θL 3212533211215131++++−++−+++−=m m m m x m x x m x x x x )!(cos )()!()(!!sin !θL 2212422212141211+++−+−+++−=m m m mx m x x m x x x )!(cos )()!()(!!cos θL 11132111131211++−++−+−+++−=+n n n n n x x n x n x x x x ))(()()()ln(θL12211111++−+++++=−n n n x x x x x x )(θL 3.在近似计算中的应用例 计算e 的值,使其误差不超过,并且证明e 为无理数.610−例 用泰勒多项式逼近正弦函数,要求误差不超过,试以一次和二次的多项式逼近,分别讨论x sin 310−x 的范围. 四、函数的极值与最大(小)值1.极值的判别函数的极值是函数局部的又一性质.定理(极值的第一充分条件) 设在点连续,在某内可导. f 0x )(0x U o i) 若当),(00x x x δ−∈时0≤′)(x f ,当),(δ+∈00x x x 时0≥′)(x f ,则在点取得极小值.f 0x ii) 若当),(00x x x δ−∈时0≥′)(x f ,当),(δ+∈00x x x 时0≤′)(x f ,则在点取得极大值.f 0x 例 求3252x x x f )()(−=的极值点与极值定理(极值的第二充分条件) 设在某内一阶可导,在处二阶可导,且,,f );(δ0x U o 0x x =00=′)(x f 00≠′′)(x f i)若,则在点取得极大值.00<′′)(x f f 0x ii)若,则在点取得极小值.00>′′)(x f f 0x 例 求xx x f 4322+=)( 的极值与极值点 定理(极值的第三充分条件) 设在某内存在直到阶导函数,在处阶可导,且 f );(δ0x U o 1−n 0x n 00=)()(x f k ),,,121−=n k L ,,则 00≠)()(x f n i)当为偶数时,在点取得极值,且当时取极大值,时取极小值.n f 0x 00>)()(x f n 00<)()(x f n ii) 当为奇数时,在点不取得极值.n f 0x例 试求函数的极值.(可以利用第一充分和第三充分条件))()(4−=x x x f 12.最大值与最小值若函数在上连续,则在上连续上一定有最大,最小值.我们只要比较在所有稳定点,不可导点和区间端点上的函数值,就能从中找到在上的最大,最小值.f ],[b a f ],[b a f f ],[b a 例 求函数x x x x f 129223+−=)(在],[2541−上的最大与最小值. 例 设f 在区间I 上连续,并且在I 上仅有唯一的极值点,证明:若是的极大(小)值点,则必是在0x 0x f 0x f I 上的最大(小)值. 五、函数的凸性与拐点根据函数图像的特点研究函数的凸凹性.1.定义 设f 为定义在区间I 上的函数,若对I 上的任意两点和任意实数21x x ,),(10∈λ总有)()()())((212111x f x f x x f λλλλ−+≤−+则称为f I 上的凸函数.反之,如果总有)()()())((212111x f x f x x f λλλλ−+≥−+则称为f I 上的凹函数.通过图形来解释.引理 为f I 上的凸函数的充要条件是:对于I 上的任意三点,总有 321x x x <<≤−−1212x x x f x f )()(2323x x x f x f −−)()( 还可以证明≤−−1212x x x f x f )()(≤−−1313x x x f x f )()(2323x x x f x f −−)()( 定理 设f 为区间I 上的可导函数,则下述结论等价:1) 为区间f I 上的凸函数2)f 为′I 上的增函数3)对I 上的任意两点,有21x x , ))(()()(12112x x x f x f x f −′+≥(结论3的几何意义是:可导的凸函数其切线总在曲线的下方.)定理 设f 为区间I 上的二阶可导函数,则在I 上为凸函数的充要条件是:.f 0>′′)(x f 例 讨论函数的凸凹区间.x x f arctan )(=例 证明若函数为定义在内的可导的凸(凹)函数,则为的极小(大)值点的充要条件是为的稳定点,即f ),(b a 0x ),(b a ∈f 0x f 00=′)(x f .(说明:尽管可导的极值点未必是稳定点.但为可导的凸(凹)函数时,则极值点必为稳定点) f 例(Jesson 不等式) 若为上的凸函数,则对任意f ],[b a ],[b a x i ∈,0>i λ,),,,,(n i L 21=11=∑=ni i λ,有)()(i ni i n i i i x f x f ∑∑==≤11λλ例 设为区间f I 内的凸(凹)函数,证明在f I 内任一点都都存在左右导数.0x 2.拐点设曲线在点处有穿过曲线的切线,且在切点近旁,曲线在切线的两侧分别是严格凸和严格凹的,这时称点为曲线的拐点.)(x f y =))(,(00x f x ))(,(00x f x )(x f y =定理 若f 在点二阶可导,则为曲线0x ))(,(00x f x )(x f y =的拐点的必要条件是 00=′′)(x f .定理 设f 在点可导,在某邻域内二阶可导.若在和上的符号相反,则为曲线0x );(δ0x U o )(0x U o +)(0x U o −f ′′))(,(00x f x )(x f y =的拐点.。

数学分析》第六章微分中值定理及其应用(3)

数学分析》第六章微分中值定理及其应用(3)

f(x)1 4 0
-0.05 -0.075
(2k1)
2

x
1 2k
时,
f(x)10
0.05
0.1
注意 k可以任意大,故在 x0 0点的任何邻 域内,f (x) 都不单调递增.
编辑ppt
13
练习题
一、填空题: 1、函数y 2x3 6x2 18x 7单调区间为________ _____________. 2、函数y 2x 在区间[-1,1]上单调________, 1 x2 在_________上单调减. 3、函数y x2 lnx2的单调区间为____________, 单减区间为_____________.
2
2
f ( x ) 0 , f ( x ) 单 增 ; 方 法 ( 2 ) f ( x ) 0 ,
利用泰勒公式]
编辑ppt
15
练习题答案
一 、 1 、 ( , 1 ], [ 3 , ) 单 调 增 加 ,[ 1 ,3 ] 单 调 减 少 ; 2 、 增 加 , ( , 1 ], [1 , ) 3 、 ( , 1 ] ,[1 , ) ; [ 1 ,0 ), ( 0 ,1 ]; ( , 1 ], ( 0 ,1 ] .
函数单调减少;
在(0, )内 , y 0, 函数单调增.加
注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
编辑ppt
5
单调区间求法
问题:如上例,函数在定义区间上不是单调的, 但在各个部分区间上单调.
定义:若函数在其定义域的某个区间内是单调的, 则该区间称为函数的单调区间.
解 D:(, ) .

微分中值定理及其应用

微分中值定理及其应用

微分中值定理及其应用一、本文概述《微分中值定理及其应用》是一篇深入探讨微分学中值定理及其在实际应用中的作用的学术性文章。

微分中值定理是数学分析领域中的一个核心概念,它建立了函数在特定区间内的变化与其导数之间的紧密联系。

本文旨在通过对微分中值定理的深入剖析,揭示其在理论研究和实际应用中的广泛价值。

文章首先介绍了微分中值定理的基本概念,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。

这些定理不仅在数学分析中占有重要地位,而且在实际应用中发挥着重要作用。

接着,文章通过一系列实例展示了微分中值定理在几何、物理、工程等领域的应用,如曲线形状的判定、物体运动的分析、工程设计的优化等。

本文还关注微分中值定理在经济学、生物学等社会科学领域的应用。

通过引入这些领域的实际案例,文章进一步强调了微分中值定理在解决实际问题中的重要作用。

文章对微分中值定理的应用前景进行了展望,探讨了其在未来科学研究和技术发展中的潜在影响。

《微分中值定理及其应用》是一篇系统介绍微分中值定理及其在各个领域应用的综合性文章。

通过本文的阅读,读者可以全面了解微分中值定理的基本知识和应用技巧,为深入研究和实际应用打下坚实基础。

二、微分中值定理概述微分中值定理是微积分理论中的核心内容之一,它揭示了函数在某区间内与导数之间的紧密联系。

这些定理不仅为函数的研究提供了重要的工具,还在解决实际问题中发挥了重要作用。

微分中值定理主要包括罗尔定理、拉格朗日定理和柯西定理。

罗尔定理是微分中值定理的基础,它指出如果一个函数在某闭区间上连续,在开区间内可导,并且区间两端点的函数值相等,那么在这个开区间内至少存在一点,使得该点的导数值为零。

拉格朗日定理是罗尔定理的推广,它进一步指出,如果存在满足上述条件的点,那么该点的导数值等于函数在区间两端点值的差与区间长度的商。

柯西定理则是拉格朗日定理的推广,它涉及到两个函数在相同区间上的性质。

这些定理在实际应用中具有广泛的价值。

数学《微分中值定理及其应用》讲义

数学《微分中值定理及其应用》讲义

第六章微分中值定理及其应用1. 教学框架与内容教学目标①掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.②了解柯西中值定理,掌握用洛必达法则求不定式极限.③理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式.④掌握函数的极值与最大(小)值的概念.⑤掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式.⑥掌握函数图象的大致描绘.教学内容①罗尔中值定理;拉格朗日中值定理;用导数判别函数的单调性.②柯西中值定理;洛必达法则求各种不定式极限.③带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式及其在近似计算中的应用.④函数的极值的第一、二充分条件; 求闭区间上连续函数的最值及其应用.⑤函数的凸性与拐点的概念,应用函数的凸性证明不等式; 左、右导数的存在与连续的关系.⑥根据函数的性态表以及函数的单调区间、凸区间,大致描绘直角坐标系下显式函数图象.2. 重点和难点①中值定理证明中辅助函数的构造.②洛必达法则定理的证明.③带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式的证明.④函数的极值的第三充分条件.⑤运用詹森不等式证明或构造不等式.⑥参数形式的函数图象.3. 研究性学习选题● 如何运用中值定理对一些习题整理归类,思考中值定理的应用技巧(构造函数).● 利用导数证明不等式总结利用导数证明不等式的方法.● 不定式极限回顾总结求函数极限的方法.● 运用泰勒公式求极限,等价无穷小的代换问题.总结常见函数的泰勒公式,举例说明其在求不定式极限中的应用, 分析等价无穷小的代换问题.● 凸函数性质研究总结凸函数的性质.4. 综合性选题,写小论文★如何构造辅助函数.5. 评价方法◎课后作业,计30分.◎研究性学习布置的五个选题(选最好的两个计分)合计30分.◎小论文计10分.◎小测验计30分§1 中值定理和函数的单调性在这一章,我们主要由导函数f '的性质来推断函数f 本身的性质(主要研究f 的单调性,凸凹性,图像等) 而微分中值定理是我们研究的主要工具(微分中值定理主要包括Rolle 中值定理,Lagrange 中值定理,Cauchy 中值定理及Taylor 公式) 我们首先介绍Rolle 中值定理. 一、中值定理 1.Rolle 中值定理定理 (Rolle ) 设函数f 满足下列条件: 1) f 在闭区间[,]a b 上连续; 2) f 在开区间(,)a b 上可导; 3) ()()f a f b =,则在(,)a b 内至少存在一点ξ,使得()0f ξ'=.Rolle 中值定理的几何意义:在每一点都可导的连续曲线上,如果两端点的高度相同,则该曲线至少存在一条水平切线.注1 Rolle 定理的条件仅充分而不必要且缺一不可. (作图说明)例1 证明: 10x x ++=3只有一个实根且在(1,0)-中. 2.Lagrange 中值定理定理 (Lagrange ) 设函数f 满足下列条件:1) f 在闭区间[,]a b 上连续; 2) f 在开区间(,)a b 上可导, 则在(,)a b 内至少∃一点ξ,使得()()()f b f a f b aξ-'=-.几何意义 在满足定理条件的曲线()y f x =至少存在一点(())P f ξξ,, 使得 曲线在该点处的切线平行于曲线端点的连线.注 2 中值点(,)a b ξ∈对ξ的不同表示有不同形式的Lagrange 公式a) ()()()()f b f a f b a ζ'-=-, (,)a b ξ∈; b) ()()(())()f b f a f a b a b a θ'-+--=, 01θ<<; c) ()()()f a h f a f a h h θ'+-=+, 01θ<<.推论1 若函数f 在区间I 上可导,且()0f x '≡,x I ∈, 则f 在I 上恒为常数.推论 2 设f ,g 在区间I 上均可导, 且()()f x g x ''≡, x I ∈则存在常数c , 使得()()f x g x c =+,x I ∈.推论3 设f 在区间I 上可导,且()f x M '≤,则任何12x x I ∈,,1212()()f x f x M x x -≤-从而导函数有界的函数必一致连续 (Lipschitz 连续).推论4 (导数极限定理) 设f 在0x 点某邻域0()U x +内连续,在00()U x +内可导, 且极限00lim ()(0)x x f x f x +→''=+存在,则f 在0x 右可导,且 000()lim ()(0)x x f x f x f x ++→'''+==对左导数有类似的结论,事实上,我们有下面的定理.定理 设函数f 在0x 的某邻域0()U x 内连续,在0()U x ︒可导,若极限0lim ()x x f x →'存在,则0()f x '存在且00()lim ()x x f x f x →''=.注 3 由导数极限定理与导数具有介值性(Darboux 定理)知, 若函数f 在区间I 上可导,则在区间I 上的每一点,要么是()f x '的连续点,要么是'f 的第二间断点,即导函数不可能有第一类间断点.推论5 若f 在[,]a b 上可导,且f '单调,则f '必连续. (导数极限定理适用于求分段函数的导数) 例2 求分段函数()f x 的导数. [说明定理的作用]sin ,()ln(1),x x x f x x x ≤⎧+=⎨>+⎩20,0,注4 对推论5,当0(0)f x '+不存在时,未必有0()f x '不存在.例3 设sin , () 0,x x f x xx ⎧≠⎪=⎨⎪=⎩210,0,求(00)f '+,(0)f '.3. Cauchy 中值定理定理 (Cauchy ) 设函数f 和g 满足1) 在[,]a b 上连续; 2) 在(,)a b 上可导; 3) ()f x '和()g x '不同时为零; 4) ()()g a g b ≠,则存在(,)a b ξ∈,使得()()()()()()f f b f ag g b g a ξξ'-='- 几何意义证明 (先给一个错误证明)(如何构造函数?)一般的中值定理 设f ,g [,]a b R →连续且(,)a b 内可导,则存在(,)a b ξ∈, 使得[()()]()()[()()]f b f a g f g b g a ξξ''-=-.注5 上式不过是Cauchy 定理形式上的变形,但条件更简单,因而更具一般性. 例 4 考察2()f x x =,3()g x x =,[1,1]x ∈-相应的中值形式.二、中值定理的应用1. 证明中值点的存在--------关键构造函数例5 1) 设f 在闭区间[,]a b (0)a >上连续,(,)a b 内可导, 则存在(,)a b ξ∈, 使得()()ln()()bf b f a f aξξ'-=⋅⋅.2) 对函数()f x x =2确定()()()f x h f x h f x h θ'+-=⋅+中的θ, 1()2θ=.例6 设函数f 在闭区间[,]a b 上连续,(,)a b 上可导, 且()()0f a f b ==,试证明:存在(,)a b ξ∈使()()0f f ξξ' +=. (多种变形)2. 证明恒等式 (原理: 证明其导数为0,再任取一特殊值) 例7 证明: 对任何x R ∈,arctan arccot x x π+=2.例8 设f ,g 可导且()f x ≠0,又()()0()'()f xg x f x g x=',则存在常数c , 使得()()g x c f x =⋅. (若条件改作()()()()0f x g x f x g x ''+=,则结论应为?)例9 设函数f 对任何,x h R ∈,2()()f x h f x Mh +-≤,0M >为常数,则f 为常值函数.3. 证明不等式 (利用中值定理,估计中值或(0,1)θ∈) 例10 证明0h >时,2arctan 1hh h h <<+例11 (Bernoulli 不等式) 对1x >-有 1) (1)1p x px +≥+,若0p ≤或1p ≥; 2) (1)1p x px +≥+,若0p ≤≤1; 等号当且仅当0p =或1p =或0x =成立.4. 证明方程根的存在性 [注意利用连续函数介值性与导数中值定理的区别] 例12 证明: 方程sin cos 0x x x +⋅=在(0,)π内有实根.例13 证明: 方程32432+ax bx cx a b c ++=+在(0,1)内有实根.5. 研究函数的单调定理 设f 在区间I 上可导,则f 在I 上递增(减)⇔()()00f x x '≥≤,x I ∈.定理 设f 在(,)a b 上可导,则f 在(,)a b 内单调严格递增(减)⇔ 1) (,)x a b ∀∈,()()00f x '≥≤2) f 在(,)a b 的任何区间上()0f x '≡推论 6 若f 在区间I 上可导, ()()00f x '><,则f 在I 上严格递增(减)推论 7 若f 在区间I 上可导,则f 在f '的相邻零点之间必严格单调. (说明多项式函数必有有限个单调区间)例14 设()f x x x =-3,求f 的单调区间.例15 证明: 1) 1x x >+e ,()0x ≠;2) ()()22ln 1221x x x x x x -<+<-+. 0x >.例16 利用函数单调性,重证Bernoulli 不等式(利用()f x '')例17 证明: 0x >时,sin x x x >-33!.练习 1) x >12时,2ln(1)arctan 1x x +>-.2) tan (0)sin 2x x x x x π<<<.习 题1. 用中值定理证明sin sin x y x y -≤-,,x y R ∀∈.2. 若f 在[,]a b 上可导,且'()f x m ≥,则()()()f x f a m x a ≥+- [,]x a b ∀∈3. 证明:函数()f x 在1(0,)π上存在ξ,使得'()0f ξ=,其中11sin 0()0x x f x xx π⎧⋅<≤⎪=⎨⎪=⎩4. 求函数2()3f x x x =-的单调区间.5. 证明: 若函数g f ,在区间],[b a 上可导,且)()(),()(a g a f x g x f ='>', 则在],(b a 内有)()(x g x f >.6. 应用函数的单调性证明下列不等式:1) )3,0(,3tan 3π∈->x x x x ;2)2sin xx x π<< (0,)2x π∈.3) 0,)1(2)1ln(222>+-<+<-x x x x x x x . 7. 设f 在[,]a b 上二阶可导,且()()0f a f b ==,且存在点(,)c a b ∈使得()0f c >, 证明: 至少存在一点(,)a b ξ∈使得"()0f ξ<.8. 设f 在[,]a b 上n 阶可导,若f 在[,]a b 上有1n +个零点,求证:()n f 在[,]a b 上 至少有一个零点.9. 试问函数32)(,)(x x g x x f ==在区间]1,1[-上能否应用Cauchy 中值定理得到 相应的结论, 为什么?10. 设函数f 在点a 处具有连续的二阶导数, 证明: )()(2)()(lim2a f ha f h a f h a f h ''=--++→. 11. 设函数f 在点a 的某个领域具有二阶导数, 证明: 对充分小的h ,存在θ,10<<θ,使得2)()()(2)()(2h a f h a f h a f h a f h a f θθ-''++''=--++. 12. 若f 在[,]a b 上可微,则存在(,)a b ξ∈, 使得22'2[()()]()()f b f a b a f ξξ-=-.13. 设f 在[,]a b 上连续, (,)a b 上可导,且()()0f a f b ==,证明:对任何R λ∈, 存在c R ∈,使得 '()()f c f c λ=.14. 设f 在R 上可导,且x R ∀∈,'()1f x ≠, 证明: 方程()f x x =至多有一个根. 15. 设)(x p 为多项式, a 为0)(=x p 的r 重实根. 证明: a 必定是函数)(x p '的1-r 重实根.16. 设0,>b a .证明方程b ax x ++3=0不存在正根. 17. 证明:x x x x sin tan >,)2,0(π∈x .§2 未定型极限未定型(不定式)00 ∞∞(∞⋅∞∞-∞∞000,,0,1,等) 以导数为工具研究上述未定型极限,该方法称为'L Hospital 法则一、0型未定型极限定理 ('L Hospital ) 若函数f 和g 满足1) 0lim ()lim ()0x x x x f x g x →→==; 2) 在0x 的某去心邻域0()U x ︒都可导且()g x '≠0;3) 0()lim()x x f x A g x →'='()A R A ∈=±∞∞,,,则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例1 1) 0sin lim x xx→ 2) 132lim 1x x x x x x →-+--+3323) lim (arctan )x x x π→+∞-2 4) 21cos lim cos tan x xx xπ→++5) 0lim x +→ 6) 012limln(1)xx e x x →-++122()7) 20ln(1sin 4)lim arcsin x x x x →++() 8) 02lim sin x x x e e x x x-→---注1 1) 在定理中,0x x →可改作0x x x x →→±∞→∞+,,等2) 若f g '',或f g '''',满足定理条件,可多次应用L 法则 3) 'L Hospital 条件仅是充分的,而不必要,即()lim()x x f x g x →''不存在0()lim ()x x f x g x →⇒不存在.例2 1) cos lim x x x x →∞+ 2) 0sinlim sin x x x x →⋅21二、∞∞型未定型极限 定理 ('L Hospital ) 若函数f 和g 满足 1) 0lim ()() (lim ())x x x x g x f x →→=+∞-∞未必为无穷;2) 若0x 的某右去心邻域0()U x ︒内f ,g 都可导且()g x '≠0;3) 0()lim()x x f x A g x →'='()A A =±∞∞可看作实数或,, 则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例3 1) ln lim x xx→+∞ 2) lim x x x e →+∞3----------回顾阶的比较3) 0ln(sin )limln(sin )x ax bx → 4) 2tan lim tan 3x xx π→三、其他未定型极限 1. 0⋅∞型 000∞⋅∞==∞ 例4 1) 0lim ln x x x +→ 2) 01limcot ln 1x xx x→+⋅-.2.∞-∞型 110000∞-∞=-= 例5 1) 011lim()sin x x x →- 2) 11lim()-1ln x x x x→-.3. 00型 0ln 00ln 000ee e ⋅⋅∞===例6 1) 0lim xx x +→ 2) 1ln 0lim sin kxx x ++→.4.1∞型ln1ln101ee e ∞∞∞⋅∞⋅===例7 1) 111lim xx x -→ 2) ()21lim cos x x x →.5: 0∞型ln 0ln 0ee e ∞⋅∞⋅∞∞===.例8 1) ln lim ()xx x →+∞1 2) ln 0lim(cot )xx x +→1.练习 P 133 5.例9 设()()0x g x f x xx ≠⎧⎪=⎨⎪=⎩00, 已知(0)(0)0g g '==,(0)g ''=3,试求(0)f '.例10 证明2()x f x x e -=3为R 上的有界函数.习 题1. 求下列未定型极限1) 01lim sin x x e x →- 2) 612sin lim cos3x xx π→-3) 0ln(1)lim1cos x x x x →+-- 4) 0tan lim sin x x xx x→--5) 011lim()1x x x e →-- 6) 111lim xx x -→7) sin 0lim(tan )x x x → 8) 22011lim()sin x x x→- 2. 考虑下列极限应用'L Hospital 法则的可能性.1) lim x →+∞ 2) sin lim sin x x xx x →∞-+3. 计算1) 0ln(1)lim ln(1)x x x x x →-++ 2) 211000lim x x e x -→3) 30tan sin limx x x x →- 4) 201cot lim x x xx →⎛⎫- ⎪⎝⎭ 5) ln lim(ln )xx x x x →+∞ 6) 10(1)lim xx x e x→+-7) 20()lim x x x a x a x →+- 8) 10lim()x xx x e →+9) 1110lim (,,0)xx xnn x a a a a n →⎛⎫++> ⎪⎝⎭4. 教材1337P .5. 证明: 2()ln(1)/f x x x =+在(1,)+∞上有界.§3 Taylor 公式多项式函数是一种简单的函数,因而对任一函数,我们考察是否存在相应的多项式去逼近该函数. 在讨论这个问题之前,我们还是应先讨论一下多项式函数本身的性质.设012()...()n n n P x a a x a x a x a ++++≠2n=0, 易见0(0)n a P =,1(0)n a P '=,……,()(0)!n nn P a n =自然对于一般的函数f , 假设它在0x 处有直到n 阶的导数,由这些导数构成了一个新的多项式,记为:()00000()()()()()()!n n n f x T x f x f x x x x x n '= +- +...+-此时n T 与f 有何类的性质?00()()k k n T x f x =()() k n ≤≤(0)因而我们说()n T x 与f 在某种意义下“很接近” , 称()n T x 为f 在0x 处的Taylor多项式,而()n T x 的系数()0()!k f x k 称为Taylor 系数,记()()()n n R x f x T x =-称为余项. 我们将证明0()n n R x x x =-o(()),这实际就是带Peano 余项的Taylor 展式.一、带Peano 余项的Taylor 公式——误差的定性刻画定理 若函数f 在0x 处存在直至n 阶导数,则有0()()n n f x T x x x =+-o(())即()200000000()()()()()()()()!n n n f x f x f x f x f x x x x x x x x x n '''=+-+-++-+-...o(())2!.上述公式我们就称为f 在0x 处的Taylor 公式, ()()()n n R x f x T x =-称为Taylor 公式的余项,形如0n o x x -(())的余项称为带Peano 余项的Taylor 公式.注 1 00x =时,称()2(0)(0)()(0)(0)!n nn f f f x f f x x x x n '''=+++++...o()2!为带Peano 余项的Maclaurin 公式. 例1 验证下列Maclaurin 公式.1) 1!nxn x x e x o x n =+++++2...()2!2) ()11sin 1 (1)(1)!m m m x x x x o x m --=-+++-+-35223!5!2 3) 1cos 1...(1)(2)!m m m x x x x o x m +=-+++-+2422()2!4! 4) 1ln(1)1...(1)nn n x x x x o x n-+=-+++-+23()23 5)11n n x x x o x x=+++++-21...() 6) (1)(1)1(1)1!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++++2()...()2!1(1)(23)!!1(2)!!n nn n x x x o x n ---=+++++211!!...()24!! 二、带Lagrange 型余项的Taylor 公式——误差的定量刻画定理 若函数f 在[,]a b 上存在直到n 阶的连续导函数,在(,)a b 内存在1n +阶导函数,则对任何0[,]x x a b ∈,至少存在一点(,)a b ξ∈使得()20000000()()()()()()()()!n nf x f x f x f x f x x x x x x x n '''=+-+-++-...2!(1)10()()(1)!n n f x x n ξ+++-+称为Lagrange 型余项,故上式又称为带有Lagrange 型余项的Taylor 公式,而00x =时,()(1)21(0)(0)()()(0)(0)!(1)!n n n n f f f x f x f f x x x x n n θ++'''=++++++...2! (0,1)θ∈ 称为(带Lagrange 型余项的) Maclaurin 公式. 例 2 将例1中的公式改为带Lagrange 型余项的Maclaurin 公式1) 11!1n xxn x x e e x x n n θ+=++++++2...2!()!, 01θ<<,(,)x ∈-∞+∞ 2) 1121cos sin 1...(1)(1)(1)!(21)!m m m m x x x x x xm m θ--+=-+++-+--+3523!5!2 01θ<<,(,)x ∈-∞+∞3) 122cos cos 1...(1)(1)(2)!(22)!mm m m x x x x x x m m θ++=-+++-+-+2422!4! 01θ<<,(,)x ∈-∞+∞4) 111ln(1)1...(1)(1)(1)(1)nn n nn x x x x x n n x θ+-++=-+++-+-++2323 01θ<<,(,)x ∈-∞+∞5) 1111(1)n nn x x x x x x θ++=+++++--21... 01θ<<,(,)x ∈-∞+∞ 6) (1)(1)1(1)1!n n x x x x n ααααααα--⋅⋅⋅-++=++++2()...2!11(1)(1)(1)!n n n x x n ααααθ--+-⋅⋅⋅-+++()01θ<<,(,)x ∈-∞+∞三、函数的Taylor 公式(Maclaurin 公式) 1. 直接展开(例1,例2)例3 将tan y x =展到含5x 的具Peano 余项的Maclaurin 公式2. 间接展开 利用已知的展开式施行代数运算或变量代换,求得新的展开式. 例4 1) 分别求2sin x ,22x e -具Peano 余项的Maclaurin 展式;2) 求2cos x 的具Peano 余项的Maclaurin 展式; 3) 求35x+1在0x =处具Peano 余项的Maclaurin 展式;4) 分别求23x x --21在0x =处具Peano 余项的Maclaurin 展式;在1x =处具Peano 余项的Taylor 展式;5) 求2x x -21+3在1x =处具Peano 余项的Taylor 展式.四.Taylor 公式的应用举例 1. 利用Taylor 公式求极限例5 1) 2240cos lim x x x e x -→-.2) 02lim x x x a a x-→+-2.3) 21lim[ln(1)]x x x x →∞-+.2. 利用Taylor 公式求高阶导数值例6 设22()x f x e -=,求98(0)f ,99(0)f .3. 计算函数的近似值例7 证明: e 为无理数,并求e 精确到610-的近似值.4. 利用展式证明不等式例8 若函数f 在区间[,]a b 上恒有()0f x ''≥,则对(,)a b 内任何两点12,x x 都有1212()()()2f x f x x xf ++≥2例9 设函数f 在[,]a b 上二阶可导,()()0f a f b ''==,证明: 存在一点(,)a b ξ∈使得 2()()()()f f b f a b a ξ''≥--4.例10 当[0,2]x ∈时,() ()f x f x ''≤≤1,1, 证明: |'()| 2.f x ≤5. 中值点的存在性及其性质例11 设f 在[,]a b 上三阶可导,证明: 存在(,)a b ξ∈, 使得3()()()[()()]()()2f b f a b a f a f b b a f ξ'''''=+-+--1112例12 证明:若函数f 在点a 处二阶可导,且()f a ''≠0,则对Lagrange 公式()()()f a h f a f a h h θ'+-=+⋅ 01θ<<中的θ,有0lim h θ→=12.练习 证明:若0x >,则存在11()[,]42x θ∈, 使得=;2. 01lim ()4x x θ→=,1lim ()2x x θ→+∞=.习 题一、给出下列函数带Peano 型余项的Maclaurin 公式.1. ()f x =2. arctan x 到含5x 的项3.()tan f x x =到含5x 的项4. 2()sin f x x =5. ln(2)x +6. ln(1)x e x +到3x 的项 二、利用Taylor 公式求下列函数极限1. 30sin (1)lim x x e x x x x →-+2. 201cot lim x x x x →⎛⎫- ⎪⎝⎭ 3. 21lim[ln(1)]x x x x→∞-+4. 20lim sin x x e x x x →+-5. 74lim x x →+∞三、求下列函数在指定点处的带Lagrange 型余项的Taylor 公式 1. ln(1)x +在1x =处 2.2123x x --在2x =处 3.sin x 在4x π=处四、求下列极限1. 12ln(1)1lim(1)x x x --→- 2. 20ln(1)lim x x xe x x→-+ 3. 201sinlimsin x x x x→⋅ 4. sin lim sin x x x x x →+∞-+ 五、设函数f 在[0,]a 上具有二阶导数,且"()f x M ≤,f 在(0,)a 内取最大值,求证 ''(0)()f f a Ma +≤. 六、设f 在[,]a b 上二阶可导, ''()()0f a f b ==. 证明:'2[,]4sup ()()()()x a b f x f b f a b a ∈≥--.§4 函数的极值与最值一、极值判别1.可微极值的必要条件----Fermat 定理定理 (Fermat ) 若f 在0x 可导,且0x 为f 的极值点,则0()0f x '=. (可导的极值点必为驻点) . 可疑极值点: 驻点,不可导点. 2. 极值点的充分条件定理 (极值的第一充分条件) 设f 在0x 连续,在其去心邻域0(,)U x δ︒内可导 若 1) 当00(,)x x x δ∈-,()f x '≤0,而00(,)x x x δ∈+时,()f x '≥0; 2) 当00(,)x x x δ∈-,()f x '≥0,而00(,)x x x δ∈+时,()f x '≤0; [1),2)说明f '在0x 两侧异号时] 则f 在0x 处取得极值. 若f '在0x 两侧不异号时,则f 在0x 处不能取得极值. 注 在上述定理条件中未假设f 在0x 处可导.⎡⎤⎣⎦分析引入第二充分条件 当f 在0x 不仅可导而且是二阶可导时,我们有 定理 (极值的第二充分条件) 设f 在0x 的某邻域0U x δ(,)内一阶可导,在0x x = 处二阶可导,且00()0,()f x f x '''=≠0, 则 1) 若0()0f x ''<,则f 在0x 处取得极大值; 2) 若0()0f x ''>,则f 在0x 处取得极小值.[()]f x x =2利用去记忆例1 求()(2f x x =-的极值点与极值.例2 求()f x x x=+2432的极值与极值点.第二充分条件中0()0f x '=,0()f x ''≠0,若0()f x ''还等于0怎么办? 则我们可考察更高阶导数,一般地, 我们有定理 (极值的第三充分条件) 设f 在0x 的某邻域内存在直到1n -阶导数,而在0x 处存在n 阶导数(n 阶可导) 且0()0k f x =,1,2,...,1k n =-, ()0()0n f x ≠, 则1) 当n 为奇数时,f 在0x 不能取得极值;2) 当n 为偶数时,f 在0x 处取得极值且当()0()0n f x <时,取得极大值; 而()0()0n f x >时, 取得极小值. 例3 求3()(1)f x x x =-4的极值.注 上述三个定理均为极值的充分条件,而非必要.例4 1) ,,()0,0,x x e f x x -⎧≠⎪=⎨=⎪⎩210在0x =处取得极小值,而()(0)0n f = ()n N ∀∈.2) 2,sin ,(),,x x f x xx ⎧≠⋅⎪=⎨=⎪⎩41000在0x =处取得极小值,考察f 在0x =是否满足第一第二充分条件.二、函数的最值最值与极值的区别与联系,整体与局部,最值点(,)a b ∈,则最值点必为相应的极值点,所以可能的最值点为端点,极值点,进一步设f 在闭区间[,]a b 上连续,且仅有有限个可疑极值点12,(,)n x x x a b ∈,..., 则 {}1[,]max ()max (),(),(),...,()n x a b f x f a f b f x f x ∈=;{}1[,]min ()min (),(),(),...,()n x a b f x f a f b f x f x ∈=.注 1) 由最值性定理,闭区间上的连续函数必有最大最小值.2) 上述结论中可疑点为导数不存在及导数为0的点,而无需判断 它们是否真的是极值点.例5 ()2912f x x x x =-+32在闭区间15[,]42-上的最大值与最小值.函数最值的几种特例 1) 单调函数的最值;2) 如果函数f 在区间[,]a b 上连续,且仅有唯一的极值点. 则若0x 是f 的 极大(小) 值点,则0x 必是()f x 在[,]a b 上的最大(小) 值点. (反证) 3) 如果函数f 在区间[,]a b 上可导,且仅有一个驻点0x ,则结论与2)同. 4) 对某具有实际意义的函数,可常用实际判断确定函数的最大(小)值.例6 设,A B两村距输电线分别为1km,1.5km,CD长为3km,现两村合用一变压器供电,问变压器设在何处使输电线总长AE BE最短.例7 如图所示,剪去正方形四角同样大小的正方形后制成一个无盖盒子,问剪去小方块的边长为何值时使盒子的容积最大?例8 [无盖水箱的例子]习 题1. 求下列函数的极值:1) 212)(x x x f +=; 2) )1ln(21arctan )(2x x x f +-= 2. 求函数543551y x x x =-++在[1,2]-上的最值与极值.3. 求函数242(1)()1x x f x x x +=-+的极值.4. 设421sin ,0,()0,0,x x f x xx ⎧≠⎪=⎨⎪=⎩ 1) 证明:0=x 是极小值点;2) 说明f 的极小值0=x 处是否满足极值的第一充分条件或第二充分条件. 5. 设)(x f 在区间I 上连续,并且在I 上仅有唯一的极限值0x , 证明: 若0x 是f 的 极大(小)值点, 则0x 必是)(x f 在I 上的最大(小)值点.6.有一个无盖的圆柱形容器,当给定体积为V 时,要使容器的表面积为最小, 问底的半径与容器高的比例应该怎样?§5 函数的凸性, 拐点, Jensen 不等式一、凸性定义及判定 1. 凸函数定义(由直观引入,强调曲线弯曲方向与上升方向以2y x =,y =) 定义 设f 为定义在区间I 上的函数,若对I 上的任意两点,x x 12和任意实数(0,1)λ∈,总有22((1))()(1)()f x x f x f x λλλλ+-≤+-11,则称f 为I 上的凸函数. 反之若总有22((1))()(1)()f x x f x f x λλλλ+-≥+-11,则称f 为I 上的凹函数. 如果上两式中的不等式均为严格不等式,则相应的函数称为严格凸函数和严格凹函数. 易见f 为I 上的凸函数⇔f -为I 上的凹函数 几何意义(凸函数) 曲线上任两点的连线(线段) 总在区间的上方. (引出割线斜率) 2. 凸函数性质与判定引理 f 为区间I 上的凸函数⇔对I 上任意三点123x x x <<总有32212132()()()()f x f x f x f x x x x x --≤--注 同理可证 f 为I 上的凸函数⇔对区间I 上任意三点123x x x <<有313221213132()()()()()()f x f x f x f x f x f x x x x x x x ---≤≤---割线的极限 → 切线↓ ↓割线斜率递增 → 切线斜率应该为递增定理 设f 为区间I 上的可导函数,则下列命题等价 1) f 为I 上的凸函数(严格凸函数); 2) f '为I 上的增函数(严格增函数);3) 对I 上的任两点12,x x ,有21121()()()()f x f x f x x x '≥+-,12,x x I ∈,(21121()()()()f x f x f x x x '>+-, 12,x x I ∈, 12x x ≠) .注 由定理可见凸函数的几何意义1) 曲线上任两点的割线在曲线的上方(定义) ; 2) 切线的斜率(割线的斜率) 递增; 3) 曲线在其上任一点处切线的上方.推论 1) 设f 为I 上的二阶可导函数,则f 为凸函数⇔()0f x ''≥(x I ∈) ;2) ()0f x ''≥且在I 的任何子区间上f f ''≡⇔0在I 上严格凸; 3) ()0f x ''>则f 在I 上严格凸.注 f ''的符号确定函数f 的凸凹性,f '的符号确定单调性例1 讨论函数()f x =()arctan g x x =的凸凹性。

(完整word版)微分中值定理及其应用

(完整word版)微分中值定理及其应用

第六章微分中值定理及其应用微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。

中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用.1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题.2.教学重点与难点:重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性.难点是用辅助函数解决有关中值问题,函数的凸性.3.教学内容:§1 拉格朗日定理和函数的单调性本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性.一罗尔定理与拉格朗日定理定理6.1(罗尔(Rolle)中值定理)设f满足(ⅰ)在[]ba,上连续;(ⅱ)在)a内可导;(b,(ⅲ))af=f)((b则),(b a ∈∃ξ使0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可.如: 1º ⎩⎨⎧=<≤=1 010x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足,结论不成立.2º x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立.3º x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立.(ⅱ) 定理6.1中条件仅为充分条件.如:[]1,1)(22-∈⎪⎩⎪⎨⎧-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f .(ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续曲线上,若曲线两端点高度相等,则至少存在一条水平切线.例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根.证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式nnn n n dxx d n x P )1(!21)(2-⋅= 在)1,1(-内有n 个互不相同的零点.将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广泛的Lagrange 中值定理.定理6.2(拉格朗日(Lagrange 中值定理)设f 满足 (ⅰ)在[]b a ,上连续; (ⅱ)在),(b a 内可导 则),(b a ∈∃ξ使ab a f b f f --=')()()(ξ (2)[分析](图见上册教材121页图6-3) 割线AB 的方程为)()()()(a x ab a f b f a f y ---+=问题是证明),(b a ∈∃ξ,使)(ξf '与割线在ξ处导数ξ='x y 相等 即证0])()()()()([='-----ξa x ab a f b f a f x f 证 作辅助函数],[),()()()()()(b a x a x ab a f b f a f x f x F ∈-----=注 (ⅰ)Lagrange 中值定理的几何意义是:在满足定理条件的曲线上至少存在一点使得曲线在该点处的切线平行于曲线两端点连线.(ⅱ)(2)式称为Lagrange(中值)公式,它还有以下几种等价形式(5)10,) ()()((4) 10),))((()()((3) ),)(()()(<<+'=-+<<--+'=-<<-'=-θθθθξξh h a f a f h a f a b a b a f a f b f b a a b f a f b f 另外,无论b a >,还是b a <, Lagrange(中值)公式都成立.此公式将由自变量的变化而引起的因变量的增量与导数联系起来,而且比上一章中有限增量公式前进了一大步,这也是Lagrange 中值定理应用更为广泛的原因之一.(ⅲ) Lagrange 中值定理是Rolle 中值定理的推广. (ⅳ) Lagrange 中值定理的证明方法是用辅助函数法.在教材中首先构造辅助函数],[),()()()()()(b a x a x ab a f b f a f x f x F ∈-----=然后验证)(x F 在[],b a 上满足Rolle 定理的三个条件,从而由Rolle 定理推出)(x F '存在零点而使定理得到证明.推而广之,许多中值命题常常使用这种构造辅助函数的方法.我们用框图示意如下:当然辅助函数构造的方法不是唯一的.针对本定理,教材是从Lagrange 中值定理的几何意义出发构造辅助函数)(x F .我们也可以构造以下两个辅助函数来证明该定理.1º 注意到(2)式成立),(b a ∈∃⇔ξ使得0)()()(=---'ab a f b f f ξ⇔a b a f b f x f ---')()()(在),(b a 内存在零点])()()(['---⇔x ab a f b f x f 在),(b a 内存在零点 根据以上分析我们作辅助函数x ab a f b f x f x G ---=)()()()((注意这种构造辅助函数的方法是常见的).2º 辅助函数)()()()()()()(111)(a f x f a f b f ax a b x f b f a f x b ax H ----==例3 证明对,0,1≠->∀h h 有h h hh<+<+)1ln(1 证 [法一]令),1ln()(x x f +=在],0[h 或]0,[h 上利用Lagrange 中值定理可证之.[法二]令,ln )(x x f =在]1,1[h +或]1,1[h +上利用Lagrange 中值定理可证之.推论1 若f 在区间I 上可导, I x x f ∈≡',0)(,则f 在I 上为常数. 推论2 若f ,g 都在区间I 上可导, 且)()(,x g x f I x '='∈∀,则在I 上,f 与g 仅相差一个常数,即存在常数C ,使对I x ∈∀有C x g x f +=)()(推论 3 (导数极限定理) 设f 在0x 的某邻域)(0x U 内连续,在)(00x U 内可导,且)(lim 0x f x x '→存在,则)(0x f '存在,且)()(lim 0x f x f x x o ''=→注 (ⅰ)由导数极限定理不难得出区间),(b a 上导函数)(x f '不会有第一类间断点.(ⅱ) 导数极限定理可以用来求分段函数在分段点处的导数.例4 证明恒等式2cot arctan ,2arccos arcsin ππ=+=+x arc x x x例5 求⎩⎨⎧>+≤+=0),ln(10,sin )(2x x x x x x f 的导数解 (ⅰ)先求0),(≠'x x f ;(ⅱ)利用推论3(先验证f 在0=x 处连续)求)0(f '. 二 单调函数函数的单调性是函数在区间上变化的整体性态之一.下面我们利用导数给出判定函数单调性的新的有效方法.定理6.3 设f 在区间I 上可导,则f 在区间I 上单调递增(减))0(0)(,≤≥'∈∀⇔x f I x定理 6.4 设f 在区间),(b a 内可导,则f 在区间),(b a 内严格单调递增(减)的充要条件是(ⅰ) )0(0)(),,(≤≥'∈∀x f b a x(ⅱ)在),(b a 的任何子区间上,)(x f ' 不恒等于0推论 设f 在区间I 上可导,若)0(0)(,<>'∈∀x f I x ,f 在区间I 上严格单调递增(减).注 (ⅰ)若 f 在区间),(b a 内(严格)单调递增(减),且在点a 右连续,则f 在区间),[b a 内(严格)单调递增(减).对],(b a 上的函数有类似结论.(ⅱ)讨论可导函数的严格单调性只须求出)(x f ',再判定其符号.为此,需求出使得f '取得正负值区间的分界点.当f '连续时,这些分界点必须满足0)(='x f .例6 求31292)(23-+-=x x x x f 的单调区间. 例7 证明0 ,1≠+>x x e x .证 令,1)(x e x f x --=考察函数)(x f 的严格单调性.§2 柯西中值定理与不定式极限本节介绍更为一般的微分中值定理并由此证明求不定式极限的L 'Hospital 法则.一 柯西中值定理定理6.5 (柯西(Cauchy)中值定理) 设f ,g 满足 (ⅰ)在[]b a ,上都连续; (ⅱ)在),(b a 内都可导; (ⅲ) )(x f '与)(x g '不同时为零; (ⅳ) )()(b g a g ≠ 则),(b a ∈∃ξ,使)()()()()()(a g b g a f b f g f --=''ξξ (1) [分析] 欲证(1),只须证0])()()()()()([='---ξx f x g a g b g a f b f 且0)(≠'ξg . 令),()()()()()()(x f x g a g b g a f b f x F ---=由Rolle 定理证之.注 (ⅰ) Cauchy 中值定理是Lagrange 中值定理的推广(当x x g =)(情形).(ⅱ) Cauchy 中值定理的几何意义(图见上册教材126页图6-5):令],[ )()(b a x x g v x f u ∈⎩⎨⎧== 它表示uov 平面上的一段曲线AB.弦AB 的斜率即为(1)式右边,而(1)式左边ξξξ==''x dvdug f )()(表示与ξ=x 相对应的点))(),((ξξf g 处的切线斜率,因此(1)式表示上述切线与弦AB 平行.(ⅲ)研究下列函数可否作为证明Cauchy 中值定理的辅助函数 1)))]()(()()()()()([)()(a g x g a g b g a f b f a f x f x F ---+-=;2))]()()][()([)]()()][()([)(a g b g a f x f a g x g a f b f x F -----=; 3))]()()[()()]()([)(a g b g x f x g a f b f x F ---=; 4)1)()(1)()(1)()(21)(x f x g b f b g a f a g x F ±= 例1设f 在[]b a ,()0>>a b 上都连续, 在),(b a 内都可导,则),(b a ∈∃ξ,使ab f a f b f ln)()()(ξξ'=- 证 取x x g ln )(=,对f ,g 利用Cauchy 中值定理即证之. 二 不定式极限-两个无穷小量或无穷大量之比的极限 1. 00型不定式极限定理6.6(L 'Hospital 法则Ⅰ)设 (ⅰ)0)()(lim lim 0==→→x g x f x x x x ;(ⅱ) f ,g 在0x 的某空心邻域)(00x U 内可导且0)(≠'x g ; (ⅲ) A x g x f x x =''→)()(lim(或∞∞±,).则 )()(lim 0x g x f x x →存在且) ,或()()(lim 0∞∞±=→A x g x f x x注 (ⅰ)定理 6.6中0x x →可换为∞→±∞→→±x x x x ,,0,此时条件(ⅱ)作相应修改即可.(ⅱ)若)()(x g x f ''当0x x →时仍属0型,且)(),(x g x f ''分别满足定理中)(x f ,)(x g 的条件,则可继续施用L 'Hospital 法则Ⅰ,从而确定)()(limx g x f x x →,即 )()()()()()(lim lim lim 000x g x f x g x f x g x f x x x x x x ''''=''=→→→ 且可以依次类推.(ⅲ)“一花独秀不是春”,L 'Hospital 法则虽是计算极限的强有力工具,但在使用中要注意与以前所学过的求极限方法结合使用才有更好的效果.例2 求)0,0(lim 0>>-→b a x b a xx x 例3 求xe e xxx 1sin11lim-∞→-(提示:先令xt 1=)例 4 求)1ln()21(2210limx x e xx ++-→(利用)1ln(2x +等价于2x )0(→x 原式转化为2210)21(lim x x e x x +-→) 例5 求xx ex -→1lim(提示:先令x t =)2. ∞∞型不定式极限定理6.7(L 'Hospital 法则Ⅱ)设(ⅰ)∞==++→→)()(lim lim 00x g x f x x x x ;(ⅱ) f ,g 在0x 的某空心邻域)(00x U +内可导且0)(≠'x g ; (ⅲ) A x g x f x x =''+→)()(lim0(或∞∞±,).则 )()(lim 0x g x f x x +→存在且) ,或()()(lim 0∞∞±=+→A x g x f x x 注 定理6.7中+→0x x 可换为,,,00±∞→→→-x x x x x ∞→x 等情形,此时条件(ⅱ)作相应修改即可.例6 求)0(ln lim>∂∂∞→x xx 例7 求xxx 3tan tan lim2π→例8 求3lim xe xx --∞→例9 求)0(lim >∂∂∞→n n e n (提示:先证0)0(lim =>∂∂∞→x x ex )注 (ⅰ)当)()(lim 0x g x f x x ''→或)()()()(lim 0x gx f n n x x →不存在时, L 'Hospital 法则不能用.如:1º x x x x x e e e e --∞→+-lim 不能用L 'Hospital 法则(x x xx e e e e --+-=11122→+---xxe e ) 2º x x x x sin lim+∞→不能用L 'Hospital 法则(xxx sin += 1sin 1→+xx) (ⅱ)只有不定式极限且满足L 'Hospital 法则条件才能使用L 'Hospital 法则求极限.3.其他类型不定式极限还有五种类型不定式极限,其形式转化方法为∞∞⋅∞=⋅∞=∞=∞=∞⋅⋅∞∞- );01ln (1 ;011001ln e (通分或提取公因式转化);).0);00ln 0(0ln 000ln 00∞⋅==∞∞⋅=⋅=∞⋅⋅e e例10 求x x x ln lim 0+→例11 求)11ln 1lim(1--→x x x 例12 求x x x )arctan 2(lim π+∞→例13 求x x x )(sin lim 0+→例14 求x x x ln 10)(cot lim +→例15 求数列极限n n n n )111(2lim ++∞→ (注意此题先求极限x x x x)111(2lim +++∞→) 例16 设⎪⎩⎪⎨⎧=≠= 00 0 )()(x x x x g x f ,,3)0(,0)0()0(=''=='g g g 求)0(f '. 注 23)0(212)(2)()()0(lim lim lim 0020=''=''='=='→→→g x g x x g x x g f x x x ,对否? §3 泰勒公式本节包含两个泰勒(Taylor)公式,即分别带有皮亚诺(Peano)型余项的泰勒公式和带有拉格朗日型余项的泰勒公式,统称为泰勒定理.它们分别是上一章的有限增量公式和本章中的Lagrange 中值定理的推广.两个公式所要解决的问题是用多项式函数(各类函数中最简单的函数)去逼近一个函数,而这种逼近思想在近似计算和理论分析中有着重要意义.一 带有皮亚诺型余项的泰勒公式设f 在点0x 存在n 阶导数,称n 次多项式nn n x x n x f x x x f x x x f x f x T )(!)()(!2)()(!1)()()(00)(200000-+⋅⋅⋅+-''+-'+=(1)为f 在点0x 处的泰勒多项式,)(x T n 的各项系数),2,1(!)(0)(n k k x f k ⋅⋅⋅=称为f 的泰勒系数. 定理6.8(Taylor) 设f 在点0x 存在直到n 阶的导数,则))(()(!)())(()()(0000)(0n k n k k nn x x o x x k x f x x o x T x f -+-=-+=∑= (2) 注 (ⅰ) (2)式称为f 在点0x 处的Taylor 公式, )()()(x T x f x R n n -= 称为Taylor 公式的余项,形如))((0n x x o -的余项称为Peano 型余项,于是(2)式也称为带有Peano 型余项的Taylor 公式.(ⅱ) 若f 在点0x 附近满足+=)()(x P x f n ))((0n x x o - (3) 其中)(x P n 为形如n n x x a x x a x x a a )()()(0202010-+⋅⋅⋅+-+-+n 次多项式,这时并不意味着)(x P n 就是f 的Taylor 多项式)(x T n例如⋅⋅⋅==+2,1),()(1n x D x x f n其中)(x D 为Dirichlet 函数.易知f 仅在点00=x 处连续,可导且0)0(='f ,从而对)0(,,1)(k f N k k +∈>∀皆不存在.故f 在点00=x 处的Taylor 多项式)(x T n )1(>n 是不存在的.然而0)()(lim lim 00==→→x xD x x f x n x 即)()(n x o x f =,从而若取)(x P n =000002≡⋅+⋅⋅⋅+⋅+⋅+n x x x ,则(3)式对+∈N n 皆成立.(ⅲ)满足(3)式要求(带有Peano 型误差)的n 次逼近多项式)(x P n 是唯一的,从而若f 满足定理6.8的条件,则满足(3)式要求的逼近多项式)(x P n 只能是f 的Taylor 多项式)(x T n .当00=x 时, Taylor 公式(2)成为 )(!)0()(0)(n k n k k x o x k f x f +=∑= (4) (4)式称为(带有皮亚诺型余项的)马克劳林(Maclaurin)公式.例1 验证下列函数的马克劳林公式(ⅰ) )(!1!2112n n x x o x n x x e ++⋅⋅⋅+++=; (ⅱ) )()!12(1)1(!51!31sin 212153m m m x o x m x x x x +--+⋅⋅⋅+-=--; (ⅲ) )()!2(1)1(!41!211cos 12242++-+⋅⋅⋅++-=m m m x o x m x x x ; (ⅳ) )(1)1(3121)1ln(132n n n x o x nx x x x +-+⋅⋅⋅+-=+-; (ⅴ) )(!)1()1(!2)1(1)1(2n n x o x n n x x x ++-∂⋅⋅⋅-∂∂+⋅⋅⋅+-∂∂+∂+=+∂; (ⅵ) )(1112n n x o x x x x ++⋅⋅⋅+++=-. 上述几个简单函数的马克劳林公式是通过直接求出f 在点0=x 处的各阶导数)0()(k f ,代入公式(4)得到的.这种方法叫做马克劳林(或泰勒)公式的直接求法.利用这些公式,可以间接求得一些函数的马克劳林(或泰勒)公式,还可用来求某些类型的极限.例2 求22)(x e x f -=的马克劳林公式,并求)0()98(f 与)0()99(f .例3 求x ln 在2=x 处的Taylor 公式.例4 求下列极限(ⅰ)30)1(sin lim x x x x e x x +-→; (ⅱ)x x e x x sin )1(lim 0∂+-→ [提示] )(!21122x o x x e x +++=;)(!31sin 43x o x x x +-=. 定理6.8告诉我们, 若f 在点0x 处具有直到n 阶导数,我们可用一个n 次多项式)(x T n 去逼近)(x f 而且这样产生的误差)()(x T x f n -当0x x →时是比n x x )(0→更高阶的无穷小量.但这只是定性的估计,并不能提供误差的定量估计.下面给出的第二个Taylor 公式余项有确定的表达式(尽管出现了不确定的“中值”)从而给误差估计提供了理论依据.二 带有拉格朗日型余项的泰勒公式定理6.9 若f 在],[b a 上有直到n 阶的连续导函数,在),(b a内存在1+n 阶导函数,则对),(],,[,0b a b a x x ∈∃∈∀ξ,使10)1(00)(200000)()!1()( )(!)()(!2)()(!1)()()(++-++-+⋅⋅⋅+-''+-'+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ(5) 注 (ⅰ)(5)式也称为Taylor 公式,其余项为10),(,)()!1()()()()(0010)1(<<-+=-+=-=++θθξξx x x x x n f x T x f x R n n n n 称其为拉格朗日型余项,(5)式也称为带Lagrange 型余项的Taylor 公式.(ⅱ)若0=n ,则(5)式即Lagrange 中值公式))(()()(00x x f x f x f -'=-ξ故定理6.9是Lagrange 中值定理的推广.当00=x 时, Taylor 公式(5)成为10,)!1() (!)0()(1)1(0)(<<++=++=∑θθn n k n k k x n x f x k f x f (6) 称(6)式为带Lagrange 型余项的马克劳林公式.例5 把例1中六个马克劳林公式改写为带Lagrange 型余项的形式.Taylor 公式是一元微分学的顶峰,它可以解决很多数学问题.本节最后一部分介绍其在近似计算上的应用,后面几节将会介绍在其它方面上的应用.三 在近似计算上的应用例6 (1)计算e 的值,使其误差不超过610-(2)证明e 是无理数[提示] (1)由例5(1)的结果有 )10()!1(!1!2111<<+++⋅⋅⋅+++=θθn e n e (7) (2)由(7)式得1)143!!(!+=++⋅⋅⋅+⋅⋅⋅⋅++-n e n n n n e n θ,用反证法证之. 例7 用Taylor 多项式逼近正弦函数x sin ,要求误差不超过310-.试以1=m 和2=m 两种情形分别讨论x 的取值范围.§4 函数的极值与最大(小)值函数在一区间上的极值是函数局部性态的重要特征.利用极值确定函数的整体性态-最大值和最小值在实际问题中有着广泛的应用.一 极值判别费马定理(定理5.3)已经告诉我们极值的必要条件-函数在点0x 可导且0x 为f 的极值点则必有0)(0='x f .下面给出极值的三个充分条件.定理 6.10(极值的第一充分条件) 设f 在0x 连续,在0x 某邻域);(00δx U 内可导.(ⅰ)若当),(00x x x δ-∈时0)(≤'x f ,当),(00δ+∈x x x 时0)(≥'x f ,则f 在0x 取得极小值;(ⅱ) 若当),(00x x x δ-∈时0)(≥'x f ,当),(00δ+∈x x x 时0)(≤'x f ,则f 在0x 取得极大值.若f 是二阶可导函数,则有如下判别极值定理.定理6.11(极值的第二充分条件) 设f 在0x 某邻域);(0δx U 内一阶可导,在0x x =处二阶可导,且0)(0='x f ,0)(0≠''x f .(ⅰ)若0)(0<''x f ,则f 在0x 取得极大值;(ⅱ)若0)(0>''x f ,则f 在0x 取得极小值.例1 求32)52()(x x x f -=的极值点与极值.例2 求xx x f 432)(2+=的极值点与极值. 对于应用二阶导数无法判别的问题,可借助更高阶的导数来判别.定理 6.12(极值的第三充分条件) 设f 在0x 某邻域内直到1-n 阶导函数, 在0x 处n 阶可导, 且0)(0)(=x f k ),1,,2,1(-⋅⋅⋅=n k 0)(0)(≠x f n ,则(ⅰ)当n 为偶数时, f 在0x 取得极值,且当0)(0)(<x f n 时取得极大值, 当0)(0)(>x f n 时取得极小值;(ⅱ)当n 为奇数时, f 在0x 不取得极值.例3求34)1()(-=x x x f 的极值.注 定理6.12仅是判定极值的充分条件.如函数⎪⎩⎪⎨⎧=≠=-000)(21x x e x f x 显然它在0=x 处取得极小值,但此时)(0)0()(+∈=N n f n .二 最大值与最小值极值是局部性概念,而最值是全局概念.极值是函数在极值点的某邻域内的最大值或最小值.最值是函数在所考察的区间上全部函数值中的最大值或最小值.若最值在区间内部取得则最值必是极值.在第四章中我们知道,闭区间],[b a 上连续函数一定存在最大值与最小值.下面我们给出求闭区间上连续函数且不可导点和驻点个数为有限个的函数的最大值和最小值的方法:(1)求出导函数)(x f ';(2)求)(x f 在),(b a 内的驻点和不可导点;(3)计算)(a f 、)(b f 及函数在所有驻点和不可导点处的函数值;(4)比较上述各值大小从而确定最大值和最小值.例4 求函数x x x x f 1292)(23+-=在闭区间]25,41[-上的最大值与最小值.在实际问题中,求函数的最大值或最小值往往碰到如下两种特殊情形,此时最值的求法可不必按照上述四个步骤.情形 1 函数)(x f 在一个区间上可导且只有一个极值点,则此极值点即为最值点.例5 一艘轮船在航行中的燃料费和它的速度的立方成正比.已知当速度为10(km/h),燃料费为每小时6元,而其他与速度无关的费用为每小时96元.问轮船的速度为多少时,每航行1 km 所消耗的费用最小?情形 2 如果由实际问题的性质可判定可导函数)(x f 确有最大值或最小值,而且一定在定义区间内部取得,这时若)(x f 在定义区间内部只有一个驻点0x ,那么不必讨论)(0x f 是不是极值就可以断定)(0x f 是最大值或最小值.例6 一张1.4米高的图片挂在墙上,它的底边高于观察者的眼睛1.8米,问观察者应站在距墙多远处看图最清楚?(即视角最大)下面我们再看两个“最值应用”的例题.例7 用最值方法证明不等式1 ,1)1(211>≤-+≤-p x x p p p[提示] 令1],1,0[,)1()(>∈-+=p x x x x f p p ,可求出)(x f 在]1,0[上的最大值为1,最小值为121-p ,从而得所证不等式.例8 求数列{}n n 的最大项.[提示] 令),0()(1>=x x x f x可求出)(x f 在点e x =取得最大值,进一步地分析可知数列的最大项应是第三项.§5 函数的凸性与拐点凸函数是有着广泛应用的一类函数.本节将介绍凸函数的基本性质并以凸函数为工具来证明一些不等式.一 函数的凸性定义1 设f 为定义在区间I 上的函数,若对∈∀∈∀λ,,21I x x )1,0(总有 )()1()())1((2121x f x f x x f λλλλ-+≤-+ (1) 则称f 为I 上的凸函数.反之,若总有)()1()())1((2121x f x f x x f λλλλ-+≥-+ (2) 则称f 为I 上的凹函数.若(1),(2)中的不等式改为严格不等式,则相应的函数称为严格凸函数和严格凹函数.不难证明:若f -为I 上的凸函数, 则f 为I 上的凹函数.故今后只需讨论凸函数及其性质.引理1 f 为I 上的凸函数⇔对,),3,2,1(321x x x i I x i <<=∈∀总有 23231212)()()()(x x x f x f x x x f x f --≤-- (3) 引理2 f 为I 上的凸函数⇔对,),3,2,1(321x x x i I x i <<=∈∀总有232313131212)()()()()()(x x x f x f x x x f x f x x x f x f --≤--≤-- (4) (仿引理1可证)对于可导函数,有定理6.13 设f 为区间I 上的可导函数,则下述论断互相等价: (ⅰ) f 为I 上的凸函数;(ⅱ) f '为I 上的增函数;(ⅲ) I x x ∈∀21,,有))(()()(12112x x x f x f x f -'+≥ (5) 注 论断(ⅲ)的几何意义是:曲线)(x f y =总是在它的任一条切线的上方.这是可导凸函数的几何特征.定理 6.14 设f 为区间I 上的二阶可导函数,则f 为I 上的凸(凹)函数的充要条件是I x x f ∈∀≤≥''),0(0)( .证 由定理6.3和定理6.13得. 例1 讨论2)(x e x f -=的凸性. 例 2 若f 为定义在开区间),(b a 内的可导凸(凹)函数,则),(0b a x ∈为f 的极大(小)值的充要条件是0x 为f 的稳定点,即0)(0='x f .下面的例子是定义1的一般情况.例 3 (詹森(Jensen)不等式)若f 为],[b a 上的凸函数,则对1),,,2,1(0],,[1=⋅⋅⋅=>∈∀∑=n i i i i n i b a x λλ,有)()(11i ni i i n i i x f x f ∑∑==≤λλ (6)证 应用数学归纳法并结合凸函数的性质证之.注 以Jensen 不等式为工具可以证明H Ölder 不等式、Minkowski 不等式等经典不等式.例4 证明0,, ,)(3>≤++c b a c b a abc c b a cb a证明 令)0(ln )(>=x x x x f 应用Jensen 不等式证之.例 5 设f 为开区间I 内的凸(凹)函数,则f 在I 内任一点都存在左、右导数.二 拐点定义 2 设曲线)(x f y =在点))(,(00x f x 有穿过曲线的切线,且在切点附近,曲线在切线的两侧分别是严格凸的和严格凹的,则称点))(,(00x f x 为曲线)(x f y =的拐点.注 (ⅰ)拐点是曲线凸凹性的分界点.(ⅱ)拐点是曲线上的点.例6 正弦曲线x y sin =,其拐点为Z k k ∈),0,(π.定理 6.15 若f 在点0x 二阶可导,则))(,(00x f x 为曲线)(x f y =的拐点的必要条件是0)(0=''x f .定理6.16 设f 在点0x 可导, 在)(00x U 内二阶可导,若在)(00x U + 和)(00x U -上f ''的符号相反,则))(,(00x f x 为)(x f y =的拐点.注 拐点的的可疑点为两类:一类是0)(0=''x f 相应的点))(,(00x f x ,另一类是二阶导数不存在的点))(,(00x f x .例7 求2x e y -=的拐点例8.函数3x y =上点(0,0)是其拐点,但)0(f '不存在(在点(0,0)处有垂直切线).由此可见,若点))(,(00x f x 为)(x f y =的拐点, f 在点0x的导数未必存在.§6 函数图像的讨论在中学里,我们主要依赖描点作图法画出一些简单函数的图像.一般来说,这样得到的图像比较粗糙,无法确切反映函数的性态(如单调区间,极值点,凸性区间,拐点等).这一节里,我们将综合应用在本章前几节学过的方法,再综合周期性、奇偶性、渐近线等知识,较完善地作出函数地图像.作出函数图像的一般程序是:1.求函数地定义域;2.考察函数的奇偶性、周期性;3.求函数的某些特殊点,如与两个坐标轴的交点,不连续点,不可导点等;4.确定函数的单调区间,极值点,凸性区间以及拐点;5.考察渐近线;6.综合以上讨论结果画出函数的图像.例 作出函数23)1(2-=x x y 的图像。

数学分析-第六章微分中值定理及其应用5 共27页

数学分析-第六章微分中值定理及其应用5 共27页

拐点
(3, 26) 9
极值点
3

间 断 点

补充点: (1 3 ,0 ),(1 3 ,0 );
A(1,2), 作图
B(1,6), C(2,1). y
6B
C
1
3 2 1 o 1 2
x
2
A
3
f(x)4(xx 21)2
例3
作函(数 x)
1
x2
e2
的图 . 形
2
解 D:(, ), W:0(x) 1 0.4. 2
x x
x
那y么 a xb就是y 曲 f(x)线 的一条.斜
注意: 如果
(1) lim f (x) 不存在; x x
(2 )lif m (x )a存 ,但 在 li[m f(x ) a]不 x ,存
x x
x
可以断 y定 f(x)不存在斜.渐近线
例1 求f(x)2(x2)x (3)的渐. 近线 x1
lx i0m f(x)lx i0[m 4(x x 21)2] , 得铅直渐近 x线 0.
列表确定函数升降区间,凹凸区间及极值点和拐点:
x ( ,3) 3 (3,2)2 (2,0) 0 (0,)
f(x) 0
不存在
f(x) f (x)
0
解 D:(, ),无奇偶性及周期性.
f(x ) ( 3 x 1 )x ( 1 ),f(x ) 2 (3 x 1 ).
令f(x)0, 得驻 x点 1, x1. 3
令 f(x)0,
得特殊x点 1. 3
补充点:
A(1,0),
B(0,1), C (3 , 5). 28
第二步 求 出 方 程 f'(x)0和 f"(x)0在 函 数 定 义 域 内 的 全 部 实 根 , 用 这 些 根 同 函 数 的 间 断 点 或 导 数 不 存 在 的 点 把 函 数 的 定 义 域 划 分 成 几 个 部 分 区 间 .

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用

-3-
例 1. 证明不等式
b−a b b−a < ln < , (0 < a < b) 。 b a a 1 1 分析 把不等式可以改写成 (b − a ) < ln b − ln a < (b − a ) 可见中项是函数 ln x b a
在区间 [ a , b] 两端值之差,而 ( b − a ) 是该区间的长度,于是可对 ln x 在 [ a , b] 上使用拉格朗 日中值定理。 证 明 : 设 f ( x ) = ln x , 则 f '( x ) =
f ( x) = f ( x0 ) +
f ′( x0 ) f ( n ) ( x0 ) f ( n +1) (ξ ) ( x − x0 ) + L + ( x − x0 ) n + ( x − x0 ) n +1 1! n! (n + 1)!
9. 设 f 在点 x0 连续,在某邻域 U( x0 , δ )内可导, (1)若当 x ∈ ( x0 − δ , x0 ) 时, f ′( x0 ) ≤ 0 ;当 x ∈ ( x0 , x0 + δ ) 时, f ′( x0 ) ≥ 0 ,则 f 在 点 x0 取得最小值; (2)若当 x ∈ ( x0 − δ , x0 ) 时, f ′( x0 ) ≥ 0 ;当 x ∈ ( x0 , x0 + δ ) 时, f ′( x0 ) ≤ 0 ,则 f 在 点 x0 取得最大值; (3)若 f ′( x ) 在 ( x0 − δ , x0 ) 和 ( x0 , x0 + δ ) 内不等号,则点 x0 不是极值点。 10. 设 f 在点 x0 的某邻域 U( x0 , δ )内一阶可导,在 x= x0 处二阶可导,且 f ′( x0 ) = 0 ,

《数学分析》第六章微分中值定理及其应用3共18页文档

《数学分析》第六章微分中值定理及其应用3共18页文档
-0.05 -0.025
f(x)1 4 0
-0.05 -0.075
(2k1)
2

x
1 2k
时,
f(x)10
0.05
0.1
注意 k可以任意大,故在 x0 0点的任何邻 域内,f (x) 都不单调递增.
练习题
一、填空题: 1、函数y 2x3 6x2 18x 7单调区间为________ _____________. 2、函数y 2x 在区间[-1,1]上单调________, 1 x2 在_________上单调减. 3、函数y x2 lnx2的单调区间为____________, 单减区间为_____________.
2
2
f ( x ) 0 , f ( x ) 单 增 ; 方 法 ( 2 ) f ( x ) 0 ,
利用泰勒公式]
练习题答案
一 、 1 、 ( , 1 ], [ 3 , ) 单 调 增 加 ,[ 1 ,3 ] 单 调 减 少 ; 2 、 增 加 , ( , 1 ], [1 , ) 3 、 ( , 1 ] ,[1 , ) ; [ 1 ,0 ), ( 0 ,1 ]; ( , 1 ], ( 0 ,1 ] .
那末函 y数 f(x)在[a,b]上单调. 减少
证 x 1,x 2 (a ,b )且 , x1x2,应用拉氏定理,得
f ( x 2 ) f ( x 1 ) f ( ) x 2 x ( 1 )( x 1 x 2 ) x2x10,
若 (a ,b 在 )内 f(x ) , 0 , 则 f()0,
二 、 1 、 在 ( ,0 ), ( 0 , 1 ], [1 , ) 内 单 调 减 少 , 2
在 [ 1 ,1] 上 单 调 增 加 ; 2 2

1-6章数学分析课件第6章微分中值定理及其应用6-5

1-6章数学分析课件第6章微分中值定理及其应用6-5


x2 x3 x
从而有

x3 x2 x3 x1
f ( x1)
x2 x1 x3 x1
f ( x3 ).
( x3 x1 ) f ( x2 ) ( x3 x2 ) f ( x1 ) ( x2 x1 ) f ( x3 ),
前页 后页 返回
即 ( x3 x2 ) f ( x2 ) ( x2 x1 ) f ( x2 ) ( x3 x2 ) f ( x1 ) ( x2 x1 ) f ( x3 ),
x1

h)

f ( x2 ) f ( x1) x2 x1
令h 0 , 因为

f ( x2 h) h
f ( x2 ) .
lim
h0
f ( x1 ) f ( x1 h) h

f( x1 )
f ( x1),
前页 后页 返回
lim
h0
f ( x2 h) h
前页 后页 返回
由数学归纳法不难证明:f 为 I 上的凸函数充要
条件是:任给 x1, xn I , 0 i 1, i 1,2, ,n, 1 2 n 1, 必有
f ( 1 x1 n xn ) 1 f ( x1 ) n f ( xn ).
f ( x1 (1 )x3 ) f ( x1) (1 ) f ( x3 ),
所以 f 为 I 上的凸函数.
同理可证 f 为 I 上的凸函数的充要条件是:对于
I 中的任意三点 x1 x2 x3 ,有
f ( x2 ) f ( x1) f ( x3 ) f ( x1) f ( x3 ) f ( x2 ) . (4)

数学分析6微分中值定理及其应用总练习题详解

数学分析6微分中值定理及其应用总练习题详解

第六章 微分中值定理及其应用总练习题1、证明:若f(x)在(a,b)内可导,且+→a x lim f(x)=-→b x lim f(x),则至少存在一点ξ∈(a,b),使f ’(ξ)=0.证:定义f(a)=+→a x lim f(x),f(b)=-→b x lim f(x),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),由罗尔中值定理知 至少存在一点ξ∈(a,b),使f ’(ξ)=0.2、证明:若x>0,则 (1)1x +-x =θ(x)x 21+,其中41<θ(x)<21;(2)0x lim →θ(x)=41,+∞→x lim θ(x)=21. 证:(1)由拉格朗日中值定理得:1x +-x =θ(x)x 21+, (0<θ(x)<1),∴θ(x)x 2+=x1x 1-+=1x ++x ,∴θ(x)=41+21[1)x(x +-x].∵1)x(x +-x>2x -x=0,∴41+21[1)x(x +-x]>41; 又1)x(x +-x=x1)x(x x ++<xx x 2+=21,∴41+21[1)x(x +-x] <21.∴41<θ(x)<21.(2)(1)中已证θ(x)=41+21[1)x(x +-x],∴0x lim →θ(x)=0x lim →{41+21[1)x(x +-x]}=41; +∞→x lim θ(x)=+∞→x lim {41+21[1)x(x +-x]}=41+21+∞→x lim 1x111++=21.3、设函数f 在[a,b]上连续,在(a,b)内可导,且ab>0. 证明: 存在ξ∈(a,b),使得f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).证:记F(x)=xf (x),G(x)=x 1,根据柯西中值定理,存在ξ∈(a,b),使得)(G )(F ξξ''=G(a)-G(b)F(a)-F(b),又)(G )(F ξξ''=f(ξ)- ξf ’(ξ),∴f(ξ)- ξf ’(ξ)=G(a)-G(b)F(a)-F(b).又f(b)f(a)b a b -a 1=b -a bf (a)-af (b)=a1-b 1a f(a)-bf(b)=G(a)-G(b)F(a)-F(b), ∴f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).4、设函数f 在[a,b]上三阶可导,证明: 存在ξ∈(a,b),使得f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ). 证:记F(x)=f(x)-f(a)-21(x-a)[f ’(x)+f ’(a)],G(x)=(x-a)3,则 F,G 在[a,b]上二阶可导,F ’(x)=f ’(x)-21[f ’(x)+f ’(a)]-21(x-a)f ”(x),G ’(x)=3(x-a)2,F ”(x)=f ”(x)-21f ”(x)-21f ”(x)-21(x-a)f ’”(x)=-21(x-a)f ’”(x);G ”(x)=6(x-a).且F(a)=F ’(a)=0,G(a)=G ’(a)=0.根据柯西中值定理,存在η∈(a,b),使得)(G )(F ηη''=G(a)-G(b)F(a)-F(b)=G(b)F(b)=3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+', 又根据柯西中值定理,存在ξ∈(a, η),使得)(G )(F ξξ''''=(a)G -)(G (a)F -)(F ''''ηη=)(G )(F ηη'',又)(G )(F ξξ''''=a)-6()(f )a (21-ξξξ'''-=-121f ”’(ξ).∴3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+'=-121f ”’(ξ). ∴f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ).5、对f(x)=ln(1+x)应用拉格朗日中值定理,证明: 对x>0,有0<x)ln(11+-x1<1.证:f ’(x)=x11+. 对f 在区间[0,x]应用拉格朗日中值定理得: f ’(ξ)=0-x f (0)-f (x)=x ln1-x)ln(1+= x x)ln(1+,∴ln(1+x)=xf ’(ξ)=ξ1x+. ∴x)ln(11+=x ξ1+=x 1+x ξ;即x)ln(11+-x 1=xξ.又0<xξ<1,∴0<x)ln(11+-x1<1.6、设a 1,a 2,…,a n 为n 个正实数,且f(x)=(na a a x n x 2x 1+⋯++)x1. 证明:(1)0x lim →f(x)=nx n x 2x 1a ··a ·a ⋯;(2)∞→x lim f(x)=max{a 1,a 2,…,a n }. 证:(1)0x lim →f(x)=e na a a ln x 1lim x n x 2x 10+⋯++→x = exn x 2x 1nx n 2x 21x 10a a a a ln a a ln a a ln a lim+⋯+++⋯++→x= ena ln a ln a ln n21+⋯++=n xn x 2x 1a ··a ·a ⋯. (2)记A=max{a 1,a 2,…,a n },则0<Aa k≤1, (k=1,2,…,n)∵f(x)=A[n)A a()A a ()Aa (x n x 2x 1+⋯++]x 1,∴A(n 1)x 1<f(x)≤A , 又∞→x lim A(n1)x1=A ,∴∞→x lim f(x)=A=max{a 1,a 2,…,a n }.7、求下列极根: (1)=→1x lim (1-x 2)x)-ln(11;(2)2xx x x)ln(1-xe lim+→;(3)sinxx 1sinx lim20x →.解:(1)=→1x lim (1-x 2)x)-ln(11=e)x 1ln()x 1ln(lim21x --=→= e21x x1)x 1(x 2lim--=→=ex 1x 2lim1x +=→=e.(2)2x 0x x x)ln(1-xe lim +→=2xx 11-xe e lim xx0x ++→=2x)(11xe 2e lim 2x x 0x +++→=23. (3)sinxx 1sinx lim20x →=)sinx x ·x 1sin x (lim 0x →=)x 1sin x (lim 0x →·sinx x lim 0x →=0·1=0.8、设h>0,函数f 在U(a,h)内具有n+2阶连续导数,且f (n+2)(a)≠0, f 在U(a,h)内的泰勒公式为:f(a+h)=f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )θh a (f 1)(n +++h n+1, 0<θ<1.证明:θlimh →=2n 1+. 证:f 在U(a,h)内带皮亚诺型余项的n+2阶泰勒公式为:f(a+h)= f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )a (f 1)(n ++h n+1+2)!(n )a (f 2)(n ++h n+2+o(h n+2),与题中所给泰勒公式相减得:1)!(n )a (f )θh a (f 1)(n 1)(n +-+++h n+1=2)!(n )a (f 2)(n ++h n+2+o (h n+2).∴1)!(n θ+·θh )a (f )θh a (f 1)(n 1)(n ++-+=2)!(n )a (f 2)(n +++2n 2n h )h (++o .令h →0两端取极限得:1)!(n )a (f 2)(n ++θlim 0h →=2)!(n )a (f 2)(n ++,∴θlim 0h →=2n 1+.9、设k>0,试问k 为何值时,方程arctanx-kx=0存在正根.解:若方程arctanx-kx=0有正根x 0,∵f(x)=arctanx-kx 在[0,x 0]上可导, 且f(0)=f(x 0)=0,由罗尔中值定理知,存在ξ∈(0,x 0),使得 f ’(ξ)=2ξ11+-k=0. 可见0<k<1. 反之,当0<k<1时,由f ’(x)=2x11+-k 连续,f ’(0)=1-k>0, ∴存在某邻域U(0,δ),使得在U(0,δ)内,f ’(x)>0,f(x)严格递增, 从而存在a>0,使f(a)>f(0)=0. 又+∞→x lim f(x)=-∞,∴存在b>a ,使f(b)<0, 由根的存在定理知,arctanx-kx=0在(a,b)内有正根. ∴当且仅当0<k<1时,原方程存在正根.10、证明:对任一多项式p(x)来说,一定存在点x 1与x 2,使p(x)在(x 1,+∞)与(-∞,x 2)上分别严格单调.证:设p(x)=a 0x n +a 1x n-1+…+ a n-1x+a n ,其中a 0≠0,不妨设a 0>0. 当n=1时,p(x)=a 0x+a 1,p ’(x)=a 0>0,∴p(x)在R 上严格增,结论成立. 当n ≥2时,p ’(x)=na 0x n-1+(n-1)a 1x n-2+…+ a n-1,若n 为奇数,则∞→x lim p ’(x)=+∞,∴对任给的G>0,存在M>0,使 当|x|>M 时,有p ’(x)>G>0,取x 1=M ,x 2=-M ,则 p(x)在(x 1,+∞)与(-∞,x 2)上均严格增.若n 为偶数,则+∞→x lim p ’(x)=+∞,-∞→x lim p ’(x)=-∞, ∴对任给的G>0,存在M>0,使当x>M 时,有p ’(x)>G>0,当x<-M 时,p ’(x)<-G<0,取x 1=M ,x 2=-M , 则p(x)在(x 1,+∞)上严格增,在(-∞,x 2)上严格减. 综上原命题得证。

第6章-微分中值定理及其应用-6-3 泰勒公式

第6章-微分中值定理及其应用-6-3 泰勒公式

( 3 ) 式称为 f ( x )在点 x0 处的带有佩亚诺型余项的 n
阶泰勒公式. 注1 即使 f ( x ) 在点 x0 附近满足
f ( x ) Pn ( x ) o(( x x0 )n )
数学分析 第六章 微分中值定理及其应用
高等教育出版社
( 4)
也不能说明 Pn ( x ) 一定是 f (x) 的n 阶泰勒多项式.
| f ( x ) Tn ( x ) | | f ( x ) Pn ( x ) | , x U ( x0 ).
这也就是说, Tn ( x ) 是逼近 f ( x ) 的最佳 n 次多项式. 在以后的应用中, 公式 (3) 中的 x0 常被取作 0, 形式 变为
f '(0) f ( n ) (0) n f ( x ) f (0) x x o( x n ) 1! n! (k ) n f ( 0) k x o( x n ). k! k 0 此式称为(带有佩亚诺型余项)的麦克劳林公式.
连续使用 n –1 次洛 则当 x U ( x0 ) 且 x x0 时 , 必达法则, 得到
( x) Rn ( x ) Rn ( x ) Rn lim lim lim n n 1 x x x x x x n!( x x0 ) ( x x0 ) n( x x0 )
(k) Rn ( x ) f ( k ) ( x ) Tn( k ) ( x )
所以
( x0 ) Rn( n ) ( x0 ) 0, Rn ( x0 ) Rn
( x0 ) Qn( n1) ( x0 ) 0 , Qn( n ) ( x0 ) n! Qn ( x0 ) Qn
§3 泰勒公式

微分中值定理及其应用

微分中值定理及其应用

第六章 微分中值定理及其应用§1 Lagrange 定理和函数的单调性【教学目的与要求】:1、熟练掌握罗尔中值定理和拉格朗日中值定理。

2、能应用拉格朗日中值定理证明不等式。

3、了解拉格朗日中值定理的推论1和推论2。

4、掌握拉格朗日中值定理的推论3(导数的极限定理),并能利用它求分段函数的导数。

5、掌握函数在区间上单调的充要条件及严格单调的充要条件,并能运用它证明函数的单调区间。

【重点】:拉格朗日中值定理及函数单调(或严格单调)的充要条件。

【难点】:1、拉格朗日中值定理证明中辅助函数的引入。

2、利用导数证明不等式的技巧。

一 、Roll 中值定理与Lagrange 中值定理定理6.1 (Roll 定理) 若f 满足:(1)f [],C a b ∈(2)f 在(),a b 可导 (3)()()f a f b =,则()(),,.,0a b s t f ξξ'∃∈=证明:[],,f C a b ∈故f 必在[],a b 有最大值M 和最小值m ,若M=m ,则f 为[],a b 上的常值函数,结论显然;若M ≠m,则M 与m 必有其一在(),a b 内部某点ξ取得,故ξ为必极值点,由Fermat Th 知 ()0f ξ'=.注:1)三个条件缺一不可2)几何意义例1 f 在R 上可导,若()0f x '=无实根,则()f x =0至多只有一实根定理 6.2(Lagrange Th ) 若f 满足1)[],f C a b ∈,2)(),f a b 在可导,则()()()(),..f a f b s t f b a ξξ-'∃∈=-a,b —— Lagrange 中值公式说明:1、特解; 2、几何意义证明:作辅助函数()()()()()()f b f a F x f x f a x a b a -=----即可。

Lagrange 中值公式的基本形式()()()()()()()()()()()()(),,,01,01f b f a f b a a b f b f a f a b a b a f a h f a f a h h ξξθθθθ'-=-∈'-=+--<<'+-=+<<例2 证明对一切h>-1,h ≠0 成立不等式()ln 11hh hh <+<+证明:考虑函数()()ln 1f x x =+,x 在0与h 之间,显然在0到h 组成的闭区间上连续,开区间上得()()ln 1ln 1ln1.011h h h h θθ+=+-=<<+,当h>0时,11.h h θ+<+11h hhh h θ∴<<++①;当-1<h<0时,1>1+θh>1+h>0 11h h hh h θ∴<<++ ②;由①②知,当h>-1时,且h ≠0时, ()ln 11hh hh <+<+推论1 若f 在区间I 上可导,且()'0.f x ≡则f 为I 上的一个常量函数.证:1,2x x ∀∈I,设12x x <,则f 在]12,x x ⎡⎣上满足Lagrange 中值定理的条件.)(12,x x ξ∴∃∈, s.t.()()()()2121'0f x f x f x x ξ-=-=;()()12f x f x ∴=这说明I 上任意两点处f 的值皆相等,故f 在I 上为常量函数.例 证明:在]1,1⎡-⎣上恒有arcsin arccos 2x x π+=证明:设()f x =arcsin arccos x x + ]1,1x ⎡∈-⎣,则f(x)在[-1,1]上连续,在[-1,1]可导.且()'0f x ⎛⎫=+≡ ⎝, ()f x c ∴≡]1,1x ⎡∈-⎣ 而()02f π=, ()arcsin arccos 2f x πθθ∴=+≡推论2 若f ,g 在I 上皆可导,且()()''f x g x =,则在I 上()f x 与()g x 至多只相差一个常数,即 ()()f x g x c =+(c 为常数)推论 3 (导数极限定理) 设f 在0x 的某邻域()0U x 内连续,在()00U x 内可导,且()0lim 'x x f x →存在,则f 在0x 可导,且()()00'lim 'x x f x f x →=证明:按左右导数证之.()00x x +∀∈⋃,f 在[]0,x x 上满足Lagrange 定理 条件,)(0,x x ξ∴∃∈, s.t. ()()()00'f x f x f x x ξ--- 又0x x ξ<<,∴当0x x +→时,0x ξ+→, 对上式两边取极限.设()()()()()000000lim lim 'lim ''0x x x x x f x f x f f f x x x ξξξ+++→→→-===+-,同理可设()()00''0f x f x -=- ,又()0lim 'x x f x →存在,记为K ,故 ()()00'0'0f x f x K +=-= ()()()()000'''lim 'x x f x f x K f x K f x +-→∴==∴==例3 求分段函数2sin 0()ln(1)0x x x f x x x ⎧+≤=⎨+>⎩的导数. 解:略定理 区间I 上处处可导的函数f 其导函数在I 上不可能有第一类间断点.二 、 单调函数定理6.3 设f 在I 上可导,则f 在I 上递增(减)的充要条件是()()'00f x ≥≤证明:若f 为增函数,0.x ∀∈I 当0x x ≠时,()()000f x f x x x -≥-,由不等式性知()()()0000lim'0x x f x f x f x x x →-=≥-,反之,若f 在I 上恒有()'0f x ≥,则对12,,x x ∀∈I 且1 2.x x <对f在]12,x x ⎡⎣上用Lagrange 中值定理,当)(12,x x ξ∈,s.t. ()()()()2121'0f x f x f x x ξ-=-≥()()21f x f x ∴≥ f ∴在I 上增。

第六章微分中值定理及其应用

第六章微分中值定理及其应用

第六章 微分中值定理及其应用(14学时)引言在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法。

这样一来,类似于求已知曲线上点的切线问题已获完美解决。

但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。

另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理。

本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用。

§1.拉格朗日定理和函数的单调性教学目的: 掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。

掌握讨论函数单调性方法;教学要求:(1)深刻理解中值定理及其分析意义与几何意义,掌握定理的证明方法,知道定理之间的包含关系。

(2)深刻理解函数在一区间上单调以及严格单调的意义和条件;熟练掌握运用导数判断函数单调性与单调区间的方法;能利用函数的单调性证明某些不等式。

教学重点: 中值定理;用辅助函数解决问题的方法。

教学难点: 定理的证明;用辅助函数解决问题的方法。

学时安排: 2学时教学方法: 系统讲解法。

一、一个几何命题的数学描述为了了解中值定理的背景,我们可作以下叙述:弧AB 上有一点P ,该处的切线平行与弦AB 。

如何揭示出这一叙述中所包含的“数量”关系呢?联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=。

如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()()f b f a b a --,曲线y=f(x)上点P 的切线平行于弦AB ⇔()()()f b f a f b aξ-'=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章微分中值定理及其应用<计划课时: 8时)§ 1中值定理< 3时)一思路: 在建立了导数的概念并讨论了其计算后,应考虑导数在研究函数方面的一些作用。

基于这一目的,需要建立导数与函数之间的某种联系。

还是从导数的定义出发:=.若能去掉导数定义中的极限符号,即,则目的就可达到.这样从几何上说就是要考虑曲线的割线与切线之间的平行关系. 一方面要考虑给定割线, 找平行于该割线的切线。

另一方面要考虑给定切线, 找平行于该切线的割线. (1>若给定的割线是水平的、斜的或曲线的方程以参数方程的形式给出,则分别可找出相应的切线平行于该割线,再分析所需要的条件,就可建立起Rolle定理、Lagrange 定理、Cauchy定理.这三个微分中值定理用一句话概括:对于处处连续、处处有切线曲线的每一条割线都可以找到平行于该割线的切线. (2>若给定切线, 找平行于该切线的割线, 则不一定能实现.二微分中值定理:1. Rolle中值定理: 叙述为Th1. ( 证 > 定理条件的充分但不必要性.grange中值定理: 叙述为Th2.( 证 > 图解 .用分析方法引进辅助函数, 证明定理.Lagrange中值定理的各种形式. 关于中值点的位置.系1 函数在区间I上可导且为I上的常值函数. (证>系 2 函数和在区间I上可导且系 3 设函数在点的某右邻域上连续,在内可导.若存在, 则右导数也存在, 且有(证>但是, 不存在时, 却未必有不存在. 例如对函数虽然不存在,但却在点可导(可用定义求得>.Th3 (导数极限定理>设函数在点的某邻域内连续,在内可导.若极限存在, 则也存在, 且( 证 >由该定理可见, 若函数在区间I上可导,则区间I上的每一点,要么是导函数的连续点,要么是的第二类间断点.这就是说,当函数在区间I上点点可导时,导函数在区间I上不可能有第二类间断点.3. Cauchy中值定理:Th 4 设函数和在闭区间上连续, 在开区间内可导, 和在内不同时为零, 又则在内至少存在一点使得.证分析引出辅助函数. 验证在上满足Rolle定理的条件,必有, 因为否则就有.这与条件“和在内不同时为零”矛盾.Cauchy中值定理的几何意义.Ex [1]P163 1—4;三中值定理的简单应用: ( 讲1时 >1. 证明中值点的存在性:例1设函数在区间上连续, 在内可导, 则, 使得.证在Cauchy中值定理中取.例2设函数在区间上连续, 在内可导, 且有.试证明: .2.证明恒等式: 原理.例3证明: 对, 有.例4 设函数和可导且又则.(证明. >例 5 设对,有,其中是正常数.则函数是常值函数. (证明 >.3.证明不等式: 原理.例6 证明不等式: 时, .例7 证明不等式: 对,有.4. 证明方程根的存在性:例8 证明方程在内有实根.例9 证明方程在内有实根.四单调函数 <结合几何直观建立)1 可导函数单调的充要条件Th 5设函数在区间内可导. 则在内↗(或↘>在内( 或 >.例10 设.试讨论函数的单调区间.解:⑴确定定义域. 函数的定义域为.⑵求导数并分解因式.⑶确定导数为0的点和不存在的点.令,得⑷将导数为0的点和不存在的点作为分点插入函数的定义域,Th6设函数在区间内可导.则在内↗↗( 或↘↘>ⅰ> 对有 ( 或。

ⅱ> 在内任子区间上3 可导函数严格单调的充分条件推论见P124例11 证明不等式Ex [1]P124—125 1—7.§2 不定式的极限( 2时 >一. 型:Th 1 (Hospital法则 > ( 证 > 应用技巧.例1例2.例3. ( 作代换或利用等价无穷小代换直接计算. >例4. ( Hospital法则失效的例 >二型:Th 2 (Hospital法则 > ( 证略 >例5.例6.注: 关于当时的阶.例7. ( Hospital法则失效的例 >三.其他待定型:.前四个是幂指型的.例8例9.例10.例11.例12.例13.例14设且求解.Ex [1]P132—133 1—5.§3 Taylor公式( 3时 >一. 问题和任务:用多项式逼近函数的可能性。

对已知的函数, 希望找一个多项式逼近到要求的精度.二. Taylor( 1685—1731 >多项式:分析前述任务,引出用来逼近的多项式应具有的形式定义(Taylor 多项式及Maclaurin多项式>例1 求函数在点的Taylor 多项式.三. Taylor公式和误差估计:称为余项. 称给出的定量或定性描述的式为函数的Taylor公式.1. 误差的定量刻画( 整体性质 > ——Taylor中值定理:Th 1 设函数满足条件:ⅰ> 在闭区间上有直到阶连续导数。

ⅱ> 在开区间内有阶导数.则对使.证 [1]P138—139.称这种形式的余项为Lagrange型余项.并称带有这种形式余项的Taylor公式为具Lagrange型余项的Taylor公式.Lagrange型余项还可写为.时, 称上述Taylor公式为Maclaurin公式, 此时余项常写为.2.误差的定性描述( 局部性质 > ——Peano型余项:Th 2 若函数在点的某邻域内具有阶导数, 且存在, 则, .证设, . 应用Hospital法则次,并注意到存在, 就有=.称为Taylor公式的Peano型余项,相应的Maclaurin公式的Peano型余项为. 并称带有这种形式余项的Taylor公式为具Peano型余项的Taylor公式( 或Maclaurin公式 >.四. 函数的Taylor公式( 或Maclaurin公式 >展开:1. 直接展开:例2 求的Maclaurin公式.解.例3 求的Maclaurin公式.解,.例4求函数的具Peano型余项的Maclaurin公式 . 解..例5把函数展开成含项的具Peano型余项的Maclaurin公式.2. 间接展开: 利用已知的展开式, 施行代数运算或变量代换, 求新的展开式.例 6 把函数展开成含项的具Peano型余项的Maclaurin公式 .解,.例7 把函数展开成含项的具Peano型余项的Maclaurin公式 .解,注意,.例8 先把函数展开成具Peano型余项的Maclaurin公式.利用得到的展开式, 把函数在点展开成具Peano型余项的Taylor公式.解.=+例9 把函数展开成具Peano型余项的Maclaurin公式,并与的相应展开式进行比较.解。

.而.五. Taylor公式应用举例:1. 证明是无理数:例10 证明是无理数.证把展开成具Lagrange型余项的Maclaurin公式, 有.反设是有理数, 即和为整数>, 就有整数+.对也是整数. 于是, 整数=整数―整数=整数.但由因而当时,不可能是整数. 矛盾.2.计算函数的近似值:例11 求精确到的近似值.解.注意到有. 为使,只要取. 现取, 即得数的精确到的近似值为.3.利用Taylor公式求极限:原理:例12 求极限.解,。

.4.证明不等式:原理.例13 证明: 时, 有不等式.Ex [1]P141 1—3.§4 函数的极值与最大<小)值< 4时 )一 可微函数极值点判别法:极值问题:极值点,极大值还是极小值, 极值是多少.1. 可微极值点的必要条件:Th1 Fermat 定理(取极值的必要条件>.函数的驻点和(连续但>不可导点统称为可疑点, 可疑点的求法.2. 极值点的充分条件:对每个可疑点, 用以下充分条件进一步鉴别是否为极<结合几何直观建立极值点的判别法) Th 2 (充分条件Ⅰ>设函数在点连续,在邻域和内可导. 则ⅰ>在内在内时,为的一个极小值点。

ⅱ>在内在内时,为的一个极大值点。

ⅲ>若在上述两个区间内同号,则不是极值点.极大值点--不存在非极值点不存在非极值点Th 3 (充分条件Ⅱ——“雨水法则”>设点为函数的驻点且存在.则ⅰ>当时, 为的一个极大值点。

ⅱ> 当时, 为的一个极小值点.证法一当时, 在点的某空心邻域内与异号,……证法二用Taylor公式展开到二阶, 带Peano型余项.Th 4 (充分条件Ⅲ> 设,而.则ⅰ>为奇数时, 不是极值点。

ⅱ>为偶数时, 是极值点. 且对应极小。

对应极大. 例1 求函数的极值. 例2 求函数的极值.例3 求函数的极值.注 Th 2、 Th 3、 Th 4只是极值点判别的充分条件.如函数它在处取极小值,但因.所以无法用Th 4对它作出判别.二 函数的最大值与最小值: ⑴设函数在闭区间上连续且仅有有限个可疑点. 则=。

.⑵函数最值的几个特例: ⅰ> 单调函数的最值: ⅱ>如果函数在区间上可导且仅有一个驻点, 则当为极大值点时, 亦为最大值点。

当为极小值点时,亦为最小值点. ⅲ>若函数在内可导且仅有一个极大(或小>值点, 则该点亦为最大(或小>值点.ⅳ> 对具有实际意义的函数, 常用实际判断原则确定最大(或小>值点. 例4 求函数在闭区间上的最大值与最小值.⑶最值应用问题:例 5、分别为和<长. 现两村合用一台变压器供电.问变压器设在何处,输电线总长最小解设如图,并设输电线总长为.则有,,解得和 ( 舍去 >. 答:……三利用导数证明不等式:我们曾在前面简介过用中值定理或Taylor公式证明不等式的一些方法. 其实, 利用导数证明不等式的方法至少可以提出七种( 参阅[3]P112—142 >. 本段仅介绍利用单调性或极值证明不等式的简单原理.1.利用单调性证明不等式:原理: 若↗, 则对, 有不等式.例5证明: 对任意实数和, 成立不等式证取在内↗↗. 于是, 由, 就有, 即.2. 不等式原理:设函数在区间上连续,在区间内可导,且。

又则时, (不等式原理的其他形式.>例6 证明: 时, .例7 证明: 时, .3. 利用极值证明不等式:例8 证明: 时, .Ex [1]P146—147 1—9.§5 函数的凸性与拐点< 2时)一.凸性的定义及判定:1.凸性的定义:由直观引入. 强调曲线弯曲方向与上升方向的区别.定义见书P146凸性的几何意义:曲线的弯曲方向。

曲线与弦的位置关系。

曲线与切线的位置关系.引理(弦与弦斜率之间的关系>2.利用一阶导数判断曲线的凸向Th1 (凸的等价描述> 见书P146例 1 (开区间内凸函数的左、右可导性,从而开区间内凸函数是连续的>3.利用二阶导数判断曲线的凸向:Th2 设函数在区间内存在二阶导数, 则在内⑴在内严格上凸。

相关文档
最新文档