一元一次方程的概念及解法
一元一次方程的概念及解法
一、方程方程:含有未知数的等式叫方程,如,它有两层含义:①方程必须是等式;②等式中必须含有未知数 二、方程的解方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解,也叫方程的根。
三、一元一次方程一元一次方程的概念:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.一元一次方程的形式:最简形式:方程(,,为已知数)叫一元一次方程的最简形式.标准形式:方程(其中,,是已知数)叫一元一次方程的标准形式. 注意:⑴任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形(必须为恒等变换)为最简形式或标准形式来验证.如方程是一元一次方程.如果不变形,直接判断就出会现错误.⑵方程与方程是不同的,方程的解需要分类讨论完成 四、一元一次方程的解法(一)等式的性质等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若,则;等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若,则,注意:⑴在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边⑵等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.⑶在等式变形中,以下两个性质也经常用到:对称性,即:如果,那么.传递性,即:如果,,那么.又称为等量代换易错点:等号左右互换的时候忘记变符号(二)解一元一次方程的步骤解一元一次方程的一般步骤:21x +=ax b =0a ≠a b 0ax b +=0a ≠a b 22216x x x ++=-ax b =()0ax b a =≠ax b =a b =a m b m ±=±a b =am bm =a b m m=(0)m ≠a b =b a =a b =b c =a c =一元一次方程的概念及解法知识讲解温馨提示:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号. 2.去括号:一般地,先去小括号,再去中括号,最后去大括号.温馨提示:不要漏乘括号里的项,不要弄错符号.3.移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 温馨提示:⑴移项要变号;⑵不要丢项.4.合并同类项:把方程化成的形式.温馨提示:字母和其指数不变.5.系数化为1:在方程的两边都除以未知数的系数(),得到方程的解. 温馨提示:不要把分子、分母搞颠倒.【例1】 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是【例2】 已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于().A.-2B.0C.32D.23 【例3】 下列各式中,变形正确的是().A .若,则B .若,则C .若,则D .若,则【例4】 根据等式性质5=3x -2可变形为().A.-3x =2-5B.-3x =-2+5C.5-2=3xD.5+2=3x 【变式练习】下列变形中,不正确的是()A .若,则B .若则C .若,则D .若,则 【例5】 下列各式中:⑴;⑵;⑶;⑷;⑸;⑹;⑺;⑻.哪些是一元一次方程?【例6】 关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________.【例7】 已知等式0352=++m x 是关于x 的一元一次方程,则m =____________. ax b =a 0a ≠b x a =a b =a c b c +=+(1)2a x -=21x a =-2a b =4a b =1a b =+221a b =+25x x =5x =77,x -=1x =-10.2x x -=1012x x -=x y a a =ax ay =3x +2534+=+44x x +=+12x =213x x ++=44x x -=-23x =2(2)3x x x x +=++同步练习【例8】 若是一元一次方程,那么【变式练习】若关于的方程是一元一次方程,则【变式练习】若关于的方程是一元一次方程,则,方程的解是【变式练习】已知关于的方程是一元一次方程,则、需要满足的条件为【例9】 下列等式中变形正确的是()A.若,则 B. 若,则 C.若,则 D. 若,则 【例10】将3(x -1)-2(x -3)=5(1-x )去括号得()A.3x -1-2x -3=5-xB.3x -1-2x +3=5-xC.3x -3-2x -6=5-5xD.3x -3-2x +6=5-5x 【例11】在解方程21-x −1332=+x 时,去分母正确的是() A.()()132213=+--x x B.()()632213=+--x xC.13413=+--x xD. 63413=+--x x【例12】方程2-342-x =-67-x 去分母得() A.2-2 (2x -4)= -(x -7) B .12-2 (2x -4)= -x -7C.12-2 (2x -4)= -(x -7) D .12-(2x -4)= -(x -7)【变式练习】解方程:⑴⑵【例13】解方程:(1)5y -9=7y -13;(2)3(x -1)-2(2x +1)=12 ;131m x -=m =x 1(2)50k k x k --+=k =x 2223x x ax a x a -=-+a =x (21)50n m x --=m n 31422x x -+=3144x x -=-31422x x -+=3182x x -+=31422x x -+=3180x -+=31422x x -+=3184x x -+=6(1)5(2)2(23)x x x ---=+12225y y y -+-=-(3)757875x x -=-;(4).逐层去括号 含有多重括号时,去括号的顺序可以从内向外,也可以从外向内。
第08讲一元一次方程的概念与解法(8大考点)(原卷版)
第08讲一元一次方程的概念与解法(8大考点)一、方程和一元一次方程的概念 1)方程:含有未知数的等式。
如何判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含一个未知数,且未知数的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 二、方程的解与解方程1)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程 三、等式的性质1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a cb c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=2-2x 3x+7+2x=2-2x+2x 3x+7+2x-7=2-2x+2x-7 5x=-5 5x ÷5=-5÷5 x=-13)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
四、合并同类项解一元一次方程(1)合并同类项:将同类项合并在一起的过程 方法:1)合并同类项;2)系数化为1 五、移项解一元一次方程 (1)移项 例:2x-3=4x-72x-3+3=4x-7+3(利用等式的性质) (左边的﹣3变到右边变成了+3) 2x=4x-4考点考向2x-4x=4x-4-4x (利用等式的性质) (右边的4x 变到左边变成了-4x ) -2x=-4 x=24−− x=2①我们发现,利用等式两边同加或同减一个数(式子),等式不变的性质,可以将方程化为同类项在同一边的情形(即未知数在一边,数值在另一边)。
七年级数学一元一次方程的解法
目录
• 一元一次方程的基本概念 • 一元一次方程的解法 • 一元一次方程的应用 • 练习与巩固 • 总结与回顾
01
一元一次方程的基本概念
一元一次方程的定义
一元一次方程
只含有一个未知数,并且未知数 的次数为1的方程。
定义解释
一元代表方程中只有一个未知数, 一次代表未知数的指数为1,即未 知数是一次的幂。
03
一元一次方程的应用
代数式求值
01
02
03
代数式求值
通过将代数式中的变量替 换为已知数值,计算代数 式的值。
例子
若$x = 2$,求代数式$3x + 5$的值。
解答
将$x = 2$代入$3x + 5$, 得到$3 times 2 + 5 = 11$。
代数式的化简
代数式化简
通过合并同类项、提取公因数等方法,简化代数 式的形式。
去括号法
总结词
通过消除方程中的括号来简化方程。
详细描述
去括号法是通过消除方程中的括号来简化方程。在消除括号时,要注意括号前的负号会改变括号内各项的符号。 例如,从方程2(x + 3)中去掉括号得到2x + 6。
系数化为1法
总结词
将方程中的未知数的系数化为1,从而找到未知数的值。
详细描述
系数化为1法是将方程中的未知数系数化为1,从而找到未知数 的值。例如,将方程2x = 10的两边都除以2得到x = 5。
一元一次方程的一般形式
一般形式
ax + b = 0(其中a≠0)
形式解释
一元一次方程的一般形式是未知数x的系数为a,常数项为b,且a≠0。
一元一次方程公式大全
一元一次方程公式大全一元一次方程是初中数学学习中的重要内容,也是数学建模和解决实际问题的基础。
在学习一元一次方程时,我们需要熟练掌握一元一次方程的基本概念、解法和应用。
本文将为大家详细介绍一元一次方程的相关知识,包括一元一次方程的定义、一元一次方程的解法、一元一次方程的应用以及一元一次方程的实例分析,希望能够帮助大家更好地理解和掌握这一部分内容。
一、一元一次方程的定义。
一元一次方程是指未知数只有一个,且未知数的最高次数为一的方程。
一元一次方程的一般形式为ax+b=0,其中a和b是已知数,a≠0,x是未知数。
在解一元一次方程时,我们的目标是找到未知数x的值,使得方程成立。
二、一元一次方程的解法。
解一元一次方程的常用方法有,等式性质法、加减消去法、乘除消去法、代入法等。
下面我们分别来介绍这些解法的具体步骤。
1. 等式性质法,根据等式两边相等的性质,可以对方程进行等式性质变形,最终得到方程的解。
2. 加减消去法,通过加减消去,将方程中的一些项相互抵消,从而简化方程,最终求得方程的解。
3. 乘除消去法,通过乘除消去,可以将方程中的一些项进行消去,从而简化方程,最终求得方程的解。
4. 代入法,将已知的数代入方程中,求解未知数的值,从而得到方程的解。
三、一元一次方程的应用。
一元一次方程在日常生活中有着广泛的应用,例如,小明买了若干本书,每本书的价格是10元,他一共花了60元,那么小明买了几本书?这个问题可以用一元一次方程来表示和解决。
又如,某商品原价100元,现在打8折出售,打折后的价格是多少?这个问题也可以用一元一次方程来表示和解决。
四、一元一次方程的实例分析。
现在我们通过几个实例来分析一元一次方程的具体应用。
例1,某数的3倍加上5等于20,求这个数。
解,设这个数为x,根据题意可以列出方程3x+5=20,然后通过等式性质变形,得到3x=15,最终求得x=5。
所以这个数是5。
例2,某数的一半加上3等于7,求这个数。
数学中的一元一次方程知识点
数学中的一元一次方程知识点一元一次方程是数学中的基础概念,也是初等代数中的重要内容。
它在解决实际问题和建立数学模型时起到了关键的作用。
本文将介绍一元一次方程的基本定义、性质和求解方法。
1. 一元一次方程的定义一元一次方程是指一个变量的一次方程,形式通常为ax + b = 0,其中a和b是已知的常数,而x是未知数。
一元一次方程的问题通常是要求解未知数的值。
2. 一元一次方程的性质一元一次方程具有以下几个性质:- 一元一次方程只有一个未知数。
- 方程中的系数和常数可以是任意实数,但未知数通常是实数。
- 方程中的系数不能同时为零,即a ≠ 0。
- 一元一次方程的解通常是唯一的,也就是只有一个解或无解。
3. 一元一次方程的求解方法解一元一次方程的常用方法有以下几种:- 原始解法:通过移项和消元的方式,将方程变形为x = 数字的形式,得到方程的解。
- 代入法:将已知的解代入方程,验证解是否满足方程的等式关系。
- 叠减法:通过两个方程相减,消去一个未知数,得到一个一元一次方程,从而求解未知数的值。
- 等价方程法:通过变形,将原方程转化为一个等价的方程,使得求解过程更简单。
4. 一元一次方程在实际问题中的应用一元一次方程在实际问题中有广泛的应用,比如:- 财务问题:计算投资回报率、利润分配等问题时,通常可以建立一元一次方程来求解。
- 几何问题:用一元一次方程可以计算图形的面积、周长、对角线长度等。
- 物理问题:用一元一次方程可以描述速度、加速度、力等物理量之间的关系。
总结:一元一次方程是数学中的重要概念,它帮助我们解决实际问题,建立数学模型,以及理解数学中的基本性质和求解方法。
通过掌握一元一次方程的知识,我们可以更好地理解和应用数学,提高解决问题的能力。
一元一次方程的概念
一元一次方程的概念一元一次方程,也称为一次方程或一次线性方程,是数学中最基本的代数方程之一。
它的定义和性质对于学习代数学和解决实际问题都具有重要意义。
本文将介绍一元一次方程的概念、基本形式、解法以及实际应用。
一、概念一元一次方程是指只含有一个未知数的一次方程。
一元表示方程中只有一个未知数,一次表示该未知数的最高次数为1。
一元一次方程的一般形式可以表示为ax + b = 0,其中a和b是已知实数,x为未知数。
在这个方程中,未知数x只出现一次,并且没有任何其它项与x相乘或相除。
二、基本形式一元一次方程的基本形式是ax + b = 0,其中a和b为已知实数,x为未知数。
方程中的系数a表示未知数x的系数,常数b表示方程的常数项。
在解一元一次方程时,我们的目标是找到未知数x的值,使方程两边相等。
这个值被称为方程的解。
三、解法1. 移项法解一元一次方程的最基本方法是移项法。
我们的目标是将方程中的未知数项系数系数项归集到等号的一侧,将常数项归集到等号的另一侧,使方程化简为 x = 解的形式。
以方程ax + b = 0为例,首先,我们可以将常数项b移到等号的右侧,得到ax = -b。
然后,我们除以系数a,得到x = -b/a。
这个解即为一元一次方程的解。
2. 消元法另一种解一元一次方程的方法是消元法。
当我们有多个一元一次方程时,我们可以通过消去一个未知数,将多个方程转化为一个方程的形式,再用移项法解决。
例如,考虑以下两个一元一次方程系统:方程1:a1x + b1 = 0方程2:a2x + b2 = 0首先,我们可以通过方程1的系数与方程2的系数相乘,得到新的方程:a1(a2x + b2) = a1 * 0a1a2x + a1b2 = 0接下来,我们可以通过将方程2的系数与方程1的系数相乘,得到另一个新的方程:a2(a1x + b1) = a2 * 0a1a2x + a2b1 = 0将这两个新方程相减,得到消去了未知数x的新方程:(a1b2 - a2b1) = 0解这个新方程,可以得到方程1和方程2的解。
一元一次方程知识点及经典例题
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
一元一次方程的定义及解法
一元一次方程的定义及解法文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)。
方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a ≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b 是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。
“方程”一词来源于我国古算术书《九章算术》。
在这本着作中,已经会列一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。
移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。
性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。
一元一次方程的概念
一元一次方程的概念一元一次方程是代数学中最基础的方程类型之一。
它包含一个未知数和一个常数项,并且未知数的最高次数为1。
在数学中,一元一次方程可以用来解决各种实际问题,例如求解线性关系、计算比例关系以及解决简单的实际应用问题等。
本文将介绍一元一次方程的基本概念、解法和应用。
一、概念一元一次方程通常具有形如ax + b = 0的形式,其中a和b是已知实数,x是未知数。
在这个方程中,变量x的次数为1,系数a和b可以是任何实数。
一元一次方程的目标是找到使得方程左边等于右边的未知数x的值,即求解x的值。
二、解法1. 消元法:对于形如ax + b = 0的一元一次方程,可以使用消元法来求解。
首先,移项将方程变形为ax = -b,然后通过除以a将方程化简为x = -b/a。
这样就得到了方程的解,其表达式为x = -b/a。
2. 图解法:一元一次方程可以通过图解来求解。
画出方程左侧的线性函数y = ax + b的图像,并找到这条直线与x轴的交点。
该交点的横坐标即为方程的解。
如果直线与x轴平行,则方程无解。
3. 代入法:当我们已经知道方程中的一个解时,可以使用代入法来求解另一个解。
假设已知x1是方程的一个解,则将x1代入方程中,得到ax1 + b = 0。
通过对方程进行变形,可以得到未知数x的另一个解x2。
三、应用举例一元一次方程广泛应用于各类实际问题中。
以下是一些应用举例:1. 购买商品:假设某商品的原价为x元,现在打8折出售,求购买该商品需要支付的金额。
可以建立一元一次方程0.8x = x - 折扣,解该方程可以得到实际支付的金额。
2. 线性增长:假设某项工作每小时完成的进度是x单位,要完成总工作量为y单位的任务,求完成该任务需要的时间。
可以建立一元一次方程x * t = y,其中t为需要的时间。
3. 加油问题:假设一辆汽车的油箱容量为x升,已经加满油后行驶了y千米,求汽车的百公里油耗(升/百公里)。
可以建立一元一次方程y = x * 油耗/100,解该方程可以得到油耗指标。
九章算术中的一元一次方程问题
一、引言九章算术是我国古代著名的数学经典之一,涵盖了广泛的数学内容,其中包括一元一次方程问题。
一元一次方程在数学中占有重要的地位,解决现实生活中的问题,也是数学学习中的重点内容。
本文将从九章算术中的一元一次方程问题入手,探讨其解法和应用。
二、一元一次方程的概念1. 一元一次方程的定义一元一次方程是指形如ax+b=0的方程,其中a≠0,a和b是已知数,x是未知数,且x的最高次数为1。
例如2x+3=5就是一个一元一次方程。
2. 一元一次方程的解对于一元一次方程ax+b=0,可以使用反运算的原则,将方程化简为x=-b/a,因此方程的解为x=-b/a。
三、九章算术中的一元一次方程问题1. 《九章算术》中的具体问题《九章算术》是我国古代数学经典之一,其内容包含了丰富的数学问题和方法。
在《九章算术》中,有许多关于一元一次方程的问题,如田甲申数问题、城市水井修建问题等。
这些问题都是现实生活中的数学表达,通过一元一次方程的方法可以求解。
2. 举例分析以田甲申数问题为例,题目是这样的:田积之甲、丁之申,问积之何?这是一个典型的一元一次方程问题,通过变量的设定和方程的建立,可以得到方程的解,从而求得问题的答案。
3. 解法探讨《九章算术》中的一元一次方程问题,通常都可以通过设立变量、建立方程、解方程等步骤来求解。
这些问题在古代的《九章算术》中被提出,不仅具有数学意义,还对古代生产生活有着实际的指导作用。
四、一元一次方程在现实生活中的应用1. 求职择业在现实生活中,一元一次方程常常被用于求职择业过程中的问题。
关于工资的问题、工作时间的问题等,都可以建立成一元一次方程进行求解。
2. 购物计算在日常的购物消费中,一元一次方程也有着广泛的应用。
折扣问题、商品打折后的价格计算等都可以用一元一次方程进行求解。
3. 金融投资在金融投资领域,一元一次方程也有着重要的作用。
计算利息、投资收益率等问题都可以转化为一元一次方程进行求解。
五、一元一次方程问题的解法和技巧1. 设立方程的关键在解一元一次方程问题时,最关键的是能够正确地设立方程,将现实生活中的问题转化为数学表达式。
一元一次方程和它的解法
一元一次方程和它的解法(一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程。
一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=-。
我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0)。
例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程。
2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数。
要注意不要漏掉不含分母的项,如方程x+=3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误。
(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号。
特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号。
括号前有数字因数时要注意使用分配律。
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边。
注意移项要变号。
(4)合并同类项:把方程化成最简形式ax=b (a≠0)。
(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=。
解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤。
(二)例题:例1.解方程(x-5)=3-(x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并同类项,使运算简便。
解:移项得:(x-5)+(x-5)=3合并同类项得:x-5=3∴ x=8。
例2.解方程2x-=-解:因为方程含有分母,应先去分母。
去分母:12x-3(x+1)=8-2(x+2) (注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4 (注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并同类项:11x=7系数化成1:x=。
一元一次方程的解法及应用拓展
一元一次方程的解法及应用拓展一、一元一次方程的概念1.1 定义:含有一个未知数,未知数的最高次数为1,且两边都为整式的等式称为一元一次方程。
1.2 形式:ax + b = 0(a, b为常数,a≠0)二、一元一次方程的解法2.1 公式法:将方程ax + b = 0两边同时除以a,得到x = -b/a。
2.2 移项法:将方程中的常数项移到等式的一边,未知数项移到等式的另一边。
2.3 因式分解法:将方程进行因式分解,使其成为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。
三、一元一次方程的应用3.1 实际问题:将实际问题转化为一元一次方程,求解未知数。
3.2 线性方程组:由多个一元一次方程组成的方程组,可用代入法、消元法等方法求解。
3.3 函数图像:一元一次方程的图像为直线,可通过解析式分析直线与坐标轴的交点、斜率等性质。
四、一元一次方程的拓展4.1 比例方程:含有一元一次方程的等比例关系,可通过交叉相乘、解一元一次方程求解。
4.2 分式方程:含有一元一次方程的分式,可通过去分母、解一元一次方程求解。
4.3 绝对值方程:含有一元一次方程的绝对值,可分为两种情况讨论,求解未知数。
五、一元一次方程的练习题5.1 选择题:判断下列方程是否为一元一次方程,并选择正确的解法。
5.2 填空题:根据题目给出的条件,填空求解一元一次方程。
5.3 解答题:解答实际问题,将问题转化为一元一次方程,求解未知数。
六、一元一次方程的考试重点6.1 掌握一元一次方程的定义、形式及解法。
6.2 能够将实际问题转化为一元一次方程,求解未知数。
6.3 熟练运用一元一次方程解决线性方程组、函数图像等问题。
6.4 理解一元一次方程的拓展知识,如比例方程、分式方程、绝对值方程等。
七、一元一次方程的学习建议7.1 多做练习题:通过大量的练习题,熟练掌握一元一次方程的解法及应用。
7.2 深入理解实际问题:学会将实际问题转化为一元一次方程,提高解决问题的能力。
一元一次方程的概念及解法
一元一次方程的概念及解法
一元一次方程是指仅含有一个未知数,并且该未知数的次数为一的方程。
例如,ax + b = 0 就是一元一次方程,其中a和b是已知数,x 是未知数。
解一元一次方程的基本方法是移项、合并同类项、分离系数、约分等。
以下是解一元一次方程的步骤:
1. 将方程中的常数项移至等号右侧,将未知数项移至等号左侧,得到ax = -b。
2. 将未知数的系数a移到等号右侧,得到x = -b/a,这就是方程的解。
需要注意的是,如果方程的系数为零,那么该方程就没有解。
除了上述基本方法外,还有其他解一元一次方程的方法。
例如,可以使用代数法、图形法、相似三角形法等方法来解决一元一次方程。
总之,掌握一元一次方程的概念和解法对于数学学习是非常重要的。
通过不断练习,可以更好地理解和掌握这个知识点。
一元一次方程及其解的概念
对于一元一次方程组的求解,可以利用消元法或代入法等方法进行求解。在求解过 程中,要注意保持等式的等价性,避免引入额外的解或丢失原有的解。
04 图形化表示与直观理解
数轴上表示一元一次方程解
问题等。
尝试构造一些一元一次方程, 并求解。
探究一元一次方程与不等式、 函数等数学知识之间的联系。
了解二元一次方程组在实际生 活中的应用,并尝试求解一些
简单的二元一次方程组。
THANKS FOR WATCHING
感谢您的观看
引入参数进行代换
对于某些复杂的分数形式问题,可以引入参数进行代换,将问题转 化为更易于求解的形式。
复杂表达式简化技巧
合并同类项
对于方程中的同类项进行合并,使方程的形式更 加简洁。
移项与变形
通过移项和变形技巧,将方程转化为标准形式或 更易于求解的形式。
利用公式进行化简
对于一些特殊的表达式,如平方差公式、完全平 方公式等,可以利用这些公式进行化简。
合并同类项的定义
合并同类项的应用场景
将方程中具有相同未知数的项进行合 并,以简化方程的形式。
在解一元一次方程时,通过合并同类 项可以快速简化方程,提高求解效率。
合并同类项的方法
识别方程中的同类项,将它们的系数 进行加减运算,得到一个更简单的方 程。
系数化为1求解技巧分享
1 2
系数化为1的定义
通过对方程两边进行相同的运算,使得未知数的 系数为1,从而直接求出未知数的值。
使一元一次方程左右两边相等的未知数的值。
移项法则
将等式一边的某项变号后移到另一边。
(完整版)一元一次方程及其解法
3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根. ②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解. (3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =12ab ;B.x -y =0;C.x =0;D.12x +3=1;E.3-1=2;F.4y -5=1;G .2x 2+2x +1=0;H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解. A .-5(x -1)=-4(x -2) B .4x +2=1C .13x +5=5 D .-3x -1=0解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:如果a =b ,那么ac =bc ,a c =bc(c ≠0).③性质3:如果a =b ,那么b =a .(对称性) 如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性) 如:若∠1=60°,∠2=∠1,则∠2=60°. (2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换. 谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若x 2=0,则x =2D .若x 6-1=1,则x -6=1解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =57.答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20. 方程的两边同时除以5,得x =4. (2)方程的两边同时减去2x ,得2x -2=0. 方程的两边同时加上2,得2x =2. 方程的两边同时除以2,得x =1. (3)方程两边都同时减去1, 得x +1-1=6-1,∴x=6-1.∴x=5.(4)方程两边都加上x,得3-x+x=7+x,3=7+x,方程两边都减去7,得3-7=7+x-7,∴-4=x,即x=-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x=7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x=7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x=1,把3从方程的左边移到右边要变号,得5x=1-3,是属于移项;而把5x-15x+11x=11变成5x+11x -15x=11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1 移项要变号合并同类项将方程化为ax=b的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1 方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2 分子、分母不能颠倒值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ). A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程2-x 3-5=x -14.分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12, 得4(2-x )-60=3(x -1). 去括号,得8-4x -60=3x -3. 移项,得-4x -3x =-3-8+60. 合并同类项,得-7x =49. 两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程0.4x -90.5-x -52=0.03+0.02x0.03.分析:由于0.4x -90.5和0.03+0.02x 0.03的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子0.4x -90.5的分子、分母中都乘以10,变为4x -905,在式子0.03+0.02x0.03的分子、分母中都乘以100,变为3+2x3,然后去分母,再按解一元一次方程的步骤求解.解:分母整数化,得 4x -905-x -52=3+2x3.去分母,得6(4x -90)-15(x -5)=10(3+2x ). 去括号,得24x -540-15x +75=30+20x . 移项,得24x -15x -20x =540-75+30. 合并同类项,得 -11x =495. 两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题 方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .43C .2D .-43解析:解方程3x +5=0,得x =-53.将x =-53代入方程3x +3k =1,得-5+3k =1,解得k =2,故应选C. 答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________. 解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8. 答案:86.一元一次方程的常用解题策略 我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程34⎣⎡⎦⎤43⎝⎛⎭⎫12x -14-4=32x +1. 分析:注意到34×43=1,把34乘以中括号的每一项,则可先去中括号,34×43⎝⎛⎭⎫12x -14-34×4=32x +1,再去小括号为12x -14-3=32x +1,再按步骤解方程就非常简捷了. 解:去括号,得12x -14-3=32x +1.移项,合并同类项,得-x =174.两边同除以-1,得x =-174.【例6-2】 解方程x +37-x +25=x +16-x +44.分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,5(x +3)-7(x +2)35=2(x +1)-3(x +4)12,把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012. 去分母,得12(-2x +1)=35(-x -10). 去括号,得-24x +12=-35x -350. 移项、合并同类项,得11x =-362.两边同除以11,得x =-36211.7.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值 利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数. (2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-116.答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程x -k 3+3k +26-x =x +k2的解,求k 的值.分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得 -2-k 3+3k +26-(-2)=-2+k2. 去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ). 去括号,得-4-2k +3k +2+12=-6+3k . 移项、合并同类项,得 -2k =-16.方程两边同除以-2,得k =8.【题01】下列变形中,不正确的是( ) A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x ya a=,则ax ay =. 【题02】下列各式不是方程的是( ) A .24y y -=B .2m n =C .222p pq q -+D .0x =【题03】解为2x =-的方程是( ) A .240x -=B .5362x +=C .3(2)(3)5x x x ---=D .275462x x --=- 【题04】若关于x 的方程223(4)0n x n -+-=是一元一次方程,求n 的值.课后作业【题05】已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .【题06】若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.【题07】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .【题08】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .【题09】2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( ) A .2140- B .2140C .5615-D .5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11 (4)(3) 34y y-=+【题12】解方程:122233x xx-+ -=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20343x --+=。
一元一次方程及其解法(最新整理)
3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根.②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解.(3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =ab ;B.x -y =0;C.x =0;D.=1;E.3-1=2;F.4y -5=1;G.2x 2+2x +1=0;1212x +3H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解.A .-5(x -1)=-4(x -2)B .4x +2=1C .x +5=5D .-3x -1=013解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.用式子形式表示为:如果a =b ,那么ac =bc ,=(c ≠0).a c bc③性质3:如果a =b ,那么b =a .(对称性)如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性)如:若∠1=60°,∠2=∠1,则∠2=60°.(2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换.谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若=0,则x =2D .若-1=1,则x -6=1x 2x 6解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =.57答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20.方程的两边同时除以5,得x =4.(2)方程的两边同时减去2x ,得2x -2=0.方程的两边同时加上2,得2x =2.方程的两边同时除以2,得x =1.(3)方程两边都同时减去1,得x +1-1=6-1,∴x =6-1.∴x =5.(4)方程两边都加上x ,得3-x +x =7+x ,3=7+x ,方程两边都减去7,得3-7=7+x -7,∴-4=x ,即x =-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x =7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x =7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x =1,把3从方程的左边移到右边要变号,得5x =1-3,是属于移项;而把5x -15x +11x =11变成5x +11x -15x =11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区 移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体见下表:变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1移项要变号合并同类项将方程化为ax =b 的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2分子、分母不能颠倒解技巧 巧解一元一次方程值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ).A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程-5=.2-x 3x -14分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12,得4(2-x )-60=3(x -1).去括号,得8-4x -60=3x -3.移项,得-4x -3x =-3-8+60.合并同类项,得-7x =49.两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程-=.0.4x -90.5x -520.03+0.02x0.03分析:由于和的分子、分母中含有小数,可利用分数的基本性质把0.4x -90.50.03+0.02x0.03小数化为整数,在式子的分子、分母中都乘以10,变为,在式子0.4x -90.54x -9050.03+0.02x0.03的分子、分母中都乘以100,变为,然后去分母,再按解一元一次方程的步骤求解.3+2x3解:分母整数化,得-=.4x -905x -523+2x3去分母,得6(4x -90)-15(x -5)=10(3+2x ).去括号,得24x -540-15x +75=30+20x .移项,得24x -15x -20x =540-75+30.合并同类项,得-11x =495.两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .C .2D .-4343解析:解方程3x +5=0,得x =-.53将x =-代入方程3x +3k =1,53得-5+3k =1,解得k =2,故应选C.答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________.解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8.答案:86.一元一次方程的常用解题策略我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程=x +1.34[43(12x -14)-4]32分析:注意到×=1,把乘以中括号的每一项,则可先去中括号,×-×43443343443(12x -14)34=x +1,再去小括号为x --3=x +1,再按步骤解方程就非常简捷了.32121432解:去括号,得x --3=x +1.121432移项,合并同类项,得-x =.174两边同除以-1,得x =-.174【例6-2】 解方程-=-.x +37x +25x +16x +44分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,=,5(x +3)-7(x +2)352(x +1)-3(x +4)12把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得=.化简,得=5(x +3)-7(x +2)352(x +1)-3(x +4)12-2x +135.-x -1012去分母,得12(-2x +1)=35(-x -10).去括号,得-24x +12=-35x -350.移项、合并同类项,得11x =-362.两边同除以11,得x =-.362117.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数.(2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-.116答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程+-x =的解,求k 的值.x -k 33k +26x +k2分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得+-(-2)=.-2-k 33k +26-2+k2去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ).去括号,得-4-2k +3k +2+12=-6+3k .移项、合并同类项,得-2k =-16.方程两边同除以-2,得k =8.课后作业【题01】下列变形中,不正确的是( )A .若,则.B .若则.25x x =5x =77,x -=1x =-C .若,则.D .若,则.10.2x x -=1012x x -=x ya a=ax ay =【题02】下列各式不是方程的是( )A .B .24y y -=2m n =C .D .222p pq q -+0x =【题03】解为的方程是( )2x =-A .B .240x -=5362x +=C .D .3(2)(3)5x x x---=275462x x --=-【题04】若关于的方程是一元一次方程,求的值.x 223(4)0n x n -+-=n 【题05】已知是关于的一元一次方程,则 .2(23)(23)1m x m x ---=x m =【题06】若关于的方程是一元一次方程,求的解.x 2(2||)(2)(52)0m x m x m -+---=m 【题07】若关于的方程是一元一次方程,则= .x 1(2)50k k xk --+=k 【题08】若关于的方程是一元一次方程,则= .若关于的x 1(2)50k k x k --+=k x 方程是一元一次方程,则方程的解= .2(2)450k x kx k ++-=x【题09】是关于的一元一次方程,且该方程有惟一解,则2(38)570a b x bx a ++-=x x =( )A .B .2140-2140C .D .5615-5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11(4)(3)34y y -=+【题12】解方程:122233x x x -+-=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20 343x--+=。
《一元一次方程及其解法》 知识清单
《一元一次方程及其解法》知识清单一、一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数是 1的整式方程。
形如$ax + b = 0$(其中$a$、$b$ 是常数,$a ≠ 0$)的方程就是一元一次方程。
这里要注意几个关键点:1、只含有一个未知数。
比如说方程$x + 2y = 5$ 就不是一元一次方程,因为它含有两个未知数$x$ 和$y$。
2、未知数的最高次数是 1。
像方程$x^2 + 3 = 0$ 就不是一元一次方程,因为未知数$x$ 的最高次数是 2 。
3、方程必须是整式方程。
比如方程$\frac{1}{x} + 2 = 0$ 就不是一元一次方程,因为它的分母中含有未知数,是分式方程。
二、一元一次方程的解能使一元一次方程左右两边相等的未知数的值,叫做一元一次方程的解。
求解一元一次方程的解的过程,实际上就是通过一系列的运算和变形,将方程化为$x =某个数$ 的形式,这个“某个数”就是方程的解。
三、一元一次方程的解法1、移项把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
例如,解方程$3x + 5 = 14$ ,我们可以通过移项将 5 移到等号右边,得到$3x = 14 5$ ,即$3x = 9$ 。
移项的依据是等式的基本性质 1:等式两边加(或减)同一个数(或式子),结果仍相等。
2、合并同类项将方程中含有相同未知数的项合并成一项。
比如在方程$5x 2x = 12$ 中,左边的$5x$ 和$-2x$ 是同类项,可以合并为$3x$ ,方程就变成了$3x = 12$ 。
3、系数化为 1将方程两边同时除以未知数的系数,使未知数的系数变为 1,从而得到方程的解。
继续上面的例子,方程$3x = 12$ ,两边同时除以 3,得到$x =4$ ,这就是方程的解。
四、解一元一次方程的一般步骤1、去分母如果方程中有分母,要先在方程两边同乘各分母的最小公倍数,去掉分母。
例如,方程$\frac{x}{2} +\frac{x}{3} = 1$ ,分母 2 和 3 的最小公倍数是 6,方程两边同乘 6,得到$3x + 2x = 6$ 。
一元一次方程的基本概念、解方程步骤以及练习题
一元一次方程一、主要概念1、方程:含有未知数的等式叫做方程。
2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。
3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。
4、解方程:求方程的解的过程叫做解方程。
二、等式的性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
三、解一元一次方程的一般步骤及根据1、去分母2、去括号3、移项4、合并5、系数化为16、验根四、解一元一次方程的注意事项1、分母是小数时,根据分数的基本性质,把分母转化为整数;2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;3、去括号时,不要漏乘括号内的项,不要弄错符号;4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。
五、列方程解应用题的一般步骤1、审题2、设未数3、找相等关系4、列方程5、解方程6、检验7、写出答案步骤去括号移项合并同类项两边同除以未知数的系数根据分配律、去括号法则移项法则合并同类项法则等式性质2注意事项①不漏乘括号里的项;②括号前是“-”号,要变号。
移项要变号系数相加,不漏项乘以系数的倒数a.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量b.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=r2h②长方体的体积V=长×宽×高=abcc.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.=3x-1 (7) = +1 (8) 3 - 1.2 x = x - 122 52x -1 x+2然后抓住数字间或新数、原数之间的关系找等量关系列方程.d.市场经济问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打 8 折出售, 即按原标价的 80%出售.e.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. f.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1g.储蓄问题利润= 每个期数内的利息本金×100% 利息=本金×利率×期数练习:(1)2x+5=5x-7(2) 4-3(2-x)=5x (3)3(x-2)=2-5(x-2)(4)3x-2=2x+1(5) 3(x - 2) + 1 = x - (2 x -1)(6)x 4 3 2(9) 3 y + 12 5 y - 7 = 2 -4 3(10) 1 - m 3 - 3m- = 12 41.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步课程˙一元一次方程一、等式(1)用等号“=”来表示相等关系的式子,叫做等式.(2)在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.(3)等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.一、方程方程:含有未知数的等式叫方程,如21x +=,它有两层含义:①方程必须是等式;②等式中必须含有未知数二、方程的解方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解,也叫方程的根。
三、一元一次方程 一元一次方程的概念:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.一元一次方程的形式:最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式. 标准形式:方程0ax b +=(其中0a ≠,a ,b 是已知数)叫一元一次方程的标准形式. 注意:⑴任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形(必须为恒等变换)为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.⑵方程ax b =与方程()0ax b a =≠是不同的,方程ax b =的解需要分类讨论完成四、一元一次方程的解法(一)等式的性质 等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.一元一次方程的概念及解法知识回顾知识讲解同步课程˙一元一次方程若a b =,则am bm =,a bm m=(0)m ≠注意:⑴在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边⑵等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同. ⑶在等式变形中,以下两个性质也经常用到: 对称性,即:如果a b =,那么b a =.传递性,即:如果a b =,b c =,那么a c =.又称为等量代换 易错点:等号左右互换的时候忘记变符号 (二)解一元一次方程的步骤 解一元一次方程的一般步骤:1.去分母:在方程的两边都乘以各分母的 最小公倍数 .温馨提示:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号. 2.去括号:一般地,先去 小括号,再去 中括号,最后去 大括号. 温馨提示:不要漏乘括号里的项,不要弄错符号.3.移项:把含有 未知数 的项都移到方程的一边, 不含未知数的项 移到方程的另一边. 温馨提示:⑴移项要变号;⑵不要丢项. 4.合并同类项:把方程化成ax b =的形式. 温馨提示:字母和其指数不变.5.系数化为1:在方程的两边都除以未知数的系数a (0a ≠ ),得到方程的解 bx a=. 温馨提示:不要把分子、分母搞颠倒.同步课程˙一元一次方程【例1】 下列各式中哪些是方程⑴7887⨯=⨯ ⑵2345x x ++ ⑶312y y -= ⑷60x = ⑸31x > ⑹111x =+ ⑺26x y -= ⑻2430y y -+=【变式练习】判断下列各式是不是方程⑴373x x -=-+ ⑵223y -= ⑶2351x x -+ ⑷112--=- ⑸42x x -=- ⑹152x y-=【例2】 检验下列各数是不是方程315x x -=+的解⑴3x =; ⑵1x =-【变式练习】检验下列各数是不是方程213x y x y ++=--的解⑴23x y =⎧⎨=-⎩ ⑵10x y =⎧⎨=⎩ ⑶02x y =⎧⎨=-⎩【例3】 若2-为关于x 的一元一次方程,713mx +=的解,则m 的值是 【变式练习】关于x 的方程320x a +=的根是2,则a 等于 【例4】 x=3是方程( )的解( )A .3x=6B .(x -3)(x -2)=0C .x (x -2)=4D .x+3=0同步练习同步课程˙一元一次方程【例5】 若⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的取值是( )A.5B.-5C.2D.1【例6】 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是【例7】 已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ). A.-2B.0C.32D.23 【例8】 若2-为关于x 的一元一次方程,713mx +=的解,则m 的值是 【变式练习】关于x 的方程320x a +=的根是2,则a 等于 【例9】 根据等式的性质填空:(1)4a b =-,则______a b =+; (2)359x -=,则39x =+ ; (3)683x y =+,则x =_________; (4)122x y =+,则x =__________.【例10】下列各式中,变形正确的是( ).A .若a b =,则a c b c +=+B .若(1)2a x -=,则21x a =- C .若2a b =,则4a b =D .若1a b =+,则221a b =+【例11】根据等式性质5=3x -2可变形为( ).A.-3x =2-5B.-3x =-2+5C.5-2=3xD.5+2=3x【变式练习】下列变形中,不正确的是( )A .若25x x =,则5x =B .若77,x -=则1x =-C .若10.2x x -=,则1012x x -= D .若x ya a =,则ax ay = 【变式练习】用适当数或等式填空,使所得结果仍是等式,并说明根据的是哪一条等式性质及怎样变形的.⑴如果23x =+,那么x =____________;根据 ⑵如果6x y -=,那么6x =+_________;根据 ⑶如果324x y -=,那么34x y -=______;根据⑷如果34x =,那么x =_____________;根据【例12】下列各式中:⑴3x +;⑵2534+=+;⑶44x x +=+;⑷12x=;⑸213x x ++=;⑹44x x -=-;⑺23x =;⑻2(2)3x x x x +=++.哪些是一元一次方程?【变式练习】下列方程是一元一次方程的是( ).A .2237x x x +=+ B .3435322x x -+=+ C . 22(2)3y y y y +=-- D .3813x y -=同步课程˙一元一次方程【变式练习】在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈⑴中,属于一次方程的序号填入圆圈⑵中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①359x +=:②2440x x ++=;③235x y +=:④20x y +=;⑤8x y z -+=:⑥1xy =-.【例13】关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________. 【例14】已知等式0352=++m x 是关于x 的一元一次方程,则m =____________. 【例15】已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________ . 【例16】若131m x -=是一元一次方程,那么m =【变式练习】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k =【变式练习】若关于x 的方程2223x x ax a x a -=-+是一元一次方程,则a = ,方程的解是 【变式练习】已知关于x 的方程(21)50n m x --=是一元一次方程,则m 、n 需要满足的条件为 【例17】下列等式中变形正确的是( )A.若31422x x -+=,则3144x x -=- B. 若31422x x -+=,则3182x x -+= C.若31422x x -+=,则3180x -+= D. 若31422x x -+=,则3184x x -+= 【例18】122233x x x -+-=- 【例19】方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-6【例20】将3(x -1)-2(x -3)=5(1-x )去括号得( )A.3x -1-2x -3=5-xB.3x -1-2x +3=5-xC.3x -3-2x -6=5-5xD.3x -3-2x +6=5-5x【例21】在解方程21-x −1332=+x 时,去分母正确的是( ) A.()()132213=+--x x B. ()()632213=+--x xC.13413=+--x xD. 63413=+--x x【例22】方程2-342-x =-67-x 去分母得( ) A.2-2 (2x -4)= -(x -7) B .12-2 (2x -4)= -x -7 C.12-2 (2x -4)= -(x -7) D .12-(2x -4)= -(x -7)(2)(1)⑤③①②(2)(1)同步课程˙一元一次方程【变式练习】解方程:⑴6(1)5(2)2(23)x x x ---=+ ⑵12225y y y -+-=-【变式练习】解方程:(1)3(3)52(25)x x -=--;(2)()()()243563221x x x --=--+; (3)135(3)3(2)36524x x ---=【例23】解方程:(1)5y -9=7y -13; (2)3(x -1)-2(2x +1)=12 ; (3)757875xx -=- ; (4)1213123x x x --+=-.先变形、再解方程本类型题:需要先利用等式的基本性质,将小数化为整数,然后再进行解方程计算 【例24】解方程:7110.2510.0240.0180.012x x x --+=-. 解:原方程可化为7110.251432x x x --+=- 去分母,得 .根据等式的性质( )去括号,得 .移项,得 .根据等式的性质( ) 合并同类项,得 .系数化为1,得 .根据等式的性质( )同步课程˙一元一次方程【例25】0.130.4120 0.20.5x x+--=【变式练习】解下列方程:⑴2 1.21 0.70.3x x--=;⑵0.40.90.10.50.030.020.50.20.03x x x+-+-=;⑶1(0.170.2)1 0.70.03xx--=⑷0.10.020.10.10.3 0.0020.05x x-+-=⑸422 30%50%x x-+-=⑹1(4)33519 0.50.125xxx+++=+⑺0.20.450.0150.010.5 2.50.250.015x xx++-=-⑻0.10.90.21 0.030.7x x--=逐层去括号含有多重括号时,去括号的顺序可以从内向外,也可以从外向内。