右行波的波动方程。

合集下载

15波动(横波、纵波、行波、简谐波、波长、波速、波动方程)

15波动(横波、纵波、行波、简谐波、波长、波速、波动方程)

t

x 20

m
得: u=20m/s
由 = uT = u/ ν = 20/200 = 0.1m
速度和加速度的公式如下:
v y A sin(t 2x / )
18
t
代入相应的量
v 2103 400 sin(400t 20x)
加速度为:
a v 2103 (400 )2 cos(400t 20x)
t x = 1m代入得
v 0.8 sin 400t(m / s) a 320 2 cos(400t)(m / s2 )
19
例2、对于柔软的绳索和弦线中横波波速为 u
F

F为绳索或弦线中张力; 为质量线密度
y(0,0)=0 v0>0 初位相为 φ= -π/2
X
0.2m 0.4m
y Acos(2 t 2x ) T 2
4102 cos(100t 5x
2)m
20
因为:v

y

y( x,

x) u
0
]
所以 v y y(x,t) 12.6cos(100t 5x)(m / s)
第六章
波动
1
6-1、波动学基础
波动是自然界最常见的一种运动形式。例如 机械波:水波、声波、地震波。其传播需要有介质。
电磁波:无线电波、光波、各种射线等,其传播无需 介质。
物质波:近代物理发现实物粒子也具有波性,即物质 波。
各种波性质不同,但又有共性。可以传递能量,可以 产生反射、折射、干涉、衍射等现象。以有限的速率 传播。
初位相不为0时:
y(x,t) Acos[(t x) ]

10-4~5~6驻波、多普勒效应

10-4~5~6驻波、多普勒效应

2 cos

2
cos

2
2π 2π y y1 y2 (2 A cos x ) cos t —— 驻波方程 T
驻波的振幅 从上式可看出: 合成以后各点都在作同周期的简谐 振动( 即驻波的周期还是原来波的周期 ) ;各点的振幅随 位置x 的不同而不同, 与时间 t 无关。
第十章 波动
由图得
A = 0.1m
y/cm 10
O -5
u
30 x/cm
坐标原点处质点的振动表达式为
0.6m 由图可知:

u

T
0.2m/s
该波波动表达式
2π x y x , t 0.1cos t 0.2 3
π m 2
第十章 波动
4
物理学
T 3
A yo 0.05 m 2 0 。 且有v o
1 t s 4
1 t s 4
o
2π 2π 1 π 2π t t 则 3 3 4 2 3
第十章 波动
2π ? 3

y(m)
3
物理学
第五版
π 2
2π rad / s 3
x y = 0.03cos 4 t - - u 2
第十章 波动
5
物理学
第五版
x 即: y 0.03cos 4 t - 0.20 2
将xo= - 0.05m 代入波动方程,得坐标原点O的振动方程:
0.05 yO 0.03cos 4 t 0.2 2 0.03cos 4 t 2
19

波动方程初值问题与行波法

波动方程初值问题与行波法

1 x at 1 u d 2 2a x at 1
1 arctan( x at ) arctan( x at ) 2a
例4: 求二阶线性偏微分方程初值问题的解
uxx 2uxy 3u yy 0 2 u | 3 x , u y | y 0 0 y0
2 F 3 x G x 3 x F ' 3 x G ' x 0
1 F 3x G x C 3
9 2 F 3x x C ' 4 G x 3 x 2 C ' 4
P( x, t )
依赖区间
x at
x at
x
区间 [ x at , x at ] 为解的依赖区间。
2.决定区域 该区域中任一点(x, t )的依 赖区间都落在区间[c, d]内 部,因此解在此该区域中的 数值完全由区间[c, d]上的 初始条件决定。
t
x c at
x d at
例5 求二阶线性偏微分方程的通解
uxx 2sin xuxy cos xuyy 0.
2
解:特征方程为
dy
2
2sin xdxdy cos x dx 0
2 2
dy dy 1 sin x 1 sin x 0 dx dx
G(x-at)=G(x0+at-at)=G(x0)
u2 G ( x ) ( t 0)
O
at
u2 G ( x at ) ( t t0 )
x0
x x0 at
x
u1 F ( x at )

波动方程的特征线法

波动方程的特征线法

作变换 1 ( x, y ), 2 ( x, y ),
在区域Ω上作此变换下,可化简方程(1),甚至可求得其解. 此变换称为特征变换.
例1 一端固定的半无界弦的自由振动问题
2u 2u a2 0 ( t 0,0 x ), 2 2 x t u t 0 : u ( x ), ( x ) ( 0 x ), t 0 t t 0 x 0 : u 0.

举例
2u 2u a 2 2 , x R, t 0 t 2 x u ( x, 0) 1, xR 2 ut ( x, 0) x ,
例4:
例5:
2u 2u a2 2 , 2 x t u ( x,1) cos x, ut ( x,1) 0,
例2:
2u 2u 2 a2 2 0 t x u t 0 cos x, ut t 0 x
解:由达朗贝尔公式
( x at) ( x at) 1 x at u ( x, t ) ( )d 2 2a xat
cos(x at) cos(x at) 1 x at d 2 2a x at
此公式的意义在于把定解问 题的解表示为左、右行进波 相叠加,这种方法称为“行 波法”。
D’Alembert公式
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at
注 : 当 ( x ) C 2 ( R ), ( x ) C 1 ( R )时, 初值问题( I )存在唯一的解 u( x , t ),由d ' Alembert 公式给出.

达朗贝尔波动方程

达朗贝尔波动方程

达朗贝尔波动方程引言达朗贝尔波动方程(D’Alembert’s wave equation)是描述波的传播和振动的一种数学方程。

它在物理学和工程学的各个领域中都有广泛的应用。

本文将从基本概念、方程的推导、特解以及应用等方面深入探讨达朗贝尔波动方程。

一、基本概念1. 波动波动是指能量在介质或空间中传播的过程。

波可以是机械波、电磁波等不同类型的波动。

波动可以通过振动产生,并以波的形式传递能量。

2. 波动方程波动方程是描述波动过程中物质或场的运动状态的方程。

达朗贝尔波动方程是一维波动方程的一种形式,可用于描述沿一条方向传播的波。

二、方程的推导达朗贝尔波动方程可从牛顿第二定律和胡克定律推导得到。

设在一根弦上的波动,假设弦是均匀的、细长的、不可延伸的,并忽略重力效应。

则在弦元上的受力可表示为:dF=T⋅∂2y ∂x2dx其中,y表示弦元的垂直偏移量,x表示弦元所在位置,T表示弦的张力。

根据牛顿第二定律,弦元的加速度与受力之间存在关系:∂2y ∂t2=Tμ⋅∂2y∂x2其中,t表示时间,μ表示弦的线密度。

由于波沿弦方向传播,假设波的传播速度为v,即:v=dx dt将上述关系带入方程中,得到达朗贝尔波动方程:∂2y ∂t2=v2⋅∂2y∂x2三、特解1. 没有边界当弦的两端没有固定边界时,方程的特解可表示为:y=f(x±vt)其中,f表示初始的波形,正负号分别表示波向左或向右传播。

2. 有边界当弦的两端有固定边界时,方程的特解可表示为:y(x,t)=R(x−vt)+S(x+vt)其中,R和S分别表示左右边界处波的反射情况。

四、应用达朗贝尔波动方程在各个领域都有广泛的应用,如声学、电磁学等。

下面以声学为例,介绍其应用。

1. 空气中的声波传播空气中的声波传播可以用达朗贝尔波动方程进行描述。

如果在一个封闭空间中有声源产生声波,声波将通过空气传播,并在封闭空间的各个位置上引起压强的变化。

通过解达朗贝尔波动方程,可以得到声波在空气中的传播速度、频率和波长等参数。

波动方程标准式各参数意义

波动方程标准式各参数意义

波动方程标准式各参数意义
波动方程的标准式通常表示为:
∂²u/∂t² = v²∂²u/∂x²
在这个方程中,各参数的意义如下:
• u:表示波动的物理量,通常是指波动的位移或振幅。

该方程描述了这个物理量随时间和空间的变化。

• t:表示时间,是波动过程中的独立变量。

方程中的∂²u/∂t²表示物理量在时间上的二阶导数,描述了物理量随时间变化的加速度。

• x:表示空间的位置,是波动过程中的独立变量。

方程中的∂²u/∂x²表示物理量在空间上的二阶导数,描述了物理量在空间中的曲率或变化率。

• v:表示波速,是波动在媒介中传播的速度。

它决定了波动的传播速度和性质。

波速与媒介的性质有关,不同媒介中的波速可能不同。

通过这个方程,可以描述各种类型的波动现象,例如声波、光波、机械波等。

它描述了波动的传播行为和演化规律,可以用于分析波动现象的特性和预测波动的行为。

需要注意的是,上述方程是一个简化的形式,适用于一维波动的情况。

对于更复杂的波动情况,例如二维或三维的波动,方程形式可能会有所不同。

此外,具体问题中的物理量和参数可能会有所不同,需要根据具体情况进行适当调整和解释。

1/ 1。

波动方程或称波方程

波动方程或称波方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。

波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域.历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。

波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足:这里c通常是一个固定常数,代表波的传播速率。

在常压、20°C的空气中c为343米/秒(参见音速).在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大.而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒.在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。

此时,c应该用波的相速度代替:实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程:另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。

这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。

三维波动方程描述了波在均匀各向同性弹性体中的传播。

绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。

在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波:式中:•和被称为弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants 或 Lamé moduli),是描述各向同性固体弹性性质的参数;•表示密度;•是源函数(即外界施加的激振力);•表示位移;注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。

波动光学总结[1]

波动光学总结[1]

ξ
u
O B
.A .D . .
C
x
4. 一平面简谐波,沿 x 轴负方向传播,圆频率为 ω, 波速为 u .设 t =T/ 4 时刻的波形如图所示,则该波的 表达式为[ D ]
( A) y A cos( t x u). ( B) y A cos (t x u) 2.
(C) y A cos (t x u). ( D) y A cos (t x u) .
2,惠更斯原理作图法解释双折射现象
一.选择题
练习
1. 一质量为m的物体挂在劲度系数为k的轻弹簧下面, 振动角频率为.若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是
(A) 2 . (C) / 2 (B)
2
(D)/2.
[ B]
2. 若一平面简谐波的波动方程为 y 式中 A, B, C 为正值恒量,则[ C ] (A) 波速为 C . (C) 波长为 2π/ C .
dW 能量密度 w dV
1 T 1 平均能量密度: w wdt 2 A2 T 0 2 dW 能流P:单位时间内通过某一面积的能量. w dt 平均能流: 单位时间内通过的平均能量.
平均能流密度 (波的强度):单位时间内通过垂 直于波线单位面积的平均能量. dW 1 2 A2u I dtds 2 (三)机械波的反射和折射
o P f L 2
(1) 同心圆环:内疏外密 中心级次最高 i i (2)中心处: 膜厚每增加 e 2n
1 S 就冒出一个亮斑. i i D n A n > r C n B
e
干涉条纹
二,光的衍涉 光的衍射:光在传播过程中遇到障碍物能绕过障 碍物传播的现象. 惠-菲原理:波阵面上各点都可看成发射子波的波 源,衍射时波场中各点的强度由各子波 在该点的相干叠加决定 分类:

大学物理课后习题答案第五章

大学物理课后习题答案第五章

大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。

第2章波动方程

第2章波动方程
引理证毕。
2.齐次方程的初值问题(Cauchy 问题)
考察问题
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x,0) = ϕ (
0,
x)
,
ut
( x,0)
x ∈ \, t > 0,
=ψ ( x), x∈\.
利用齐次波动方程的通解表达式:
(1.1)
u( x, t ) = F ( x − at ) + G ( x + at ) ,
u = F ( x − at ) , a > 0
显然是弦振动方程的解。给 t 以不同的值,就可以看出作一维自由振动的物体在各时刻的相
应位置。在 t = 0 时, u = F ( x ) 对应于初始的振动状态,而 u = F ( x − at ) 作为 ( x, u ) 平
面 上 的 曲 线 是 曲 线 u = F ( x ) 向 右 平 移 了 at 个 单 位 , 所 以 齐 次 弦 振 动 方 程 的 形 如
=
1 2a
⎧∂
⎨ ⎩
∂t
ϕ x+at (ξ )dξ +
x − at
ψ x + at

)dξ
⎫ ⎬
.
x − at

u2 满足非齐次方程的初值问题
4
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x, 0) = 0,
f ut
( (
x, x,
t), 0) =
x∈ 0,
\
, t> x∈
0, \.
为了求解(1.4),首先求解
条件无关。称这个三角形区域为区间 ⎡⎣ x1 , x2 ⎤⎦ 的决定区域。

数学物理方程03_波动方程初始问题的求解【OK】

数学物理方程03_波动方程初始问题的求解【OK】
(3.1.4)源自(3.1.5)17
数学物理方程
将上述初始条件代入达朗贝尔公式,即可得到:
x at x 1 1 [ ( x at ) ( x at )] ( s ) ds , t 2 a x at 2 a u ( x, t ) 1 [ ( x at ) (at x)] 1 x at ( s )ds, t x 2 2 a at x a
( x at ) 代表以速度a 沿x 轴负向传播的波
1
1 x at b. 只有初始速度时: u ( x, t ) ( )d x at 2a
u( x, t ) 1 ( x at ) 1 ( x at )
1 ( ) 为 ( ) 的积分原函数。
结论:达朗贝尔解表示沿x 轴正、反向传播的两列波速
第 3章
波动方程初始问题的求解
——行波法 (达朗贝尔公式) (特征线积分法)
1
数学物理方程
达朗贝尔公式(行波法)[一维问题]
通解法中有一种特殊的解法―行波法, 即以自变量的 线性组合作变量代换,进行求解的一种方法,它对波动方 程类型的求解十分有效. 1 基本思想: 先求出偏微分方程的通解,然后用定解条件确定特解。 这一思想与常微分方程的解法是一样的。 2 关键步骤: 通过变量变换,将波动方程化为便于积分的齐次二阶 偏微分方程。
代入通解得: u( x, t ) [ ( x at ) ( x at )]

x at
x at
( s)ds
达朗贝尔公式
(3.1.2) 5
数学物理方程
(4)达朗贝尔公式的意义: a. 只有初始位移时,u ( x, t ) ( x at ) ( x at ) 2 ( x at ) 代表以速度a 沿x 轴正向传播的波

物理学教程(第二版)上册课后答案第六章

物理学教程(第二版)上册课后答案第六章

第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为π (B )B 点静止不动 (C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率υ、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质 的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示.x =1.0m 处质点的运动方程为 ()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为 ()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-6-7 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ20 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ20 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λυ;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度υ=d y /d t .解 (1) 从图中得知,波的振幅A =0.10 m ,波长λ=20.0m ,则波速u =λυ=5.0 ×103 m·s-1 .根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =7.5m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =0.20m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x =1.0 m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A =0.40 m,t =0 时位于x =1.0 m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) rad .s -1 .由上述特征量可写出x =1.0 m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x =1.0 m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x =1.0 m 处的运动方程作比较,可得φ0 =-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y 6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2) 离波源0.80 m 及0.30 m 两处的相位差. 解 (1)将t =2.1 s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t =2.1 s 和x ′=0.10 m 代入题给波动方程,得0.10 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ=1.0 m .这样,x 1=0.80 m 与x 2=0.30 m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗4.0 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源5.0 m 和10.0 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 =5.0 m 、r 2 =10.0m 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距30.0 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /υ=4.0 m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m ,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1 )题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1 在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d =2.00 mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===d u u λν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ=1.3 kg·m -3 )中以u =340 m·s -1 的速度传播,到达人耳时,振幅约为A =1.0 ×10 -6 m .试求波在耳中的平均能量密度和声强.解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约1.0×10-6W·m -2 左右. 6-18 面积为1.0 m 2 的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 =1.0 ×10-12 W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS .解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为 P =IS =10L I 0S =1.0 ×10-4 W6-19 一警车以25 m·s -1 的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1 的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1 )分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1 运动时,静止于路边的观察者所接收到的频率为s u u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su u v v υ 警车驶离观察者时,式中υs 前取“+”号,故有 Hz 7.7432=+='s u u v v υ (2) 客车的速度为0υ=15 m·s -1 ,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ 6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40s u =υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为400u =υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为s υ-='u uvv ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz 41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u u v u u v u u v υυυυυ。

第三十七讲9-5 驻 波

第三十七讲9-5 驻  波

第三十七讲:§9-5驻波一、驻波的形成1、驻波形成的条件:在同一直线上相向传播的两列同振幅、频率、波速的波的叠加,是一种波的干涉现象。

2、图示3、特点:其波形不变,与行波不同;不是振动的传播,而是媒质中各质点都作稳定的振动。

二、驻波的波动方程右行波:左行波:合成波:)(2cos1λνπxtAy-=)(2cos2λνπxtAy+=()()t y x AtxAyyy==+=πνλπ2cos2cos221其中()x A x A=λπ22为驻波的振幅,是x 函数;()t y t =πν2cos 为质点作简谐振动,是t 函数。

1、驻波振幅的分布特点——波腹与波节①波腹公式:推导:当12cos=x λπ,()A x A 2=,振幅最大,为波腹。

12cos =x λπ⇒πλπk x ±=2 ⇒ 2λk x ±= ,2,1,0=k②波节公式:推导:当02cos=x λπ,()0=x A ,振幅最小,为波节。

02cos =x λπ⇒()2122πλπ+±=k x ⇒ ()412λ+±=k x ,2,1,0=k③两个相邻波腹(波节)之间的间距 21λ=-=∆+k k x x x2、驻波相位的分布特点①波节两侧点的振动相位相反,即相位差为π。

,,,k kx 2102=±=λ(),2,1,0412=+±=k k x λ②波节之间点的振动相位相同。

即相位差为π2。

③各质点的振幅一定,仅在平衡位置附近做往复运动,顾其波形不变。

3、驻波的能量驻波振动中无位相传播,也无能量的传播。

一个波段内不断地进行动能与势能的相互转换,并不断地分别集中在波腹和波节附近而不向外传播。

①波节处主要集中于势能(越靠近波节就越大,∵dx dy E P ∝)。

②波腹处主要集中于动能(越靠近波腹就越大,∵221υm E k =)。

③其他各质点是动能和势能共存。

④驻波不传递能量,与行波不同。

15波动(横波、纵波、行波、简谐波、波长、波速、波动方程)

15波动(横波、纵波、行波、简谐波、波长、波速、波动方程)
密度。
•液体和气体中 纵波 u B / B 容变弹性模量。
六、注意几点
1、周期、频率与介质无关,与波源的相同。 波长、波速与介质有关。
2、不同频率的同一类波在同一介质中波速相同。
3、波在不同介质中频率不变。
9
4.振动与波动的区别 •振动是表示一个质点的运动。 •波动是表示一系列质点所作的运动。
初位相不为0时:
y(x,t) Acos[(t x) ]
u
2 , 代入
T
y

A cos 2 Tt
x Tu




Tu 代入
y

A
cos 2 Tt

x





1 代入
T
y

A
cos2



t

x

t
显然质点振动速度与波速 u = 20m/s 不同。
上例中条件是已知 t = 0 时刻的波动方程。
如果t = 0时,波源 x = 0 点的振动方程为:
y 4102 cos(100t 2)m
波速不变。波动方程应该如何写?
y 4102 cos(100t 5x 2)m x>0
o
t
y x /4
o
t
y x /2
o
t
y x 3 / 4
o
t
15
3.当 t c
(常数)时 ,y f (x)
为某一时刻各质点 的振动位移,波形 的“拍照”
y t 0
o
x
y t T /4
o
x
y t T /2

波动方程

波动方程

波动方程或波动方程是重要的偏微分方程,主要描述自然界中的各种波动现象,包括横波和纵波,如声波,光波,无线电波和水波。

波动方程是从声学,物理光学,电磁学,电动力学,流体力学和其他领域中抽象出来的。

历史上许多科学家,例如D'Alembert,Euler,daniel bernoulli和Lagrange,在研究乐器和其他物体中的弦振动时对波动方程理论做出了重要贡献。

1746年,达朗伯(D'Alembert)发现了一维波动方程,而欧拉(Euler)在接下来的10年中发现了三维波动方程。

一维波动方程可以推导如下:一系列质量为m的小颗粒,相邻颗粒通过长度为h的弹簧连接。

弹簧的弹性系数(也称为“顽固系数”)为k:
从上面的形式可以看出,如果F和G是任意函数,则它们以以下形式组合必须满足原始方程式。

上述两项分别对应于两行行波(“线”和“动作”中的谐音器)-F表示通过该点(点X)的右行波,G表示通过该点的左行波。

为了完全确定f和g的最终形式,应考虑以下初始条件:波动方程的著名D'Alembert行波解,也称为D'Alembert 公式,是通过进行以下运算获得的:在古典意义上,如果然后。

但是,行波函数f和g也可以是广义函数,例如Diracδ函数。

在这种情况下,行波解应视为左行或右行中的脉冲。

基本波方程是线性微分方程,也就是说,同时受到两个波的点的振幅是两个波的振幅之和。

这意味着可以通过将一系列波动分解为其解决方案来有效地解决该问题。

另外,可以通过分离每个分量来分析波,例如,傅立叶变换可以将波分解为正弦分量。

波动方程ppt课件

波动方程ppt课件
∴ B为原点的波动方程:
10m
5m
· · · 0
AB
x
y B
=5cosπ
t

x +5
20
(a)
=5cosπt- x2+05π =5cosπt - x2π0 -π4
B为原点的波动方程:
y B
=5
cos
πt

x2π0 -π4
=5cosπ(t - 2x0)-π4 (m)
因为是右行波,0点的振动相位超
前A点的振动相位,而且相距10m
式中A、B 、C 为正常数,求波长、波速、波 在传播方向上相距为d 的两点间的相位差。
例题:平面简谐波的波函数为:
y =A cos(Bt-Cx )
式中A、B 、C 为正常数,求波长、波速、波 在传播方向上相距为d 的两点间的相位差。
解:
y
=A cos(Bt-Cx
)
=A cosB(t-
x B
)
以上式对照波动方程的标准像
y
o
u
· A P
注意: 波动图的纵横坐标
分别为x、y。它们表示振动 状态传到的地方和振动质 x 点离开平衡位置的距离。
x
在此时间t 是隐函数,
不在波形图上。
已知振源(波源)
的振动方程为: y =A cos(ω t +j ) 0
1.时间推迟方法
1.时间推迟方法
y
u
o
· A P
x
已知振源(波源) 的振动方程为:
y(m)
0
u
5 .12
解: 上坡下行
下坡上行
x (m)
0点在t 稍>0 时
过平衡位置向y 负方向运动

数学物理方法16.1 行波法1-波动方程

数学物理方法16.1 行波法1-波动方程
x at
( )d xat
a[ f1(x at) f1(x at)] a[ f2 (x at) f2 (x at)]
1
x at
( )d
a xat
[ f1(x at) f2 (x at)] [ f1(x at) f2 (x at)]
确定待定函数(法二)
待求的?
1
x
(v)dv
0
f1(0) f2 (0) 2
能消去吗?
f2
(
x)
(x) 2
1 2a
x
(v)dv
0
f1(0) f2 (0) 2
待求的解为
u f1 (x at) f2 (x at)
确定待定函数(法一)
f1
(x)
(x) 2
1 2a
x
(v)dv
0
f1(0) f2 (0) 2
(x) 1
那么,可得原问题的解为
u(x,t) 1 [(x at) (x at)] 1
x at
(v)dv
2
2a xat
确定待定函数(法二)
(x) (x)
f1(x) f2 (x) af1(x) af 2(x)
有何关联?
观察第一个方程,和待求解 u f1(x at) f2 (x at)
上述方程组中:4个待定函数,3个方程, 因此,不能直接求解各个待定函数。
u f1(x at) f2 (x at) 整体思想
确定待定函数(法二)
(x at) (x at)
[ f1(x at) f2 (x at)] [ f1(x at) f2 (x at)]
1
x at
( )d
行波法:算例1
2u u(tx2 ,0)

平面简谐波的波函数

平面简谐波的波函数

解 确定坐标原点的 Y
振动初相0
A
由图知:t=0时, A/2
u=100m /s
x=0处的质点位于
0
1
X(
A/2处 且向位移正方向运动
-A
m)
由图知:t=0时, x=1m处的质点位于平 衡位置处且向位移负方
向运动
第十章 波动
21
物理学
第五版
0
π 3
,
2.4m,
u 100(m/s)
T /u 0.024s
在 理学
第五版
左行波的波函数:
p点的相位超前于O点相位:
所以 p点的振动方程,也就是左行波的波函数为:
第十章 波动
6
物理学
第五版
波函数的几种常用形式
第十章 波动
7
物理学
第五版
演示实验安排
周三 第3节 7班 第4节 8班
第十章 波动
8
物理学
第五版
二 波函数的物理含义
1 x一定,t变化

确定坐标原点的振动初相0
由:t=0时,x=0处的质点位于-A/2处 且向位移的负方向运动,知
第十章 波动
18
物第理五例版学 4.一平面简谐波,波长为12m,沿 ox轴负向传播. 图(a)所示为x=1.0m处质点的振动曲线,求波动方 程。
解:t=0时此质点的相位
0.40 0.20
5.0
t/s
t=5s时质点第一次回到平
第十章 波动
28
物理学
第五版
(1/4) 2A2
o
EP Ek
Y
WpWk x = x0
Tt
y
第十章 波动
t

驻波条件公式

驻波条件公式

驻波条件公式
条件:两列传播方向相反、振动方向相同、振幅相同、频率相同。

在波形上,波节和波腹的位置始终是不变的,给人“驻立不动”的印象,但它的瞬时值是随时间而改变的。

如果这两种波的幅值相等,则波节的幅值为零。

沿x轴正方向传播的波称为右行波,波动方程为
y1=Acos2π(t/T-x/λ)( 1)
沿x轴负方向传播的波称为左行波,波动方程为
y2=Acos2π(t/T+x/λ)( 2)
合成后的驻波方程为式为
y=y1+y2=2Acos2π(x/λ)cos2π(t/T) ( 3)
可见,合成后的波上的任何一点都在做同一周期的简谐振动。

扩展资料:
对于管中的驻波,当声波传播到闭口端时同样发生反射,入射波和反射波叠加形成驻波。

由于弦的固定端和管的闭口端相当于波在传输过程中遇到的障碍物,因此对于波在弦的固定端和管的闭口端发生反射是比较容易接受的。

相邻两波节间的水平距离仍为半个波长,因此驻波的波面包含一系列的波腹和波节,腹节相间,波腹处的波面的高低虽有周期性变化,但此断面的水平位置是固定的,波节的位置也是固定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波速与介质的关系 通过波在介质中传播的动 力分析,再与波动方程相 比较,可得波的传播速度 的大小只取决于介质的弹 力与质元惯性。
2 y 2 x A 2 cos t 2 x u u 由上两式有:
e.g.流体中的纵波(如声波) K u , K是体积模量
是无声波时的流体 2 y 1 2 m y 2 RT pV 2 2 理想气体中的纵波(声波)速 x u t Mm
10
x
u t
x 五、波动微分方程
y x A sin t t u y x A sin t x u u 2 y x 2 A cos t 2 t u
x 由 y A cos t u

1
3.
§5-2 平面简谐波的波动方程(波函数) y0 A cos(t 0 ) 横波
纵波
y
二. 简谐波(harmonic waves) 波源作简谐振动
平面简谐波: (plane harmonic waves) 三.平面简谐波的波动方程 波动方程的一般表示:
O
u
p
X
x
y yt , x ----波函数

p点的相位超前于O点相位: x 2x u 则: p点的运动方程,
也就是左行波的波方程. x y( x , t ) A cos[ ( t + ) 0 ] u
7
四、波动方程的物理意义 1. x = x 0 (常数)
y( t ) A cos(t
表示在 t 1 时刻的波形
波的动力学微分方程 波速与介质的关系 通过波在介质中传播的动 力分析,再与波动方程相 比较,可得波的传播速度 的大小只取决于介质的弹 力与质元惯性。
P RTm RT u VM m Mm


Cp Cv
,
P---压强,ρ---质量密度
M m----摩尔质量
12
x y( x , t ) A cos[ ( t ) 0 ] u
y0 A cos(t 0 )
y
u
p
X
O
x
2 / T
u /T
y( x , t ) A cos[(t 0 )
2 x

]
即p点的相位落后于O点 相位:2x
y表示各质点在Y方向上 是 的位移,A是振幅, 0为 角频率或叫圆频率, O点在零时刻的相位。 O点运动传到p点需用时间 P点比O点相位落后
五、波动微分方程
y x A sin t t u y x A sin t x u u 2 y x 2 A cos t 2 t u
11
x 由 y A cos t u
y( x x, t t )
y
5
2 ( x x ) A cos[ (t t ) 0 ] 左行波的波函数 y0 A cos(t 0 ) 2x A cos[t 0 2 ( ut x )] 若这两处相位相同,则有: p点的相位超前于O点相位:


15
4 2s 1 2

u
10m
4 2s 1 2

u

10m
(1).以A为原点其振动方程 yA = 3cos4π t (SI) 波动方程 x y 3 cos 4 ( t ) u 3 cos(4t x )(SI ) [1] 5 (2)以A为原点,求C 、 D 点的振动方程(方法?) 法①把xc=-13, xD=9m 代入波动方程[1]
x 2x u
四、波动方程的物理意义 1. x = x 0 (常数)
y( t ) A cos(t
讨2
x 0
u
0 ) 0 )
左行波的波函数 y0 A cos(t 0 )
A cos(t 2
x0
表示 x0处质点的振动方程 x0 处质元的振动速度 x0 y A sin ( t ) t u ※不同于波传播的速度u ! 2. t = t1 (常数) x y( x ) A cos[ ( t1 ) 0 ] u
y( x x, t t )
讨论2
y( x x, t t ) y( x, t )
2x
y( x , t ) A cos(t
波速就是相位传播的速度!
6
2 ( ut x ) 0
0 )
则: p点的运动方程, 也就是左行波的波方程. x y( x , t ) A cos[ ( t + ) 0 ] u
8
表示 x0处质点的振动方程

3. t 与 x 都发生变化
y
x A cos[ ( t ) 0 ] u
表示在 t 1 时刻的波形
yP
x
y
yQ
ut
x
o
x
设t时刻位于质点P点的 这表示在 t时刻 x处的位移 位移为: x y P, 在经过t 时间后,同样的 y P A cos[ ( t ) 0 ] 位移发生在 x 处,波向前传播 u 了ut的距离,即某一固定位 经过△t时间后,P点的振动 传到 x ut 处的 Q 点, 相传播了ut 的距离。 波形沿传播方向前进 行波 y A cos[ ( t t x ut ) ] Q 0 (traveling waves) u
若视空气分子为理想气体, 声波在空气中的传播可看 成绝热过程. 空气的γ =1.4 , Mm=28.9g· mol-1
e.g.流体中的纵波(如声波) K u , K是体积模量
是无声波时的流体
理想气体中的纵波(声波)速
P RTm RT u VM m Mm

0℃时, u =331 m· s- 1 20℃时, u = 343 m· s- 1
• • • • C D x B A 解:已知 u=20m/s, ω=4π
14
8m
5m
9m
例题 一平面简谐波以速率 u = 20m/s沿直线传播. 已知 (1).以A为原点其振动方程 在传播路径上某点A的简谐 yA = 3cos4π t (SI) 运动方程为y =3cos4πt (SI). 波动方程 (1)以点A为坐标原点, 写出 x y 3 cos 4 ( t ) 波动方程. u (2)写出传播方向上点C、 3 cos(4t x )(SI ) [1] 点D的简谐运动方程; 5 (3)以距点A为5m处的点B为 (2)以A为原点,求C 、 D 坐标原点, 写出波动方程; 点的振动方程(方法?) u 法①把xc=-13, xD=9m 8m 5m 9m • • 代入波动方程[1] • • C D x B A 13 yC振 3 cos 4 t 解:已知 u=20m/s, ω=4π 5
x 0
u
y
0 ) 0 )
A cos(t 2
x0
o
x
设t时刻位于质点P点的 x0 处质元的振动速度 位移为: x x0 y A sin ( t ) y P A cos[ ( t ) 0 ] t u u ※不同于波传播的速度u ! 经过△t时间后,P点的振动 传到 x ut 处的 Q 点, 2. t = t1 (常数) x x ut ) 0 ] y( x ) A cos[ ( t1 ) 0 ] yQ A cos[ ( t t u u
§5-2 平面简谐波的波动方程(波函数)
一.机械波的产生和传播 3. 横波 纵波 机械振动在弹性介质 中的传播称为机械波。 二. 简谐波(harmonic waves) 1.产生条件: 波源; 媒质 波源作简谐振动 2. 波的特征 平面简谐波: (1)质元并未“随波逐流”. (plane harmonic waves) (2) “上游”的质元依次带 三.平面简谐波的波动方程 波动方程的一般表示: 动 “下游”的质元振动 (3) 某时刻某质元的振动 y y t , x ----波函数 状态将在较晚时刻于 平面简谐波的波函数: “下游”某处出现--设波源O点振动表达式: 波是振动状态的传播。

Cp Cv
,
P---压强,ρ---质量密度
M m----摩尔质量
13
若视空气分子为理想气体, 声波在空气中的传播可看 成绝热过程. 空气的γ =1.4 , Mm=28.9g· mol-1
0℃时, u =331 m· s- 1 20℃时, u = 343 m· s- 1
例题一平面简谐波以速率 u = 20m/s沿直线传播. 已知 在传播路径上某点A的简谐 运动方程为y =3cos4πt (SI). (1)以点A为坐标原点, 写出 波动方程. (2)写出传播方向上点C、 点D的简谐运动方程; (3)以距点A为5m处的点B为 坐标原点, 写出波动方程; u
y表示各质点在Y方向上 是 的位移,A是振幅, 0为 角频率或叫圆频率, O点在零时刻的相位。 O点运动传到p点需用时间
平面简谐波的波函数:
设波源O点振动表达式:
2
x t u P点比O点相位落后
x u P点在t时刻的位移等于原点 处质点在 t x时刻的位移 u p点的振动方程:
9
x
3. t 与 x 都发生变化
y
x A cos[ ( t ) 0 ] 4. 波动方程反映了波的时间、 u 空间双重周期性(T , ) y P yQ 5. 波动方程反映了波是振动 状态的传播
x
这表示在 t时刻 x处的位移 y P, 在经过t 时间后,同样的 位移发生在 x 处,波向前传播 了ut的距离,即某一固定位 相传播了ut 的距离。 波形沿传播方向前进 行波
相关文档
最新文档