五年级奥数练习(中难度)
五年级奥数题练习及答案(55题)
五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是。
4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。
参加E组的人数最少,只有4人,那么,参加B组的有人。
6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。
摘完其余部分后,又装满6筐,则共收得西红柿千克。
7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。
因而提前3天完成任务。
这条路全长千米。
8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。
9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。
如6=3+3,12=5+7,等。
那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。
那么2008号运动员比赛了场。
11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。
若用这个自然数除以6,得余数。
五年级奥数试题及答案
五年级奥数试题及答案五年级奥数试题及答案奥数的题目难度一般比较大,多做一些奥数题,能够开发我们的大脑,活跃我们的思维。
接下来就看看小编整理的五年级奥数试题,看看你得出答案吧。
1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米 ?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7 甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇17、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时 9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。
小学奥数竞赛专题:五年级奥数中等难度练习题二
பைடு நூலகம்
三角形面积:: (中等难度)
右图是由大、小两个正方形组成的,小正方形的边长是
4 厘米,求三角形 ABC的面积. [来源:学科网]
三角形面积答案::
这道题似乎缺少大正方形的边长这个条件, 实际上本题的结果与大正方形的边长没关系.连接
AD(见
右上图),可以看出,三角形 ABD与三角形 ACD的底都等于小正方形的边长,高都等于大正方形的边长,
年龄:: (中等难度) 现在哥哥的年龄恰好是弟弟年龄的 2 倍。 而 9 年前哥哥的年龄是弟弟年龄的 5 倍,则哥哥现在的年龄
是__________岁。
年龄答案:: [ 来源 :学学科科网网 ZXXK] 把弟弟 9 年前的年龄看作是 1 份,那么哥哥 9 年前的年龄是 5 份,年龄之差为 4 份。现在弟弟的年 龄为 "1 份加上 9 岁" ,哥哥的年龄是弟弟年龄的 2 倍,所以年龄之差为 " 份加上 9 岁" ,所以 1 份的年龄 为 9÷( 4-1 )=3 岁,哥哥现在的年龄为 3×5+9=24 岁。
7.3 米,分别所用的时间是 6,7,8 分
钟,所以三只蚂蚁的速度之比为: 28:24:21 ,注意题目中有一个条件,就是第一次出发的时候,他们是同
所以二等奖有 13 名。
【小结】根据题意列出方程组,解不定方程需要尝试未知数的值。
圆形跑道问题::(中等难度)
有甲、乙、丙三人,甲每分钟行走 120 米,乙每分钟行走 100 米,丙每分钟行走 70 米。如果三人同
时同向从同地出发,沿周长是 300 米的圆形跑道行走,那么分钟之后,三个人又可以相聚。
数论问题:: (中等难度)
五年级奥数题及答案:蚂蚁爬洞穴问题(中等难度)
五年级奥数题及答案:蚂蚁爬洞穴问题(中等难
度)
编者小语:“题海无边,题型有限”。
学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题蚂蚁爬洞穴问题(中等难度),可以帮助到你们,助您快速通往高分之路!!
蚂蚁爬洞穴问题:(中等难度)
甲、乙、丙三只蚂蚁从A,B,C三个不同的洞穴同时出发,分别向洞穴B,C,A爬去。
同时到达后,继续向洞穴C,A,B爬去,然后分别返回自己的洞穴。
如果甲、乙、丙三只蚂蚁爬行路径相同,爬行的总局里都是7.3米所用时间分别是6分钟、7分钟和8分钟,则蚂蚁乙从洞穴B到达洞穴C时爬行了( )米,蚂蚁丙从洞穴C到达A时爬行了( )米。
蚂蚁爬洞穴答案:
如图
三个洞穴,根据题意可知,三只蚂蚁都走了一圈,总路程是7.3米,分别所用的时间是6,7,8分钟,所以三只蚂蚁的速度之比为:28:24:21,注意题目中有一个条件,就是第一次出发的时候,他们是同时到达,说明:他们所用时间是相同的。
那么AB:BC:CA路程比就等于他们的速度比,28:24:21。
即BC=7.3×24÷(28+24+21)=2.4。
CA=21/(28+24+21)×7.3=2.1。
【小结】找出题目中的条件,本题是根据行程问题中的比例关系求解,当时间相同时,路程与速度成正比的关系,当路程相同时,速度与时间成反比,当速度相同时,时间与路程成正比。
奥数最难练习题
奥数最难练习题(正文)奥数最难练习题在奥数(即数学奥林匹克)竞赛中,参赛选手需要解决各种各样的数学问题,其中有一类问题被普遍认为是最具挑战性和难度最高的,这些问题常常被称作“奥数最难练习题”。
在本文中,我们将探讨一些经典的奥数最难练习题并讨论解决它们的方法。
难题一:费马大定理费马大定理是一个广为人知的数学难题,它被认为是奥数中最困难的问题之一。
这一定理最初由法国数学家费马于17世纪提出,直到1994年才被英国数学家安德鲁·怀尔斯证明。
费马大定理的表述是:对于任何大于2的整数n,不存在满足a^n + b^n = c^n的正整数解。
这个问题曾经困扰了无数数学家数百年之久,直到怀尔斯通过利用椭圆曲线的方法最终得到了证明。
难题二:黎曼猜想黎曼猜想也是数学领域中备受关注的难题之一,它涉及到素数的分布规律。
黎曼猜想最早由德国数学家黎曼于1859年提出,至今尚未被证明。
该猜想表明,除了2和3之外,所有其他的素数都可以写成形如1/2 + it的复数的幂的形式,其中t是一个实数,i是虚数单位。
尽管该猜想在数学领域中产生了重要的影响,并通过大量计算得到了验证,但它仍然是一个未被证明的难题,让许多数学家为之着迷。
难题三:哥德巴赫猜想哥德巴赫猜想是一个有关素数的问题,它由德国数学家哥德巴赫于1742年提出。
该猜想表明,每个大于2的偶数都可以表示为两个素数之和。
尽管该猜想的观点直观上看似乎正确,但其证明一直是一个巨大的挑战。
许多数学家都致力于寻找哥德巴赫猜想的证据,并获得了很多数值验证,但迄今为止尚未找到一种通用的证明方法。
解决这些奥数最难练习题需要运用高深的数学知识和技巧。
对于费马大定理,怀尔斯通过发展椭圆曲线理论来解决这个长期困扰数学界的问题。
至于黎曼猜想,许多数学家通过计算机模拟和数值验证的方法来进一步验证猜想的正确性。
至于哥德巴赫猜想,数学家们一直在努力寻找通用的证明方法,但目前仍未取得明显的突破。
尽管奥数最难练习题对于绝大多数人来说都是极具挑战性的问题,但这些问题的存在也推动着数学研究的进步。
五年级上册常考的88道奥数题
五年级上册常考的88道奥数题五年级上册常考的88道奥数题五年级上册常考的奥数题(精选88道)奥数相对比较深,数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。
以下是小编为大家整理的五年级上册常考的奥数题(精选88道),希望对大家有所帮助。
五年级上册常考的奥数题(1-44道)1、765×213÷27+765×327÷272、(101+103+......+199)-(90+92+ (188)3、9×17+91÷17-5×17+45÷174、(9999+9997+......+9001)-(1+3+ (999)5、9039030÷430436、(873×477-198)÷(476×874+199)7、12+16+111112+20+30+428、99999×22222+33333×333349、1000+999-998+997+996-995+……+106+105-104+103+102-10110、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?11、两个整数相除,商是4,余数是8。
已知被除数比除数大59,求被除数。
12、一个整数除以15余2,被除数、商和余数的和是100,求被除数和商。
13、减数、被减数与差三者之和除以被减数,商是多少?14、甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是多少?15、两个自然数相除,商是4,余数是15,被除数、除数、商、余数之和是129。
请写出这个带余数的除法算式。
16、一个两位数除以一个一位数,商仍是两位数,余数是8。
五年级奥数题精选及答案
五年级奥数题精选及答案1. 如果a的值满足下列各式之一,请写出一个实数解x。
(1)a-2x=7(2)a+3x=4解:(1)a-2x=7 可化简为 x=(a-7)/2,当a=9时,x=1,则方程有一个实数解x=1。
(2)a+3x=4 可化简为 x=(4-a)/3,当a=1时,x=1,则方程有一个实数解x=1。
2. 三个数在公差为2的等差数列中,它们的和是18,这三个数分别是多少?解:设这三个数为a-2, a, a+2,则它们的和为3a=18,解得a=6,所以这三个数为4, 6, 8。
3. 小华身高1.4米,小红比小华高0.1米,小林比小红高1.2米,那么小林的身高是多少米?解:小红比小华高0.1米,即小红身高为1.4+0.1=1.5米;小林比小红高1.2米,即小林身高为1.5+1.2=2.7米。
4. 一条地下通道长为600米,上面有A,B两地,小明从A处以常速行驶,时速6米/秒,而小红从B处出发,以8米/秒速度追赶小明,小红赶上小明需要多长时间?解:设小红赶上小明的时间为t秒,则小红走了8t米,小明走了6t 米,根据题意有8t-6t=600,解得t=300秒。
5. 用最少的竖式运算,求出47乘以25的结果。
解:47× 25------------141(47×3=141)940(47×20=940)------------1175(47×25=1175)通过以上五道奥数题的精选,希望能够激发同学们对数学的兴趣,并提高解题能力。
每道题的解题方法都有其特殊的技巧,希望同学们能够灵活运用,加深对数学知识的理解和掌握。
祝愿同学们在未来的数学学习中取得更好的成绩!。
新学期小学五年级奥数题练习
新学期小学五年级奥数题练习1、甲、乙两个人从A、B两地步行相向而行,甲每小时走3千米,乙每小时走2千米,两人相遇时距离中点3千米,问A、B两地相距多远?2、甲、乙两人从A、B两地相向骑车而行,2小时后相遇,相遇后,乙继续向A地前进,而甲则返回,当甲到达A地时,乙距离A地还有4千米,已知A。
B地面相距80千米,问甲、乙每小时各骑多少千米?3、兄弟两人绕操场跑步,哥哥每秒钟跑8米,弟弟每秒钟跑6米,操场全长600米,如果两人同时同地相向而行,问10分钟相遇几次?如果两人同时同地同向而行,又相遇几次?4、甲、乙两人从B城去A城,甲速度为每小时5千米,乙速度为每小时4千米,甲出发时,乙已先走了3个小时,甲走了10千米后,决定以每小时6千米的速度前进,问几小时后追上乙?5、小王、小李共同整理报纸,小王每分钟整理72份,小李每分钟整理60份,小王吃到了1分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务,问一共有多少份报纸?7月23日1、一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?2、甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。
甲车行几小时后与乙车相遇?3、两地相距900米,甲、乙两人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙达到目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?4、买一件上衣和一条裤子共需要295元钱,上衣比裤子贵75元,问买一件上衣和一条裤子分别需要多少钱?和差问题(奥赛数学思维训练教材32页例1)5、小钱期终考试时语文和数学的平均分数时96分,数学比语文多8分,问语文和数学各得了几分?(和差问题)(奥赛数学思维训练教材33页例2)大数=(和+差)÷2 小数=(和-差)÷2大数=小数+差小数=大数-差大数=和-小数小数=和-大数7月24日1、甲乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米,两人相遇时距全程中点3千米,求全程长多少千米?2、甲乙两站相距3.5千米,A车速为每分钟180米,B车速为分钟170米,A、B两车分别从甲、乙两站相向开出,两车到站后都要停留7分钟,他们第一次相遇后要经过多少时间第二次相遇?3、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A 地,丙从B地三人同时相向出发。
小学奥数类型题解析及专项训练(中等难度)
小学奥数类型题解析及专项训练(中等难度)一. 算术题:某学校有120个学生参加了足球比赛,他们分成4个班级参赛。
每个班级参赛人数相同。
请问每个班级有多少学生参赛?解析:假设每个班级有x个学生参赛,根据题意可以得到方程:4x = 120。
解这个方程可以得到x = 30。
所以每个班级有30个学生参赛。
算术题专项练习应用题:某商店有40个相同的玩具,要分给4个学生,要求每个学生分得的玩具个数相同。
1.请问每个学生最多能分得几个玩具?2.请问每个学生最少能分得几个玩具?3.如果要求每个学生分得的玩具个数大于等于10,最多能分几个玩具?4.如果要求每个学生分得的玩具个数小于等于5,最少能分几个玩具?5.如果要求每个学生分得的玩具个数是奇数,最多能分几个玩具?二. 概率题:一个袋子里有3个红球,2个蓝球和1个黄球,小明从袋子里随机取出一个球,问他取出红球的概率是多少?解析:总共有6个球,取出红球的可能性有3个,所以取出红球的概率是3/6,即1/2。
概率题专项练习应用题:一个骰子有六个面,上面的数字是1、2、3、4、5、6。
小明随机掷了一次骰子,请问掷出的数字是偶数的概率是多少?一个扑克牌有52张,其中红心牌有13张。
小红随机从扑克牌里抽取一张牌,请问她抽到红心牌的概率是多少?一个骰子有六个面,上面的数字是1、2、3、4、5、6。
小明随机掷了两次骰子,请问两次都出现1的概率是多少?一个扑克牌有52张,其中梅花牌有13张。
小芳随机从扑克牌里抽取两张牌,请问她抽到两张梅花牌的概率是多少?一个骰子有六个面,上面的数字是1、2、3、4、5、6。
小明随机掷了三次骰子,请问至少掷出一次6的概率是多少?三. 逻辑题:一个班级有30个学生,其中有20人是男生。
小明是这个班级的学生,问他是男生的概率是多少?解析:总共有30个学生,20人是男生,所以小明是男生的可能性有20个,所以他是男生的概率是20/30,即2/3。
逻辑题专项练习应用题:一个班级有35个学生,其中有25人是女生。
(word完整版)五年级奥数题100题(附答案)
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
【精选】小学五年级数学经典奥数题训练50(含答案)
【精选】小学五年级数学经典奥数题训练50(含答案)一、拓展提优试题1.如图,从A到B,有条不同的路线.(不能重复经过同一个点)2.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.3.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.4.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.5.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.6.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.7.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.8.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四=平方米.边形EFGH11.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.12.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).13.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.14.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.15.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.【参考答案】一、拓展提优试题1.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.2.解:设哥哥跑了X分钟,则有:(X+30)×80﹣110X=900,80x+2400﹣110x=900,2400﹣30x=900,X=50;110×50=5500(米);答:哥哥跑了5500米.故答案为:5500.3.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.4.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.5.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.6.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.7.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.8.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.9.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.10.解:根据分析,如下图所示:长方形S 长方形ABCD =S 长方形XYZR +△AEF +△EFR +△FBG +△FGX +△HCG +△HGY +△DHE +△HEZ=S 长方形XYZR +2×(a +b +c +d )⇒60=4+2×(a +b +c +d )⇒a +b +c +d =28四边形S 四边形EFGH =△EFR +△FGX +△HGY +△HEZ +S 长方形XYZR=a +b +c +d +S 长方形XYZR=28+4=32(平方米).故答案是:32.11.解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.12.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数. 故答案为:6.13.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11814.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.15.解:依题意可知:第一层的共有4个角满足条件.第二层的4个角是4面红色,去掉所有的角块其余的符合条件.分别是3+2+3+2=10(个);共10+4=14(个);故答案为:14。
西师大版小学五年级奥数练习题
【导语】世界上很多国家都有国内的奥数竞赛,国际间的奥数竞赛也开展得如⽕如荼。
奥数在其它⼀些国家并不表现出“病⼊膏肓”,相反,奥数成了⼀些国家发现杰出数学⼈才的平台。
以下是整理的《西师⼤版⼩学五年级奥数练习题》,希望帮助到您。
【篇⼀】 1、有1800千克的货物,分装在甲⼄丙三辆车上。
已知甲车装的千克数正好是⼄车的2倍,⼄车⽐丙车多装200千克。
甲车装货物()千克,⼄车()千克,丙车()千克。
2、三堆货物共1800箱,甲堆的箱数是⼄椎的2倍,⼄堆的箱数⽐丙堆少200箱,甲堆货物()箱,⼄堆货物()箱,丙堆货物()箱。
3、把840本书放在书架的三层⾥,下层放的本数⽐上层的3倍多5本,中层放的本数是上层的2倍多1本,上层(),本中层(),下层()本。
4、有两筐苹果,甲筐⽔果的个数是⼄筐的3倍,如果从⼄筐中拿5个放进甲筐,这时甲筐的⽔果恰好是⼄筐的5倍。
原来甲筐()个,⼄筐()个。
5、中华学校买来史地书、科技书和⽂艺书共456本。
其中科技书是史地书的1.2倍,⽂艺书⽐科技书多31本。
史地书()本,科技书()本,⽂艺书()本。
6、⼀辆卡车最多能载40袋⼤⽶和40袋⾯粉,或者载10⼤⽶和100袋⾯粉。
现在卡车上已载有20袋⼤⽶,最多还能()袋⾯粉。
7、⼩明去买练习本,他付给营业员的钱买4本多1元,买6本⼜差2元,⼩明付给营业员()元。
每本练习本()元。
8、⽼师把⼀些铅笔奖给三好学⽣。
每⼈5只则多4只,每⼈7⽀则少4⽀。
⽼师有()⽀铅笔,奖给()个三好学⽣。
9、幼⼉园⽼师将⼀筐苹果分给⼩朋友。
如果给⼤班的学⽣每⼈5个余10个;如果分给⼩玫的学⽣每⼈8个缺2个,已知⼤班⽐⼩班多3个学⽣,这筐苹果有()个。
10、甲⼄⼆⼈同时从A地到B地,甲每分钟⾛250⽶,⼄每分⾛90⽶。
甲到达B地后⽴即返回A地,在离B地3.2千⽶处相遇。
两地相距()千⽶。
【篇⼆】 1、幼⼉园买来的苹果的个数是梨的3倍,吃掉10个梨和6个苹果后,还有苹果正好是梨的5倍。
奥数练习题(甄选19篇)
奥数练习题(甄选19篇)奥数练习题(1)1.难度:你能不能将自然数2到10分别填入3×3 的方格中,使得每个横行中的三个数之和都是奇数?2.难度:A 、B 两人买了相同张数的信纸. A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸1.难度:你能不能将自然数2到10分别填入3×3 的方格中,使得每个横行中的三个数之和都是奇数?不能.如果能,我们把三个横行的和相加,其和就是三个奇数之和必为奇数数,然而它也恰是九个数之和,即2+3+4+……+10=54 ,根据任何一个奇数一定不等于任何一个偶数,所以不能做到.2.难度:A 、B 两人买了相同张数的信纸. A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸.解析如下:第二个条件实际意味着“每个信封三张纸,则少120张纸”根据盈亏问题基本方法,信封有(120+40)÷(3-1)=80个,纸有80+40=120张这种类型的题目不能直接计算,要将其中的一个条件转化,使之转化为基本的盈亏问题.奥数练习题(2)1、甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?2、甲乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需要6小时,乙车从B城到A城需要12小时,两车出发后几小时相遇?3、甲乙两列火车同时从相距700千米的两地开出,甲车每小时行75千米,经过5小时相遇,乙车每小时行多少千米?4、甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时14千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?5、东西两镇相距20千米,甲乙两人分别从两镇同时出发相背而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人的速度各是多少?奥数练习题(3)1、甲、乙两地相距40千米,A和B同时从甲地出发去乙地,A步行每小时4千米,B 骑摩托车每小时行40千米,B到达乙地后立即与C从乙地向甲地出发,C步行每小时5千米,B往返于A和C之间联络,遇到其中一个立即返回,当A和C相遇时,B共行了多少千米?2、两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地所需时间多1/3。
奥数行程问题归纳总结及部分例题及答案
奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
五年级小学生奥数练习题(三篇)
五年级小学生奥数练习题(三篇)导读:本文五年级小学生奥数练习题(三篇),仅供参考,如果觉得很不错,欢迎点评和分享。
【篇一】1、师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?2、一辆大轿车与一辆小轿车都从甲地驶往乙地。
大轿车的速度是小轿车速度的80%。
已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。
又知大轿车是上午10时从甲地出发的。
那么小轿车是在上午什么时候追上大轿车的。
3、一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成。
如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时……。
两人如此交替工作。
那么打完这部书稿时,甲乙两人共用多少小时?4、黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?5、一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地需要多长时间?6、甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?7、甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。
那么甲、乙丙三数之和是几?8、一辆车从甲地开往乙地。
如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。
甲、乙两地之间的距离是多少千米?9、某校参加军训队列表演比赛,组织一个方阵队伍。
如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。
小学五年级奥数练习题(五篇)
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学五年级奥数练习题(五篇)》,希望帮助到您。
⼩学五年级奥数练习题篇⼀ 1、学校买来两种粉笔共240盒,已知⽩⾊粉笔的盒数是彩⾊粉笔的5倍。
两种粉笔各买了多少盒? 2、师傅和徒弟3⼩时共⽣产零件90个,已知师傅每⼩时做的零件个数是徒弟的2倍,师傅和徒弟每⼩时各做多少个零件? 3、哥哥和弟弟共有48本书,弟弟给哥哥5本后,哥哥的书就是弟弟的3倍,哥哥、弟弟原来各有⼏本书? 4、甲⼄两个粮仓共有粮⾷230吨,后来从甲仓运出50吨,⼄仓运进20吨,这时⼄仓的粮⾷是甲仓的3倍,甲⼄两仓原来各有粮⾷多少吨? 5、某校三年级和四年级共有学⽣372⼈,三年级的⼈数⽐四年级⼈数的2倍多36⼈,该校三、四年级各有学⽣多少⼈? 6、动物园的猴⼭上共有180只猴。
⼤猴⼦的只数⽐⼩猴⼦的3倍少8只。
猴⼭上⼤⼩猴⼦各有多少只? 7、有红、黄、蓝三种颜⾊的玻璃球共270个,黄球的个数是红球的2倍,蓝球的个数是黄球的3倍,三种颜⾊的玻璃球各有多少个? 8、书架上层有46本书,下层有22本书,要使上层的书是下层书的3倍,那么必须从下层拿⼏本书放到上层去? 9、两个数相除,商3余10,被除数、除数、商与余数的和是163,求被除数和除数分别是多少? 10、果园⾥有桃树、梨树、苹果树共552棵。
桃树⽐梨树的2倍多12棵,苹果树⽐梨树少20棵,求桃树、梨树和苹果树各有多少棵?⼩学五年级奥数练习题篇⼆ 1、有⼈说:“任何7个连续整数中⼀定有质数。
”请你举⼀个例⼦,说明这句话是错的。
2、从⼩到⼤写出5个质数,使后⾯的数都⽐前⾯的数⼤12。
3、9个连续的⾃然数,它们都⼤于80,那么其中质数最多有多少个? 4、⽤1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要⽤到并且只能⽤⼀次,那么这9个数字最多能组成多少个质数? 5、已知⼀个两位数除1477,余数是49。
小学五年级奥数测试题
五年级奥数测试卷一、填空1、在不大于100的自然数中,被13除后商和余数相同的数有多少个,分别是( )。
2、a 、b 是两个不相等的自然数,如果它们的最小公倍数是72,那么a 与b 的和可以有( )种不同的值。
3、有一个七层塔,每一层所点灯的盏数都等于上一层的2倍,一共点了381盏灯。
求顶层点了( )盏灯。
4、有这样一个百层球垛,这个球垛第一层有1个小球,第二层有3个小球,第三层有6个小球,第四层有10个小球,第五层有15个小球,……第一百层有( )个小球。
这一百层共有( )个小球。
5、一本书的页码由7641个数码组成,这本书共有( )页。
6、某校举行体育达标测评,分两试进行,初试达标人数比未达标人数的3倍多14人,复试达标人数增加33人,正好是未达标人数的5倍,问有( )人参加了达标测评。
7、10块的巧克力,小明每天至少吃一块,直至吃完,问共有( )种不同的吃巧克力的方案。
8、小明要登上15级台阶,每步登上2级或3级台阶,共有( )种不同登法。
二、解答题:1、某校五年级有两个班,每班的人数都是小于50的整十数.期末数学考试两个班的总平均分为78分,其中一班平均82分,二班平均75分。
一班和二班各有多少人?2、数1447、1005、1231有一些共同特征,每个数都是以1开头的四位数,且每个数中恰好有两个数字相同,这样的数共有多少个?3、甲在南北路上,由南向北行进;已在东西路上,由西向东行进。
甲出发的地点在两条路交叉点南1120米,乙从交叉点出发,两人同时开始行进,4分钟后,甲乙两人所在的位置与交叉点等远(这时甲仍在交叉点南),在经过52分钟后,两人所在的位置又距交叉点等远(这时甲在交叉点北).求甲、乙二人的速度。
奥数网五年级暑期班招生测试卷一、填空:(每小题6分,共84分)1. 333×332332333-332×333333332=________2. 小明带20元去文具店买作业本,他买了5个小练习本和2个大练习本后,剩下的钱若买3个小练习本还多8角,若买3个大练习本还差1元.每个大练习本_____元.3. 甲、乙、丙三人外出参观。
小学五年级五年级奥数题
小学五年级五年级奥数题在小学五年级时,学生们已经开始接触奥数了。
随着年级的升高,奥数的难度也逐渐加大。
下面就来看一些小学五年级的奥数题。
1. 鸡兔同笼问题一个笼子里关着鸡和兔,它们的头和脚的数量加起来共有50个。
问笼子里有几只兔子,几只鸡?解析:设兔子的数量为x,鸡的数量为y。
由题可知,2x+4y=50,化简可得x+2y=25。
因为一定存在整数解,所以我们可以从0开始枚举y的值,然后求解x的值,如果x是整数,那么就是一个解。
例如,当y=1时,x=23,此时笼子里有1只兔子,23只鸡。
当y=2时,x=21,此时笼子里有2只兔子,21只鸡。
当y=3时,x=19,此时笼子里有3只兔子,19只鸡……以此类推,直到找到所有的解。
2. 工程问题两个工人一起修路,需要5天时间才能修完;其中一个工人单独修路需要10天时间,问另一个工人单独修路需要多少天?解析:设两个工人单独修路所需要的时间分别为x和y,由题意可知,两个工人一起修路的效率是一样的。
所以可以列出下面的方程式:5/(1/x+1/y) = 5化简可得2x+2y=xy,移项可得xy-2x-2y=0,变形可得(x-2)(y-2)=4,因为要求的是整数解,所以只需枚举4的因数即可求解。
当4=1*4时,可得x=6,y=3;当4=2*2时,可得x=4,y=4。
所以另一位工人单独修路需要4天的时间。
3. 蒙提霍尔问题蒙提霍尔问题又称“三门问题”,是一个经典的悖论。
题目如下:有三扇门,其中一扇门后面是一辆汽车,另外两扇门后面是山羊。
你选择其中一扇门,然后主持人打开其中一扇门,露出其后面的山羊,问你是否要更换选择,以获得汽车的机会更大。
解析:这个问题的解法有两种,一种是基于概率的统计学方法,另一种是基于直觉的感性理解。
基于概率的统计学方法:首先,根据条件概率公式,汽车出现在你选择的门后面的概率是1/3。
而有两扇门没被选择,每扇门后面都是山羊的概率是2/3。
而当主持人打开一扇门,露出其中的山羊后,这个条件发生时,未被选择的门后面山羊的概率不变,仍然是2/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习周练习(五年级)(中难度)
姓名:成绩:
答:
第一题:牛吃草
有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?
第二题:阴影面积
如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.
答:
答:
答:
第五题:排队
画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.
答:
练习周练习(五年级)答案
第一题答案:
解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560
⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584
⨯÷=份草;所以1公顷草地每天新生长的草量为
()()
84604530 1.6
-÷-=份,1公顷原有草量为60 1.63012
-⨯=.24公顷草地每天新生长的草量为1.62438.4
⨯=;24公顷草地原有草量为1224288
⨯=.那么24公顷草地80天可提供草量为:28838.4803360
+⨯=,所以共需要牛的头数是:33608042
÷=(头)牛.
(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]
5,15,24120
=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.
设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192
⨯-⨯÷-=,120 公顷草地原有草量为
()
240192301440
-⨯=.120公顷草地可供144080192210
÷+=(头)牛吃80天,那么24公顷草地可供210542
÷=(头)牛吃80天.
第二题答案:
解答:
本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.
解法一:取特殊值,使得两个正方形。