生活中的轴对称和轴对称图形及性质

合集下载

生活中的轴对称图形资料

生活中的轴对称图形资料

试一试 在纸的一侧上滴几滴墨水,将纸迅速对折、 压平,并用手指压出清晰的折痕,再将纸打开后 铺平,观察所得到的图案,位于折痕两侧墨水图 案彼此之间有什么关系?它的对称轴是什么呢?
位于折痕两侧墨水图案成轴对称 ,对称轴为 折痕所在直线.
轴对称图形的基本特征:
轴对称图形(或成轴对称的两个图形)的对 应线段(对折后重合的线段)相等,对应角 (对折后重合的角)相等。
请看,圆有几条对称轴?
啊!无数条!
刚才我们研究了一个图形
具有轴对称的特征,你想不 想看看两个图形是否也具有 这样的特征呢?
议一议 我们再看图9.1.3中的两组图形,它们有什么 共同点?
(第一组)
(第二组)
议一议 我们再看图9.1.3中的两组图形,它们有什么 共同点?
(第一组)
我们再看图10.1.3中的两组图形,它们有什么共同点? (第二组)
• 2.两个图形关于某直线对称及对称轴、对称 点的概念。
• 3. 轴对称图形和两个图形成轴对称的区别 与联系。
• 自学探究:
• 自学课本98页----100页内容:
1.什么是轴对称图形,什么是对称轴? 2.根据课本98页图10.1.1和图10.1.2回答:它们 是轴对称图形吗?指出它们的对称轴?
3.什么是成轴对称,什么是对应点,如何找 对应点?标出图10.1.3中A , B , C三点的对 称点A1,B1,C1。
A.1条 B.2条 C.3条 D.1条或3条
回顾反思:
本节课你学 到了什么?
作业
习题:1、2
4.轴对称图形的基本特征是什么?
5.轴对称图形与成轴对称的区别与联系?
如果一个图形沿某条直线对折后,
直线两旁的部分能够互相重合,那么这 个图形就叫做轴对称图形,这条直线就 是它的对称轴。

生活中的轴对称知识要点

生活中的轴对称知识要点

七年级数学第五章生活中的轴对称第一部分知识要点1、轴对称现象如果一个图形沿着一条折叠,直线两旁的部分能够互相,那么这个图形叫作轴对称图形,这条直线叫作它的.对称轴是直线.对于个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成,这条直线就是对称轴.2、简单的轴对称图形(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到的距离相等;到一个角的两边距离相等的点,在上.(2)线段是轴对称图形,线段的是它的一条对称轴.线段的上的点到这条线段两个端点的距离相等.的点,在这条线段的垂直平分线上.轴对称和轴对称图形的区别与联系:区别:(1)轴对称是________个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;(2)轴对称是对两个图形说的,轴对称图形是对_______个图形说的.联系:(1)它们的定义中,都有沿某直线折叠,图形重合;(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.3、探索轴对称的性质轴对称图形的对应点所连的线段被垂直平分.如果对应线段或延长线相交,那么交点在对称轴上.轴对称图形相等,相等.4、等腰三角形的性质(1)对称性:________________________________________________________________________ (2)“三线合一”:________________________________________________________________________ ________________________________________________________________________ (3)“等边对等角”:________________________________________________________________________ ________________________________________________________________________ 5、线段垂直平分线的定义:_________于一条线段,并且__________这条线段的______________.。

轴对称图形 知识讲解 对称现象及轴对称图形

轴对称图形 知识讲解 对称现象及轴对称图形

对称现象及轴对称图形(认识)
问题(1)导入你能发现下面这些物体有什么共同特点吗?
过程讲解
1.观察物体,发现特点
仔细观察会发现,图中的树叶、蝴蝶、城门都有一个共同的特点:这些物体的左右两边的形状完全相同,如果沿一条直线对折后,这些物体的左右两边能够完全重合。

如下图所示:
2.理解“对称”的意义
像上面的树叶、蝴蝶、城门那样,沿某一条直线对折后,左右两边能够完全重合,具有这种特征的物体或图形,就是对称的。

3.列举生活中的对称现象
生活中的对称现象还有很多,如:
问题(2)导入剪一剪。

过程讲解
1.剪衣服
(1)折一折:把一张长方形纸对折,如下图:
(2)画一画:在对折后的纸上画线。

如下图:
(3)剪一剪:沿着画的线剪一剪,会剪出一件上衣的图案。

如下图:
2.剪其他图形
3.认识轴对称图形和对称轴
像上面这样剪出来的图形都是对称的,它们都是轴对称图形。

图形中间的那条折痕所在
的直线就是图形的对称轴。

如下图:
归纳总结
对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

初一下生活中的轴对称、性质、及简单轴对称图形 全解

初一下生活中的轴对称、性质、及简单轴对称图形 全解

知识清单:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.2.对称轴是一条直线,有些轴对称图形可能有几条,甚至无数条对称轴.如图1,有3条对称轴.图2有无数条对称轴3.把一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点.4.轴对称图形与轴对称的区别:区别:轴对称是两个图形的位置关系,而轴对称图形是一个具有特殊形状的图形.经典例题【例1】等边三角形的对称轴有________条.【例2】下列图形中,不是轴对称图形的是()A B C D图2图1图3【例3】如图所示,是小明用棋子摆成的字母“T”,它的主要特点是轴对称图形.请你再用棋子摆出两个轴对称图形的字母(用○代表棋子)★【例4】数的计算中有一些有趣的对称形式,如:12×231=132×21;仿照上面的形式填空,并判断等式是否成立:【变式1】下列图形中,是轴对称图形的是()A. B. C. D.【变式2】将一张矩形的纸对折后,用笔尖在上面扎出“B”,再把它铺平,你可能见到的是() A. B. C. D.【变式3】下面的希腊字母中,是轴对称图形的是()A. B. C, D.★★【变式4】下列说法正确的是()A.任何一个图形都有对称轴B.两个全等三角形一定关于某条直线对称C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′CD.点A、点B在直线l的两旁,且AB与直线l交于点O,若AO=BO,则点A与点B关于直线l对称★【变式5】下面是轴对称图形的有()个圆、一个角为30度的直角三角形、长方形、正方形、等腰梯形A.1个 B.2个 C.3个 D.4个★★【变式6】如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有()A.3种B.4种C.5种D.6种【变式7】如图是汽车牌照在水中的倒影,则该车牌照上的数字是________.【变式8】如图,从轴对称的角度来看,你觉得哪一个图形比较独特?简单说明你的道理.★【变式9】如图,AC=AD,BC=BD,AB与CD相交于O点,试猜想AB与CD的关系,并说明理由.★【变式10】图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形成为轴对称图形.方法总结:判断图形是否是轴对称图形 1.找到一条对称轴2.沿着对称轴折叠,看两边的图形是否完全重合,重合的是轴对称图形。

轴对称图形的性质及应用

轴对称图形的性质及应用

轴对称图形的性质及应用轴对称图形是指通过对称轴将图形分为两个互补的部分,两侧部分完全对称的图形。

本文将介绍轴对称图形的特点、性质以及在日常生活中的应用。

特点:轴对称图形在对称轴两侧完全对称,也就是说,左右两侧完全相同,而相应的点到对称轴的距离也完全相等。

轴对称图形最简单的例子就是欧拉线。

性质:轴对称图形与一般图形相比,具有许多独特性质。

1.对称坐标:轴对称图形在对称轴两侧完全对称,因此可以将其坐标进行相应的简化,将对称轴视为原点,将图形分解为x轴和y轴两个部分。

这种简化的坐标系统被称为对称坐标系。

2.取消相似性:一个轴对称图形绕对称轴旋转180度后,两部分分别重叠,正反都是一样的。

这也就说明了轴对称图形并不具有缩放不变性。

与此相反,使用其他变换,如旋转和平移时,图形可能变形,但尺寸和形状不变化。

3.构造对称轴:如果给定一个轴对称图形,很容易通过观察来确定它的对称轴。

但是,如果给定一个线段,如何通过它来构造轴对称图形呢?有一种简单的方法是,将线段的中点作为对称轴,然后用半径相等的圆弧将线段两端连接起来,就可以得到一个轴对称图形。

应用:轴对称图形在各个领域都有着广泛的应用。

1.设计:在建筑设计过程中,轴对称设计可以增强结构的平衡和美感。

对称图案也常常出现在布艺和墙壁装饰品上。

2.生物学:轴对称图形在生物学中也有着广泛的应用。

例如,许多植物和动物的身体结构都具有轴对称性。

轴对称性在遗传学中也发挥着重要作用,它对生物特征的分析和研究有重要的指导作用。

3.艺术:轴对称图形是艺术中常常使用的一种形式。

例如,一些字母、标志和图形都是轴对称的,这在机器制图和商业设计中都很常见。

4.数学:轴对称图形在数学中也发挥着重要作用,特别是在几何学中。

几何转化和对称操作常常用于证明数学定理,而轴对称图形则是证明某些性质的好例子。

总结:轴对称图形是一种可以通过对称轴将图形分为两个互补的部分,两侧部分完全对称的图形。

轴对称图形具有特殊的性质,例如对称坐标,取消相似性以及构造对称轴等。

生活中的轴对称

生活中的轴对称

生活中的轴对称我们常说数学来源于生活,又服务于生活的,其实数学与生活是密不可分的。

数学并不只是算算数那么简单和肤浅,在生活中到处都有数学的身影,从点到线,从线到表面,从脸到身体,都有丰富的知识,它可以帮助我们解决生活中的许多问题。

其中,轴对称图形就是数学中的一个很重要的分支,同时也是在生活中随处可见,对称在生活中不仅可以给我们带来美享受,还有很多它的实用价值以及重要的作用。

自然界中的轴对称大自然是世界万物的起源,而在这神奇的大自然界也处处都有着对称之美,对称不仅仅给美,还有着更大的作用,先说一说大自然界的主宰我们人类吧。

人的耳朵、眼睛、四肢、都是对称生长的。

耳朵的对称性使得我们听到的声音具有强烈的三维感觉,也可以确定声源的位置。

我们见过戴助听器的孩子,他们不能像正常人一样去听,只能靠助听器,但事实上,他们是无法分辨声音来自于哪里。

并且他们所听到的声音都是一样的。

所以,人耳朵的对称在健康的情况下是很重要的。

眼睛的对称性可以让我们更舒适、更准确地看待事物,如果只有一只眼睛能正常看实物则看起来很不舒服,并且有偏离的误差。

四肢的对称就不用多说了,让我们的身体随时保持平衡。

那么,除了我们人类以外,还有其他的动物和植物都存在对称现象,例如,我们经常看到蝴蝶飞来飞去,蝴蝶停留在花上,张合有翅膀。

如果蝴蝶的两个触角的中点与尾部相连,则连线所在的直线是其对称轴。

像蝴蝶一样,有许多轴对称形状的动物。

比如蜻蜓,蜜蜂,蝉,蜘蛛等等数不胜数,大多数的植物的叶子也是轴称图形。

我们在所有的叶子中几乎都能找到这样的对称。

它们的对称生长是自然有其道理的。

二、日常生活中的轴对称1.中国传统的剪纸艺术最初的对称就是从剪纸开始的,在数学课本中也是通过剪纸而向学生去渗透对称的原理和好处。

剪纸不仅是一种艺术供我们欣赏,还有很大的实用性,例如,窗花、壁花、灯笼等装饰类型的剪纸贴在门窗、墙壁、灯笼上,装饰和美化生活环境,尤其是我们熟悉的那些。

图形的轴对称轴对称的基本性质

图形的轴对称轴对称的基本性质

性质2023-10-30CATALOGUE 目录•轴对称图形概述•轴对称图形的性质•常见轴对称图形举例•非轴对称图形举例及特性•轴对称图形的应用01轴对称图形概述定义如果一个图形关于某条直线(称轴)对称,那么这个图形叫做轴对称图形。

性质轴对称图形的对称轴也是图形的中垂线,即线段的中点与轴对称图形上相对应点的连线被对称轴垂直平分。

轴对称图形的定义轴对称图形具有对称性,即图形的左右两侧或上下两侧关于某条直线对称。

对称性唯一性美观性每一个轴对称图形都只有一个对称轴,对称轴将图形分成两个完全相同的部分。

轴对称图形具有美观性,常被应用于建筑设计、艺术和日常生活中。

03轴对称图形的特点0201轴对称图形在数学、艺术、建筑等领域有着悠久的历史。

早在古希腊和罗马时期,人们就利用轴对称来设计建筑、雕塑和图案。

历史随着数学、计算机科学和工程技术的进步,轴对称图形在各个领域的应用越来越广泛,如建筑设计、工业设计、计算机图形学等。

同时,对于轴对称图形的理论研究也在不断发展与完善。

发展轴对称图形的历史与发展02轴对称图形的性质总结词轴对称图形在空间或平面上关于某条直线(称为对称轴)具有对称性。

详细描述这意味着图形的一部分相对于对称轴的镜像翻转后,与另一部分完全重合。

例如,一个圆相对于其直径是对称的,一个正方形相对于其对角线是对称的。

这种对称性在自然界中也很常见,如人的身体、树叶等。

总结词轴对称图形的对称轴总是一条直线,且具有平行性。

详细描述这意味着如果一个图形的一部分相对于对称轴进行镜像翻转后,与另一部分完全重合,那么这两部分必然是平行的。

例如,一个矩形相对于其对边中点的连线是对称的,这个连线就是其对称轴。

轴对称图形的性质三总结词轴对称图形的对称轴具有镜像反射性。

详细描述这意味着图形的一部分相对于对称轴的镜像反射后,与另一部分完全重合。

这种性质可以用来解释许多自然现象和社会现象,如物体在水中的倒影、物体在镜子中的影像等。

北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]

北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]

北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。

2.了解轴对称的概念,探索轴对称图形的基本性质和应用。

3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。

4.能够按照要求画出一些轴对称图形。

要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。

要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。

3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。

联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。

2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。

同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

七年级数学下册第五章生活中的轴对称知识归纳

七年级数学下册第五章生活中的轴对称知识归纳

第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。

可以说成:这两个图形关于某条直线对称。

2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。

5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。

6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。

7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。

8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。

具有轴对称性的日常生活中的图形教案

具有轴对称性的日常生活中的图形教案

具有轴对称性的日常生活中的图形教案一、教学目标:1、能够理解轴对称性的概念。

2、能够通过课堂活动感知轴对称性的特点。

3、能够在日常生活中发现和创造具有轴对称性的图形。

二、教学内容:1、轴对称性的概念轴对称性即图形的一部分围绕着一个轴旋转180度之后能够重合于另一部分。

轴对称性的轴线可以是水平的、垂直的、对角线的、中心轴线的等。

2、轴对称性的特点轴对称图形的两侧是相同和重叠的。

3、在日常生活中发现和创造轴对称图形在日常生活中,我们可以通过身边的图形来发现和创造轴对称图形。

例如门、窗、手表、饰品等均具有轴对称的特点。

三、教学过程:1、引入通过贴一些图片或实物展示轴对称性的概念,让学生理解轴对称这个概念。

2、教学重点(1)展示具有轴对称性的图形,让学生感知轴对称的特点。

(2)介绍不同的轴线种类以及保持轴对称的方法。

(3)让学生进行实践练习,例如让学生创造不同的轴对称图形等。

3、教学拓展在日常生活中,我们可以通过自己的观察和创造来发现和创造轴对称图形。

例如进行以门窗为基础的轴对称绘画等。

四、课堂总结在课堂总结环节中,老师需要总结今天学习的内容以及学生的收获。

引导学生思考轴对称性在日常生活中的应用。

五、教学评估1、给学生布置相关练习任务,例如在日常生活中寻找轴对称的图形并画出来。

2、通过课堂问答等形式来检查学生是否掌握此课程内容。

六、教学评价1、学生是否学会轴对称的概念和特点。

2、学生是否能够在日常生活中寻找和创造具有轴对称性的图形。

3、学生是否理解轴对称在日常生活中应用的意义。

轴对称及其性质

轴对称及其性质

轴对称及其性质轴对称是一种几何特征,指的是图形经过某条线对称后,两侧完全重合。

在数学和几何学中,轴对称性质被广泛应用于解决问题和分析形状的对称性。

本文将介绍轴对称的定义、性质以及它在现实生活和数学领域的应用。

一、定义及例子轴对称是指一个形状可以通过某条直线旋转180度并完全重合。

这条直线被称为轴线,轴线两侧的图形是镜像关系。

例如,一个正方形具有4条轴对称线,分别是水平线、垂直线和两条对角线。

而心形、圆形、椭圆形等也都具有轴对称。

二、轴对称的性质1. 自反性:轴对称图形中的每个点都和关于轴线对称的另一个点相关联。

反过来,如果一个点和另一个点关于轴对称线对称,那么这个图形就是轴对称的。

2. 保角性:轴对称不改变图形的角度。

如果一个图形是轴对称的,那么对于轴上的任意一对相应点,它们构成的角度相等。

3. 保长度性:轴对称不改变图形的边长。

如果一个图形是轴对称的,那么轴上的每对相应点之间的距离相等。

4. 结构性:轴对称图形的结构和形状在镜像轴两侧是完全对称的。

这意味着一个轴对称图形的一半可以通过镜像来获得另一半。

三、轴对称的应用1. 图案设计:轴对称被广泛应用于图案设计中。

通过利用轴对称性质,设计师可以创造出美观、对称的图案来增强视觉效果。

2. 建筑设计:轴对称的概念在建筑设计中起着重要的作用。

许多建筑物的设计中都使用了轴对称性,使得建筑物的外观显得平衡和谐。

3. 数学推理:轴对称性质被广泛应用于数学推理和证明中。

通过分析轴对称,我们可以推导出关于图形的特定性质和关系,从而解决各种数学问题。

4. 自然界:自然界中很多物体都具有轴对称性,如植物、昆虫身体结构等。

通过研究这些轴对称物体,我们可以更好地理解自然界的形态和结构。

总结:轴对称是一种形状经过某条轴线旋转180度并完全重合的几何特征。

它具有自反性、保角性、保长度性和结构性等性质。

轴对称不仅在图案设计和建筑设计中起着重要作用,也在数学推理和自然界中具有广泛的应用。

生活中常见的轴对称图形

生活中常见的轴对称图形

生活中常见的轴对称图形
《镜面对称》。

生活中常见的轴对称图形,如菱形、心形、蝴蝶形等,都展现了一种美妙的对
称美感。

轴对称图形是指图形中存在一条轴线,使得图形关于这条轴线对称,即图形的两侧完全对称。

这种对称美感在我们的生活中无处不在,不仅存在于自然界中的植物、动物,也存在于建筑物、艺术品、日常用品等各个方面。

在自然界中,我们常常能够看到许多轴对称图形。

比如,植物的叶子往往都是
轴对称的,两侧完全对称,给人一种和谐美感。

蝴蝶的翅膀也是轴对称的,左右对称的翅膀给人一种优美的视觉享受。

而在建筑物中,许多古代建筑都采用了轴对称的设计,如中国的古代宫殿、寺庙等,都展现了一种庄严美感。

在现代建筑中,许多摩天大楼、桥梁等也采用了轴对称的设计,使得建筑物更加稳固美观。

除了自然界和建筑物,轴对称图形也广泛存在于艺术品和日常用品中。

许多绘
画作品中都运用了轴对称的构图,使得画面更加和谐美观。

而在日常用品中,许多家具、餐具等也采用了轴对称的设计,使得这些物品更加美观实用。

轴对称图形所展现的对称美感,不仅仅是一种视觉享受,更是一种心灵的愉悦。

它让人感受到一种和谐、稳定、美丽的力量,使得我们的生活更加丰富多彩。

因此,让我们在日常生活中多留意这些轴对称图形,感受它们带给我们的美妙。

轴对称与轴对称图形--知识讲解(基础)

轴对称与轴对称图形--知识讲解(基础)

轴对称与轴对称图形--知识讲解(基础)【学习目标】1.通过具体实例了解两个图形成轴对称的概念,能找出对称轴和对称点.2.了解两个图形关于某直线成轴对称和轴对称图形的联系与区别,理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应用和文化价值.4. 理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线,能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.5.通过学习,体验数学的对称美,激发学习数学的兴趣.【要点梳理】要点一、轴对称与轴对称图形1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴. 折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点二、轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等.要点三、线段的垂直平分线定义:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.【典型例题】类型一、判断轴对称图形1、(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】轴对称图形即能找到对称轴,使对称轴两边的图形重合.【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式】下列图形中,对称轴最少的对称图形是 ( )【答案】A;提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.类型二、轴对称的应用2、将一个正方形纸片依次按图,a b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()【答案】D;【解析】【总结升华】只需要根据对称轴补全图形就找能到答案.举一反三:【变式】将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A;3、(2015春·启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO 的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【思路点拨】根据轴对称的性质可得ME=PE,NF=PF,然后求出MN=△PEF的周长.【答案与解析】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.【总结升华】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.举一反三:【变式1】如图,△ABC中,AB=BC,△ABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BD A'的度数.【答案】100°;∵AB=BC,∴∠A=∠C=70°,∠B=40°又∵ΔABC沿DE折叠后,点A落在BC边上的A'处,点D为AB边的中点,∴BD=D A',∠B=∠D A'B=40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°; 类型三、轴对称的作图4、如图,△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称. (1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠''BOB 与直线MN 、EF 所夹锐角α之间的数量关系.【答案与解析】(1)如图;(2)∠''BOB =2α;(2)∵△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称. ∴∠BOM =∠'B OM ,∠'B OE =∠''B OE , ∵∠'B OM +∠'B OE =α ∴∠''BOB =2α【总结升华】在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上. 举一反三:【变式】(2015· 聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.【答案】 解:(1)如图所示:△A 1B 1C 1,即为所求;点B 1坐标为:(﹣2,﹣1);(2)如图所示:△A 2B 2C 2,即为所求,点C 2的坐标为:(1,1).。

生活中轴对称图形

生活中轴对称图形
中心对称图形的定义
如果一个图形关于一个点对称,那么 这个图形被称为中心对称图形。
平面关于直线对称的性质
平面关于直线的对称平面
如果一个平面π与一条直线l相对称,那么平面π的对称平面满足其上的任意一点到直线l的距离相等,并且 这两平面的法线向量相同。
轴对称与中心对称的关系
轴对称图形一定是中心对称图形,但中心对称图形不一定是轴对称图形。
生活中轴对称图形
目录
• 轴对称图形的定义与特性 • 生活中的轴对称图形实例 • 轴对称图形的形成原理 • 轴对称图形的应用 • 轴对称图形的拓展学习
01
轴对称图形的定义与特 性
定义
轴对称图形
如果一个图形关于一条直线对称 ,那么这个图形被称为轴对称图 形。
轴对称
如果一个图形沿一条直线折叠后 ,直线两旁的部分能够完全重合 ,那么这个图形就具有轴对称性 。
现代艺术中的轴对称图形:如现 代建筑、平面设计、雕塑等。
谢谢观看
音乐
在音乐中,许多乐曲的结构和旋律都具有轴对称 性,如对位法、曲式结构等。
舞蹈
在舞蹈中,许多舞蹈动作和编排都具有轴对称性, 如芭蕾舞、现代舞等。
05
轴对称图形的拓展学习
探索更多的轴对称图形实例
自然界中的轴对称图 形:如蝴蝶、蜜蜂、 花朵等。
艺术作品中的轴对称 图形:如绘画、雕塑 等。
建筑中的轴对称图形: 如中国的故宫、法国 的凡尔赛宫等。
04
轴对称图形的应用
在几何学中的应用
几何定理
轴对称图形在几何学中常被用于 证明各种定理和性质,如角平分
线定理、勾股定理等。
图形变换
轴对称是图形变换的一种形式,通 过轴对称可以将图形进行平移、旋 转等操作,从而得到新的图形。

七年级数学 第五章 生活中的轴对称 2 探究轴对称的性质同步

七年级数学 第五章 生活中的轴对称 2 探究轴对称的性质同步
第二十六页,共三十一页。
2.如图5-2-10,四边形ABCD中,点M,N分别(fēnbié)在AB,BC上,将△BMN沿MN翻
折,得△FMN,若MF∥AD,FN∥DC,则∠B =
°.
答案(dáàn) 95
图5-2-10
12/7/2021
第二十七页,共三十一页。
解析 ∵MF∥AD,∠DAM=100°,∴∠FMB=100°.
知1识2详/7解/2021 (3)成轴对称的两个图形全等,但全等的两个图形不一定成轴对称.
(4)作用:①如果两个图形关于某一条直线成轴对称,那么对应点所连线段的垂直平分线就是这两个图形的对称轴,我们可以利用这一性质画对称轴.②由于对应线段、对应
角相等,我们可以利用这一性质说明两条线段相等或两个角相等
第二十五页,共三十一页。
1.如图5-2-9,P是∠AOB内一点,分别作点P关 于直线(zhíxiàn)OA,OB的对称点P1,P2,连接OP1,OP2,则
下列结论正确的是 ( )
A.OP1⊥OP2
B.OP1=OP2 C.OP1⊥OP2且OP1=OP2 D.OP1≠OP2
图5-2-9
答案 B ∵点P关于(guānyú)直线OA,OB的对称点分别为P1,P2,∴OP1=OP2= OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+ ∠BOP+∠BOP2=2(∠AOP+∠BOP)=2∠AOB,∵∠AOB的度数任意,∴OP1 ⊥O1P2/72不/20一21 定成立.故选B.
12/7/2021
图5-2-2
第五页,共三十一页。
解析 (1)所画图形(túxíng)如图5-2-3所示:
图5-2-3

生活中的轴对称

生活中的轴对称

生活中的轴对称美国数学家克莱因曾对数学美作过如此的描述:音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得聪慧,科技能够改善物质生活,但数学却能提供以上一切。

下面就让我们一起来看看数学是如何样让人赏心悦目的。

轴对称图形是沿着某直线折叠后,直线两旁的部分互相重合的图形。

这条直线确实是他们的对称轴。

这条对称轴就像一个公平的法官,左右两边的长度、面积、形状等,都一点儿也不差,唯独不同的确实是他们所朝的方向。

在数学课本里,我们已见过它们的身影,也接触、了解过它们。

下面让我们一起看看生活当中的轴对称图形。

当我们闲逛在校园时,随手捡起一片树叶,假如将树叶中间的那根茎当成是其左右两边的对称轴,将树叶右边部分沿着这条对称轴对折过去,我们会惊奇地发觉它正好与左边的一半树叶重合。

一只蝴蝶停留在花朵上,张合着翅膀时,假如将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的直线确实是其对称轴。

而右边的翅膀就像是左边的翅膀沿着对称轴翻折过去的图形。

像蝴蝶如此成轴对称图形的动物还有专门多,比如蜻蜓、飞蛾、螃蟹等。

动物进化经历了由海绵动物、双胚层辐射对称动物(包括腔肠动物)、三胚层两侧对称动物的进展时期,其中从辐射对称动物到两侧对称动物的演化,是生物进化过程中的一个重大事件,它意味着一系列遗传基因的重要创新,并由此促进生命的形状、行为向更加复杂的时期快速进展。

“贵州小春虫”的发觉,将生物进化史上的一个重要时期——两侧对称动物化石记录的历史前推到了寒武纪之前4000万年。

对称是动物的美学,左右对称是动物世界普遍的健康、强壮的特点。

人类的耳、眼、四肢差不多上对称生长的。

耳的轴对称不仅使我们听到的声音具有强烈的立体感,还能够判定声源的位置;眼的对称使我们看物体更清晰、准确。

演出前化妆时,你确信不期望眉毛被画得一高一低、两边眼线不一样粗细吧?这就要求化妆师随时把轴对称放在内心。

中国银行的图形标志也是一个轴对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1练生活中的轴对称和轴对称图形及性质
一.填空题
1.如果把一个图形沿着折叠后,能够与另一个图形,那么这两个图形关于, 叫做对称轴.
2.右图是从镜中看到的一串数字,这串数字应为.
3.下列几何图形中:角、线段、等边三角形、长方形、直角三角形、梯形,其中一定是轴对称图形的有
4. 等腰三角形有_____________条对称轴;五角星有_____________条对称轴;
角的对称轴是这个角的_________________;。

5.计算器屏幕上显示0到9这十个数字中,其中成轴对称图形的有个。

6.角平分线上的任意一点到这个角的两边的相等,
7.线段的垂直平分线上的点到的距离相等。

二.选择题
8、图中的图形中是常见的安全标记,其中是轴对称图形的是 ( )
9、下列图形中一定是轴对称图形的是()
A、梯形
B、直角三角形
C、长方形
D、平行四边形
10、下列轴对称图形中,只有两条对称轴的图形是()
A.B.C.D.
三.解答题
11.如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:
方法1 方法2 方法3
12.如图,已知:ΔABC 和直线l ,请作出ΔABC 关于直线l 的对称三角形。

13.(尺规作图)如图,已知∠AOB 及点C 、D ,求作一点P ,使PC=PD ,并且使点P 到OA 、OB 的距离相等。

四.数学园地
“数学桥”
在静静的剑河上,有一座古老的木质桁架桥———“数学桥”这座当地最著名的桥,陪伴着剑河沿岸最古老的建筑———红砖垒砌的剑桥大学女王学院院长官邸,走过了250多个春秋.
“数学桥”的传说在剑桥堪称无人不晓.相传这是大数学家牛顿在剑桥教书时亲自设计并建造的,据考证,牛顿是不可能建造这座桥的,“数学桥”建于1749年,而牛顿则于1727年辞世.只能说剑桥人对牛顿太过钟爱,总是把很多的故事与他相联 ,实际上,这座桥是由詹姆斯·小埃塞克斯根据埃斯里奇的设计而建造的.它展示出现代钢梁桥的雏形,其桥身相邻桁架之间均构成11.25度的夹角.在18世纪,这种设计被称为几何结构,所以此桥得名“数学桥”。

l B A C l B A C
l B A C · C B O A
· D。

相关文档
最新文档