(完整版)定积分的证明题

合集下载

定积分练习题

定积分练习题

第九章 定 积 分练 习 题§1定积分概念习 题1.按定积分定义证明:⎰-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分:(1)⎰∑=+=1012233)1(41:;ni n n i dx x 提示 (2)⎰10;dx e x (3)⎰ba x dx e ; (4)2(0).(:bi adxa b xξ<<=⎰提示取§2 牛顿一菜布尼茨公式1.计算下列定积分:(1)⎰+10)32(dx x ; (2)⎰+-102211dx x x ; (3)⎰2ln e e x x dx ;(4)⎰--102dx e e xx ; (5)⎰302tan πxdx (6)⎰+94;)1(dx xx(7)⎰+40;1x dx(8)⎰eedx x x12)(ln 1 2.利用定积分求极限: (1));21(1334lim n nn +++∞→ (2);)(1)2(1)1(1222lim⎥⎦⎤⎢⎣⎡++++++∞→n n n n n n (3));21)2(111(222lim nn n n n +++++∞→ (4))1sin 2sin (sin 1lim nn n n n n -+++∞→ ππ3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-⎰§3 可积条件1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑∆≤∆'.''T Ti i i i χωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ⊂.3.设f ﹑g 均为定义在[a,b]上的有界函数。

证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ⎰⎰=3.设f 在[a,b]上有界,{}[],,b a a n ⊂.lim c ann =∞→证明:在[a,b]上只有() ,2,1=n a n 为其间断点,则f 在[a,b]上可积。

数学分析9定积分总练习题

数学分析9定积分总练习题

第九章 定积分总练习题1、证明:若φ在[0,a]上连续,f 二阶可导,且f ”(x)≥0,则有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt). 证:设T 为[0,a]的一个分割,其分点为n ka , k=0,1,…,n, 即x k =nka. 由f ”(x)≥0知f 凸,∴f(∑=n1k k )(x φn 1)≤∑=n1k k ))(x f(φn 1.即∑=n 1k k n a ))(x f(φa 1≥f(na)(x φa 1n 1k k ∑=). ∵f, φ在[0,a]上都可积,且f 连续, ∴令n →∞,有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt).2、证明下列命题.(1)若f 在[a,b]上连续增,F(x)=⎪⎩⎪⎨⎧=∈⎰ a.x ,f(a)b].a,(x f(t)dt a -x 1xa , 则F 在[a,b]上增.(2)若f 在[0,+∞)上连续,且f(x)>0,则φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增.要使φ(x)在[0,+∞)上严格增,需要补充定义φ(0)=?证:(1)F ’(x)= ⎪⎩⎪⎨⎧=∈-⎰ a.x ,0b].a,(x a)-(x f(t)dt a -x f(x)2xa, 根据积分中值定理知,存在ξ∈(a,x),⎰xa f(t)dt =f(ξ)(x-a). 又f 在[a,b]上增, ∴F ’(x)=a-x )f(ξ-f(x)>0, x ∈(a,b],∴F ’(x)≥0, x ∈[a,b],∴F 在[a,b]上增.(2)任给x>0,有φ’(x)=2x0xx)f(t)dt (tf(t)dtf(x )f(t)dt x f(x )⎰⎰⎰- =2x0x0)f(t)dt (t)f(t)dt -(x f(x )⎰⎰.∵f(x)>0,∴(x-t)f(x)>0,∴⎰x0t)f(t)dt -(x >0,∴φ’(x)>0, x ∈(0,+∞),∴φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增. 又+→0x lim φ(x)=⎰⎰+→x 0x00x f(t)dttf(t)dt lim=f(x )x f(x )lim 0x +→=+→0x lim x=0, ∴只要补充定义φ(0)=c ≤0,则φ(x)在[0,+∞)上严格增.3、设f 在[0,+∞)上连续,且+∞→x lim f(x)=A. 证明:⎰+∞→x0x f(t)dt x1lim=A. 证:∵+∞→x lim f(x)=A ,∴任给ε>0,存在M>0,使当x>M 时,有|f(x)-A|<2ε,又当T>M 时,|A f(x)dx T 1T 0-⎰|=T1|⎰⎰-T 0T0Adx f(x )dx | =T1|⎰T0A]dx -[f(x )|≤⎰T 0dx |A -f(x)|T 1=⎰M 0dx |A -f(x)|T 1+⎰T M dx|A -f(x)|T 1 ≤⎰M 0dx |A -f(x)|T 1+2ε(1-TM). ∴只要取T 1=max{⎰M 0dx |A -f(x)|ε2, 2M},则 当T>T 1时,就有|A f(x)dx T 1T 0-⎰|<2ε+2ε=ε.∴⎰+∞→T 0T f(x)dx T 1lim =⎰+∞→x0x f(t)dt x 1lim =A.4、设f 是定义在R 上的一个连续周期函数,周期为p ,证明:⎰+∞→x0x f(t)dt x 1lim =⎰p 0f(t)dt p 1. 证:令x=p λ,y=λt,则⎰x0f(t)dt x1=⎰p λ0y) y)d(λ f(λp λ1=⎰p 0y)dy f(λp 1=⎰p 0 t)dt f(λp 1. 由f(t)=f(t+np), n 为任意正整数,又np)f(t lim n ++∞→= t)f(λlim λ+∞→,∴⎰+∞→x0x f(t)dt x 1lim =⎰+∞→p 0λ t)dt f(λp 1lim =⎰++∞→p 0n )dt np f(t p 1lim =⎰p 0f(t)dt p1.5、证明:连续的奇函数的一切原函数皆为偶函数;连续的偶函数的原函数中只有一个是奇函数.证:设连续的奇函数f ,连续的偶函数g ,则它们的原函数分别为: F(x)=⎰x0f(t)dt +C ,G(x)=⎰x0g(t)dt +C.∵F(-x)=⎰-x 0f(t)d(t)+C=⎰x 0f(-t)d(-t)+C=-)f(t)d(-t x 0⎰+C=⎰x0f(t)dt +C=F(x), ∴连续的奇函数的一切原函数皆为偶函数又G(-x)=⎰-x0g(t)dt +C=⎰x 0g(-x )d(-t)+C=⎰x 0g(x )d(-t)+C=-⎰x0g(x )dt +C ≠-G(x), ∴仅当G(x)=⎰x 0g(t)dt 时,G(-x)=-⎰x0g(x )dt =-G(x), 即连续的偶函数的原函数中只有一个是奇函数.6、证明许瓦尔兹不等式:若f 和g 在[a,b]上可积,则 (⎰ba f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .证:若f 和g 在[a,b]上可积,则f 2,g 2,fg 都可积. 且对于任何t, (f+tg)2也可积.∵(f+tg)2≥0,∴⎰+b a 2tg)(f =⎰ba 2(x )dx f +2t ⎰ba f(x )g(x )dx +t2⎰ba2(x )dx g ≥0.∴二元一次方程的判别式△=4(⎰ba f(x )g(x )dx )2-4⎰ba 2(x )dx f ·⎰ba 2(x )dx g ≤0.∴(⎰b a f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .7、利用许瓦尔兹不等式证明:(1)若f 在[a,b]上可积,则(dx f(x )ba ⎰)2≤(b-a)⎰ba 2(x )dx f ; (2)若f 在[a,b]上可积,且f(x)≥m>0,则⎰ba f(x )dx ·⎰baf(x )dx≥(b-a)2; (3)若f,g 都在[a,b]上可积,则有闵可夫斯基不等式:21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰. 证:(1)记g(x)=1,∵f 和g 在[a,b]上可积,根据许瓦尔兹不等式,有 (dx f(x )ba ⎰)2 ≤⎰b a dx ·⎰b a 2(x )dx f =(b-a)⎰ba 2(x )dx f . (2)若f 在[a,b]上可积,且f(x)≥m>0,则f ,f1在[a,b]上也可积. 根据许瓦尔兹不等式,⎰b a f(x )dx ·⎰baf(x )dx ≥(⎰⋅b a dx f(x)1f(x))2=(b-a)2. (3)∵⎰+ba 2dx g(x ))(f(x )=⎰⎰⎰++ba 2ba ba 2(x )dxg f(x )g(x )dx 2(x )dx f≤⎰⎰⎰⎰+⎥⎦⎤⎢⎣⎡⋅+ba 221ba ba 22ba 2(x)dx g (x)dx g (x)dx f 2(x)dx f=221b a 221b a 2(x)dx g (x)dx f ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰. ∴21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰.8、证明:若f 在[a,b]上连续,且f(x)>0,则 ln ⎪⎭⎫⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1. 证:在[a,b]中插入n-1个等分点a=x 0<x 1<x 2<…<x n =b. 记f(x i )=y i >0,于是由平均值不等式na-b (y 1+y 2+…+y n )≥(b-a)n n 21y y y ⋯=(b-a)e )y ln y (ln n a-b a -b 1n 1⋯+⋅.两边取极限得:⎰ba f(x )dx =na-b limn +∞→(y 1+y 2+…+y n )≥(b-a)na -b lim n +∞→e)y ln y (ln na-b a -b 1n 1⋯+⋅=(b-a)e⎰balnf(x)dx a -b 1.∴⎰b a f(x)dx a -b 1≥e ⎰balnf(x)dx a -b 1,∴ln ⎪⎭⎫ ⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1.9、设f 为R +上的连续减函数,f(x)>0;又设a n =∑=n1k f(k)-⎰n1f(x )dx .证明:{a n }为收敛数列. 证:∵f 为R +上的连续减函数,∴a n =∑=n1k f(k)-⎰n1f(x )dx =∑=n 1k f(k)-∑⎰=+1-n 1k 1k k f(x )dx ≥∑=n 1k f(k)-∑=+1-n 1k k)-1f(k)(k =f(n)>0,即数列{a n }有下界,又a n+1-a n =f(n+1)-⎰+1n nf(x )dx ≤f(n+1)-⎰++1n n1)dx f(n =0.∴{a n }为递减数列. 由单调有界定理知{a n }收敛.10、证明:若f 在[a,b]上可积,且处处有f(x)>0,则⎰ba f(x )dx>0. 证:∵在[a,b]上处处有f(x)>0,∴使f(x)≤0的点只有有限个, 对[a,b]上任一分割T ,添加这些点为分点,则 在每一个小区间(x i ,x i+1)上恒有f(x)>0, ∴⎰+1i ix x f(x)dx>0, (i=0,1,…,n) 其中x 0=a, x n+1=b.∴⎰baf(x )dx =∑⎰=+ni 1i if(x )dx >0.。

定积分典型例题20例标准答案

定积分典型例题20例标准答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。

定积分典型例题及习题答案

定积分典型例题及习题答案

04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。

定积分证明题

定积分证明题
0 0
x 0
F ( x ) f (t )dt xf ( x ) xf ( x ) f (t )dt
0 x x 0
x
x
F ( x )与( x )都是 f (t )dt的原函数
F ( x )=( x ) C F (0)=(0) 0 C 0 F ( x )=( x )
0
T
F ( a)
a T a
f ( x)dx
0
F (a ) f (a T ) f (a ) 0
F (a) C F (0) f ( x)dx
0 T
于是

a T a
f ( x)dx f ( x)dx
0
T
例5. 设 f C a, b , f x 0, x a, b ,
2 x
[ 12dt ][
a
a x
f ( x) dx] a
x
2
( x a) [ f (t )]2 dt
x
( x a) [ f ( x)]2dx,
a
a b
f ( x )dx [ f ( x )] dx ( x a )dx
2 2 a a a
M.
例 10 若 f (x) 在[a,b]上连续可导,且 f(a)=0, 2 b b 1 2 2 则 f ( x )dx (b a ) f ( x ) dx . a a 2 x , 证 显然 f ( x ) a 1 f (t )dt由柯西-施瓦兹不等式, 则
f ( x) [ 1 f (t )dt )]2
由广义积分中值定理
n 1
x 1 1 1 n 1 xdx 1 x dx 1 n 1 0 0

定积分的证明题

定积分的证明题

又x3 > 0,∴ 4 − x2 − x3 > 4 − x2
∴1 <
1
<1
2 4 − x2 + x3 4 − x2
∫1 1dx = 1
02 2
∫1 dx = π
0 4 − x2 6
∫ ∴ 1 < 1
dx
< π。
2 0 4 − x2 + x3 6
∫ ∫ ∫ 6. 设函数f (x)和g(x)在[a,b]上连续,证明: [ b f (x)g(x)dx]2 ≤ b f 2(x)dx ⋅ b g2(x)dx 。
dx a = − f (a) + f (x) = f (x) − f (a)。
∫ 2. 设函数f (x)在[a,b]内可导,且f (a) = 0, b f (x)dx = 0, 证明:在[a, b]内至少存在一点ξ , a
使f ′(ξ ) = 0。
证明:
由积分中值定理,在(a, b)存在一点ξ
,使
1
∫ 1. 证明 d x (x − t) f ′(t)dt = f (x) − f (a) 。
dx a 证明:
∫ x (x − t) f ′(t)dt a x
= ∫a (x − t)df (t)
xx
= (x − t) f (t) a + ∫a f (t)dt
x
= (a − x) f (a) + ∫a f (t)dt ∫ ∴ d x (x − t) f ′(t)dt
即f (a) − (x − a) ≤ f (x) ≤ f (a) + (x − a) 由定积分的不等性质, 有
b
b
b
∫a [ f (a) − (x − a)]dx ≤ ∫a f (x)dx ≤ ∫a [ f (a) + (x − a)]dx

(完整word版)定积分典型例题20例答案

(完整word版)定积分典型例题20例答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

定积分典型例题

定积分典型例题

定积分典型例题例1求33322321lim(2)nnnn n.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间[0,1]n 等分,则每个小区间长为1ix n ,然后把2111n n n的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)nnnn n=333112lim ()nn nnnn=1334xdx.例2222x x dx =_________.解法1由定积分的几何意义知,2202x x dx 等于上半圆周22(1)1x y(0y )与x 轴所围成的图形的面积.故222xx dx =2.解法2本题也可直接用换元法求解.令1x=sin t (22t),则222xx dx =2221sin cos t tdt =22021sin cos t tdt =2202cos tdt =2例3 比较12xe dx ,212x e dx ,12(1)x dx .分析对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1在[1,2]上,有2xxee .而令()(1)xf x ex ,则()1xf x e.当0x时,()0f x ,()f x 在(0,)上单调递增,从而()(0)f x f ,可知在[1,2]上,有1xex .又1221()()f x dx f x dx ,从而有2111222(1)xx x dx e dxe dx .解法2在[1,2]上,有2xxee .由泰勒中值定理212!xe exx 得1xex .注意到1221()()f x dxf x dx .因此2111222(1)xx x dxe dxe dx .例4 估计定积分22x xedx 的值.分析要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.解设2()x xf x e, 因为2()(21)x xf x ex, 令()0f x ,求得驻点12x, 而(0)1f e, 2(2)f e , 141()2f e,故124(),[0,2]ef x e x ,从而2122422x xeedxe ,所以2124222xxee dx e.例5设()f x ,()g x 在[,]a b 上连续,且()0g x ,()0f x .求lim()()b n ang x f x dx .解由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x 知0M,0m .又()0g x ,则()b nam g x dx()()b nag x f x dx()b naMg x dx .由于limlim1nnnnmM,故lim ()()bnang x f x dx =()bag x dx .例6求sin limn p nnx dx x, ,p n 为自然数.分析这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1利用积分中值定理设sin ()xf x x, 显然()f x 在[,]n np 上连续, 由积分中值定理得sin sinn pnx dxp x,[,]n np ,当n时,, 而sin1, 故sin sinlim lim0n pnnx dx px.解法2利用积分不等式因为sin sin 1lnn pn pn pnnnx x n pdxdxdx xxxn,而limln0nn pn,所以sin lim0n p nnx dxx.例7求10lim1nnxdx x.解法1由积分中值定理()()()()b b aaf xg x dxf g x dx 可知101nxdx x=1011nx dx ,01.又11lim lim 01nnnx dxn 且11121,故10lim01nnxdxx.解法2因为01x,故有1nnx x x.于是可得111nnxdxx dx x.又由于110()1nx dx nn.因此10lim1nnxdx x=0.例8设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dxf .证明在(0,1)内存在一点c ,使()0f c .分析由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f 即可.证明由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dxf f ,其中3[,1][0,1]4.于是由罗尔定理,存在(0,)(0,1)c,使得()0f c .证毕.例9(1)若22()x t xf x e dt ,则()f x =___;(2)若0()()x f x xf t dt ,求()f x =___.分析这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dtf v x v x f u x u x dx.解(1)()f x =422xxxee ;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x xf t dt ,则可得()f x =()()xf t dtxf x .例10 设()f x 连续,且31()x f t dtx ,则(26)f =_________.解对等式310()x f t dtx 两边关于x 求导得32(1)31f xx,故321(1)3f xx,令3126x得3x ,所以1(26)27f .例11函数11()(3)(0)x F x dt xt 的单调递减开区间为_________.解1()3F x x,令()0F x 得13x,解之得19x,即1(0,)9为所求.例12求0()(1)arctan x f x t tdt 的极值点.解由题意先求驻点.于是()f x =(1)arctan x x .令()f x =0,得1x,0x.列表如下:故1x为()f x 的极大值点,0x为极小值点.例13已知两曲线()y f x 与()y g x 在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt ,[1,1]x,试求该切线的方程并求极限3lim ()nnf n.分析两曲线()yf x 与()yg x 在点(0,0)处的切线相同,隐含条件(0)(0)f g ,(0)(0)f g .解由已知条件得2(0)(0)0t f g edt,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x xef g x.故所求切线方程为y x .而x(,0)0(0,1)1(1,)()f x -+-3()(0)3lim ()lim33(0)330nnf f n nf f nn.例14 求22000sin lim(sin )x x xtdt t t t dt;分析该极限属于00型未定式,可用洛必达法则.解22000sin lim (sin )x x xtdt t tt dt=222(sin )lim (1)(sin )x x x x xx =220()(2)lim sin x x x x =304(2)lim1cos x xx=212(2)limsin xxx=0.注此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b ,使等式221lim1sin x xt dtxb xat成立.分析易见该极限属于00型的未定式,可用洛必达法则.解2201limsin x xt dt xb xat=22lim1cos x xa xb x =221lim lim1cos x xxb xa x21lim 11cos x xb xa,由此可知必有0lim(1cos )0xb x ,得1b.又由212lim11cos xxxa a,得4a .即4a ,1b为所求.例16设sin 2()sin xf x t dt ,34()g x xx ,则当0x时,()f x 是()g x 的().A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1由于223()sin(sin )cos limlim()34xxf x x xg x xx2200cos sin(sin )lim lim 34x x x x x x 2211lim 33x x x.故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 22337111()[()]sin sin 3!342x f x tt dtxx,则344341111sin (sin )sin ()1342342lim lim lim ()13x x x x x xf xg x xxx.例17证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()b axf x dx()2b aa bf x dx .证法1 令()F x =()()2x x aaax tf t dtf t dt ,当[,]t a x 时,()()f t f x ,则()F x =1()()()22x aaxxf x f t dt f x =1()()22x ax a f x f t dt1()()22x ax af x f x dt =()()22xa xa f x f x 0.故()F x 单调增加.即()()F x F a ,又()0F a ,所以()0F x ,其中[,]x a b .从而()F b =()()2b b aaa b xf x dxf x dx0.证毕.证法2由于()f x 单调增加,有()[()()]22a b a bxf x f 0,从而()[()()]22b aa ba b xf x f dx0.即()()2b aa bxf x dx ()()22b aa ba bxf dx =()()22b aa ba b f xdx =0.故()b axf x dx()2b aa bf x dx .例18计算21||x dx .分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解21||x dx =021()x dxxdx =22021[][]22xx=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dxxx ,则是错误的.错误的原因则是由于被积函数21x在0x 处间断且在被积区间内无界.例19计算22max{,}x x dx .分析被积函数在积分区间上实际是分段函数212()1x x f x xx.解23212221201011717max{,}[][]23236x x x x dxxdx x dx 例20设()f x 是连续函数,且1()3()f x x f t dt ,则()________f x .分析本题只需要注意到定积分()b af x dx 是常数(,a b 为常数).解因()f x 连续,()f x 必可积,从而10()f t dt 是常数,记10()f t dta ,则()3f x xa ,且11(3)()x a dxf t dt a .所以2101[3]2x ax a ,即132a a ,从而14a,所以3()4f x x.例21设23,1()52,12x x f x x x,0()()x F x f t dt ,02x ,求()F x , 并讨论()F x 的连续性.分析由于()f x 是分段函数, 故对()F x 也要分段讨论.解(1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x时,[0,][0,1]x , 因此233()()3[]x xxF x f t dtt dt t x .当(1,2]x时,[0,][0,1][1,]x x , 因此, 则121()3(52)x F x t dtt dt =31201[][5]xt t t =235xx ,故32,01()35,12x x F x xx x.(2) ()F x 在[0,1)及(1,2]上连续, 在1x 处,由于211lim ()lim(35)1xxF x xx , 311lim ()lim 1xxF x x, (1)1F .因此, ()F x 在1x处连续, 从而()F x 在[0,2]上连续.错误解答(1)求()F x 的表达式,当[0,1)x 时,233()()3[]x xxF x f t dtt dt t x .当[1,2]x 时,有0()()x F x f t dt(52)x t dt =25x x .故由上可知32, 01()5,12x x F x xx x.(2) ()F x 在[0,1)及(1,2]上连续, 在1x 处,由于211lim ()lim(5)4xxF x xx , 311lim ()lim 1xxF x x, (1)1F .因此, ()F x 在1x处不连续, 从而()F x 在[0,2]上不连续.错解分析上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因为当[1,2]x 时,0()()x F x f t dt 中的积分变量t 的取值范围是[0,2],()f t 是分段函数,11()()()()xxF x f t dtf t dtf t dt才正确.例22 计算2112211x x dx x.分析由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解2112211x x dx x=211112221111x x dxdx x x.由于22211xx是偶函数,而211x x是奇函数,有112011x dx x, 于是2112211x x dx x=2102411xdx x=2212(11)4x x dx x=112441dx x dx由定积分的几何意义可知1214x dx , 故211122444411x x dx dx x.例23计算3412ln (1ln )e e dx x x x .分析被积函数中含有1x 及ln x ,考虑凑微分.解3412ln (1ln )e e dx x x x =34(ln )ln (1ln )e ed x x x =34122(ln )ln 1(ln )e e d x x x =341222(ln )1(ln )e e d x x =3412[2arcsin(ln )]e e x =6.例24计算40sin 1sin x dx x .解40s i n 1s i nx dx x =42sin (1sin )1sin x x dx x=2442sin tan cos x dxxdxx=2442cos (sec 1)cos d x x dxx =44001[][tan ]cos xx x=224.注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算222a x ax x dx ,其中0a.解222a x ax x dx =222()a x axa dx ,令sin xa a t ,则222a x axx dx =3222(1sin )cos at tdt=32202cos 0atdt=32a .注若定积分中的被积函数含有22ax ,一般令sin xa t 或cos x a t .例26 计算022a dx xax,其中0a.解法1令sin xa t ,则22a dx xax2cos sin cos t dttt201(sin cos )(cos sin )2sin cos t t t t dttt 201(sin cos )[1]2sin cos t t dttt201ln |sin cos |2t tt =4.解法2 令sin xa t ,则22a dx xax=20cos sin cos t dt tt.又令2tu ,则有20cos sin cos t dt tt=20sin sin cos u du uu.所以,22a dx xax=2201sin cos []2sin cos sin cos t t dtdt tttt=2012dt =4.注如果先计算不定积分22dx xax,再利用牛顿莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27计算ln 5013xxxeedx e.分析被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解设1xue,2ln(1)xu,221u dxdu u,则ln 5013xxxeedx e=2222(1)241u u udu u u 222222442244u udu du uu 2221284duduu4.例28 计算22()x d tf xt dt dx,其中()f x 连续.分析要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于22()x tf xt dt =2221()2x f xt dt .故令22xtu ,当0t 时2ux ;当tx 时0u,而2dt du ,所以22()x tf xt dt =21()()2x f u du =201()2x f u du ,故220()x d tf x t dt dx=201[()]2x d f u du dx =21()22f x x =2()xf x .错误解答22()x d tf xt dtdx22()(0)xf xx xf .错解分析这里错误地使用了变限函数的求导公式,公式()()()x ad x f t dt f x dx中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f xt 含有x ,因此不能直接求导,而应先换元.例29计算30sin x xdx .分析被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解3s i n x x d x30(c o s )xd x 330[(c o s )](c o s )x x xd x 3cos 6xdx326.例30计算12ln(1)(3)x dx x .分析被积函数中出现对数函数的情形,可考虑采用分部积分法.解12ln(1)(3)x dx x =101ln(1)()3x d x =110111[ln(1)]3(3)(1)x dxxx x =101111ln 2()2413dxxx 11ln 2ln324.例31计算20sin xe xdx .分析被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解由于20sin xe xdx20sin xxde220[sin ]cos xxe x e xdx220cos xee xdx ,(1)而20cos xe xdx20cos xxde220[cos ](sin )xxe x ex dx20sin 1xe xdx ,(2)将(2)式代入(1)式可得20sin xe xdx220[sin 1]xee xdx ,故20sin xe xdx21(1)2e .例32 计算10arcsin x xdx .分析被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx21arcsin ()2xxd 221100[arcsin ](arcsin )22x xx d x 21021421x dx x.(1)令sin xt ,则21021xdxx2202sin sin 1sin t d tt 220sin cos cos t tdtt 220sin tdt201cos22tdt 20sin 2[]24t t 4.(2)将(2)式代入(1)式中得10arcsin x xdx8.例33设()f x 在[0,]上具有二阶连续导数,()3f 且[()()]cos 2f x f x xdx,求(0)f .分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解由于[()()]cos f x f x xdx()sin cos ()f x d xxdf x 0{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ()(0)2f f .故(0)f 2()235f .例34(97研)设函数()f x 连续,1()()x f xt dt ,且0()limx f x A x(A 为常数),求()x 并讨论()x 在0x处的连续性.分析求()x 不能直接求,因为10()f xt dt 中含有()x 的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ,最后用函数连续的定义来判定()x 在0x 处的连续性.解由0()limxf x A x知0lim ()0xf x ,而()f x 连续,所以(0)0f ,(0)0.当0x时,令u xt ,0t ,0u ;1t,ux .1dtdu x,则()()xf u du x x,从而02()()()(0)xxf x f u dux xx.又因为02()()(0)()limlim lim 022xx x x f u du x f x A xxx,即(0)2A .所以()x =2()(),0,2xxf x f u dux x A x.由于22()()()()lim ()lim lim lim xxx x x x xf x f u duf u du f x x xxx=(0)2A .从而知()x 在0x处连续.注这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出02()()()xxf x f u dux x,而没有利用定义去求(0),就得到结论(0)不存在或(0)无定义,从而得出()x 在0x处不连续的结论.(2)在求0lim()xx 时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim()lim ().22xxxf x f x f x x f x x又由0()limxf x A x用洛必达法则得到0lim ()x f x =A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()xf x 是否存在是不能确定的.例35(00研)设函数()f x 在[0,]上连续,且()0f x dx,0()cos 0f x xdx.试证在(0,)内至少存在两个不同的点12,使得12()()0f f .分析本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt ,找出()F x 的三个零点,由已知条件易知(0)()0F F ,0x,x为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)之间存在两个零点.证法1 令0()(),0x F x f t dt x,则有(0)0,()0F F .又000()cos cos ()[cos ()]()sin f x xdxxdF x xF x F x xdx()sin 0F x xdx,由积分中值定理知,必有(0,),使得()sin F x xdx =()sin(0)F .故()sin 0F .又当(0,),sin 0,故必有()0F .于是在区间[0,],[,]上对()F x 分别应用罗尔定理,知至少存在1(0,),2(,),使得12()()0F F ,即12()()0f f .证法2 由已知条件()0f x dx及积分中值定理知必有1()()(0)0f x dx f ,1(0,),则有1()0f .若在(0,)内,()0f x 仅有一个根1x,由()0f x dx 知()f x 在1(0,)与1(,)内异号,不妨设在1(0,)内()0f x ,在1(,)内()0f x ,由0()cos 0f x xdx,()0f x dx,以及cosx 在[0,]内单调减,可知:10()(cos cos )f x xdx =11110()(cos cos )()(cos cos )f x xdxf x x dx 0.由此得出矛盾.故()0f x 至少还有另一个实根2,12且2(0,)使得12()()0.f f 例36计算243dxxx .分析该积分是无穷限的的反常积分,用定义来计算.解243dx xx =2lim43t tdx xx =0111lim()213t tdxx x =011lim[ln]23t txx=111lim (lnln )233tt t=ln 32.例37计算322(1)2dxx xx.解322(1)2dxx xx223223sec tan 1secsectan(1)(1)1dxx dx x 233cos 12d .例38 计算42(2)(4)dx xx .分析该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32(2)(4)dxx x 和43(2)(4)dx xx 均收敛时,原反常积分才是收敛的.解由于学无止境32(2)(4)dx xx =32lim(2)(4)aadx xx =322(3)lim1(3)aad x x=32lim[arcsin(3)]a ax =2.43(2)(4)dx xx =34lim(2)(4)bbdx xx =324(3)lim1(3)b bd x x=34lim[arcsin(3)]bbx=2.所以42(2)(4)dx xx 22.例39计算5(1)dxx x .分析此题为混合型反常积分,积分上限为,下限0为被积函数的瑕点.解令xt ,则有5(1)dxx x =5222(1)tdtt t=5222(1)dtt,再令tan t ,于是可得522(1)dtt=2522tan(tan1)d =225secsecd=23secd =320cosd =220(1sin)cos d=220(1sin)sind =3/201[sinsin]3=23.例40 计算214211x dx x.解由于221114222222111()11112()d xx xx dxdxxx xxx,可令1t xx,则当2x时,22t ;当0x 时,t ;当0x 时,t;当1x时,0t;故有21014222211()()11112()2()d x d x x x x dxxx xx x2222()22d t dt tt21(arctan )22.注有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41求由曲线12y x ,3y x ,2y,1y所围成的图形的面积.分析若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解选取y 为积分变量,其变化范围为[1,2]y ,则面积元素为dA =1|2|3yy dy =1(2)3yy dy .于是所求面积为211(2)3Ayy dy =52.例42抛物线22yx 把圆228xy分成两部分,求这两部分面积之比.解抛物线22yx 与圆228xy的交点分别为(2,2)与(2,2),如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2yydy =24488cos3d=423,218S A =463,于是12S S =423463=3292.2A 1A 12(2,2)o xy22yx228xy2112122x y1y 3y x o 133212112xy2y 图5-1342例43 求心形线1cos 与圆3cos 所围公共部分的面积.分析心形线1cos 与圆3cos的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解求得心形线1cos 与圆3cos 的交点为(,)=3(,)23,由图形的对称性得心形线1cos 与圆3cos 所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22dd =54.例44求曲线ln y x 在区间(2,6)内的一条切线,使得该切线与直线2x,6x和曲线ln yx 所围成平面图形的面积最小(如图5-4所示).分析要求平面图形的面积的最小值,必须先求出面积的表达式.解设所求切线与曲线ln y x 相切于点(,ln )c c ,则切线方程为1ln ()ycx c c.又切线与直线2x,6x和曲线ln y x 所围成的平面图形的面积为图5-4A =621[()ln ln ]x c cx dx c=44(1)4ln 46ln 62ln 2c c.由于dA dc=2164cc=24(4)c c,令0dA dc,解得驻点4c.当4c时0dA dc ,而当4c时0dA dc.故当4c 时,A 取得极小值.由于驻点唯一.故当4c时,A 取得最小值.此时切线方程为:11ln 44yx .例45求圆域222()xy b a (其中ba )绕x 轴旋转而成的立体的体积.解如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b ax ,下半圆周的方程为221y b ax .图5-5则体积元素为(0,)b o222()(0)xy b a baxy1xoy2312145673ln yx2x6x (,ln )c c 33cos3211xoy1211cosdV =2221()yy dx =224b ax dx .于是所求旋转体的体积为V =224aabax dx =228a bax dx =284a b=222a b .注可考虑选取y 为积分变量,请读者自行完成.例46(03研)过坐标原点作曲线ln yx 的切线,该切线与曲线ln yx 及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e 旋转一周所得旋转体的体积V .分析先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解(1)设切点横坐标为0x ,则曲线ln yx 在点00(,ln )x x 处的切线方程是0001ln ()yx xx x .由该切线过原点知ln 10x ,从而0x e ,所以该切线的方程是1yx e.从而D 的面积1()12ye Ae ey dy.(2)切线1yx e与x 轴及直线x e 围成的三角形绕直线xe 旋转所得的旋转体积为2113V e ,曲线ln y x 与x 轴及直线xe 围成的图形绕直线x e 旋转所得的旋转体积为122211()(2)22y V e e dyee.因此,所求体积为212(5123)6VV V ee .例47有一立体以抛物线22y x 与直线2x 所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解选x 为积分变量且[0,2]x .过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为22x ,得等边三角形的面积为图5-7()A x =23(22)4x =23x .于是所求体积为V =2()A x dx =223xdx =43.xy zo22yx2x ln yxln y xyxo12311yxe例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r).问:(1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米)分析本题属于变力作功问题,可用定积分来求.解(1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n ,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以1221122x k k W kxdxxa ,2122222211()()22x x k k W kxdxx x x a .由21W rW 得22221x xra ,即222(1)xr a ,3222223323()[(1)]22x x k kW kxdxxx xr a .由2321W rW r W 得22223(1)x r ar a ,即2223(1)xrr a .从而汽锤击打3次后,可将桩打进地下231x a rr (m ).(2)问题是要求lim n nx ,为此先用归纳法证明:11nnx a rr.假设11n nx r ra ,则12211()2nnx nn nx k W kxdx xx 2121[(1...)]2n nk x r ra .由2111...nnn nW rW r W r W ,得21221(1...)n n nx r rar a .从而11nnx rr a .于是111lim lim11n nnnra x arr.若不限打击次数,汽锤至多能将桩打进地下()1a m r.例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135yx .于是闸门上对应小区间[,]x xdx 的窄条所承受的水压力为2dF xy gdx.故闸门所受水压力为F =10012(3)5gx x dx =5003g ,其中为水密度,g 为重力加速度.图5-8o xyxdxx(0,3)A (10,1)B。

(完整word版)定积分的证明题44题(word文档良心出品)

(完整word版)定积分的证明题44题(word文档良心出品)

题目1证明题容易d x证明(x -t) f (t)dt = f (x) - f (a) dx」a题目2证明题容易JI利用积分中值定理证明:lim 4 sin n xdx ^0 b=0题目3证明题一般b设函数f(x)在[a,b]内可导,且f(a) =0, a 证明:在[a,b]内至少存在一点•使f ()f (x)dx = 0 =0。

题目4证明题一般设f (x) = f (x +a),na证明:当n为正整数时° f (x)dxan 0f (x)dx。

题目5证明题一般1 1 证明:oX m (1-x)n dxx n (1-x)m dx o 题目6证明题 一般设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y,有 f (x) — f (y) _ x — y.则f (x)在[a,b ]上可积,且1题目7证明题一般 设f (x)在[a,b ]上的连续,在(a,b)内可导,且f(a) = f (b) =0.b 2 证明:4 | f (x)dx 兰 M (b —a),其中 M = sup f "(x)。

a *x :bb[f (x)dx —(b —a) f (a)兰一(b —a)题目8证明题一般设f(x)在[a,b]上正值,连续,则在(a,b)内至少存在一点t ,b 1 b使f(x)dx = f(x)dx f(x)dx 。

■ a ' 2 ■ a题目9证明题一般jc 丑证明:0:::2sin n1xdx ::刁sin n xdx。

题目10证明题一般11 dx 二求证2°4-x2 x3 6题目11证明题一般设f(x)在区间(a,b)上连续,且在(a,b)内任一闭区间上积分为零,证明f(x)在(a,b)内恒等于零。

题目12证明题一般若函数f (x)在[0,1]上连续,a 3 2 1 a2证明:o x f(x )dx xf (x)dx (a 0)。

题目13证明题一般设函数f(x)和g(x)在[a,b]上连续,b 2 b 2 b 2证明:[f(x)g(x)dx]2乞f2(x)dx g2(x)dxa a a题目14证明题一般设f (x)在[0,1]上连续,证明:02f (sin2 Jcos「d = 04f(sin2 J(cos「sin「)d「题目15证明题一般设f (x)在[a,b]上可导,且 f (x)玄M, f(a) =0,b Me证明:a f(x)dx^3(b—a)2。

(完整版)定积分习题及答案

(完整版)定积分习题及答案

第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。

(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。

4.设1,211,12xx x x xf ,求20dx x f 。

5.1lim22xdtarctgt xx 。

6.设其它,00,sin 21xx xf ,求x dt t f x。

7.设时当时当0,110,11xex xxf x,求201dx xf 。

8.2221limnn nnn。

9.求nk nknknnen e 12lim 。

10.设x f 是连续函数,且12dt t f x x f ,求x f 。

11.若2ln 261xtedt ,求x 。

12.证明:212121222dxeex。

13.已知axxx dx ex axa x 224lim,求常数a 。

定积分的证明题44题

定积分的证明题44题

题目1证明题容易d x证明(x t) f (t)dt f(x) f(a) dx a题目2证明题容易利用积分中值定理证明:lim 4 sin n xdxn 0 0题目3证明题一般设函数f(x)在[a,b]内可导,且f(a) 0,a 证明:在[a,b]内至少存在一点使f ()题目4证明题一般设f (x) f (x a),na证明:当n为正整数时o f (x)dx f(x)dx 00。

an o f (x)dx。

1 1证明:0x m (1 x)n dx 0x n (1 x)m dx题目6证明题 一般设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y, 有f (x) f(y) x y.则f (x)在[a,b ]上可积,且题目7证明题一般设f (x)在[a,b ]上的连续,在(a,b)内可导,且f (a) f (b)0.b证明:4 f(x)dx M(b a)2,其中M sup f (x)。

aa x bf (x)dx (b a) f (a)-(b a)2。

2设f(x)在[a,b ]上正值,连续,则在 (a,b)内至少存在一点题目9证明题一般证明:0 2 si n 1xdx °sin n xdx 。

0 0题目10证明题一般dx题目11证明题 一般设f(x)在区间(a,b)上连续,且在(a,b)内任一闭 区间上积分为零,证明f(x)在(a,b)内恒等于零。

使 a f(x)dx bf(x)dx 1 b2 aWdX 。

求证丄20,234 x x题目12证明题一般若函数f (x)在[0,1]上连续,a 3 2 1 a2证明:°x3f(x2)dx 刁° xf (x)dx (a 0)。

题目13证明题一般设函数f(x)和g(x)在[a,b]上连续,b 2 b 2 b 2证明:[f(x)g(x)dx] f (x)dx g (x)dx。

a a a题目14证明题一般设f (x)在[0,1]上连续,sin )d 证明:02f (sin2 )cos d 04f(sin2 )(cos题目15证明题一般设f(x)在[a,b]上可导,且f (x) M, f(a) 0,b Me证明:a f (x)dx — (b a)2题目16证明题一般设f(x)在[0,2a],(a 0)上连续,、r 2a a证明:f(x)dx Jf(x) f(2a x)]dx题目17证明题一般设k为正整数,证明:2(1) cos kxdx(2) sin 2kxdx题目18证明题一般设f(x)在[0,1]上有一阶连续导数•且f(1)f(0) 1.2i试证:。

7定积分的证明题

7定积分的证明题
定积分的证明题
20]上连续且单调递增,
证明:
b
ab
xf (x)dx
b
f (x)dx
a
2a
3.设f (x)在[0, 1]上连续且递减,
证明:当0 a 1时,
a
f (x)dx a
1
f (x)dx
0
0
2020/9/10
2
例4:. 设f (x)a,+上连续,且单调增加
1
a
a
f [u(t)]dt
0
f
1 a
a 0
u(t
)dt
2020/9/10
9
15.设
S(
x
)
x
0
cos t
dt ,
(1)当 n 为正整数,且 n x ( n 1)时,
证明:2n S( x ) 2( n 1);
(2)求lim S( x ) . x x
2
2020/9/10
10
1例6.: 当f (x)是以2为周期的连续函数时,
证明 2,4,使2 f ( ) (1 ) f ( )
2020/9/10
7
12.
2020/9/10
8
13.设f (x)在[0,1]上二次可微,且f (x) 0
证明:01 f (xn )dx
f( 1 ) n 1
14. 设函数处处二阶可导且 f ( x) 0,
u(t )为任意连续函数,
证明:对任意常数a 0有
(2)
已知f
(
x)=
4
sinx cos2
x
2 xf ( x)dx,求f ( x)
0
2020/9/10
16
证明:函数G( x) 20x f (t)dt-x02 f (t)dt

(完整版)§定积分的应用习题与答案

(完整版)§定积分的应用习题与答案

第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)xe y =,xe y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π 6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGmu F y 22t a a Gmu F x +-=λ(B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022cos sin sin cos πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫⎝⎛1,23,()2,3- ⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx xdx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx xx9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫ ⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()1231321134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22sin sin πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S3164200-+=x x 问题即求31642-+=xx S ()40≤≤x 的最小值 令022321=+=--xxS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小 即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。

第五章 定积分 - 答案

第五章  定积分 - 答案

第五章 定积分 答案 一、填空题 1.23 2. 316π3. 8/3π4. π295. 2π6.π2.7.29π. 8.2π 9. π10. )1(21x + 11. e 12.21 13.52- 14.2ln 15.10<<k. 16.4017. 38/3 18.⎰+21241dx x x 19. θθθβαd r r s )()(22'+=⎰.二、单项选择题1. C2. D3. B4. A5. A6. D7. C8. D9. D 10. C 11. B 12. C 13. C 14. B 15. B16. C 17. C18. C 三/计算题1.解:原式230ln(1)2lim sin x x x x→+=3302l i m 2.x x x →== 2.解:原式3220()2lim (sin )x x x x x x +→⋅=-330022lim lim(sin )sin x x x x x x x x x x++→→⋅==-- 2200266lim lim11cos 2x x x x x x ++→→==-12=. 3.解: 原式=22lim x dt e xt x ⎰-→ cos 1xxexx 2sin lim2cos 0⋅-=-→ )2/(1e -=.4.解:111limlim 11xat axa x x e dte e x →→==-⎰ 11lim 111[]x axax a ax a e dx e e e e aa a→-∞-∞-∞==-=⎰1a a e e a∴=, 解得1a =.5.解:设t x =-1,则21121222102(1)d ()d (1)d d 121(1).2t t f x x f t tt t e te e ----==++==-⎰⎰⎰⎰6.解:令 1-=x u ,⎰⎰-=-1120)()1(du u f dx x f ⎰⎰++-=-10111du uudu u 100123)1ln ()1(32u u u +-+--=- 2ln 3124-+=. 7.解:⎰⎰-=--112)(1)1(dt t f t x dx x f ⎰⎰++=--10111dt tdt te tdt e te t tt ⎰----+-+=010110)1ln( 12ln 2ln 01-=-=-- -te e .8.解:dt t f dx x f tx )()2(3225⎰⎰-=-=-13221(1)tt dt e dt -=++⎰⎰316|t e =+ 36e e =+-9.解:设t x =-1,则21010111110(1)d ()d d d d 11.t tttf x x f t te t te t e t e e te e e e e e ---==+=+=+-=+-+=+⎰⎰⎰⎰⎰10.解:dx x f )2(4-⎰t x =-2⎰⎰⎰+=--2122122)(dt te dt t dt t f t .()3)2(131313123122=--==--⎰t dt t .⎰⎰=2121)(t t e td dt te =dt e te t t ⎰-2121=2122t e e e --=222)(2e e e e e =---,原式=23e +.11.解: 令dx x f I )(1⎰=,则==⎰dx x f I )(10x d x I dx x x ⎰⎰++12101I x 21)1l n (21102++=I 212ln 21+=, 解得 2ln =I ,所以2ln 1)(2x x xx f ++=. 12.解: 记,)(1⎰=dx x f A 则2()32f x x Ax =-,10()A f x dx =⎰13201x Ax A ⎡⎤=-=-⎣⎦, 所以 21A =, 2()3f x x x =-. 21111223011(1)()(3)2322f x dx f t dt t t dt t dt t ---==-===⎰⎰⎰⎰.四/应用题1.解:求出交点为)2,4(,ππ840==⎰xdx V x .2.解:πππππ58522111411=-=-=⎰⎰--dx x dx V x ,ππ2110==⎰ydy V y .3.解:设曲线上过点00(,)A x y 的切线方程为 000()x x y e e x x -=-,又曲线过原点,求出01x =,0y e =,故(1,)A e . 所求面积01()x x A e dx e ex dx -∞=+-⎰⎰1021(1)2.2xxe e e e e e -∞=+-=+--=4.解:设曲线上过点00(,)A x y 的切线方程为 000()x x y e e x x ---=--,又曲线过原点,求出01x =-,0y e =,故(1,)A e-.所求面积01()x A e ex dx --=+⎰.(1)21.2e e e =--=-5.解:(1) 设切点坐标为),(00y x , 则,200x y = 切线方程为 ,2200x x x y -= 令y = 0 得切线的x 截距021x , 则面积 ,1214131)21(2130200300002x x x x y x x dx x A x =⋅-=⋅--=⎰ 由以知条件得 ,10=x 因此切点为A (1, 1). 切线方程为.12-=x y (2)dx x dx x V 212/12210)12()(--=⎰⎰ππ.301)12(615112/13105πππ=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡=x x6.解:设切点为0(x做切线0)y x x -,将(1,0)代入得03x =,切线为1122y x =-,切点(3,1).(1)120[(2)(21)]dy A y y =+-+⎰=3210[]3y y y -+ 13=(2)33221211()22V x dx dx ππ=--⎰⎰6π=. 7. 解: (1)设切点为),(00x e x ,由x e y =',可得切线方程为 )(000x x e e y x x -=-, 由切线过原点可得 10=x ,故切线方程为 ex y =, 所求图形的面积为12)2()(1021-=-=-=⎰e ex e dx ex e S xx ; (2)该图形绕x 轴旋转一周所成的旋转体的体积为⎰⎰-=1212)()(dx ex dx e V x ππ6)3(32213212-=-=e x e e xπππ.8.解: 由题意得94)(12=+⎰dx bx ax ,即 9423=+b a ,又旋转体的体积 ⎰⎰+==11222)(dx bx ax dx y V x ππ)312151()2(222231042b ab a dx x b abx x a ++=++=⎰ππ,将 b a 2334-=代入上式得, )3263(902+-=b b V x ππ, (或, 将 a b 3298-=代入上式得, )243648141352(2++=a a V x π 类似可得结果) 由题意,当0=dbdV x,即2=b 时,x V 在唯一驻点处取得极小值,也是最小值,此时35-=a .因此,当2,35=-=b a 时,所得旋转体体积最小.9.解:取x 为积分变量, ],,0[a x ∈压力微元 ,adx x dP γ=dx a x P aγ=⎰0.212132a a a γγ=⋅=10.解:在水池上沿任取一点作为坐标原点,铅直向下引x 轴, 水中厚度为dx 的一层水的重力2000dF g Sdx gdx ρρ==, 抽出深度为x 处的一层水,需克服重力做功:2000dW x dF gxdx ρ==,[1,4]x ∈ 41200015000(J )W g x d x g ρρ==⎰ 11. 解:根据如图所示建立的坐标系,距离原点x 米处取一小的薄片,则克服重力需要做的功为22()5dW Gx mgx x dx g x ρπ===所以1010102300024()525dW x g xdx g x dx ρπρπ==⎰⎰⎰400g ρπ= (J).12.解: 在水池上沿任取一点作为坐标原点,铅直向下引x 轴, 水中厚度为dx 的一层水的重力 2000dF g Sdx gdx ρρ==, 抽出深度为x 处的一层水,需克服重力做功:2000dW x dF gxdx ρ==,[1,4]x ∈ 41200015000(J)W g x d x g ρρ==⎰13. 解: 以母线左底面这端为原点,水平向右为x 轴正向建立坐标系,坐标x 的值表示活塞的位置,在恒温下气体的压强p 与体积V 的乘积为常数,即k pV =,故ππ800008010102=⋅⋅==pV k .又xS V =,所以xS k p =,作用在活塞上是气体压力为xkpS F ==, 现设活塞从位置x 压缩到dx x +,这时气体压力所作的功元素为dx xkFdx dW -=-=,于是使气体体积缩小到原体积的1/3, 要克服气体压力所作功为3ln ln 3/80803/80803/8080k x k dx xk dW W =-=-=-=⎰⎰, )(3ln 800)(3ln 80000J cm N ππ=⋅= . 即要克服气体压力作的功为)(3ln 800J π.14.解:以圆柱中心轴为x 轴,方向向下,离水面10m 的高处为原点建立坐标系如图,设x 为圆柱中心轴水位坐标位置, 则]16,10[ ∈x , 取小区间],[dx x x +, 则将这区间对应的一薄层水抽出到指定高度所作的功元素为 x d x g dW 23⋅=πρ从而将桶中水全部抽出到指定高度所作的功为x d xg W 216103⋅=⎰πρ)(7022916102J g x g πρπρ==)(1016.27J ⨯≈ (注:取水密度1=ρ,2/8.9s m g =,14.3=π.如不作近似计算,答案为πρg 702,也不扣分)15.解 t at y t at x sin ,cos ='='dt y x s ⎰'+'=π22)()( dt t at t at ⎰+=π22)sin ()cos (dt at ⎰=π22202ππa at ==.16.解: 由对称性, 面积=A ⎰πθθ 02)(212d r ⎰+=πθθ 022)cos 1(d a dtt a t 2202)2cos 1(22+=⎰πθ⎰=2042cos 8πθθd a223a π=. 五/证明题1.证明:设()a b a x t +-=,则1dx dt b a=-.当0x =时,t=a ,1x =时,t=b . 所以,右边=⎰b adt t f )(. 结论得到证明2.证明:()f x 在[,]a b 上连续,所以任意[],x a b ∈,有))(()()(a x f a f x f -'=-ξ,()[()()]b baaf x dx f x f a dx =-⎰⎰⎰-'=badx a x f ))((ξ⎰-≤ba dx a x M )(2)(2a b M-=, 结论得到证明.3.证明:设 ⎰⎰-=b tta dx x f dx x f t F )(1)()(, 则)(t F 在],[b a 上可导,且⎰<-=b adx x f a F 0)(1)(,⎰>=b a dx x f b F 0)()(.由零点定理可知, 在),(b a 内至少有一个ξ, 使0)(=ξF , 又0)(1)()(>+='t f t f t F ,因而在),(b a 内有唯一的ξ,使 ⎰⎰=badx x f dx x f ξξ)(1)(. 4.证明: (1)由已知可得 )(x F 在区间],[b a 内可导,且2)(1)()(≥+='x f x f x F , (2)因],[)(b a C x F ∈,且 ⎰<=abdt t f a F 0)(1)(,⎰>=b a dt t f b F 0)()(.所以由连续函数的零点定理知,方程0)(=x F 在区间],[b a 内至少有一个根. 又由0)(>'x F ,即)(x F 单调,故方程0)(=x F 在],[b a 内有且仅有一个根. 5.解:因)(x f 在闭区间[0,1]上连续,且21212()(1)t f t dt f =⎰,从而由积分中值定理得,存在一点]1,2/1[∈η,使2()(1)f f ηη=.做辅助函数2()()F x x f x =,则()(1)F F η=. 从而由Rolle 定理得,存在一点)1,0(),0(⊂∈ηξ,使0)(='ξF ,即 2()2()0f f ξξξξ'⋅+⋅= 而0ξ≠,故得()2()f f ξξξ'=-.6. 解:因为)(x f 在[0,1]上连续,由积分中值定理,在]1,0[k内存在ξ使得⎰=kf dx x f 101)()(ξ,于是⎰=⋅=k f dx x f k f 10)1()()(ξ.又)(x f 在]1,[ξ上连续,)1,(ξ内可导,且)1()(f f =ξ,因此,由罗尔定理,)1,0()1,(⊂∈∃ξc ,使得 0)(='c f . 7.证明:所求ξ对应的两块面积分别是1()()()()aS a f f x dx ξξξξ=--⎰,2()()()()bS f x dx b f ξξξξ=--⎰.令 12()()2()()()()x aS x S x S x x a f x f t dt =-=--⎰2[()()()]bxf t dt b x f x ---⎰,则 =)(a S 2[()()()2[()()]bb aaf t dtb a f a f t f a dx ---=--<⎰⎰; =)(b S dt t f b f a b b a)()()(⎰--0])()([>-=⎰dx x f b f ba.由零点定理,至少存在一点ξ),(b a ∈,使得0)(=ξS . 又当),(b a x ∈时,)()()()()(x f x f a x x f x S -'-+='2[()()()()]f x f x b x f x '--+--(2)()[()()]()0,b x a f x b x b a f x ''=--=-+->, 因此,在),(b a 内方程0)(=x S 至多有一个实根.综上所述,在),(b a 内存在唯一一点ξ,使得123S S =.。

定积分证明题

定积分证明题

定积分证明题定积分证明题第一篇1、原函数存在定理●定理假如函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简洁的说连续函数肯定有原函数。

●分部积分法假如被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。

假如被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

2、对于初等函数来说,在其定义区间上,它的原函数肯定存在,但原函数不肯定都是初等函数。

定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质●性质假如在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论假如在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)假如函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。

4、关于广义积分设函数f(x)在区间[a,b]上除点c(a定积分的应用1、求平面图形的面积(曲线围成的面积)●直角坐标系下(含参数与不含参数)●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的'方程)●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)●功、水压力、引力●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)定积分证明题第二篇一、原函数定义1 假如对任一xI,都有F(x)f(x) 或dF(x)f(x)dx则称F(x)为f(x)在区间I 上的原函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目1证明题 容易。

证明)()()()(a f x f dt t f t x dx d xa -='-⎰解答_。

)()()()()()()()()()()()()()()()( a f x f x f a f dt t f t x dx d dtt f a f x a dtt f a x t f t x t df t x dtt f t x xaxa xa xax a -=+-='-=∴+-=+-=-='-⎰⎰⎰⎰⎰题目2证明题 容易。

利用积分中值定理证明 0sin lim :400=⎰→dx x n n π解答_。

使上存在点在由积分中值定理 0sin lim 0sin lim 1sin 0sin lim 4]4[0, ( )04(sin lim sin lim ,]4,0[, 400040=∴=∴<<⋅=∈-⋅=⎰⎰→→→∞→∞→ππξξξππξπξξπxdx dx x n n n n n n n n n n Q题目3证明题 一般。

使内至少存在一点证明:在,内可导,且在设函数0) (f ],[0)(0)(],[)(='==⎰ξξb a dx x f a f b a x f ba解答_。

使,在一点应用罗尔定理,可知存上,在区间,使存在一点由积分中值定理,在0) (b)(a,) (a ,] [0) (0))( ()( ),(11111='⊂∈=∴=-=⎰ξξξξξξξf a f a b f dx x f b a ba题目4证明题 一般。

为正整数时证明:当,设⎰⎰=+=anadx x f n dx x f n a x f x f 0 0)()( )()(解答_。

证明:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=∴=-+-+===+=++===++=∴+=++=--anaaaana a n a aaa aa aaaa a naan aaa nadx x f n dx x f dxx f dyy f dya n y f a n y x dx x f dxx f dy y f dya y f dy a y f a y x dx x f dxx f dy y f dy a y f a y x dx x f a x f x f dxx f dx x f dx x f dx x f 0)1 ( 03 2 02 )1( 2 0)()( )( )( ))1(( )1( )( )()( )()2( 2 )( )()()( )( )()( )()()()(题目5证明题 一般。

证明: )1()1(10 10 ⎰⎰-=-dx x x dx x x m n nm解答_。

时时且则令证⎰⎰⎰⎰-=-=--=-∴====-=-=11110 )1( )1( )()1( )1( 0, 1 1, 0 1:dx x x dtt t dt t t dxx x t x t x dt dx t x m n m n n m n m题目6证明题 一般。

且上可积在则有上任意两点且对上有定义在设2)(21)()()(,],[)( .)()(,,],[,],[)(a b a f a b dx x f b a x f y x y f x f y x b a b a x f ba-≤---≤-⎰解答_。

有由定积分的不等性质即又由题设知上可积在于是上连续在因为证明222)(21)()()( 2)( )()()( 2)( )]()([ )( )]()([ , )()()()()( )()()( .],[)(,],[)( 0lim )()(),(:a b a f a b dx x f a b a f a b dx x f a b dx a x a f dxx f dxa x a f a x a f x f a x a f a x a x a f x fb a x f b a x f y x x f x x f y b a x bababa baba x -≤--∴-≤--≤---+≤≤---+≤≤--≥-≤-∴=∆∴∆≤-∆+=∆∈∀⎰⎰⎰⎰⎰→∆题目7证明题 一般。

其中证明且内可导在上的连续在设 )(sup ,)()(4 :.0)()(,),(,],[)( 2x f M a b M dx x f b f a f b a b a x f bx a ba'=-≤==<<⎰解答_。

有两式相加有取绝对值故又由有定理由假设并利用微分中值证明2222222i 2211)(4)( , )(8)()( )(8)()( )()( )()(, 2,1 .) ()(sup ),( ) ()()()()( ),( ) ()()()()( ,:a b M dx x f a b Mdx x b M dx x f a b Mdx a x M dx x f M x b x f M a x x f i M f x f M b x f b x b f x f x f x a f a x a f x f x f b a b b a bba ba ab a a bx a -≤-=-≤-=-≤-≤-≤=≤''=∈'-=-=∈'-=-=⎰⎰⎰⎰⎰++++<<ξξξξξ题目8证明题 一般。

使,内至少存在一点上正值,连续,则在在设⎰⎰⎰==bb dx x f dx x f dx x f b a b a x f a a )(21)()( ),( ],[ )(ξξξ解答_从而原式成立。

又即使在一点由根的存在性定理,存时,由于证:令⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=+=+===∈>=<-=∴>∈-=ξξξξξξξξξ aaaaaaa xa)(2)()()()()()()(0) F(b)(a, 0)()(0)()(0)( ],[)()()(dxx f dxx f dx x f dxx f dx x f dt t f dtt f dt t f dt t f b F dt t f a F x f b a x dtt f dt t f x F bbb bbbbx Q题目9证明题 一般。

证明: sin sin0 20201⎰⎰<<+ππxdx xdx n n解答_⎰⎰⎰⎰⎰⎰<<∴>-=->-=-∈∃-=->>∈∃++++++++202012012020100010012010101sin sin00sin sin )sin(sin 0)sin 1(sin sin sin ],2,0[]2,0[)sin 1(sin sin sin 0sin 0sin]2,0[.]2,0[sin ππππππππππxdxxdx xdx xdx dx x x x x x x x x x x x xdx x x x n n n nn n n n n n n n n n n ,由性质,有使且连续非负,在又已知函数,由性质,有,使非负,且连续在已知函数证明:题目10证明题 一般。

求证:⎰<+-<1032 6421πx x dx解答_。

又时,⎰⎰⎰<+-<∴=-=-<+-<∴->--∴>=<--∴>∈10321021023223233232642164 2121 414121440244)1,0(ππx x dx x dx dx x x x x x x x x x x x x题目11证明题 一般 内恒等于零。

在区间上积分为零,证明内任一闭上连续,且在在区间设),()(),(),()(b a x f b a b a x f 解答_。

而从而则由题设。

令,证明:设0)( )()( 0)( 0)( )()( ),(),(00≡∴=Φ'=Φ'=Φ=Φ∈∀∈⎰x f x f x x x dtt f x b a x b a x xx题目12证明题 一般。

证明上连续在若函数0)(a )(21)(:,]1,0[ )( 20 0 23>=⎰⎰a adx x xf dx x f x x f解答_。

时,时,,且,则令证⎰⎰⎰⎰==⋅=∴======2220 0 0 0 2322)(21 )(21 21)( )( 0021:a a a adx x xf dtt tf dtt tf dxx f x a t a x t x dt xdx t x题目13证明题 一般。

证明上连续在和设函数⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x fb a x g x f )()(])()([ :,],[)()(222解答_。

即所以其判别式此二次式均非负且对任意的二次三项式不等式左端是关于即故有上连续并由题设知它在显然为参数的定积分考虑以])(][)([])()([0])(][)([])()([ 0.,,0)()()(2)(0])()([ ,],[.0)]()([])()([222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰≤∴≤-≤∆≥+-≥-≥--bab ab ababababab ab ababadx x g dx x f dx x g x f dx x g dx x f dx x g x f t t dx x f dx x g x f t dx x g t dx x tg x f b a x tg x f dxx tg x f t题目14证明题 一般⎰⎰+=42)d sin )(cos 2(sin d cos )2(sin ]1,0[ )( ππϕϕϕϕϕϕϕ。

证明:上连续,在设f f x f解答_右式。

左式,,则在第二个积分中,令左式=+=+=∴==--===-=+==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4444 040 04 24 244 02)d sin )(cos 2(sind sin )2(sin d cos )2(sind sin )2(sinsintd )2(sin d(-t) )2cos())2(sin(d cos )2(sin -dtd 2t - 22d cos )2(sin d cos )2(sind cos )2(sin ππππππππππππϕϕϕϕϕϕϕϕϕϕϕϕϕππϕϕϕϕπϕπϕϕϕϕϕϕϕϕϕϕf f f f t t f t t f f t f f f题目15证明题 一般。

证明且上可导在设2)(2)(:,0)(,)(,],[)(a b Mdx x f a f M x f b a x f b a -≤=≤'⎰解答_。

有由定积分的比较定理又则微分中值定理上满足在由假设可知证明2)(2)()( , )()( ),( M,(x )f x )(a, ))(( )()()( , ],[)(),(,:a b Mdx a x M dx x f a x M x f b a x a x f a f x f x f x a x f b a x baba-=-≤-≤∴∈∀≤'∈-'=-=∈∀⎰⎰ ξξ题目16证明题 一般。

相关文档
最新文档