空间向量与立体几何
空间向量与立体几何公式
空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。
它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。
换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。
2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。
通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。
3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。
从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。
二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。
立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。
2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。
例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。
3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。
这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。
高中数学 2空间向量与立体几何(带答案)
空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。
在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。
注意:向量a∥α与直线a ∥α的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
空间向量与立体几何复习课ppt课件
一、空间向量及其运算
(一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量. 2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模。即表示向量的有向线段的长度。 4. 单位向量:模是 1 的向量。
5. 零向量:模是 0 的向量。零向量的方向 是任意的。有向线段的起点与终点重合。
a b
2.共面向量定理:如果两个向量 a 、b 不共线,则向 量 p 与向量 a 、b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
3.空间向量基本定理:如果两个向量 a 、b、c 不共面, 则对空间中的任意向量 p ,存在唯一的有序实数对 (x, y , z) 使 p xa yb zc .
(二)、空间角的向量方法:
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法பைடு நூலகம்量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos cosa b ;
2
直线 l 与平面 所成角 ( 0 ≤ ≤ ), sin cosa u ;
2
二面角 ─l ─ 的为 ( 0≤ ≤ ), cos cosu v.
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
理论知识点
一、空间向量及其运算
1、基本概念;
2、空间向量的运算;
3、三个定理;
4、坐标表示。
二、立体几何中的向量方法
1、判断直线、平面间的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。
立体几何与空间向量知识梳理
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
空间向量与立体几何的知识点总结
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。
第2讲 空间向量与立体几何(知识点串讲)(解析版)
第2讲空间向量与立体几何(知识点串讲)一、[体系构建]二、知识整合考点1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.例1、(2019·山东威海月考)若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A .c ∥d B .c ⊥dC .c 不平行于d ,c 也不垂直于dD .以上三种情况均有可能【答案】B [由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .] [跟踪训练]1、 (2019·河南新乡联考)O 为空间任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断【答案】B [∵OP →=34OA →+18OB →+18OC →,且34+18+18=1. ∴P ,A ,B ,C 四点共面.]考点2.两个向量的数量积(1)非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 考点3.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).例2、(1111(1)化简A 1O →-12AB →-12AD →=________.(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.【答案】(1)A 1A → (2)12AB →+12AD →+AA 1→ [(1)A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1O →+OA→=A 1A →.(2)因为OC →=12AC →=12(AB →+AD →).所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.][跟踪训练]2、(2019·山西太原期末)已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,点M 在线段PC 上,点N 在线段PD 上,且PM =2MC ,PN =ND ,若MN →=xAB →+yAD →+zAP →,则x +y +z =________.【答案】-23[如图,MN →=PN →-PM →=12PD →-23PC →=12(AD →-AP →)-23(P A →+AC →)=12AD →-12AP →+23AP →-23(AB →+AD →)=-23AB →-16AD →+16AP →. 所以x +y +z =-23-16+16=-23.]考点4.直线的方向向量与平面的法向量(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 考点5.空间位置关系的向量表示例3、( ) A .a ∥b ,a ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥bD .以上都不对【答案】C [因为c =(-4,-6,2)=2(-2,-3,1)=2a ,所以a ∥c . 又a ·b =(-2)×2+(-3)×0+1×4=0,所以a ⊥b .][跟踪训练]3、(2019·山西晋中联考)已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2【答案】A [ ∵a ∥b ,∴b =k a , 即(6,2μ-1,2λ)=k (λ+1,0,2),∴⎩⎪⎨⎪⎧6=kλ+1,2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.]考点6.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |, 其中a ,b 分别是直线a ,b 的方向向量.考点7.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点8.二面角若AB ,CD 分别是二面角αl β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB →与CD →的夹角,如图(1).平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α l β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|,如图(2)(3).例4、(2018·全国卷Ⅱ)在长方体ABCD A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56 C .55D .22【答案】C [方法一 如图(1),在长方体ABCD A 1B 1C 1D 1的一侧补上一个相同的长方体A ′B ′BA A 1′B 1′B 1A 1.图(1)连接B 1B ′,由长方体性质可知,B 1B ′∥AD 1,所以∠DB 1B ′为异面直线AD 1与DB 1所成的角或其补角.连接DB ′,由题意,得DB ′=12+(1+1)2=5,B ′B 1=12+(3)2=2,DB 1=12+12+(3)2=5.在△DB ′B 1中,由余弦定理,得DB ′2=B ′B 21+DB 21-2B ′B 1·DB 1·cos ∠DB 1B ′,即5=4+5-2×25cos ∠DB 1B ′,∴cos ∠DB 1B ′=55. 故选C .方法二 如图(2),分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系.图(2)由题意,得A (1,0,0),D (0,0,0),D 1(0,0,3),B 1(1,1,3), ∴AD 1→=(-1,0,3),DB 1→=(1,1,3),∴AD 1→·DB 1→=-1×1+0×1+(3)2=2, |AD 1→|=2,|DB 1→|=5,∴cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→||DB 1→|=225=55.][跟踪训练]4、(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【答案】(1)证明 由已知可得BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)解 如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0, DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32.又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成角为θ, 则sin θ=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34.。
空间向量与立体几何知识点汇总
空间向量与立体几何知识点汇总知识点一 空间向量及其运算(一)、空间向量在空间,我们把具有大小和方向的量叫做向量。
1. 空间的一个平移就是一个向量。
2. 向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。
相等向量只考虑其定义要素:方向,大小。
3. 空间的两个向量可用同一平面内的两条有向线段来表示。
(二)、共线向量1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.2.共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb 。
(三)、两个向量的数量积1.定义:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。
2.空间向量数量积的性质① ||cos ,a e a a e ⋅=<>; ② 0a b a b ⊥⇔⋅=; ③ 2||a a a =⋅.3.空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅;②a b b a ⋅=⋅(交换律);③()a b c a b a c ⋅+=⋅+⋅(分配律)。
(四)、空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
(五)、空间直角坐标系:1.若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示。
高中数学知识点总结大全空间向量与立体几何
高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。
空间向量与立体几何知识点和习题(含答案)
空间向量与立体几何【知识要点】1.空间向量及其运算: (1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律: 加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b . (2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉; ②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0; |a |2=a ·a ;|a ·b |≤|a ||b |. ③空间向量的数量积的运算律: (λ a )·b =λ (a ·b ); 交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3); λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3. ③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. ④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a b a b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量. 由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB 叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角AB与的夹角的大小.α -l-β 的大小就是向量CD方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2P A1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b 得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴⋅AD AC AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角,∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设P A =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC . ∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面P AC ,∴DE ⊥平面P AC ,∴∠DAE 是直线AD 与平面P AC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE即直线AD 与平面P AC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面P AC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∠P AC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3.注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题1一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°. 不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量.设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55 习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1).同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
空间向量与立体几何(整章教案
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。
学习向量的长度和方向,掌握向量的模和单位向量。
1.2 向量的运算学习向量的加法、减法和数乘运算。
掌握向量加法和减法的几何意义,理解数乘向量的意义。
1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。
掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。
第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。
学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。
2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。
掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。
第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。
掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。
3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。
掌握平面法向量的概念,学习利用平面法向量求解平面方程。
3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。
掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。
第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。
理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。
4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。
掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。
4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。
学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。
空间向量与立体几何
向量与坐标系
在三维坐标系中,空间向量的坐标表示 可以通过三维坐标系中的点来表示,反 之亦然。
VS
向量与几何变换
通过向量的线性组合和数乘,可以实现几 何变换,如平移、旋转和缩放等。
THANKS
感谢观看
影的模长的乘积与它们夹角的余弦值的乘积。
性质
03
混合积满足交换律、结合律和分配律。
03
向量的应用
向量在物理中的应用
力与运动
向量在描述力和运动时非常有用,例如,速度和加速度是向量, 可以用它们来描述物体的运动状态和变化。
动量与冲量
动量和冲量是向量,它们在描述物体的相互作用和运动变化时具 有重要意义。
空间向量在解决实际问题中的应用
力的合成与分解
在物理和工程领域中,力的合成与分 解是常见的应用,通过空间向量的加 法、数乘和向量的模,可以表示力的 合成与分解。
速度和加速度
在运动学中,速度和加速度是重要的 物理量,通过空间向量的加法、数乘 和向量的模,可以表示物体的速度和 加速度。
空间向量与几何体的相互转化
04
立体几何的基本概念
点、直线和平面的基本性质
点
点是空间中最基本的元素,没有大小和形状,只 有位置。
直线
直线是无限长的,它通过两点或给定方向上所有 点。
平面
平面是无限大的,由直线和不在该直线上的一个 点确定。
空间几何体的表面积和体积
表面积
几何体的表面积是指其外部各面的总 面积。
体积
几何体的体积是指其内部空间所占的 区域大小。
几何意义
性质
向量积满足交换律和结合律,但不满 足分配律。
两个向量的向量积等于它们在垂直于 它们所在平面方向上的投影的模长的 乘积与它们夹角的正弦值的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型专题(十) 空间向量与立体几何主要考查基础知识、基本技能,应用所学分析解决问题的能力考点一:利用空间向量证明空间位置关系——据两类向量(方向向量、法向量)定向,靠准确运算解题设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为u =(a 2,b 2,c 2),v =(a 3,b 3,c 3). (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 2=ka 3,b 2=kb 3,c 2=kc 3. (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.[典例] 如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF =⎝⎛⎭⎫-12,0,0,AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0). (1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB .又AB⊂平面P AB,EF⊄平面P AB,所以EF∥平面P AB.(2)因为AP·DC=(0,0,1)·(1,0,0)=0,AD·DC=(0,2,0)·(1,0,0)=0,所以AP⊥DC,AD⊥DC,即AP⊥DC,AD⊥DC.又因为AP∩AD=A,AP⊂平面P AD,AD⊂平面P AD,所以DC⊥平面P AD.因为DC⊂平面PDC,所以平面P AD⊥平面PDC.向量证明平行与垂直的四个步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;(3)通过空间向量的运算求出平面向量或法向量,再研究平行、垂直关系;(4)根据运算结果解释相关问题.[即时应用]在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:(1)B1D⊥平面ABD;(2)平面EGF∥平面ABD.证明:(1)以B为坐标原点,BA,BC,BB1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示,则B(0,0,0),D(0,2,2),B1(0,0,4),C1(0,2,4),设BA =a , 则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0, 即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝⎛⎭⎫a2,1,4,F (0,1,4), 则EG =⎝⎛⎭⎫a2,1,1,EF =(0,1,1), 1B D ·EG =0+2-2=0, 1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,EG ,EF ⊂平面EGF , 因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD . 考点二:利用空间向量求线线角、线面角——遵循解题四步骤,关键是把坐标求1.向量法求异面直线所成的角若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a| |b|. 2.向量法求线面所成的角求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n| |a|.[典例] (2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.[解](1)证明:如图,连接BD,设BD∩AC于点G,连接EG,FG,EF.在菱形ABCD 中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.在直角梯形BDFE中,由BD=2,BE=2,DF=2,2可得EF=322.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,所以EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(2)如图,以G为坐标原点,分别以GB,GC的方向为x轴,y轴正方向,|GB|为单位长度,建立空间直角坐标系G-xyz.由(1)可得A (0,-3,0),E (1,0,2), F ⎝⎛⎭⎫-1,0,22,C (0,3,0), 所以AE =(1,3,2),CF =⎝⎛⎭⎫-1,-3,22. 故cos 〈AE ,CF 〉=AE ·CF |AE ||CF |=-33.所以直线AE 与直线CF 所成角的余弦值为33.1.利用空间向量求空间角的一般步骤 (1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标; (3)结合公式进行论证、计算; (4)转化为几何结论. 2.求空间角应注意的问题(1)两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. (2)直线与平面所成角和直线的方向向量和平面法向量的夹角并不一定互余. [即时应用](2015·江西八所中学联考)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值.解:(1)证明:因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE .又因为△P AB 是等边三角形,E 是线段AB 的中点, 所以PE ⊥AB . 因为AD ∩AB =A , 所以PE ⊥平面ABCD . 而CD ⊂平面ABCD , 所以PE ⊥CD .(2)以E 为坐标原点,建立如图所示的空间直角坐标系E -xyz .则E (0,0,0),C (1,-1,0),D (2,1,0),P (0,0,3).ED =(2,1,0),EP =(0,0,3),PC =(1,-1,-3).设n =(x ,y ,z )为平面PDE 的法向量.由⎩⎪⎨⎪⎧ n ·ED =0,n ·EP =0,即⎩⎪⎨⎪⎧2x +y =0,3z =0.令x =1,可得n =(1,-2,0). 设PC 与平面PDE 所成的角为θ,则 sin θ=|cos 〈PC ,n 〉|=|PC ·n ||PC |·|n |=35.所以PC 与平面PDE 所成角的正弦值为35.考点三:利用空间向量求二面角——两角(法向量夹角、二面角)时同时异应辨清向量法求二面角求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1| |n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1| |n 2|.[典例] (2015·重庆高考)如图,三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE ⊥平面PCD ; (2)求二面角A -PD -C 的余弦值.[解] (1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC , 得PC ⊥DE .由CE =2,CD =DE =2,得△CDE 为等腰直角三角形, 故CD ⊥DE .由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,故DE ⊥平面PCD . (2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又已知EB =1,故FB =2. 由∠ACB =π2,得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA ,CB ,CP 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝⎛⎭⎫32,0,0,E (0,2,0),D (1,1,0),ED =(1,-1,0),DP =(-1,-1,3),DA =⎝⎛⎭⎫12,-1,0. 设平面P AD 的法向量为n 1=(x 1,y 1,z 1), 由n 1·DP =0,n 1·DA =0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1). 由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED ,即n 2=(1,-1,0), 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=36,故所求二面角A -PD -C 的余弦值为36.求平面的法向量的方法(1)待定系数法:设出法向量坐标,利用垂直关系建立坐标的方程求解. (2)先确定平面的垂线,然后取相关线段对应的向量,即确定了平面的法向量. [说明] 两平面的法向量的夹角不一定是所求的二面角.[即时应用](2015·贵阳监测考试)如图,已知四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AB ⊥AC ,AB =AC =P A =2,E 是BC 的中点.(1)求异面直线AE 与PC 所成的角;(2)求二面角D -PC -A 的平面角的余弦值.解:(1)如图所示,以A 点为原点建立空间直角坐标系A -xyz ,则B (2,0,0),C (0,2,0),P (0,0,2).故E (1,1,0),AE =(1,1,0),PC =(0,2,-2),cos 〈AE ,PC 〉=AE ·PC |AE |·|PC |=12,即〈AE ,PC 〉=60°,故异面直线AE 与PC 所成的角为60°. (2)在四边形ABCD 中,∵AB =AC =2,AB ⊥AC , ∴∠ABC =∠ACB =45°,∵AD ∥BC ,∴∠DAC =∠ACB =45°, 又AD ⊥CD ,∴AD =CD =2, ∴D (-1,1,0),又C (0,2,0),∴CD =(-1,-1,0),PC =(0,2,-2).设n =(x ,y ,z )是平面PCD 的法向量,则CD ⊥n ,PC ⊥n ,即CD ·n =0,PC ·n =0,∴⎩⎪⎨⎪⎧-x -y =0,2y -2z =0,令x =-1得,y =1,z =1, 即n =(-1,1,1),|n |=3,又AB ⊥平面P AC ,∴AB =(2,0,0)是平面P AC 的一个法向量,∴cos 〈AB ,n 〉=AB ·n |AB |·|n |=-33,即二面角D -PC -A 的平面角的余弦值为33.主要考查迁移思维、数学素养,多角度、创造性地思考和解决问题的能力常考常新的空间直角坐标系的建立空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题一个新的命题点.[典例] (2015·福建高考)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.(1)求证:GF ∥平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值. [学审题](1)取AE 中点H ――――――――――→G 是线段BE 的中点 GH 綊12AB ―→ GH 綊DF ―→▱HGFD ―→HD ∥GF ―→GF ∥平面ADE (2)AB ⊥平面BEC ―――――→做辅助线BQ ⊥BE ―→BE ,BQ ,BA 两两垂直―→建系―→所需点的坐标―→平面ADE 的法向量―→结果[解] (1)证明:如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点,所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形, 得AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF , 从而四边形HGFD 是平行四边形,所以GF ∥DH .又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE .(2)如图,在平面BEC 内,过点B 作BQ ∥EC . 因为BE ⊥CE , 所以BQ ⊥BE .又因为AB ⊥平面BEC , 所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以BE ,BQ ,BA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,2),B (0,0,0),E (2,0,0),F (2,2,1).因为AB ⊥平面BEC ,所以BA =(0,0,2)为平面BEC 的法向量. 设n =(x ,y ,z )为平面AEF 的法向量. 又AE =(2,0,-2),AF =(2,2,-1),由⎩⎪⎨⎪⎧ n ·AE =0,n ·AF =0,得⎩⎪⎨⎪⎧2x -2z =0,2x +2y -z =0.取z =2,得n =(2,-1,2). 从而cosn ,BA=n ·BA |n|·|BA |=43×2=23, 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(上题是作出BQ ⊥BE ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.[即时应用](2015·唐山一模)如图,在斜三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1与侧面CBB 1C 1都是菱形,∠ACC 1=∠CC 1B 1=60°,AC =2.(1)求证:AB 1⊥CC 1;(2)若AB 1=6,求二面角C -AB 1-A 1的余弦值.解:(1)证明:连接AC 1,CB 1,则△ACC 1和△B 1CC 1皆为正三角形.取CC 1的中点O ,连接OA ,OB 1,则CC 1⊥OA ,CC 1⊥OB 1,OA ∩OB 1=O ,则CC 1⊥平面OAB 1,则CC 1⊥AB 1.(2)由(1)知,OA =OB 1=3,又AB 1=6,所以OA ⊥OB 1,如图所示,分别以OB 1,OC 1,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,-1,0),B 1(3,0,0),A (0,0,3),A 1(0,2,3),设平面CAB 1的法向量为m =(x 1,y 1,z 1),因为1AB =(3,0,-3),AC =(0,-1,-3),所以⎩⎪⎨⎪⎧ 3x 1+0-3z 1=0,0-y 1-3z 1=0,取m =(1,-3,1).设平面A 1AB 1的法向量为n =(x 2,y 2,z 2), 因为1AB =(3,0,-3),1AA =(0,2,0),所以⎩⎪⎨⎪⎧3x 2+0-3z 2=0,0+2y 2+0=0,取n =(1,0,1),则cos 〈m ,n 〉=m·n|m| |n|=25×2=105, 因为二面角C -AB 1-A 1为钝角, 所以二面角C -AB 1-A 1的余弦值为-105.夯实每一步,成绩步步高1.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A.5π12 B.π3 C.π4D.π6解析:选B 如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知,PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3, 则S =34×(3)2=334, V ABC -A 1B 1C 1=S ×PO =94,∴PO = 3. 又AO =33×3=1, ∴tan ∠P AO =PO AO =3,∴∠P AO =π3.2.(2015·贵阳市监测考试)如图,点E ,F 分别是正方体ABCD -A 1B 1C 1D 1的棱AB ,AA 1的中点,点M ,N 分别是线段D 1E 与C 1F 上的点,则与平面ABCD 垂直的直线MN 的条数有( )A .0条B .1条C .2条D .无数条解析:选B 假设存在满足条件的直线MN ,如图,建立空间直角坐标系,不妨设正方体的棱长为2,则D 1(2,0,2),E (1,2,0),设M (x ,y ,z ),1D M =m 1D E (0<m <1),∴(x -2,y ,z -2)=m (-1,2,-2),x =2-m ,y =2m ,z =2-2m ,∴M (2-m,2m,2-2m ),同理,若设1C N =n 1C F (0<n <1),可得N (2n ,2n,2-n ),MN =(m +2n -2,2n -2m,2m -n ).又∵MN ⊥平面ABCD .∴⎩⎪⎨⎪⎧m +2n -2=0,2n -2m =0,解得⎩⎨⎧m =23,n =23,即存在满足条件的直线MN ,且只有一条.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为______.解析:以A 为原点,AB ,AD ,1AA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12, D (0,1,0),∴1A D =(0,1,-1), 1A E =⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧ y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2),∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23. 故所成的锐二面角的余弦值为23.答案:234.(2015·沈阳市质量监测)在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,点M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则异面直线PQ 与AC 所成角的正弦值为______.解析:由题意,以C 为原点,以AC 边所在直线为x 轴,以BC 边所在直线为y 轴,以CC 1边所在直线为z 轴建立空间直角坐标系,如图所示.设棱柱的高为a ,由∠BAC =π3,AC =4,得BC =43,所以A (4,0,0),B (0,43,0),C (0,0,0),A 1(4,0,a ),B 1(0,43,a ),C 1(0,0,a ),M ⎝⎛⎭⎫4,0,a 2,P ⎝⎛⎭⎫2,23,a 4,Q ⎝⎛⎭⎫1,0,a4.所以QP =(1,23,0),CA =(4,0,0).设异面直线QP 与CA 所成的角为θ,所以|cos θ|=|QP ·CA ||QP |·|CA |,由|QP ·CA |=1×4+23×0+0×0=4,|QP |·|CA |=13×4=413,得|cos θ|=4413=1313.由sin 2θ+cos 2θ=1得,sin 2θ=1213,所以sin θ=±23913,因为异面直线所成角的正弦值为正,所以sin θ=23913即为所求.答案:239135.(2015·山西省考前质量检测)如图,四棱锥P -ABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC = 2.(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH =2HD ,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H -PB -C 的余弦值.解:(1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2. 又BC =2,∴CD =2,∴BC ⊥BD .∵PD ⊥底面ABCD ,∴PD ⊥BC , 又∵PD ∩BD =D , ∴BC ⊥平面PBD , ∴平面PBD ⊥平面PBC .(2)由(1)可知∠BPC 为PC 与平面PBD 所成的角, ∴tan ∠BPC =63, ∴PB =3,PD =1.由CH =2HD 及CD =2,可得CH =43,DH =23.以点D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B (1,1,0),P (0,0,1),C (0,2,0),H ⎝⎛⎭⎫0,23,0. ∴HP =⎝⎛⎭⎫0,-23,1,HB =⎝⎛⎭⎫1,13,0, PB =(1,1,-1),BC =(-1,1,0).设平面HPB 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧HP ·n =0,HB ·n =0,即⎩⎨⎧-23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2). 设平面PBC 的法向量为m =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧PB ·m =0,BC ·m =0,即⎩⎪⎨⎪⎧x 2+y 2-z 2=0,-x 2+y 2=0,取x 2=1,则m =(1,1,2). 又cos 〈m ,n 〉=m·n|m| |n|=-217,故二面角H -PB -C 的余弦值为217. 6.(2015·兰州市诊断考试)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2,BC =CD =1,顶点D 1在底面ABCD 内的射影恰为点C .(1)求证:AD 1⊥BC ;(2)若直线DD 1与直线AB 所成的角为π3,求平面ABC 1D 1与平面ABCD 所成角(锐角)的余弦值.解:(1)证明:连接D 1C ,则D 1C ⊥平面ABCD , ∴D 1C ⊥BC .在等腰梯形ABCD 中,连接AC , ∵AB =2,BC =CD =1,AB ∥CD , ∴BC ⊥AC ,又∵AC ∩D 1C =C , ∴BC ⊥平面AD 1C , ∴AD 1⊥BC .(2)由(1)知,AC ,BC ,D 1C 两两垂直, ∵AB ∥CD , ∴∠D 1DC =π3,∵CD =1,∴D 1C = 3. 在等腰梯形ABCD 中,∵AB =2,BC =CD =1,AB ∥CD ,∴AC =3,以C 为原点,CA ,CB ,1CD 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B (0,1,0),D 1(0,0,3),AB =(-3,1,0),1AD =(-3,0,3)设平面ABC 1D 1的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·AB =0,n ·1AD =0,得⎩⎪⎨⎪⎧y -3x =0,z -x =0,可得平面ABC 1D 1的一个法向量n =(1,3,1). 又1CD =(0,0,3)为平面ABCD 的一个法向量, 因此cos 〈1CD ,n 〉=1CD ·n | 1CD | |n |=55,∴平面ABC 1D 1与平面ABCD 所成角(锐角)的余弦值为55. 7.(2015·陕西高考)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图②.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.解:(1)证明:在题图①中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图②中,BE ⊥OA 1,BE ⊥OC ,OA 1∩OC =O , 从而BE ⊥平面A 1OC . 又CD ∥BE , 所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC , 所以∠A 1OC 为二面角A 1-BE -C 的平面角, 所以∠A 1OC =π2.如图,以O 为原点,OB ,OC ,1OA 为x 轴、y 轴、z 轴正方向建立空间直角坐标系, 因为A 1B =A 1E =BC =ED =1,BC ∥ED , 所以B ⎝⎛⎭⎫22,0,0,E ⎝⎛⎭⎫-22,0,0,A 1⎝⎛⎭⎫0,0,22,C ⎝⎛⎭⎫0,22,0, 得BC =⎝⎛⎭⎫-22,22,0,1AC =⎝⎛⎭⎫0,22,-22, CD =BE =(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC =0,n 1·1AC=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD =0,n 2·1AC=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63. 8.(2015·北京海淀模拟)如图所示,在四棱锥P -ABCD 中,底面四边形ABCD 是菱形,AC ∩BD =O ,△P AC 是边长为2的等边三角形,PB =PD =6,AP =4AF .(1)求证:PO ⊥底面ABCD .(2)求直线CP 与平面BDF 所成角的大小.(3)在线段PB 上是否存在一点M ,使得CM ∥平面BDF? 如果存在,求BMBP 的值;如果不存在,请说明理由.解:(1)证明:因为底面ABCD 是菱形,AC ∩BD =O , 所以O 为AC ,BD 的中点. 又因为P A =PC ,PB =PD , 所以PO ⊥AC ,PO ⊥BD , 所以PO ⊥底面ABCD .(2)由底面ABCD 是菱形可得AC ⊥BD ,又由(1)可知PO ⊥AC ,PO ⊥BD .如图所示,以O 为原点,OA ,OB ,OP 分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系O -xyz .由△P AC 是边长为2的等边三角形,PB =PD =6, 可得PO =3,OB =OD = 3.所以A (1,0,0),C (-1,0,0),B (0,3,0),P (0,0,3). 所以CP =(1,0,3),AP =(-1,0,3). 由已知可得OF =OA +14AP =⎝⎛⎭⎫34,0,34.设平面BDF 的法向量为n =(x ,y ,z ).则⎩⎪⎨⎪⎧n ·OB =0,n ·OF =0.即⎩⎪⎨⎪⎧3y =0,34x +34z =0.令x =1,则z =-3,所以n =(1,0,-3).因为cos 〈CP ,n 〉=CP ·n | CP |·|n |=-12.所以直线CP 与平面BDF 所成角的正弦值为12.所以直线CP 与平面BDF 所成的角的大小为30°. (3)设BMBP=λ(0≤λ≤1),则CM =CB +BM =CB +BP =(1,3(1-λ),3λ).若CM ∥平面BDF ,仅需CM ·n =0,且CM ⊄平面BDF .即1-3λ=0,解得λ=13∈[0,1]. 所以在线段PB 上存在一点M ,使得CM ∥平面BDF .此时BM BP =13.近年对线性规划问题考查题目越来越灵活,与其他知识联系越来越广,常与平面向量、集合、导数、区间根等知识结合命题,考查目标函数最值、参数的值(范围).一、经典例题领悟好[例1] (2013·辽宁五校联考)已知集合A ={(x ,y )|⎩⎪⎨⎪⎧ 2x -y +2≥0,x -2y +1≤0,x +y -2≤0,},B ={(x ,y )|x 2+(y -1)2≤m },若A ⊆B ,则m 的取值范围是( )A .m ≥1B .m ≥ 2C .m ≥2D .m ≥ 5 [解析] 作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形所有点都在圆的内部,故m ≥2,解得m ≥2.[答案] C解决此类问题要学会集合语言的转化,明确集合A ,B 表示的几何语言,由A ⊆B 知三角形的所有点都在圆的内部.数形结合法是解决此类问题的常用方法,但要注意作图一定要准确,关键点要学会应用.二、预测押题不能少1.已知二元一次不等式组⎩⎪⎨⎪⎧ x +y -4≥0,x -y -2≤0,x -3y +4≥0所表示的平面区域为M .若M 与圆(x -4)2+(y -1)2=a (a >0)至少有两个公共点,则实数a 的取值范围是( )A.⎝⎛⎭⎫12,5B .(1,5) C.⎝⎛⎦⎤12,5 D .(1,5]解析:选C 如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝⎛⎭⎫122=12,当圆的半径增大到恰好过点A (2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故a 的取值范围是12<a ≤5,故选C.方程下的最值创新问题2013年山东卷12题是在条件方程及已知最小值的条件下,求三元变量函数的最大值,考查基本不等式的应用,二次函数的最值等,命题角度不拘于平时一元变量、二元变量的常规问题,着重考查化归思想,创新力度较大,难度较高.一、经典例题领悟好[例1] (2013·山东高考)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当z xy 取得最小值时,x +2y -z 的最大值为( )A .0B.98 C .2D.94学审题——审条件之审视结构条件―→z 用x ,y 表示――→代入 z xy ―→x ,y 的关系式―――――→基本不等式 最小值条件――→代入 x +2y -z ――→转化关于y 的二次函数―→最大值. 用“思想”——尝试用“转化与化归思想”解题z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥ 2x y ·4y x-3=1. 当且仅当x y =4y x,即x =2y 时“=”成立,此时 z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2.∴当y =1时,x +2y -z 取得最大值2.[答案] C(1)本题利用了转化与化归思想,一次转化是\f(z,xy )表示为x y +4y x-3,二次转化是x +2y -z 表示为-2y 2+4y .(2)在不等式中应用转化与化归思想的常见题目类型:①已知等式求最值问题,常利用基本不等式把等式转化为一元二次不等式求解.②求解不等式恒成立问题常用转化的方法方法一:分离参数法,通过分离参数,转化为不含参数的函数的最值问题求解.方法二:函数思想,转化为求含参数的函数的最值问题求解.二、预测押题不能少2.设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析:∵4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝ ⎛⎭⎪⎫2x +y 22+1,∴(2x +y )2≤85, ∴(2x +y )max =2105. 答案:2105。