九年级数学上册第1章一元二次方程单元综合测试题(含解析)(新版)苏科版

合集下载

(全优)苏科版九年级上册数学第1章 一元二次方程 含答案

(全优)苏科版九年级上册数学第1章 一元二次方程 含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、关于 x的一元二次方程有两个实数根,则a 的取值范围是( )A. B. C. 且 D. 且2、已知关于 x的一元二次方程x2﹣kx﹣6=0的一个根为x=3,则另一个根为()A.x=﹣2B.x=﹣3C.x=2D.x=33、下列一元二次方程没有实数根的是()A.x 2+x+1=0B.x 2+x﹣1=0C.x 2﹣2x﹣1=0D.x 2﹣2x+1=4、如图,某小区规划在一个长40m、宽26m的长方形场地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块草坪的面积都为144m²,那么通道的宽x应该满足的方程为( )A.(40+2x)(26+x)=40×26B.(40-x)(26-2x)=144×6C.144×6+40x+2×26x+2x²=40×26 D.(40-2x)(26-x)=144×65、一元二次方程2x(x-3)=5(x-3)的根为 ( )A.x=B.x=3C.x1=3,x2=- D.x1=3,x2=6、下列方程中,是一元二次方程的是()A.ax 2=0B.x 2+y+3=0C.(x﹣1)(x+1)=1D.(x+2)(x﹣1)=x 27、若关于x的一元二次方程(m﹣1)x2+2mx+m+3=0有两个不等的实根,则m的取值范围()A.m<B.m<且m≠1C.m≤且m≠1D.m>8、用配方法解方程x2+4x+1=0,则配方正确的是()A.(x+2)2=3B.(x+2)2=﹣5C.(x+2)2=﹣3D.(x+4)2=39、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1B.-1C.±1D.010、若是一元二次方程的根,则判别式和完全平方式的关系是()A. B. C. D.大小关系不能确定11、方程x2=1的解为()A.x=0B.x=1C.x=﹣1D.x1=1,x2=﹣112、新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A.7B.8C.9D.1013、设α、β是方程x2+x﹣2015=0的两个实数根,则α+β的值为()A.2015B.﹣2015C.1D.﹣114、已知a、b、c分别是三角形的三边,则方程(a+b)x²+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根15、一次同学聚会,每两人都相互握一次手,一共握了28次手,这次聚会的人数是()A.7人B.8人C.9人D.10人二、填空题(共10题,共计30分)16、若m是方程2x2﹣5x﹣1=0的一个根,则6m2﹣15m+2015的值为________.17、关于的方程有两个不相等的实数根,那么的取值范围是________.18、如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B 点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过________秒钟△PQB的面积等于△ABC面积的.19、方程:的根是________.20、已知方程(x+1)(x+a)=0有一个根是x=3,则a=________。

苏科版九年级数学上册第一章《一元二次方程》 能力训练题(含答案)

苏科版九年级数学上册第一章《一元二次方程》 能力训练题(含答案)

第一章《一元二次方程》能力训练题一.选择题1.下列方程中,是一元二次方程的是()A.x2+x=0 B.x+2=0 C.x+y=1 D.=22.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.已知x=1是一元二次方程2x2﹣cx=0的一个根,则c的值是()A.﹣1 B.2 C.3 D.﹣24.用配方法解一元二次方程x2﹣6x﹣2=0,配方后得到的方程是()A.(x﹣3)2=2 B.(x﹣3)2=8 C.(x﹣3)2=11 D.(x+3)2=9 5.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10 B.20 C.23 D.366.设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()A.2014 B.﹣2014 C.2011 D.﹣20117.若关于x的一元二次方程(a﹣2)x2﹣4x﹣1=0有实数根,则a的取值范围为()A.a≥﹣2 B.a≠2 C.a>﹣2且a≠2 D.a≥﹣2且a≠2 8.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.649.在一幅长60dm宽40dm的庆祝建国70周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为2800dm2,设纸边的宽为xdm,则可列出方程为()A.x2+100x﹣400=0 B.x2﹣100x﹣400=0C.x2+50x﹣100=0 D.x2﹣50x﹣100=010.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或211.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.1212.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米二.填空题13.若m是方程x2﹣2x﹣5=0的一个根,则代数式2m﹣m2=.14.在“低碳生活,绿色出行”的倡导下,自行车正逐渐成为人们喜爱的交通工具.某运动商城自2018年起自行车的销售量逐月增加.据统计,该商城一月份销售自行车100辆,三月份销售121辆,该商城的自行车销量的月平均增长率为.15.如表是某同学求代数式x2﹣x的值的情况,根据表格中数据,可知方程x2﹣x=6的根是.x﹣2 ﹣1 0 1 2 3 …x2﹣x 6 2 0 0 2 6 …16.2018﹣2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有支.17.关于x的方程x2﹣6x+3=0的两根分别是x1和x2,且=.18.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那i+i2+i3+i4+…+i2018+i2019的值为.19.用配方法将方程x2﹣4x+1=0化成(x+m)2=n的形式(m、n为常数),则=.20.某养殖场为落实国家环保政策,建造一个池底为正方形、深度为2m的长方体无盖水池,池壁的造价为每平方米150元,池底的造价为每平方米300元,总造价为9600元,则该水池池底的边长为m.三.解答题21.解下列方程:(1)x2﹣4x﹣1=0;(2)2(x﹣3)2=9﹣x222.若x1,x2是方程x2﹣2x﹣3=0的两个实数根,求(1)+的值.(2)(x1﹣1)(x2﹣1)的值.23.我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程.认识新方程:像=x这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.运用以上经验,解下列方程:(1)=x;(2)x+2=6.24.阅读理解:材料一:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0(在由原方程得到新方程的过程中,利用换元法达到降次的目的,体现了数学的转化思想).于是可解得y1=1,y2=4.①当y=1时,x2=1,∴x=±1;②当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.材料二:恒等变形是代数式求值的一个重要的方法.利用恒等变形,可以把无理数运算转化问有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当x=+1时,求x3﹣x2﹣x+2的值.为解答这道题,直接代入x的值进行计算,显然比较麻烦,我们可以通过恒等变形,对本题进行解答:先将条件化为整式,再把无理数运算转为有理数运算.由x=+1,得x﹣1=,两边同时平方得x2﹣2x﹣2=0,即x2﹣2x=2,x2=2x+2.原式=x(2x+2)﹣x2﹣x+2=x2+x﹣x2﹣x+2=2请参照以上的解决问题的思路和方法,解决下列问题:(1)解方程:(x2+x)2﹣4(x2+x)﹣12=0(2)若a2﹣3a+1=0,求2a3﹣5a2﹣3+的值.25.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.27.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.参考答案一.选择题1.解:A、该方程符合一元二次方程的定义,故本选项符合题意.B、该方程的未知数的最高次数是1,属于一元一次方程,故本题选项不符合题意.C、该方程中含有两个未知数,属于二元一次方程,故本题选项不符合题意.D、该方程不是整式方程,故本题选项不符合题意.故选:A.2.解:∵x2﹣3x+6=0,△=(﹣3)2﹣4×1×6=﹣6<0,∴方程没有实数根,即一元二次方程x2﹣3x+6=0的根的情况为没有实数根,故选:D.3.解:将x=1代入方程2x2﹣cx=0,得:2﹣c=0,解得c=2,故选:B.4.解:∵x2﹣6x﹣2=0,∴x2﹣6x=2,∴(x﹣3)2=11,故选:C.5.解:当药品第一次降价%时,其售价为100﹣100a%=100(1﹣a%);当药品第二次降价x后,其售价为100(1﹣a%)2.∴100(1﹣a%)2=64.解得:a=20或a=﹣180(舍去),故选:B.6.解:∵a、b为x2+x﹣2011=0的两个实根,∴a2+a=2011,a+b=﹣1,∴a3+a2=a(a2+a)=2011a,∴a3+a2+3a+2014b=2011a+3a+2014a=2014(a+b)=﹣2014.故选:B.7.解:由题意可知:△=16+4(a﹣2)≥0,∴a≥﹣2,∵a﹣2≠0,∴a≠2,∴a≥﹣2且a≠2,故选:D.8.解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意得:6(1+x)2=8.64.故选:C.9.解:设纸边的宽为xdm,那么挂图的长和宽应该为(60+2x)和(40+2x),根据题意可得出方程为:(60+2x)(40+2x)=2800,整理得:x2+50x﹣100=0,故选:C.10.解:当a=b时,+=1+1=2;当a≠b时,∵a、b满足a2﹣6a+2=0,b2﹣6b+2=0,∴a、b为一元二次方程x2﹣6x+2=0的两根,∴a+b=6,ab=2,∴+====16.故选:D.11.解:依题意,得:1+n+n2=111,解得:n1=10,n2=﹣11.12.解:设修建的路宽应为x米根据等量关系列方程得:20×30﹣(20x+30x﹣x2)=551,解得:x=49或1,49不合题意,舍去,故选:A.二.填空题(共8小题)13.解:∵m是方程x2﹣2x﹣5=0的一个根,∴m2﹣2m﹣5=0,∴m2﹣2m=5,∴2m﹣m2=﹣5.故答案为﹣5.14.解:设运动商城的自行车销量的月平均增长率为x,根据题意得:100(1+x)2=121,解得:x1=0.1=10%,x2=﹣2.1(舍去).故答案为:10%.15.解:由表格知,当x=﹣2或x=3时,x2﹣x=6成立,即该方程x2﹣x=6的根是x=﹣2或x=3.故答案为x1=﹣2,x2=3.16.解:设参赛队伍有x支,则x(x﹣1)=380.解得x=20.故答案是:20.17.解:由题意可知:x1+x2=6,x1x2=3,∴原式==2,18.解:由于i4n+1=i4n•i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.∴i4n+i4n+1+i4n+2+i4n+3=0,∴原式=(i+i2+i3+i4)+(i5+i6+i7+i8)+……(i2017+i2018+i2019)=504×0﹣1=﹣1,故答案为:﹣119.解:∵x2﹣4x+1=0,∴x2﹣4x+4=3,∴(x﹣2)2=3,∴m=﹣2,n=3,∴原式=1,故答案为:120.解:设池底的边长为xm.300x2+1200x=9600,解得x1=4,x2=﹣8(舍),答:池底的边长为4m.故答案为:4.三.解答题(共7小题)21.解:(1)x2﹣4x﹣1=0x2﹣4x+4=5(x﹣2)2=5,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)2(x﹣3)2=9﹣x2.2(x﹣3)2﹣(3﹣x)(3+x)=0,(3﹣x)[2(3﹣x)﹣(3+x)]=0,(3﹣x)(3﹣3x)=0,故3﹣x=0或3﹣3x=0,解得:x1=3,x2=1.22.解:由题意可知:x1+x2=2,x1x2=﹣3,(1)原式==.(2)原式=x1x2﹣(x1+x2)+1=﹣3﹣2+1=﹣423.解:(1)两边平方,得16﹣6x=x2,整理得:x2+6x﹣16=0,解得x1=﹣8,x2=2;经检验x=﹣8是增根,所以原方程的根为x=2;(2)移项得:2=6﹣x两边平方,得4x﹣12=x2﹣12x+36,解得x1=4,x2=12(不符合题意,舍).24.解:(1)令t=x2+x,原方程可化为t2﹣4t﹣12=0,∴(t﹣6)(t+2)=0,∴t=6或t=﹣2,当x2+x=6时,(x+3)(x﹣2)=0,∴x=2或x=﹣3,当x2+x=﹣2时,方程无解,∴原方程有两个根,x=2或x=﹣3;(2)∵a2﹣3a+1=0,∴a2=3a﹣1,∴2a3﹣5a2﹣3+=2a(3a﹣1)﹣5(3a﹣1)﹣3+=6a2﹣17a+2+=6(3a﹣1)﹣17a+2+=a﹣4+,∵a2﹣3a+1=0,∴a+=3,∴2a3﹣5a2﹣3+=3﹣4=﹣1.25.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.26.解:(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣45x+200=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.27.解:(1)设购进x台A型号暖风机,则购进(900﹣x)台B型号暖风机,依题意,得:600x+900(900﹣x)≥690000,解得:x≤400.答:至多购进400台A型号暖风机.(2)依题意,得:600(1﹣a%)×400(1+a%)+900(1﹣a%)×(900﹣400)(1+a%)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.。

苏科版九年级数学上册第一章一元二次方程 单元综合复习检测【含答案】

苏科版九年级数学上册第一章一元二次方程  单元综合复习检测【含答案】
∴∠ABE=∠DBC=90°,
在Rt△ABE中,a2+b2=c2,
∵DE=BE=a,
∴∠EBD=∠EDB,
∵∠EBD+∠EBC=90°,∠EDB+∠C=90°,
∴∠EBC=∠C,
∴CE=BE=a,
∴AC=AE+CE=c+a,
∵AD+AC=c﹣a+c+a=2c,AD×AC=(c﹣a)(c+a)=c2﹣a2=b2,
将 代入方程 的左边得: ,
则 不是方程 的解, 是方程 的解;
(2)将 代入方程 的左边得: ,代入右边得: ,即左边等于右边,
则 是方程 的解;
将 代入方程 的左边得: ,代入右边得: ,即左边不等于右边,
则 不是方程 的解.
27.(1)10元;(2)20%
解:(1)设该种农产品的原价格是 元/千克,则下降后的价格是 元/千克,
整理得:16+8k﹣32≥0,
解得:k≥2,
∴k的取值范围是:k≥2.
(2)由题意得: ,
由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,
故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,
整理得:k2﹣4k+3=0,
解得:k1=3,k2=1,
又由(1)中可知k≥2,
∴k的值为3.
25.(1)a≤ ;(2)x=1或x=2.
∴以AD和AC的长为根的一元二次方程可为x2﹣2cx+b2=0.
故选:A.
11.600(1﹣x)2=384.
解:设每次降价的百分率为x,由题意得:
600(1﹣x)2=384,
故600(1﹣x)2=384.

苏科版九年级数学上册第一章《一元二次方程》(难题)单元测试(一)(有答案)

苏科版九年级数学上册第一章《一元二次方程》(难题)单元测试(一)(有答案)

苏科版九年级数学上册第一章《一元二次方程》(难题)单元测试(一)一、选择题1.关于x的一元二次方程x2−6x+k=0有两个不相等的实数根,则k的取值范围是()A. k≥9B. k<9C. k≤9且k≠0D. k<9且k≠02.已知正数a,b是关于x的一元二次方程x2−4x−m2+2m+1=0的两个实数根,若a,b为菱形对角线的长,菱形的面积存在最大值,则m的值为()A. 2B. −1C. 1D. 任何实数3.已知关于x的一元二次方程(m−1)x2+x+m2+4m−5=0的一个根为0,则m的值为()A. 1B. −5C. 1或−5D. m≠1的任意实数4.已知菱形ABCD的边长为方程x 2−9x+20=0的一个根且一条对角线长为8,则菱形ABCD的周长为()A. 16B. 32C. 20D. 16或205.有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中,ac≠0,a≠c,下列四个结论中错误的是()A. 如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数B. 如果4是方程M的一个根,那么1是方程N的另一个根4C. 如果方程M有两根符号相同,那么方程N的两符号也相同D. 如果方程M和方程N有一个相同的根,那么这个根必是x=16.如果关于x的一元二次方程x2−px+q=0的两个根分别x1=−3,x2=2,那么p,q的值分别是()A. 1,−6B. −1,−6C. −1,6D. 1,67.对于一元二次方程ax2+bx+c=0(a≠0),下列说法中错误的是()A. 当a>0,c<0时,方程一定有实数根B. 当c=0时,方程至少有一个根为0C. 当a>0,b=0,c<0时,方程的两根一定互为相反数D. 当ac>0时,方程的两个根同号,当ac<0时,方程的两个根异号8.在菱形ABCD中,AC,BD交于点O,AC=16m,BD=12m,动点M从点A出发沿AC方向以2m/s的速度匀速直线运动到点C,动点N从点B出发沿BD方向以1m/s的速度匀速直线运动到点D,当其中一点停止运动时,另一点也随即停止运动.若点M,N同时出发,△MON的面积为1m2时,则运动时间不可能为()A. (5+√2)sB. (5−√2)sC. 5sD. (5+√3)s9.已知下面三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰好有一个相同的实数根a,则a+b+c的值为()A. 0B. 1C. 3D. 不确定10.ΔABC的三边长都是方程x2−6x+8=0的解,求此三角形的周长()A. 12B. 10或12或8或6C. 10D. 12或10或6二、填空题11.已知x1,x2是一元二次方程x2+2x−4=0的两根,则(x1−1)(x2−1)=.12.已知x1、x2是关于x的方程x2+ax−2b=0的两实数根,且x1+x2=−2,x1⋅x2=1,则b a=_____ .13.在一块长为35m,宽26m的矩形绿地上有宽度相同的两条路,如图所示,其中绿地面积为850m2,设小路的宽为Xm,根据题意列方程_____14.关于x的方程(k−1)x2−2x+1=0有两个不相等的实数根,则实数k的取值范围是____________.15.某钢铁厂去年1月某种钢发产量为2000吨,3月上升到2420吨,这两个月平均每月增长的百分率为x,列方程为.16.已知方程x2−2x−5=0的两个根是m和n,则2m+4n−n2的值为______ .三、解答题17.关于x的一元二次方程x2+4x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+4x+2m=0的两个根,且x12+x22=9,求m的值.18.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元,第二周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元.(1)第二周单价降低x元后,这周销售的销量为________(用x的关系式表示).(2)求这批旅游纪念品第二周的销售价格.19.阅读题例,解答下题:例:解方程x2−|x|−2=0(1)当x≥0时,x2−x−2=0,解得:x1=−1(不合题意,舍去),x2=2(2)当x<0时,x2+x−2=0,解得:x1=1(不合题意,舍去),x2=−2综上所述,原方程的解是x=2或x=−2依照上例解法解方程x2−|x−1|−1=0.20.已知关于x的方程x2−2√2(k−1)x+2k2−2k−10=0.(1)若这个方程有实数根,求k的取值范围;(2)若以方程x2−2√2(k−1)x+2k2−2k−10=0的两个根为横坐标、纵坐标的点恰的图象上,求满足条件的m的最小值.在反比例函数y=mx21.阅读下面的材料:例题:解方程x4−5x2+4=0。

第1章 一元二次方程 苏科版九年级数学上册单元复习(解析版)

第1章 一元二次方程  苏科版九年级数学上册单元复习(解析版)

【单元复习】第1章一元二次方程知识精讲第1章一元二次方程一、一元二次方程的概念1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程。

根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于和的代数式的值,如④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。

2020年秋苏科版九年级数学上册第一章一元二次方程单元培优测试卷(Word版 含解析)

2020年秋苏科版九年级数学上册第一章一元二次方程单元培优测试卷(Word版 含解析)

2020年秋苏科版九年级数学上册第一章一元二次方程单元培优测试卷一、选择题(共10题;共30分)1.下列方程中是关于x的一元二次方程的是()A.x2+1x=0 B.ax2+bx+c=0 C.(x-1)(x+ 2)=1 D.3x2-2xy-5y2=02.用配方法解一元二次方程x2-8x+11=0,此方程可化为( )A.(x-4)2=5B.(x+4)²=5C.(x-4)²=27D.(x+4)²=273.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.已知一元二次方程x2﹣4x+m=0有一个根为2,则另一根为()A.﹣4B.﹣2C.4D.25.从正方形铁片,截去2cm宽的一条长方形,余下的矩形的面积是48cm2,则原来的正方形铁片的面积是()A. 8cmB. 64cmC. 8cm2D. 64cm26.三角形的两边长分别为3米和6米,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()A.11B.12C.11或 13D.137.如果关于x的一元二次方程kx2−3x+1=0有两个实数根,那么k的取值范围是()A.k⩾94B.k⩾−94且k≠0 C.k⩽94且k≠0 D.k⩽−948.菱形ABCD的一条对角线长为6,另一条对角线的长为方程y2﹣2y﹣8=0的一个根,则菱形ABCD的面积为()A.10B.12C.10或12D.249.某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为x.根据题意列方程正确的是()A.250(1+x)2=900B.250(1+x%)2=900C.250(1+x)+250(1+x)2=900D.250+250(1+x)+250(1+x)2=90010.若m是一元二次方程x2-4x-1=0的一个根,则代数式4m-m²的值为( )A.1B.-1C.2D.-22二、填空题(共6题;共24分)11.若(x2+y2)2−5(x2+y2)−6=0,则x2+y2= ________.12.一元二次方程4x(x−2)=x−2的解为________.13.设x1,x2是方程2x2+3x−4=0的两个实数根,则1x1+1x2的值为________.14.已知关于x的一元二次方程(a−1)x2−2x+a2−1=0有一个根为x=0,则a的值为________.15.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出________.16.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为________.三、解答题(共7题;共66分)17.解方程(1)x2−4=0(2)(x+3)2=(2x−1)(x+3)18.一个两位数的个位数字与十位数字的和为9,并且个位数字与十位数字的平方和为45,求这个两位数。

2020年苏科版九年级数学上学期第一章《一元二次方程》测试卷(含答案)

2020年苏科版九年级数学上学期第一章《一元二次方程》测试卷(含答案)

第一章《一元二次方程》 一、选择题(每题3分,共24分) 1.下列方程中一定是关于x 的一元二次方程的是( )A.1122=+xx B.ax 2+bx+c=0 C 、x(x+2)=(x-1)(x-2) D. (x-1)(x+2)=1 2已知关于x 的一元二次方程x 2-kx-2=0的一个根是2,则k 的值是( )A.-2B.2C.1D.-13. 若一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=-4B.x-6=4C.x+6=4D.x+6=-44. 一元二次方程5x 2-7x+5=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5. 如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为( )A.(22-x )(17-x)=300B.(22-x)(17-x)-x 2=300C.(22-x)(17-x)+x 2=300D.22×17-x 2=3006. 若分式3652-+-x x x 的值为0,则x 的值为( ) A.3 B.2 C.3或2 D.-37.已知一个三角形的两边长分别为3和6,第三边的长为方程(x-2)(x-4)=0的根,则这个三角形的周长为( )A.11B.11或13C.13D.以上选项都不正确8. 若方程()2519x -=的两根为a 和b ,且a b >,则下列结论中正确的是 ( )A .a 是19的算术平方根B .b 是19的平方根C.5a -是19的算术平方根 D .5b +是19的平方根 二、填空题:(每小题3分,共30分)9.若方程kx 2+x=3x 2+1是关于x 的一元二次方程,则k 的取值范围是 .10. 如果a+b+c=0,则关于x 的一元二次方程ax 2+bx+c=0,一定有一个根是 .11.若将方程x 2+6x=7化为(x+m )2=16,则m= .12.已知方程4x 2=(1-x )2,则x= .13. 已知关于x 的方程x ²-23x -k =0有两个相等的实数根,则k 的值为14.已知一个一元二次方程的根是3和-4,那么这个方程是 (写出一个符合要求的方程即可).15.若(a 2+b 2+1)2=9,则a 2+b 2= .16.若关于x 的一元二次方程(2a+6)x 2+4x+2a 2-18=0的一个根是0,则a= .17. 已知x m =时,多项式2x x n ++的值为1-,则x m =-时,该多项式的值为 .18.如图,在边长为6cm 的正方形ABCD 中,点P 从点A 开始沿AB 边向点B以1cm/s 的速度移动,点Q 从点B 开始沿BC 和CD 边向D 点以2cm/s 的速度移动,如果点P 、Q 分别从A 、B 同时出发,其中一点到终点,另一点也随之停止.过了 秒钟后,△PBQ 的面积等于8cm 2.三、解答题:(共96分)19.(共20分)用适当方法解下列方程:(1)x²-2x-624=0 (2)4x 2-5x+1=0(3)4(2x-1)2-9(x+1)2=0 (4)x-3=4(x-3)220.(8分)已知实数m 是关于x 的方程2x 2-3x-1=0的一根,求代数式4m 2-6m-2017的值.21.(8分)对于二次三项式x 2-10x+36,小聪同学作出如下结论:无论x 取什么实数,它的值都不可能等于10,你同意他的说法吗?说明你的理由.22.(8分)已知:关于x 的方程01222=-++m mx x 。

初中数学苏科版九年级上册第1章 一元二次方程1.1 一元二次方程-章节测试习题(14)

初中数学苏科版九年级上册第1章 一元二次方程1.1 一元二次方程-章节测试习题(14)

章节测试题1.【答题】将一元二次方程x2+1=3x化成一般形式后,二次项系数和一次项系数分别为()A. 1,-3B. 1,3C. 1,0D. x2,-3x【答案】A【分析】根据一元二次方程的一般式即可求出答案.【解答】解:∵x2+1=3x,∴x2-3x+1=0,∴二次项系数为1,一次项系数为-3,2.【答题】将方程3x(x-1)=5(x+2)化为一元二次方程的一般式,正确的是()A. 4x2-4x+5=0B. 3x2-8x-10=0C. 4x2+4x-5=0D. 3x2+8x+10=0【答案】B【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),把这个式子化简首先要去括号,然后就是移项,合并同类项.【解答】解:方程3x(x-1)=5(x+2)去括号得:3x2-3x=5x+10移项得:3x2-3x-5x-10=0合并同类项得:3x2-8x-10=0,3.【答题】将一元二次方程5x2-1=4x化为一般形式,其中一次项系数是()A. 5B. -4C. 4D. -1【答案】B【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:一元二次方程5x2-1=4x化为一般形式是5x2-4x-1=0,一次项系数分别为-4.选B.4.【答题】将方程化为一元二次方程3x2-8x=10的一般形式,其中二次项系数,一次项系数,常数项分别是()A. 3,-8,-10B. 3,-8,10C. 3,8,-10D. -3,-8,-10【答案】A【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:一元二次方程3x2-8x=10的一般形式3x2-8x-10=0,其中二次项系数3,一次项系数-8,常数项是-10,选A.5.【答题】把一元二次方程x(x+1)=3x+2化为一般形式,正确的是()A. x2+4x+3=0B. x2-2x+2=0C. x2-3x-1=0D. x2-2x-2=0【答案】D【分析】先去括号,再移项,然后合并同类项,即可得出答案.【解答】解:去括号得:x2+x=3x+2移项合并得:x2-2x-2=0故答案为:D.6.【答题】对于关于x的一元二次方程x2-5x-m-2=0,它的一次项系数和常数项分别是()A. 5和-2B. -5和-2C. 5和m-2D. -5和-m-2【答案】D【分析】根据一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)中,ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项,直接进行判断即可.【解答】解:一元二次方程x2-5x-m-2=0的一次项系数和常数项分别是-5和-m-2.选D.7.【答题】把一元二次方程(x-3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A. 1,6,4B. 1,-6,4C. 1,-6,-4D. 1,-6,9【答案】B【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2-6x+4=0,二次项系数;一次项系数;常数项分别为1,-6,4,选B.8.【答题】一元二次方程3x2+2x+1=0的二次项系数是()A. 3B. 2C. 1D. 0【答案】A【分析】根据一元二次方程的二次项系数的定义求解.【解答】解:一元二次方程3x2+2x+1=0的二次项系数是3.选A.9.【答题】一元二次方程-3x2+2x-1=0的二次项系数是()A. -3B. 2C. 1D. 0【答案】A【分析】根据一元二次方程的二次项系数的定义求解.【解答】解:一元二次方程-3x2+2x-1=0的二次项系数是-3.选A.10.【答题】一元二次方程2x2+3x-5=0的常数项是()A. -5B. 2C. 3D. 5【答案】A【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)中a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:一元二次方程2x2+3x-5=0的常数项是-5,选A.11.【答题】将一元二次方程4x2+7=3x化成一般式后,二次项系数和一次项系数分别为()A. 4,3B. 4,7C. 4,-3D. 4x2,-3x【答案】C【分析】一元二次方程的一部形式是ax2+bx+c=0,先化成一部形式,再求出二次项系数和一次项系数即可.【解答】解:4x2+7=3x,4x2-3x+7=0,二次项系数和一次项系数分别为4、-3,选C.12.【答题】方程x2-2x-3=0的二次项系数、一次项系数、常数项分别是()A. 1,2,3B. 1,2,-3C. 1,-2,-3D. -1,2,3【答案】C【分析】根据一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)中,ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项,直接进行判断即可.【解答】解:一元二次方程x2-2x-3=0的二次项系数、一次项系数、常数项分别是1,-2,-3.选C.13.【答题】将一元二次方程5x2-1=4x化成一般形式后,二次项系数和一次项系数分别为()A. 5,-1B. 5,4C. 5,-4D. 5x2,-4x【答案】C【分析】方程化为一般形式后,找出二次项系数与一次项系数即可.【解答】解:方程整理得:5x2-4x-1=0,则二次项系数和一次项系数分别为5,-4.选C.14.【答题】方程x(x-5)=0化成一般形式后,它的常数项是()A. -5B. 5C. 0D. 1【答案】C【分析】根据题目中的式子,将括号去掉化为一元二次方程的一般形式,从而可以解答本题.【解答】解:∵x(x-5)=0∴x2-5x=0,∴方程x(x-5)=0化成一般形式后,它的常数项是0,选C.15.【答题】方程-5x2=1的一次项系数是()A. 3B. 1C. -1D. 0【答案】D【分析】方程整理为一般形式,找出一次项系数即可.【解答】解:方程整理得:-5x2-1=0,则一次项系数为0,选D.16.【答题】把方程x(x+2)=5x化成一般式,则a、b、c的值分别是()A. 1,3,5B. 1,-3,0C. -1,0,5D. 1,3,0【答案】B【分析】一元二次方程的一般式是:ax2+bx+c=0(a,b,c是常数且a≠0),ax2叫二次项,bx叫一次项,c是常数项;其中a,b,c分别叫二次项系数,一次项系数,常数项.把方程x(x+2)=5x化成一般式,问题可求.【解答】解:∵x(x+2)=5x,∴x2+2x-5x=0,∴x2-3x=0;∴a=1,b=-3,c=0.17.【答题】若一元二次方程(2m+6)x2+m2-9=0的常数项是0,则m等于()A. -3B. 3C. ±3D. 9【答案】B【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:由题意,得m2-9=0且2m+6≠0,解得m=3,选B.18.【答题】一元二次方程x2-2x-3=0的二次项系数、一次项系数、常数项分别是()A. 1,-2,-3B. 1,-2,3C. 1,2,3D. 1,2,-3【答案】A【分析】根据一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)中,ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项,直接进行判断即可.【解答】解:一元二次方程x2-2x-3=0的二次项系数、一次项系数、常数项分别是1,-2,-3.选A.19.【答题】将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为()A. 2,9B. 2,7C. 2,-9D. 2x2,-9x【答案】C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:2x2+7=9x化成一元二次方程一般形式是2x2-9x+7=0,则它的二次项系数是2,一次项系数是-9.选C.20.【答题】一元二次方程3x2-2x=1的二次项系数、一次项系数、常数项分别是()A. 3,-2,1B. 3,2,1C. 3,-2,-1D. -3,2,1【答案】C【分析】要确定二次项系数、一次项系数和常数项,首先要把方程化成一般形式.【解答】解:∵方程3x2-2x=1化成一般形式是3x2-2x-1=0,∴二次项系数是3,一次项系数为-2,常数项为-1.选C.。

第1章 一元二次方程 单元测试题 (含详案)苏科版九年级数学上册

第1章 一元二次方程 单元测试题 (含详案)苏科版九年级数学上册

九年级数学上册《第1章一元二次方程》单元测试一、单选题(满分32分)1.下列方程中,一定是一元二次方程的是()A.x2=1B.x2―2y+1=0C.x2+1x=2D.ax2+bx+c=0 2.一元二次方程2x2―12x―9=5的二次项系数、一次项系数、常数项分别是()A.2,―12,14B.2,―12,―14C.2,12,14D.2,12,―143.关于x的一元二次方程(a―3)x2+x―a2+9=0的一个根为0,则a的值是()A.3或―3B.3C.―3D.94.用配方法解一元二次方程x2―6x―10=0,此方程可变形为( )A.(x+3)2=19B.(x―3)2=19C.(x+2)2=1D.(x―3)2=15.若4a+2b+c=0,则关于x的一元二次方程ax2+bx+c=0(a≠0)必有一根为()A.―2B.0C.2D.―2或26.一元二次方程(x―2)2=x―2的根是()A.x=2B.x1=1,x2=3C.x=3D.x1=2,x2=3 7.若关于x的一元二次方程x2―4x+2k=0有实数根,则实数k的取值范围是()A.k>2B.k≥2C.k<2D.k≤28.某商品原价为100元,连续两次降价后为81元,设平均每次降价的百分率为x,则下列方程正确的是()A.81(1+x)2=100B.100(1―x)2=81C.100(1―2x)=81D.81(1+2x)=100二、填空题(满分32分)9.若(m+1)x m2+1―2x―5=0是关于x的一元二次方程,则m=.10.已知代数式x2―2比2x+1小4,则x=.11.已知关于x的一元二次方程(a―3)x2―2x―3=0有一根为1,则a的值为.12.已知x1,x2是关于x的一元二次方程x2+bx+c=0的两个根,且x1+x2=5,x1⋅x2=6,则该一元二次方程是.13.若(a2+b2)2―2(a2+b2)―8=0,则代数式a2+b2的值为14.若x1,x2是方程2x2+6x―8=0的两个根,则1x1+1x2的值为.15.在一次聚会中,每两个参加聚会的人都互相握一次手,一共握手28次,问这次参加聚会的人数是多少?若设这次参加聚会的人数为x人,则可列出的方程是.16.在“一圈两场三改”活动中,某小区计划在一块长为32m,宽为20m的矩形场地上修建三条同样宽且互相垂直的小路,剩余的空地上种植草坪.根据规划,小路分成的六块草坪总面积为570m2(如图所示).求小路的宽为多少米?若设小路的宽为x m,根据题意所列方程是.三、解答题(满分56分)17.用适当的方法解方程:(1)y2―2y―3=0(2)(2t+3)2=3(2t+3)18.已知关于x的一元二次方程mx2―(m+3)x+3=0有两个相等的实数根.求m的值.19.已知关于x的一元二次方程x2―(2k+1)x+2k2=0的两根x1,x2满足x21+x22=5,求k的值.20.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1,x2是原方程的两根,且|x1―x2|=25,求m的值.21.如图,有一农户要建一个矩形鸡舍,鸡合的一边利用长为12m的墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于墙的一边CD上留一个1m宽的门.(1)矩形的边长分别为多少时,鸡舍面积为80m2(2)鸡舍面积能否达到86m222.商场销售某种商品,进价200元,每件售价250元,平均每天售出30件,经调查发现:当商品销售价每降低1元时,平均每天可多售出2件.(1)当商品售价降价5元时,每天销售量可达到____________件,每天盈利__________元;(2)为了让顾客得到更多的实惠,每件商品降价多少元时,商场通过销售这种商品每天盈利可达到2100元?(3)在(2)题条件下,降价后每件商品的利润率是____________.参考答案1.解:A.符合一元二次方程的定义,故A符合题意;B.含有两个未知数,不是一元二次方程,故B不符合题意;C.等式左边含有分式,不是一元二次方程,故C不符合题意;D.ax2+bx+c=0中应该a≠0才是一元二次方程,故D不符合题意.故选:A.2.解:∵一元二次方程2x2―12x―9=5可化为:2x2―12x―14=0,∴二次项系数为2、一次项系数为―12、常数项为―14.故选:B.3.解:将x=0代入方程(a―3)x2+x―a2+9=0得:―a2+9=0,解得:a=±3,∵a―3≠0,∴a=―3,故选:C.4.解:∵x2―6x―10=0,∴x2―6x=10,∴x2―6x+9=19,∴(x―3)2=19,故选:B.5.解:对于ax2+bx+c=0(a≠0),当x=2时,4a+2b+c=0,∴关于x的一元二次方程ax2+bx+c=0(a≠0)必有一根为x=2.故选:C.6.解:(x―2)2=x―2,整理得:(x―2)2―(x―2)=0,∴(x―2)(x―2―1)=0,∴x1=2,x2=3,故选:D.7.解:Δ=(―4)2―4×1×2k=16―8k,∵一元二次方程x2―4x+2k=0有实数根,∴Δ≥0,∴16―8k≥0,∴k≤2.故选:D.8.解:由题意得:100(1―x)2=81.故选:B.9.解:由题意知:m2+1=2且m+1≠0,解得m=1,故答案为:1.10.解:根据题意得:x2―2=2x+1―4,解得:x1=x2=1,故答案为:1.11.解:由题意得:(a―3)×12―2×1―3=0,解得:a=8;故答案为:8.12.解:∵该方程的两个根x1,x2满足x1+x2=5,x1⋅x2=6,∴―b1=5,c1=6,则b=―5,c=6,∴此时该方程为x2―5x+6=0.故答案为:x2―5x+6=0.13.解:设a2+b2=x,则原方程换元为x2―2x―8=0,∴(x―4)(x+2)=0,解得x1=4,x2=―2(不合题意,舍去),∴a2+b2的值为4.故答案为:4.14.解:∵x1,x2是方程2x2+6x―8=0的两个根,∴x1+x2=―62=―3,x1⋅x2=―4则1x1+1x2=x1+x2x1x2=―3―4=34故答案为:3415.解:参加聚会的人数为x人,每个人都要握手(x―1)次,根据题意得:1x(x―1)=28,2x(x―1)=28.故答案为:1216.解:设道路的宽为x m,则草坪的长为(32―2x)m,宽为(20―x)m,根据题意得:(32―2x)(20―x)=570.故答案为:(32―2x)(20―x)=570.17.(1)解:配方得:(y―1)2=4,开平方得,y―1=±2,则y―1=2或y―1=―2,解得y1=3,y2=―1;(2)解:(2t+3)2=3(2t+3),∴(2t+3)2―3(2t+3)=0,∴(2t+3)(2t+3―3)=0,∴2t(2t+3)=0,∴2t+3=0或2t=0,,t2=0.∴t1=―3218.解:∵方程mx2―(m+3)x+3=0有两个相等的实数根,∴Δ=(m+3)2―12m=m2―6m+9=0解得m1=m2=3,∴m的值为3.19.解:根据题意,得x1+x2=2k+1,x1x2=2k2.∵x21+x22=(x1+x2)2―2x1x2∴(2k+1)2―2×2k2=4k+1=5,解得k=1.20.(1)解:原方程总有两个不相等的实数根,x2+(m+3)x+m+1=0中a=1,b=m+3,c=m+1,∴Δ=b2―4ac=(m+3)2―4×1×(m+1)=m2+2m+5,∴Δ=(m+1)2+4>0,∴无论m取何值,原方程的判别式恒大于零,∴无论m取何值,原方程总有两个不相等的实数根.(2)解:x2+(m+3)x+m+1=0中a=1,b=m+3,c=m+1,且x1,x2是原方程的两根,|x1―x2|=25,∴x1+x2=―ba =―(m+3),x1•x2=ca=m+1,∴(x1+x2)2=x12+2x1x2+x22=(m+3)2,则x12+x22=(m+3)2―2(m+1),∵|x1―x2|=25,即(x1―x2)2=(25)2,∴x12+x22―2x1x2=20,∴(m+3)2―2(m+1)―2(m+1)=20,整理得,m2+2m―15=0,解方程得,m1=3,m2=―5,∴m的值3或―5.21.(1)解:设矩形鸡舍垂直于房墙的一边AB长为am,则矩形鸡舍的另一边BC长为(26―2a)m.依题意,得a(26―2a)=80,解得a1=5,a2=8.当a=5时,26―2a=16>12(舍去),当a=8时,26―2a=10<12.答:矩形鸡舍的长为10m,宽为8m;(2)解:当S=86m2,则a(26―2a)=86,整理得:a2―13a+43=0,则Δ=169―172=―3<0,故所围成鸡舍面积不能为86平方米.题的关键.22.(1)解:根据题意得,现在售出的件数是30+2×5=40,利润是(245―200)×40=45×40=1800元.(2)解:设每件商品降价x元,则现在售价是(250―x)元,利润是(250―x―200)元,售出件数是(30+2x)件,利润达到2100元,∴(250―x―200)(30+2x)=2100,解方程得,x1=20,x2=15,∵为了让顾客得到更多的实惠,∴x=20,即商品降价20元.(3)解:售价是250―20=230元,利润是230―200=30元,×100%=15%.∴利润率是30200。

苏科新版九年级数学上册《第1章_一元二次方程》有答案

苏科新版九年级数学上册《第1章_一元二次方程》有答案

苏科新版九年级数学上册《第1章一元二次方程》单元测试卷一、填空题(共10小题,每小题2分,满分20分)1. 把方程3x2+x=5x−2整理成一元二次方程的一般形式为________.2. 一元二次方程x2−x−2=0的二次项系数是________,一次项系数是________,常数项是________.3. 一元二次方程x2−3x−4=0的根的判别式的值为________,方程的根为________.4. 一元二次方程2x2−5x−1=0的两根为x1,x2,则x1+x2=________,x1⋅x2=________.5. 方程(x+2)(x−3)=0的根为________;方程(x+2)2−2(x+2)=0的根为________.6. 当x=________,代数式x2−2的值与2x+1的值相等.7. 写出一个一元二次方程,使它有两个不相等的实数根________.8. 已知方程x2−5x+9−k=0的一个根是2,则k的值是________,方程的另一个根为________.9. 某县2014年的GDP是250亿元,要使2016年的GDP达到360亿元,求这两年该县GDP年平均增长率.设年平均增长率为x,可列方程________.10. 若关于x的一元二次方程(m−2)x2−4x+3=0有实数解,则m的取值范围为________.二、单项选择(每小题2分,共20分)下列方程中,一元二次方程有( )①3x2+x=20;②2x2−3xy+4=0;=4;③x2−1x④x2=1;+3=0⑤x2−x3方程x2=4的解为()A.x=2B.x=−2C.x1=4,x2=−4D.x1=2,x2=−2若方程(x−4)2=a有实数解,则a的取值范围是()A.a≤0B.a≥0C.a>0D.无法确定方程(2x+3)(x−1)=1的解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根用配方法将二次三项式a2−4a+5变形,结果是()A.(a−2)2+1B.(a+2)2−1C.(a+2)2+1D.(a−2)2−1用配方法解一元二次方程m2−6m+8=0,结果是下列配方正确的是()A.(m−3)2=1B.(m+3)2=1C.(m−3)2=−8D.(m+3)2=9若关于x的一元二次方程的两根为x1=1,x2=2,则这个方程是()A.x2+3x−2=0B.x2−3x+2=0C.x2−2x+3=0D.x2+3x+2=0以4、9为两边长的三角形的第三边长是方程x2−14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对若分式x2−5x−6x+1的值为0,则x的值为()A.−1B.6C.−1或6D.无法确定已知实数a,b分别满足a2−6a+4=0,b2−6b+4=0,且a≠b,则ba +ab的值是( )A.7B.−7C.11D.−11三、解答题(共60分)②x2−2x−3=0;③2x2−7x+3=0;④5x2=7x;⑤x(x−3)−5(x−3)=0;⑥(x+3)(2x−1)=4.不解方程,判别方程根的情况.①3x2−5x+4=0;②x2−2x=5−x.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg.经市场调查,销售单价每涨1元,月销售量就减少10kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?已知关于x的一元二次方程x2+(2m−1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12−x22=0时,求m的值.已知关于x的方程(m2−1)x2−(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.如图,已知AB⊥BC,AB=12cm,BC=8cm.一只蝉从点C沿CB方向以1cm/s的速度爬行,一只螳螂为了捕捉这只蝉,由点A沿AB方向以2cm/s的速度爬行,一段时间后,它们分别到达了点M,N的位置.若此时△MNB的面积为24cm2,求它们爬行的时间.参考答案与试题解析苏科新版九年级数学上册《第1章 一元二次方程》单元测试卷一、填空题(共10小题,每小题2分,满分20分)1.【答案】3x 2−4x +2=0【考点】一元二次方程的一般形式【解析】方程移项合并,整理为一般形式即可.【解答】解:方程整理得:3x 2−4x +2=0,故答案为:3x 2−4x +2=02.【答案】1,−1,−2【考点】一元二次方程的一般形式【解析】找出一元二次方程的二次项系数,一次项系数,以及常数项即可.【解答】解:元二次方程x 2−x −2=0的二次项系数是1,一次项系数是−1,常数项是−2. 故答案为:1;−1;−23.【答案】25,−1和4【考点】根的判别式【解析】根据一元二次方程各项系数结合根的判别式即可求出△的值,再利用分解因式法解一元二次方程即可求出方程的根.【解答】解:方程x 2−3x −4=0中,△=(−3)2−4×1×(−4)=25.∵ x 2−3x −4=(x +1)(x −4)=0,解得:x 1=−1,x 2=4.过答案为:25;−1和4.4.【答案】52,−12 【考点】根与系数的关系根据韦达定理可直接得出.【解答】解:∵ 方程2x 2−5x −1=0的两根为x 1,x 2,∴ x 1+x 2=−−52=52,x 1x 2=−12, 故答案为:52,−12.5.【答案】x 1=−2,x 2=3,x 1=0,x 2=−2【考点】解一元二次方程-因式分解法【解析】分别令各因式等于0,求出x 的值即可;提取公因式,再求出x 的值即可.【解答】解:∵ 方程(x +2)(x −3)=0,∴ x +2=0,x −3=0,∴ x 1=−2,x 2=3;∵ 方程(x +2)2−2(x +2)=0,∴ (x +2)(x +2−2)=0,即x(x +2)=0,∴ x =0或x +2=0,∴ x 1=0,x 2=−2.故答案为:x 1=−2,x 2=3;x 1=0,x 2=−2.6.【答案】−1或3【考点】解一元二次方程-因式分解法【解析】根据题意得x 2−2=2x +1,然后把方程化为一般式后利用因式分解法解方程求出x 即可.【解答】解:根据题意得x 2−2=2x +1,整理得x 2−2x −3=0,(x +1)(x −3)=0,x +1=0或x −3=0,所以x 1=−1,x 2=3,即x =−1或3时,数式x 2−2的值与2x +1的值相等.故答案为−1或3.7.【答案】x 2+x −1=0【考点】根的判别式【解析】【解答】解:比如a=1,b=1,c=−1,∴△=b2−4ac=1+4=5>0,∴方程为x2+x−1=0.8.【答案】3,3【考点】根与系数的关系【解析】设方程的另一个根为x,根据根与系数的关系得:x+2=5,2x=9−k,求出即可.【解答】解:设方程的另一个根为x,则根据根与系数的关系得:x+2=5,2x=9−k,解得:x=3,k=3,故答案为:3,3.9.【答案】250(1+x)2=360【考点】由实际问题抽象出一元二次方程【解析】2016年的GDP360=2014年的GDP250×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2015年的GDP为250×(1+x),2014年的GDP为250×(1+x)(1+x)=250×(1+x)2,即所列的方程为250(1+x)2=360,故答案是:250(1+x)2=360.10.【答案】m≤10且m≠23【考点】根的判别式【解析】根据二次项系数非零结合根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程(m−2)x2−4x+3=0有实数解,∴{m−2≠0△=(−4)2−4(m−2)×3≥0,解得:m≤10且m≠2.310二、单项选择(每小题2分,共20分)【答案】B【考点】一元二次方程的定义【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【答案】D【考点】解一元二次方程-直接开平方法【解析】两边开方,即可得出方程的解.【解答】解:x2=4,x1=2,x2=2,故选D.【答案】B【考点】解一元二次方程-直接开平方法【解析】利用直接开平方法解方程,然后根据二次根式的被开方数的非负数列出关于a的不等式方程,然后求得a的取值范围.【解答】解:∵方程(x−4)2=a有实数解,∴x−4=±√a,∴a≥0.故选B.【答案】A【考点】根的判别式将方程左边展开,化为一元二次方程的一般形式,求出根的判别式,即可做出判断.【解答】解:方程(2x+3)(x−1)=1,可化为2x2+x−4=0,∵Δ=1−4×2×(−4)=33>0,∴方程有两个不相等的实数根.故选A.【答案】A【考点】完全平方公式【解析】此题考查了配方法,解题时要注意常数项的确定方法,若二次项系数为1,则二次项与一次项再加上一次项系数的一半的平方即构成完全平方式,若二次项系数不为1,则可提取二次项系数,将其化为1.【解答】解:∵a2−4a+5=a2−4a+4−4+5,∴a2−4a+5=(a−2)2+1.故选A.【答案】A【考点】解一元二次方程-配方法【解析】移项,配方,即可得出选项.【解答】解:m2−6m+8=0,m2−6m=−8,m2−6m+9=−8+9,(m−3)2=1,故选A.【答案】B【考点】根与系数的关系【解析】解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和−ba 是否为3及两根之积ca是否为2即可.【解答】解:两个根为x1=1,x2=2,则两根的和是3,积是2.A,两根之和等于−3,两根之积等于−2,所以此选项不正确;B,两根之和等于3,两根之积等于2,所以此选项正确;C,两根之和等于2,两根之积等于3,所以此选项不正确;D,两根之和等于−3,两根之积等于2,所以此选项不正确.故选B.C【考点】解一元二次方程-因式分解法三角形三边关系【解析】先利用因式分解法解方程得到x 1=4,x 2=10,再利用三角形三边的关系得x =10,然后计算三角形的周长.【解答】解:x 2−14x +40=0,(x −4)(x −10)=0,x −4=0或x −10=0,所以x 1=4,x 2=10,因为4+4<9,不符合三角形三边的关系,所以三角形的第三边长是10,所以三角形的周长=4+9+10=23.故选C .【答案】B【考点】分式值为零的条件【解析】根据分式值为零的条件可得x 2−5x −6=0,且x +1≠0,再解即可.【解答】解:由题意得:x 2−5x −6=0,且x +1≠0,解得:x =6,故选:B .【答案】A【考点】根与系数的关系【解析】根据已知两等式得到a 与b 为方程x 2−6x +4=0的两根,利用根与系数的关系求出a +b 与ab 的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a +b 与ab 的值代入计算即可求出值.【解答】解:根据题意得:a 与b 为方程x 2−6x +4=0的两根,∴ a +b =6,ab =4,则原式=(a+b)2−2ab ab =36−84=7.故选A .三、解答题(共60分)【答案】解:①x 2=25,x =±5,所以x 1=5,x 2=−5;③(2x−1)(x−3)=0,所以x1=1,x2=3;2④5x2−7x=0,x(5x−7)=0,所以x1=0,x2=7;5⑤(x−3)(x−5)=0,所以x1=3,x2=5;⑥2x2+5x−7=0,(2x+7)(x−1)=0,所以x1=−7,x2=1.2【考点】解一元二次方程-因式分解法解一元二次方程-直接开平方法【解析】①先把方程变形为x2=25,然后利用直接开平方法解方程;②利用因式分解法解方程;③利用因式分解法解方程;④先移项得到5x2−7x=0,利用因式分解法解方程;⑤利用因式分解法解方程;⑥先把方程化为一般式得到2x2+5x−7=0,利用因式分解法解方程.【解答】解:①x2=25,x=±5,所以x1=5,x2=−5;②(x+1)(x−3)=0,所以x1=−1,x2=3;③(2x−1)(x−3)=0,所以x1=1,x2=3;2④5x2−7x=0,x(5x−7)=0,;所以x1=0,x2=75⑤(x−3)(x−5)=0,所以x1=3,x2=5;⑥2x2+5x−7=0,(2x+7)(x−1)=0,,x2=1.所以x1=−72【答案】解:①∵△=(−5)2−4×3×4=−23<0,∴该方程无解;2∴该方程有两个不相等的实数根.【考点】根的判别式【解析】①根据方程的系数结合根的判别式得出△=−23<0,由此得出方程无解;②根据方程的系数结合根的判别式得出△=21>0,由此得出方程有两个不相等的实数根.【解答】解:①∵△=(−5)2−4×3×4=−23<0,∴该方程无解;②原方程可变形为x2−x−5=0,∴△=(−1)2−4×1×(−5)=21>0,∴该方程有两个不相等的实数根.【答案】解:设销售单价定为x元,根据题意得:(x−40)[500−(x−50)×10]=8000.解得:x1=60,x2=80,当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价定为80元/kg.【考点】一元二次方程的应用【解析】先根据销售利润=每件利润×数量,再设出单价应定为x元,再根据这个等式列出方程,即可求出答案.【解答】解:设销售单价定为x元,根据题意得:(x−40)[500−(x−50)×10]=8000.解得:x1=60,x2=80,当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价定为80元/kg.【答案】解:(1)由题意有Δ=(2m−1)2−4m2≥0,解得m≤14,∴实数m的取值范围是m≤14;(2)由两根关系,得x1+x2=−(2m−1),x1⋅x2=m2,由x12−x22=0得(x1+x2)(x1−x2)=0,若x1+x2=0,即−(2m−1)=0,解得m=12,∵12>14,∴m=12不合题意,舍去,若x1−x2=0,即x1=x2∴Δ=0,由(1)知m=14,故当x12−x22=0时,m=14.【考点】根与系数的关系根的判别式【解析】(1)若一元二次方程有两实数根,则根的判别式△=b2−4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x12−x22=0得x1+x2=0或x1−x2=0;当x1+x2=0时,运用两根关系可以得到−2m−1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:(1)由题意有Δ=(2m−1)2−4m2≥0,解得m≤14,∴实数m的取值范围是m≤14;(2)由两根关系,得x1+x2=−(2m−1),x1⋅x2=m2,由x12−x22=0得(x1+x2)(x1−x2)=0,若x1+x2=0,即−(2m−1)=0,解得m=12,∵12>14,∴m=12不合题意,舍去,若x1−x2=0,即x1=x2∴Δ=0,由(1)知m=14,故当x12−x22=0时,m=14.【答案】②根据一元二次方程的定义可知:m2−1≠0,解得:m≠±1.一元二次方程的二次项系数m2−1、一次项系数−(m+【考点】一元二次方程的定义一元一次方程的定义一元二次方程的一般形式【解析】(1)根据一元一次方程的定义可得m2−1=0,m+1≠0,解即可;(2)根据一元二次方程的定义可知:m2−1≠0,再解不等式即可.【解答】根据一元一次方程的定义可知:m2−1=0,m+1≠0,解得:m=1,答:m=1时,此方程是一元一次方程;②根据一元二次方程的定义可知:m2−1≠0,解得:m≠±1.一元二次方程的二次项系数m2−1、一次项系数−(m+,常数项m.【答案】它们爬行的时间为2s.【考点】一元二次方程的应用【解析】设它们爬行的时间为ts,则BM=12−2t,BN=8−t,根据△MNB的面积为24cm2,即可得出关于t的一元二次方程,解方程即可得出t的值,再将t的值代入12−2t中即可确定t的值,此题得解.【解答】解:设它们爬行的时间为ts,则BM=12−2t,BN=8−t,∵△MNB的面积为24cm2,∴1⋅(12−2t)⋅(8−t)=24,整理得:t2−14t+24=0,2解得:t1=2,t2=12.当t=12时,12−2t=−12<0,∴t=12不合适.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章一元二次方程一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中是一元二次方程的是( )A.(x﹣1)(3+x)=5B.x2+﹣=0C.y2+2x+4=0D.4x2=(2x﹣1)22.已知关于x的方程(k﹣3)x|k|﹣1+(2k﹣3)x+4=0是一元二次方程,则k的值应为( ) A.±3B.3C.﹣3D.不能确定3.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于( )A.1B.2C.1或2D.04.一元二次方程(x﹣2)2=9的两个根分别是( )A.x1=1,x2=﹣5B.x1=﹣1,x2=﹣5C.x1=1,x2=5D.x1=﹣1,x2=55.用配方法解方程x2﹣6x+5=0,配方的结果是( )A.(x﹣3)2=1B.(x﹣3)2=﹣1C.(x+3)2=4D.(x﹣3)2=46.若关于x的一元二次方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,则m的取值范围是( )A.m<2且m≠1B.m>2C.m<﹣2D.m<27.某种药品经过两次降价由原来的每盒12.5元降到每盒8元,如果2次降价的百分率相同,设每次降价的百分率为x,可列出的方程为( )A.12.5(1+x)2=8B.12.5(1﹣x)2=8C.12.5(1﹣2x)=8D.8(1+x)2=12.58.对于一元二次方程ax2+bx+c=0 (a≠0),下列说法中错误的是( )A.当a>0,c<0时,方程一定有实数根B.当c=0时,方程至少有一个根为0C.当a>0,b=0,c<0时,方程的两根一定互为相反数D.当abc<0时,方程的两个根同号,当abc>0时,方程的两个根异号二、填空题(本大题共10小题,每小题3分,共30分)9.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为__________.10.若方程(x+3)2+a=0有解,则a的取值范围是__________.11.当x=__________时,代数式(3x﹣4)2与(4x﹣3)2的值相等.12.方程x(x+2)=(x+2)的根为__________.13.写出一个以2和3为两根且二项系数为1的一元二次方程,你写的是__________.14.若一元二次方程mx2+4x+5=0有两个不相等实数根,则m的取值范围__________.15.已知x=﹣1是方程x2﹣2mx+3m﹣6=0的一个根,则方程的另一个根是__________.16.已知α、β是方程x2+2x﹣1=0的两个实数根,则α2+3α+β的值为__________.17.若x1、x2是方程x2+3x﹣3=0的两实根,则的值等于__________.18.已知α、β是关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是__________.三、解答题(本大题共10小题,共86分)19.用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)20.选择适当的方法解下列一元二次方程(1)(3y﹣2)2=(2y﹣3)2(2)(x+)(x﹣)=0(3)﹣3x2+4x+1=0(4)(2x﹣1)2﹣2x+1=0.21.k为何值时,方程x2﹣(k﹣2)x+9=0有两个相等的实数根;并求出这时方程的根.22.已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.23.已知关于x的方程(1+k)x2﹣(2k﹣1)x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若α、β是方程(1+k)x2﹣(2k﹣1)x+k﹣1=0的两个不相等的实数根,试求2α+2β﹣3α•β的值.24.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.25.已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①__________,②__________,③__________,④__________.(2)猜想:第n个方程为__________,其解为__________.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).26.如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m的围栏.已知墙长9m,问围成矩形的长和宽各是多少?27.某商场销售一批进价为120元的名牌衬衫,平均每天可销售20件,每件可盈利40元.经调查发现,在一定范围内,衬衫的单价每降1元,每天就可多售出2件衬衫.这种衬衫的单价应降价多少元?才能使商场通过销售这批衬衫平均每天盈利1200元.28.如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P以2cm/s的速度从点A出发,沿AC 向点C移动,同时动点Q以1cm/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动ts(0<t<5)后,△CQP的面积为S cm2.在P、Q两点移动的过程中,△CQP的面积能否等于3.6cm2?若能,求出此时t的值;若不能,请说明理由.苏科新版九年级上册《第1章一元二次方程》2015年单元测试卷(江苏省徐州市沛县新华中学)一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中是一元二次方程的是( )A.(x﹣1)(3+x)=5B.x2+﹣=0C.y2+2x+4=0D.4x2=(2x﹣1)2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是一元二次方程,故A正确;B、是分式方程,故B错误;C、是二元二次方程,故C错误;D、是一元一次方程,故D错误.故选:A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.已知关于x的方程(k﹣3)x|k|﹣1+(2k﹣3)x+4=0是一元二次方程,则k的值应为( ) A.±3B.3C.﹣3D.不能确定【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】解:由关于x的方程(k﹣3)x|k|﹣1+(2k﹣3)x+4=0是一元二次方程,得|k|﹣1=2且k﹣3≠0.解得k=﹣3.故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于( )A.1B.2C.1或2D.0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.4.一元二次方程(x﹣2)2=9的两个根分别是( )A.x1=1,x2=﹣5B.x1=﹣1,x2=﹣5C.x1=1,x2=5D.x1=﹣1,x2=5【考点】解一元二次方程-直接开平方法.【分析】两边直接开平方可得x﹣2=±3,然后再解一元一次方程即可.【解答】解:(x﹣2)2=9,两边直接开平方得:x﹣2=±3,则x﹣2=3,x﹣2=﹣3,解得:x1=﹣1,x2=5.故选:D.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.5.用配方法解方程x2﹣6x+5=0,配方的结果是( )A.(x﹣3)2=1B.(x﹣3)2=﹣1C.(x+3)2=4D.(x﹣3)2=4【考点】解一元二次方程-配方法.【分析】把常数项5移项后,应该在左右两边同时加上一次项系数﹣6的一半的平方.【解答】解:把方程x2﹣6x+5=0的常数项移到等号的右边,得到x2﹣6x=﹣5,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+9=﹣5+9,配方得(x﹣3)2=4.故选D.【点评】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.若关于x的一元二次方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,则m的取值范围是( )A.m<2且m≠1B.m>2C.m<﹣2D.m<2【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,可得△>0且m﹣1≠0,解此不等式组即可求得答案.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×(m﹣1)×1=8﹣4m>0,解得:m<2,∵m﹣1≠0,∴m≠1,∴m的取值范围是:m<2且m≠1.故选A.【点评】此题考查了根的判别式.注意△>0⇔方程有两个不相等的实数根.7.某种药品经过两次降价由原来的每盒12.5元降到每盒8元,如果2次降价的百分率相同,设每次降价的百分率为x,可列出的方程为( )A.12.5(1+x)2=8B.12.5(1﹣x)2=8C.12.5(1﹣2x)=8D.8(1+x)2=12.5【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是12.5(1﹣x),第二次后的价格是12.5(1﹣x)2,据此即可列方程求解.【解答】解:根据题意得:12.5(1﹣x)2=8.故选B.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.8.对于一元二次方程ax2+bx+c=0 (a≠0),下列说法中错误的是( )A.当a>0,c<0时,方程一定有实数根B.当c=0时,方程至少有一个根为0C.当a>0,b=0,c<0时,方程的两根一定互为相反数D.当abc<0时,方程的两个根同号,当abc>0时,方程的两个根异号【考点】根与系数的关系;根的判别式.【分析】根据根的判别式△=b2﹣4ac的符号分别判断方程根的情况即可.【解答】解:A、当a>0,c<0时,△=b2﹣4ac>0,则方程一定有实数根,故本选项错误;B、当c=0时,则ax2+bx=0,则方程至少有一个根为0,故本选项错误;C、当a>0,b=0,c<0时,方程两根为x1,x2,x1+x2=﹣=0,则方程的两根一定互为相反数,故本选项错误;D、当abc<0时,方程的两个根同号,当abc>0时,方程的两个根异号,故本选项正确;故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题(本大题共10小题,每小题3分,共30分)9.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为5.【考点】一元二次方程的解.【分析】把x=2代入已知方程得到关于m的新方程,通过解新方程求得m的值即可.【解答】解:把x=2代入,得22+3×2﹣2m=0,解得:m=5.故答案是:5.【点评】此题主要考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.10.若方程(x+3)2+a=0有解,则a的取值范围是a≤0.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】这个式子先移项,变成(x+3)2=﹣a,再根据方程(x+3)2+a=0有解,则﹣a是非负数,从而求出a的取值范围.【解答】解:∵方程(x+3)2+a=0有解,∴﹣a≥0,则a≤0.【点评】本题考查了解一元二次方程,一个数的平方一定是非负数.11.当x=x1=﹣1,x2=1时,代数式(3x﹣4)2与(4x﹣3)2的值相等.【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】代数式(3x﹣4)2与(4x﹣3)2的值相等,则可得到一个一元二次方程,然后移项,套用公式a2﹣b2=(a+b)(a﹣b)进行因式分解,利用因式分解法即可得到x的值.【解答】解:由题意得,(3x﹣4)2=(4x﹣3)2移项得,(3x﹣4)2﹣(4x﹣3)2=0分解因式得,[(3x﹣4)+(4x﹣3)][(3x﹣4)﹣(4x﹣3)]=0解得,x1=﹣1,x2=1.故答案为:x1=﹣1,x2=1.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.方程x(x+2)=(x+2)的根为x1=1,x2=﹣2.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】将x+2看作整体,先移项,再提公因式,求解即可.【解答】解:x(x+2)﹣(x+2)=0,(x+2)(x﹣1)=0,x+2=0或x﹣1=0,x=﹣2或1.故答案为:x1=﹣2,x2=1.【点评】本题考查了一元二次方程的解法,是基础知识比较简单.13.写出一个以2和3为两根且二项系数为1的一元二次方程,你写的是x2﹣5x+6=0.【考点】根与系数的关系.【专题】开放型.【分析】由方程的根为3和2,得到两根之和为5,两根之积为6,写成方程即可.【解答】解:根据题意得到两根之和为2+3=5,两根之积为2×3=6,则所求方程为x2﹣5x+6=0.故答案为:x2﹣5x+6=0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.若一元二次方程mx2+4x+5=0有两个不相等实数根,则m的取值范围m<且m≠1.【考点】根的判别式;一元二次方程的定义.【分析】由一元二次方程mx2+4x+5=0有两个不相等实数根,可得△=b2﹣4ac>0且m≠0,解此不等式组即可求得答案.【解答】解:∵一元二次方程mx2+4x+5=0有两个不相等实数根,∴△=b2﹣4ac=42﹣4×m×5=16﹣20m>0,解得:m<,∵m≠0,∴m的取值范围为:m<且m≠1.故答案为:m<且m≠1.【点评】此题考查了根的判别式.注意△>0⇔方程有两个不相等的实数根.15.已知x=﹣1是方程x2﹣2mx+3m﹣6=0的一个根,则方程的另一个根是3.【考点】根与系数的关系.【分析】把x=﹣1代入方程x2﹣2mx+3m﹣6=0得出关于m的方程,求得m,进一步利用根与系数的关系得出方程的另一根即可.【解答】解:把x=﹣1代入方程x2﹣2mx+3m﹣6=0得1+2m+3m﹣6=0,解得:m=1,原方程为x2﹣2x﹣3=0,∵﹣1+x2=2,则x2=3,∴方程的另一个根是3.故答案为:3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.16.已知α、β是方程x2+2x﹣1=0的两个实数根,则α2+3α+β的值为﹣1.【考点】根与系数的关系;一元二次方程的解.【分析】根据方程的根的定义,以及根与系数之间的关系,即可得到α2+2α﹣1=0,α+β=﹣2,根据α2+3α+β=α2+2α+α+β即可求解.【解答】解:∵α,β是方程x2+2x﹣1=0的两个实数根,∴α2+2α﹣1=0,α+β=﹣2.∴α2+2α=1∴α2+3α+β=α2+2α+α+β=1﹣2=﹣1.故答案是:﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.17.若x1、x2是方程x2+3x﹣3=0的两实根,则的值等于﹣5.【考点】根与系数的关系.【专题】计算题.【分析】根据一元二次方程ax2+bx+c=0的根与系数的关系得到x1+x2=﹣3,x1•x2=﹣3,然后变形原代数式为原式==,再代值计算即可.【解答】解:∵x1、x2是方程x2+3x﹣3=0的两实根,∴x1+x2=﹣3,x1•x2=﹣3.∴原式====﹣5.故答案为:﹣5.【点评】本题考查了一元二次方程ax2+bx+c=0的根与系数的关系:若方程两根为x1,x2,则x1+x2=﹣,x1•x2=.18.已知α、β是关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是无实数值.【考点】根与系数的关系.【专题】计算题.【分析】先根据判别式的意义可判断m<,再根据根与系数的关系得到α+β=﹣(2m﹣3),αβ=m2,接着由+=﹣1变形得到(α+β)2=αβ,则(2m﹣3)2=m2,解得m=3或m=1,然后根据m<,可判断m无实数值.【解答】解:根据题意得△=(2m﹣3)2﹣4m2>0,解得m<,α+β=﹣(2m﹣3),αβ=m2,∵+=﹣1,∴α2+β2=﹣αβ,∴(α+β)2=αβ,∴(2m﹣3)2=m2,解得m=3或m=1,∵m<,∴m无解.故答案为无实数值.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.三、解答题(本大题共10小题,共86分)19.用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题;一次方程(组)及应用.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用配方法求出解即可;(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.【解答】解:(1)3(2x﹣1)2﹣12=0,移项,得 3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.20.选择适当的方法解下列一元二次方程(1)(3y﹣2)2=(2y﹣3)2(2)(x+)(x﹣)=0(3)﹣3x2+4x+1=0(4)(2x﹣1)2﹣2x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-公式法.【专题】计算题;一次方程(组)及应用.【分析】(1)方程利用直接开平方法求出解即可;(2)方程利用因式分解法求出解即可;(3)方程利用因式分解法求出解即可;(4)方程整理后,利用因式分解法求出解即可.【解答】解:(1)(3y﹣2)2=(2y﹣3)2,两边开平方,得3y﹣2=2y﹣3或3y﹣2=3﹣2y,解得:y1=﹣1,y2=1;(2)(x+)(x﹣)=0,可得(x+)(x﹣)=0,即x+=0或x﹣=0,解得:x1=﹣,x2=;(3)﹣3x2+4x+1=0这里a=﹣3,b=4,c=1,∵b2﹣4ac=42﹣4×(﹣3)×1=28,∴x==,解得:x1=,x2=;(4)(2x﹣1)2﹣2x+1=0,原方程可化为(2x﹣1)2﹣(2x﹣1)=0,左边因式分解,得(2x﹣1)(2x﹣1﹣1)=0,可得2x﹣1=0或2x﹣2=0,解得:x1=,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.21.k为何值时,方程x2﹣(k﹣2)x+9=0有两个相等的实数根;并求出这时方程的根.【考点】根的判别式.【分析】由方程x2﹣(k﹣2)x+9=0有两个相等的实数根;可得△=b2﹣4ac=0,即可求得k的值,将k代入原方程,解方程即可求得这时方程的根.【解答】解:∵方程 x2﹣(k﹣2)x+9=0有两个相等的实数根,∴△=b2﹣4ac=[﹣(k﹣2)]2﹣4×1×9=k2﹣4k+4﹣36=k2﹣4k﹣32=0,∴k1=8,k2=﹣4.当k=8时,原方程为 x2﹣6x+9=0,解得 x1=x2=3.当k=﹣4时,原方程为 x2+6x+9=0,解得 x1=x2=﹣3.【点评】此题考查了根的判别式以及一元二次方程的解法.注意△=0⇔方程有两个相等的实数根.22.已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.【考点】一元二次方程的解.【专题】整体思想.【分析】把x=m代入方程中得到关于m的一元二次方程,由方程分别表示出m2﹣m和m2﹣2,分别代入所求的式子中即可求出值.【解答】解:∵m是方程x2﹣x﹣2=0的一个根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴原式===2×2=4.【点评】此题考查学生理解一元二次方程解的意义,掌握整体代入的数学思想,是一道综合题.23.已知关于x的方程(1+k)x2﹣(2k﹣1)x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若α、β是方程(1+k)x2﹣(2k﹣1)x+k﹣1=0的两个不相等的实数根,试求2α+2β﹣3α•β的值.【考点】根的判别式;根与系数的关系.【分析】(1)由关于x的方程(1+k)x2﹣(2k﹣1)x+k﹣1=0有两个不相等的实数根,即可得△>0且1+k≠0,解此不等式组即可求得答案;(2)由α、β是方程(1+k)x2﹣(2k﹣1)x+k﹣1=0的两个不相等的实数根,根据根与系数的关系,可得α+β=﹣=,α•β=,继而求得答案.【解答】解:(1)∵关于x的方程(1+k)x2﹣(2k﹣1)x+k﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=[﹣(2k﹣1)]2﹣4×(1+k)×(k﹣1)=﹣4k+5>0,∴k<,∵1+k≠0,∴k≠﹣1,∴k的取值范围为:k<且k≠﹣1;(2)∵若α、β是方程(1+k)x2﹣(2k﹣1)x+k﹣1=0的两个不相等的实数根,∴α+β=﹣=,α•β=.∴2α+2β﹣3α•β=2(α+β)﹣3α•β=2×﹣3×=﹣===1.【点评】此题考查了根的判别式以及根与系数的关系.注意△>0⇔方程有两个不相等的实数根;x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.24.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.【考点】根与系数的关系;解一元二次方程-因式分解法;根的判别式.【专题】压轴题.【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m 的不等式,求出m的取值范围.(2)给出方程的两根,根据所给方程形式,可利用一元二次方程根与系数的关系得到x1+x2=2(m+1),代入且(x1+x2)2﹣(x1+x2)﹣12=0,即可解答.【解答】解:(1)∵方程有两个不相等的实数根,∴△=b2﹣4ac=[﹣2(m+1)]2﹣4×1×(m2﹣3)=16+8m>0,解得:m>﹣2;(2)根据根与系数的关系可得:x1+x2=2(m+1),∵(x1+x2)2﹣(x1+x2)﹣12=0,∴[2(m+1)]2﹣2(m+1)﹣12=0,解得:m1=1或m2=﹣(舍去)∵m>﹣2;∴m=1.【点评】根据方程的根的情况即可得到关于未知系数的不等式,转化为结不等式的问题,另外(2)把求未知系数的问题,根据一元二次方程的根与系数的关系即可转化为方程的问题.25.已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①x1=1,x2=﹣1,②x1=1,x2=﹣2,③x1=1,x2=﹣3,④x1=1,x2=﹣4.(2)猜想:第n个方程为x2+(n﹣1)x﹣n=0,其解为x1=1,x2=﹣n.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).【考点】一元二次方程的解.【分析】(1)用十字相乘法因式分解可以求出它们的根.(2)由(1)找出规律,写出方程,解方程求出方程的根.(3)根据(1)、(2)可以写出它们的共同特点.【解答】解:(1)①(x+1)(x﹣1)=0,∴x1=1,x2=﹣1.②(x+2)(x﹣1)=0,∴x1=1,x2=﹣2.③(x+3)(x﹣1)=0,∴x1=1,x2=﹣3.④(x+4)(x﹣1)=0,∴x1=1,x2=﹣4.(2)由(1)找出规律,可写出第n个方程为:x2+(n﹣1)x﹣n=0,(x﹣1)(x+n)=0,解得x1=1,x n=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.故答案是:(1)①x1=1,x2=﹣1.②x1=1,x2=﹣2.③x1=1,x2=﹣3.④x1=1,x2=﹣4.(2)x2+(n﹣1)x﹣n=0;x1=1,x2=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.【点评】本题考查的是用因式分解法解方程,用十字相乘法因式分解求出方程的根,然后找出规律,写出第n个方程,求出第n个方程的根,并写出它们的共同特点.26.如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m的围栏.已知墙长9m,问围成矩形的长和宽各是多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设宽为xm,则长为m,然后根据48平方米的长方形即可列出方程,解方程即可解决问题.【解答】解:设宽为x m,则长为m.由题意,得 x•=48,解得 x1=4,x2=6.当x=4时,20﹣2×4=12>9(舍去),当x=6时,20﹣2×6=8.答:围成矩形的长为8m、宽为6m.【点评】此题是利用一元二次方程解决实际问题,解题关键是找到关键描述语,从而找到等量关系准确的列出方程.27.某商场销售一批进价为120元的名牌衬衫,平均每天可销售20件,每件可盈利40元.经调查发现,在一定范围内,衬衫的单价每降1元,每天就可多售出2件衬衫.这种衬衫的单价应降价多少元?才能使商场通过销售这批衬衫平均每天盈利1200元.【考点】一元二次方程的应用.【专题】销售问题.【分析】设衬衫的单价应下降x元.则每天可售出件,每件盈利(40﹣x)元.再根据相等关系:每天的获利=每天售出的件数×每件的盈利;列方程求解即可.【解答】解:设这种衬衫的单价应降价x元,根据题意,得(40﹣x)=1200,解得:x1=10,x2=20.答:这种衬衫的单价应降价10元或20元,才能使商场平均每天盈利1200元.【点评】此题考查了一元二次方程的应用,找到题目的相等关系:每天的获利=每天售出的件数×每件的盈利是解答本题的关键.28.如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P以2cm/s的速度从点A出发,沿AC 向点C移动,同时动点Q以1cm/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动ts(0<t<5)后,△CQP的面积为S cm2.在P、Q两点移动的过程中,△CQP的面积能否等于3.6cm2?若能,求出此时t的值;若不能,请说明理由.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】在矩形ABCD中求出对角线AC的长度,然后表示出CQ、PC的长度,过点P作PH⊥BC于点H,然后在Rt△PHC中表示出PH的长度,根据面积为3.6cm2,列方程求解.【解答】解:在矩形ABCD中,∵AB=6cm,BC=8cm,∴AC=10cm,AP=2tcm,PC=(10﹣2t)cm,CQ=tcm,过点P作PH⊥BC于点H,则PH=(10﹣2t)cm,根据题意,得t•(10﹣2t)=3.6,解得:t1=2,t2=3.答:△CQP的面积等于3.6cm2时,t的值为2或3.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,表示出CQ、PC的长度,求出三角形的面积,然后解方程.。

相关文档
最新文档