高三一轮复习--11幂函数与二次函数
(完整版)高考数学第一轮复习幂函数与二次函数
∴2m=0,∴m=0.
则f(x)=-x2+3在(-5,-3)上是增函数.
3.图中C1,C2,C3为三个幂函数y=xk在第一象限内的图象,则解
析式中指数k的值依次可以是( )
(A) 1, 1 ,3
2
(C) 1 , 1,3
2
(B) 1,3, 1
2
(D) 1 ,3, 1
2
【解析】选A.设C1,C2,C3对应的k值分别为k1,k2,k3,则
k1<0,0<k2<1,k3>1,故选A.
4.函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数 a的取值范围是______. 【解析】二次函数f(x)的对称轴是x=1-a, 由题意知1-a≥3,∴a≤-2. 答案:(-∞,-2]
5.设函数f(x)=mx2-mx-1,若f(x)<0的解集为R,则实数m的取
(A)a>0,4a+b=0
(B)a<0,4a+b=0
(C)a>0,2a+b=0
(D)a<0,2a+b=0
(2)已知函数f(x)=x2+2ax+3,x∈[-4,6]. ①当a=-2时,求f(x)的最值; ②求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数; ③当a=-1时,求f(|x|)的单调区间.
【解析】设f(x)=xn,则 3 ( 3 )n ,
3
即
3
1n
32
,
1
n
1, n
2,f
x
x 2 .
2
2.函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(-5,-3)
二次函数与幂函数的关系
二次函数与幂函数的关系二次函数和幂函数是数学中常见的两种函数,它们之间存在一定关系。
这篇文章将介绍二次函数和幂函数的定义、图像、特点以及它们之间的关系。
首先,我们来回顾一下二次函数和幂函数的定义。
二次函数是指函数的最高次项为二次的多项式函数。
它的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c是实数且a不等于0。
在这个函数中,x是自变量,f(x)是因变量。
幂函数是指函数的自变量和因变量之间的关系式为 y = x^a,其中a 是实数。
幂函数的图像通常是一个曲线,并且根据a的不同取值,可以得到不同的曲线形状。
接下来,我们来分析二次函数和幂函数的图像。
对于二次函数,它的图像通常是一个抛物线。
根据二次函数的系数a 的正负和大小,可以得到不同类型的抛物线。
当 a 大于0时,抛物线开口向上;当 a 小于0时,抛物线开口向下。
我们可以根据开口方向和顶点的位置来确定抛物线的图像。
例如,当 a 大于0且顶点位于y轴上方时,抛物线开口向上且顶点为最低点;当 a 小于0且顶点位于y轴下方时,抛物线开口向下且顶点为最高点。
而幂函数的图像则由指数 a 的大小来决定。
当 a 大于1时,函数的图像呈现出上升的斜线;当 a 等于1时,函数的图像是一条直线;当 0 小于 a 小于 1 时,函数的图像呈现出下降的斜线。
与二次函数不同的是,幂函数的图像没有顶点或拐点。
然而,二次函数和幂函数并不是完全独立的。
实际上,我们可以将二次函数视为一种特殊的幂函数。
具体来说,二次函数 f(x) = ax^2 + bx + c 可以写成 f(x) = a(x - h)^2 + k 的形式,其中 h 和 k 是实数,代表了二次函数图像的平移。
这种表达方式可以让我们更好地理解二次函数和幂函数之间的关系。
当平移的值 h 和 k 分别等于0时,即 h = 0 且 k = 0 时,二次函数变为f(x) = ax^2,这就是一个幂函数。
高考第一轮复习——一次函数、二次函数、基本初等函数(理科-)
一、学习目标:1. 了解基本初等函数(一次函数、二次函数、指数函数、对数函数、幂函数)的实际背景。
了解实数指数幂的意义及对数的作用、了解指数函数与对数函数互为反函数的性质。
2. 理解指数、对数的概念及其运算性质,理解指数函数、对数函数,一次函数、二次函数、幂函数的图象与性质。
3. 掌握幂的运算、对数运算及指数函数、对数函数、一次函数、二次函数性质的应用二、重点、难点:重点:(1)指数幂、对数的运算(2)对一次函数、二次函数、指数函数、对数函数的图象与性质的理解。
难点:一次函数、二次函数、指数函数、对数函数的图象与性质的应用三、考点分析:函数这部分内容是高考中的重点与难点,基本的初等函数是高考函数基础知识考查的重点,因此第一轮的复习重点是把握基本函数的基础知识及其简单的应用,这部分知识点是高考命题的“黄金”知识点,命题的题型有选择题、填空题、中等类型的大题等。
注:(1)二次函数的解析式的确定方法有三种形式①一般式:若已知二次函数经过A ,B ,C 三点,可设解析式为c bx ax x f ++=2)(,把三点坐标代入求出a ,b ,c 的值。
②零点式:若已知二次函数图象与x 轴有两个交点)0,(),0,(21x B x A ,可设解析式为:))(()(21x x x x a x f --=,再根据其余的条件确定a 的值。
③顶点式:若已知二次函数的顶点坐标(h ,k ),则可设函数解析式为:k h x a x f +-=2)()(的形式,再根据另外的条件确定a 的值。
(2)二次函数的最值的确定(i )若R x ∈,a >0,当abx 2-=时,函数取得最小值a b ac x f 44)(2min -=;若R x ∈,a<0,当abx 2-=时,函数取得最大值a b ac x f 44)(2max -=。
(ii )当)(],,[n m n m x <∈(或其他区间),讨论对称轴与区间[m ,n ]的三种位置关系。
二次函数与幂函数一轮复习课件(共21张PPT)
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,
高三数学知识点总结9:二次函数和幂函数
(十一)二次函数一.二次函数解析式(1)一般式:).0()(2≠++=a c bx ax x f(2)顶点式:若二次函数的顶点坐标为),,(k h 则其解析式).0()()(2≠+-=a k h x a x f(3)交点式:若二次函数的图象与x 轴的交点为),0,(),0,(21x x 则),)(()(21x x x x a x f --= .0≠a二.二次函数的对称轴(1)对于二次函数)(x f y =的定义域内有21,x x 满足),()(21x f x f =则二次函数的对称轴为.221x x x += (2)对于一般函数)(x f y =对定义域内所有,x 都有)()(x a f x a f -=+成立,那么函数 )(x f y =图像的对称轴方程为:a x =.三.二次函数)0(2≠++=a c bx ax y 在],[n m 上的最值(1)0>a ① 最小值讨论三种情况 1.)(2min m f y m a b =≤-,;2.)2(2min a b f y n a b m -=<-<,;3.)(2min n f y n ab =≥-,. ② 最大值讨论两种情况 1.)(,22max n f y n m a b =+≤-;2.)(22max m f y n m a b =+>-,. (2)0<a ① 最大值讨论三种情况 1.)(2max m f y m a b =≤-,;2.)2(2max a b f y n a b m -=<-<,;3.)(,2max n f y n ab =≥-. ② 最小值讨论两种情况 1.)(,22min n f y n m a b =+≤-;2.)(22min m f y n m a b =+>-,. 四.三个二次的关系一元二次方程的根=一元二次函数的零点=一元二次不等式解集的端点.五.一元二次方程)0(02≠=++a c bx ax 的实根分布(1)数的角度:① 两实根异号等价于0<a c ;② 有两个正根等价于.0,0,0>>-≥∆a c a b ;③ 有两个负根等价于.0,0,0><-≥∆ac a b (2)形的角度:画出满足要求的图像,用“内有无,内无有”(开口内有端点则不需要考虑对称轴和,∆开口内无端点则需要考虑对称轴和.∆)。
11幂函数与函数的图像
高三第一轮 复习学案(11) 幂函数与函数的图象 制作人 刘彦丽[知识梳理]1、幂函数(1)定义:一般地,形如_________()a R ∈的函数称为幂函数,其中a 为常数. 几种常见幂函数的图像:①;y x =②12;y x =③2;y x =④1;y x -=⑤3;y x =(2)幂函数的性质①所有幂函数在_________都有定义,并且图像都过点________;②0a >时,幂函数的图像通过_________,并且在区间[)0,+∞上是_________, ③0a <时,幂函数的图像在区间()0,+∞上是_________, [题型示例]例1. 已知函数253()(1),m f x m m xm --=--为何值时,()f x :(1)是正比例函数,(2)是反比例函数,(3)是二次函数,(4)是幂函数例2.若点在幂函数()f x 的图像上,点1(2,)2在幂函数()g x 的图像上,定义(),()()()(),()()f x f xg xh x g x f x g x ≤⎧=⎨>⎩,试求函数()h x 的最大值以及单调区间.练习:已知函数f(x)=⎩⎨⎧>-≤3,13,2x x x x 则求f(f(2))例3、画出下列函数的简图:(1)2y x x =- (2)22y x x =--(2) 作出下列函数的大致图像: 2)y= x ㏒2 1)2log y x =[巩固练习]1、函数1()f x x x=-的图像关于( )A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称2 把函数2(2)2y x =-+的图像向左平移1个单位,再向上平移1个单位,所得图像对应的函数解析式是( ) A2(3)3y x =-+ B2(3)1y x =-+ C2(1)3y x =-+ D2(1)1y x =-+ 3、为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 4、函数22x y x =-的图像大致是5、幂函数的图像过点,则它的单调递增区间是( )A[)1,-+∞ B[)0,+∞ C(),-∞+∞ D(),0-∞6.若函数f(x)=a x (a>0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g(x)=(1-4m)x 在[)+∞,0上是增函数,则a =。
2023年高考数学一轮复习讲义——二次函数与幂函数
§2.5二次函数与幂函数考试要求 1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎤-∞,-b 2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b 2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =1212x 是幂函数.( × )(2)若幂函数y =x α是偶函数,则α为偶数.( × )(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( √ )(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.( × ) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝⎛⎭⎫14等于( ) A .-12B.12 C .±12D.22答案 B解析 设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x , ∴f ⎝⎛⎭⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________.答案 (-∞,40]∪[160,+∞) 解析 依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y =f (x )为二次函数,若y =f (x )在x =2处取得最小值-4,且y =f (x )的图象经过原点,则函数解析式为________. 答案 f (x )=x 2-4x解析 因为y =f (x )在x =2处取得最小值-4, 所以可设f (x )=a (x -2)2-4(a >0),又图象过原点,所以f (0)=4a -4=0,a =1, 所以f (x )=(x -2)2-4=x 2-4x .题型一 幂函数的图象与性质例1 (1)若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<m <12C .-1<m <0<n <12D .-1<n <0<m <1 答案 D解析 幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,且0<α<1时,图象上凸, ∴0<m <1.当α<0时,y =x α在(0,+∞)上单调递减. 不妨令x =2,由图象得2-1<2n ,则-1<n <0.综上可知,-1<n <0<m <1.(2)(2022·长沙质检)幂函数f (x )=(m 2-3m +3)x m 的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1, 解得m =1或m =2,当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2. 教师备选1.若幂函数f (x )=()12255a a a x ---在(0,+∞)上单调递增,则a 等于( )A .1B .6C .2D .-1 答案 D解析 因为函数f (x )=()12255a a a x---是幂函数,所以a 2-5a -5=1,解得a =-1或a =6. 当a =-1时,f (x )=12x 在(0,+∞)上单调递增; 当a =6时,f (x )=x -3在(0,+∞)上单调递减, 所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( ) A.⎣⎡⎭⎫2,167 B .(0,2] C.⎝⎛⎭⎫-∞,167 D .[2,+∞)答案 A解析 因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎪⎨⎪⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎡⎭⎫2,167. 思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 跟踪训练1 (1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A解析 由题意得b =233<234=432=a , a =432=234<4<5=1225=c , 所以b <a <c .(2)已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0答案 D解析 因为函数y =p q x 的图象关于y 轴对称,于是函数y =p qx 为偶函数,即p 为偶数, 又函数y =p qx 的定义域为(-∞,0)∪(0,+∞),且在(0,+∞)上单调递减,则有pq <0,又因为p ,q 互质,则q 为奇数,所以只有选项D 正确. 题型二 二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 方法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为 f (x )=-4x 2+4x +7.方法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 (利用“零点式”解题)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍去).故所求函数的解析式为f(x)=-4x2+4x+7.教师备选若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.答案-2x2+4解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(-x)=f(x),∴2a+ab=0,∴f(x)=bx2+2a2.∵f(x)的定义域为R,值域为(-∞,4],∴b<0,且2a2=4,∴b=-2,∴f(x)=-2x2+4.思维升华求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2(1)已知f(x)为二次函数,且f(x)=x2+f′(x)-1,则f(x)等于()A.x2-2x+1 B.x2+2x+1C.2x2-2x+1 D.2x2+2x-1答案 B解析设f(x)=ax2+bx+c(a≠0),则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得 ax 2+bx +c =x 2+2ax +(b -1), 所以⎩⎪⎨⎪⎧ a =1,b =2a ,c =b -1,解得⎩⎪⎨⎪⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________. 答案 f (x )=x 2-4x +3解析 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3,设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1 二次函数的图象例3 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )答案 D解析 因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2 二次函数的单调性与最值 例4 已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ). 解f (x )=x 2-tx -1=⎝⎛⎭⎫x -t 22-1-t 24. (1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝⎛⎭⎫t 2=-1-t24. ③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t24,-2<t <4,3-2t ,t ≥4.延伸探究 本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解 f (-1)=t ,f (2)=3-2t , f (2)-f (-1)=3-3t , 当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎪⎨⎪⎧t ,t ≥1,3-2t ,t <1.教师备选1.(多选)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是( )A .当x >3时,y <0B .4a +2b +c =0C .-1≤a ≤-23D .3a +b >0答案 AC解析 依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故A 正确;当x =2时,y =4a +2b +c >0,故B 错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0, ∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a ,∵2≤c ≤3,∴2≤-3a ≤3,∴-1≤a ≤-23, 故C 正确,D 错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1.(1)若f (x )在[0,1]上单调,求实数a 的取值范围;(2)若x ∈[0,1],求f (x )的最小值g (a ).解 (1)当a =0时,f (x )=-2x +1单调递减;当a >0时,f (x )的对称轴为x =1a ,且1a>0, ∴1a≥1,即0<a ≤1; 当a <0时,f (x )的对称轴为x =1a 且1a<0, ∴a <0符合题意.综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减,∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a. (ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增. ∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a +1=-1a+1. (ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧, ∴f (x )=ax 2-2x +1在[0,1]上单调递减.∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎪⎨⎪⎧a -1,a ≤1,-1a +1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3] 答案 B解析 ∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增,当x >0时,f (x )=x 2+ax +2,对称轴为x =-a 2,∴2≤-a 2≤3, 解得-6≤a ≤-4.(2)(2022·抚顺模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________.答案 [1,2]解析 由题意知,f (x )=-(x -1)2+6,则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x答案 B解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,设二次函数为g (x )=ax 2+bx ,可得⎩⎪⎨⎪⎧ a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .2.(2022·延吉检测)若函数y =()222433mm m m x +--+为幂函数,且在(0,+∞)上单调递减,则实数m 的值为( )A .0B .1或2C .1D .2答案 C解析 由于函数y =()222433m m m m x +--+为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意. 当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.3.(2022·长沙模拟)已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为( )A .-2或1B .-2C .1D .1或2答案 A解析 因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.4.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是( )A .b 2<4acB .2a -b =1C .a -b +c =0D .5a <b 答案 D解析 因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎪⎨⎪⎧-b 2a =-1,9a -3b +c =0, 解得⎩⎪⎨⎪⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确;对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0,故选项C 不正确;对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.5.(多选)(2022·宜昌质检)已知函数f (x )=x 2-2x +a 有两个零点x 1,x 2,以下结论正确的是( )A .a <1B .若x 1x 2≠0,则1x 1+1x 2=2aC .f (-1)=f (3)D .函数y =f (|x |)有四个零点答案 ABC解析 二次函数对应二次方程根的判别式Δ=(-2)2-4a =4-4a >0,a <1,故A 正确; 由根与系数的关系得,x 1+x 2=2,x 1x 2=a ,1x 1+1x 2=x 1+x 2x 1x 2=2a,故B 正确; 因为f (x )的对称轴为x =1,点(-1,f (-1)),(3,f (3))关于对称轴对称,故C 正确; 当a <0时,y =f (|x |)只有两个零点,故D 不正确.6.(多选)已知幂函数f (x )=()2231m m m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( ) A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能答案 BC解析 因为f (x )=()2231mm m m x +---为幂函数,所以m 2-m -1=1,解得m =2或m =-1.依题意f (x )在(0,+∞)上单调递增,所以m =2,此时f (x )=x 3,因为f (-x )=(-x )3=-x 3=-f (x ),所以f (x )=x 3为奇函数.因为a ,b ∈R 且f (a )+f (b )<0,所以f (a )<f (-b ).因为y =f (x )为增函数,所以a <-b ,所以a +b <0.7.(2022·张家口检测)已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =________. 答案 0解析 因为f (x )是幂函数,所以m =1,k =0,又f (x )的图象过点⎝⎛⎭⎫116,14,所以⎝⎛⎭⎫116n =14,解得n =12, 所以m -2n +3k =0.8.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________.答案 [2,4]解析 解方程f (x )=x 2-4x +2=2,解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2,由于函数f (x )在区间[a ,b ]上的值域为[-2,2].若函数f (x )在区间[a ,b ]上单调,则[a ,b ]=[0,2]或[a ,b ]=[2,4],此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点.(1)求f (x )的解析式,并解不等式f (x )≤3;(2)若g (x )=f (sin x ),求函数g (x )的值域.解 (1)由题意得⎩⎪⎨⎪⎧ -1+3=-b -2a ,-1×3=3a ,解得⎩⎪⎨⎪⎧a =-1,b =4, ∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0,解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞).(2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1],当t =-1时,g (t )有最小值0,当t =1时,g (t )有最大值4,故g (t )∈[0,4].所以g (x )的值域为[0,4].10.(2022·烟台模拟)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解 (1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1, 所以⎩⎪⎨⎪⎧c =2,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x +1,即⎩⎪⎨⎪⎧ c =2,2ax +b +a =2x +1, 所以⎩⎪⎨⎪⎧ c =2,2a =2,b +a =1,解得⎩⎪⎨⎪⎧ c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数,当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增,则f (x )min =f (t )=t 2+2;当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6;当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎪⎨⎪⎧ t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·福州模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 若f (x )<0对x ∈[1,3]恒成立,则⎩⎪⎨⎪⎧f (1)=2-4m <0,f (3)=18-6m <0, 解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12. 幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b 等于( )A .0B .1 C.12D .2 答案 A解析 由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =132log 3,b =231log 3, ∴a -1b =132log 3-2311log 3=0.13.(多选)关于x 的方程(x 2-2x )2-2(2x -x 2)+k =0,下列命题正确的有( )A .存在实数k ,使得方程无实根B .存在实数k ,使得方程恰有2个不同的实根C .存在实数k ,使得方程恰有3个不同的实根D .存在实数k ,使得方程恰有4个不同的实根答案 AB解析 设t =x 2-2x ,方程化为关于t 的二次方程t 2+2t +k =0.(*)当k >1时,方程(*)无实根,故原方程无实根;当k =1时,可得t =-1,则x 2-2x =-1,原方程有两个相等的实根x =1;当k <1时,方程(*)有两个实根t 1,t 2(t 1<t 2),由t 1+t 2=-2可知,t 1<-1,t 2>-1.因为t =x 2-2x =(x -1)2-1≥-1,所以x 2-2x =t 1无实根,x 2-2x =t 2有两个不同的实根.综上可知,A ,B 项正确,C ,D 项错误.14.设关于x 的方程x 2-2mx +2-m =0()m ∈R 的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案 7解析 由题意有⎩⎪⎨⎪⎧α+β=2m ,αβ=2-m , 且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1,α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)(x 2+ax +b )是偶函数,则f (x )的值域是________.答案 [-16,+∞)解析 因为f (x )=(x 2-2x -3)(x 2+ax +b )=(x -3)(x +1)(x 2+ax +b )是偶函数,所以有⎩⎪⎨⎪⎧ f (-3)=f (3)=0,f (1)=f (-1)=0, 代入得⎩⎪⎨⎪⎧ 9-3a +b =0,1+a +b =0, 解得⎩⎪⎨⎪⎧a =2,b =-3. 所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9=(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]? 解 (1)由f (x )=ax 2+bx ,且f (2)=0,则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根,得b =1,从而a =-12, 所以f (x )=-12x 2+x . (2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12, 则有2n ≤12,即n ≤14. 又f (x )图象的对称轴为直线x =1,则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧ m <n ≤14,f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧ m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n , 解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。
高三 一轮复习 二次函数与幂函数 教案
二次函数与幂函数1.五种常见幂函数的图像与性质函数 特征 性质y =xy =x 2y =x 3y =x 12y =x -1图像定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性增(-∞,0]减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1) 2.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -m )2+n (a ≠0); (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 3.二次函数的图像和性质a >0a <0图像定义域 x ∈R值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎤-∞,-b2a 上递减,在⎣⎡⎭⎫-b 2a ,+∞上递增在⎝⎛⎦⎤-∞,-b2a 上递增,在⎣⎡⎭⎫-b 2a ,+∞上递减奇偶性 b =0时为偶函数,b ≠0时既不是奇函数也不是偶函数图像特点①对称轴:x =-b2a ;②顶点:⎝⎛⎭⎫-b 2a,4ac -b 24a1.研究函数f (x )=ax 2+bx +c 的性质,易忽视a 的取值情况而盲目认为f (x )为二次函数. 2.形如y =x α(α∈R )才是幂函数,如y =3x 12不是幂函数.[试一试]1.(2013·南通二调)已知幂函数f (x )=k ·x α的图像过点⎝⎛⎭⎫12,22,则k +α=________.2.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是________.1.函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x ),如果定义域内有不同两点x 1,x 2且f (x 1)=f (x 2),那么函数y =f (x )的图像关于x =x 1+x 22对称. (2)二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图像关于直线x =a 对称(a 为常数).2.与二次函数有关的不等式恒成立两个条件 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.3.两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.[练一练]如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图像关于直线x =1对称,则函数f (x )的最小值为________.考点一幂函数的图像与性质1.幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的解析式为______________________.2.图中曲线是幂函数y =x α在第一象限的图像.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的α值依次为____________.3.设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________.[类题通法]1.幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键.考点二求二次函数的解析式[典例]已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.[类题通法]求二次函数解析式的方法根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:[针对训练]已知y=f(x)为二次函数,且f(0)=-5,f(-1)=-4,f(2)=-5,求此二次函数的解析式.考点三二次函数的图像与性质研究二次函数在闭区间上的最值解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.归纳起来常见的命题角度有:(1)轴定区间定求最值;(2)轴动区间定求最值;(3)轴定区间动求最值.角度一轴定区间定求最值1.已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)当a=1时,求f(|x|)的单调区间.角度二轴动区间定求最值2.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.角度三轴定区间动求最值3.设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),求g(a).[类题通法]影响二次函数在闭区间上的最大值与最小值的要素和求法:(1)最值与抛物线的开口方向、对称轴位置、闭区间三个要素有关.(2)常结合二次函数在该区间上的单调性或图像求解,在区间的端点或二次函数图像的顶点处取得最值.当开口方向或对称轴位置或区间不确定时要分情况讨论.[课堂练通考点]1.(2014·徐州摸底)已知二次函数f(x)=ax2-4x+c+1(a≠0)的值域是[1,+∞),则1a+9c的最小值是________.2.(2014·苏北四市期末)已知函数f(x)=x2-2x,x∈[a,b]的值域为[-1,3],则b-a的取值范围是________.3.二次函数的图像过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为________.4.若二次函数f(x)=ax2-4x+c的值域为[0,+∞),则a,c满足的条件是________.5.已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x)是幂函数,且在(0,+∞)上是增函数?[课下提升考能]第Ⅰ组:全员必做题1.(2014·镇江模拟)已知a∈(0,+∞),函数f(x)=ax2+2ax+1,若f(m)<0,比较大小:f(m+2)________1(用“<”“=”或“>”连接).2.(2013·苏锡常镇一调)如图,已知二次函数y=ax2+bx+c(a,b,c为实数,a≠0)的图像过点C(t,2),且与x轴交于A,B两点,若AC⊥BC,则实数a的值为________.3.(2013·盐城二调)设函数f(x)=|x|x+bx+c,则下列命题中,真命题的序号有________.(1)当b>0时,函数f(x)在R上是单调增函数;(2)当b<0时,函数f(x)在R上有最小值;(3)函数f(x)的图像关于点(0,c)对称;(4)方程f(x)=0可能有三个实数根.。
高中数学-幂函数与二次函数
高中数学幂函数与二次函数【知识点、命题法及典型例题】考点一 二次函数1 二次函数解析式的三种形式 (1)一般式:y =ax 2+bx +c (a ≠0).(2)顶点式:y =a (x -h )2+k (a ≠0),其中(h ,k )为抛物线顶点坐标.(3)两点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴交点的横坐标. 2 二次函数的图象与性质函数y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象 (抛物线)续表函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数 单调性在⎝⎛⎦⎤-∞,-b2a 上是减函数; 在⎣⎡⎭⎫-b2a ,+∞上是增函数 在⎝⎛⎦⎤-∞,-b2a 上是增函数; 在⎣⎡⎭⎫-b2a ,+∞上是减函数函数y =ax 2+bx +c (a >0) y =ax 2+bx +c (a <0)最值当x=-b2a时,y min=4ac-b24a当x=-b2a时,y max=4ac-b24a二次函数、一元二次方程和一元二次不等式统称为三个“二次”.它们常结合在一起,而二次函数又是其核心.因此,利用二次函数的图象数形结合是探求这类问题的基本策略.命题法二次函数的图象及性质的应用典例(1)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是()A.②④B.①④C.②③D.①③(2)已知对任意的a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于0,则x的取值范围是()A.1<x<3 B.x<1或x>3C.1<x<2 D.x<2或x>3【解题法】二次函数问题的求解策略(1)二次函数的最值问题一般先配方,通过对称轴,开口方向等特征求得,有时需要讨论,如动轴定区间问题和定轴动区间问题.(2)与二次函数图象有关的问题采用数形结合的方法,需尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标轴的交点要标清楚.考点二幂函数1幂函数的定义一般地,形如y=xα(α∈R)的函数称为幂函数.2五种幂函数图象的比较3幂函数的性质比较注意点α的大小对幂函数图象的影响幂函数在第一象限的图象中,以直线x=1为分界,当0<x<1时,α越大,图象越低(即图象越靠近x轴,可记为“指大图低”);当x>1时,α越大,图象越高(即图象离x轴越远,不包含y=x0).命题法幂函数的图象及性质的应用典例(1)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()(2)若a =⎝⎛⎭⎫12 23 ,b =⎝⎛⎭⎫15 23 ,c =⎝⎛⎭⎫1213 ,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c【解题法】 幂函数的图象与性质问题的解题策略(1)关于图象辨识问题,关键是熟悉各类幂函数的图象特征,如过特殊点、凹凸性等.(2)关于比较幂值大小问题,结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较或应用.【补救练习】1.已知幂函数f (x )=(n 2+2n -2)x n 2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或22.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )3.幂函数f (x )=x α的图象过点(2,4),那么函数f (x )的单调递增区间是( ) A .(-2,+∞) B .[-1,+∞) C .[0,+∞)D .(-∞,-2)【巩固练习】4.若二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则f(x)的表达式为()A.f(x)=-x2-x-1 B.f(x)=-x2+x-1C.f(x)=x2-x-1 D.f(x)=x2-x+15.已知二次函数图象的对称轴为x=-2,截x轴所得的弦长为4,且过点(0,-1),求函数的解析式.【拔高练习】6.当0<x<1时,函数f(x)=x1.1,g(x)=x0.9,h(x)=x-2的大小关系是________.7.是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?若存在,求a的值;若不存在,说明理由.。
新高考数学一轮复习幂函数与二次函数重难点题型精练(含答案)
幂函数与二次函数-重难点题型精练【新高考地区专用】考试时间:90分钟;满分:150分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分150分,限时90分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分40分,每小题5分)1.(5分)(2021•日照模拟)已知幂函数y =x a 的图象经过点(2,4),则f (﹣3)=( ) A .﹣9B .9C .3D .﹣32.(5分)(2021•皇姑区校级模拟)已知幂函数f (x )=(m 2﹣2m ﹣2)x m 2−2在(0,+∞)上为增函数,则实数m 的值是( ) A .﹣1B .3C .﹣1或3D .1或﹣33.(5分)(2021•3月份模拟)若函数f (x )=x 2在区间[a ,b ]上的值域为[t ,t +1](t ∈R ),则b ﹣a ( ) A .有最大值,但无最小值 B .既有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值4.(5分)(2020•舒城县校级模拟)已知幂函数y =x pq (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq<0C .q 为奇数,p 为偶数,且pq>0D .q 为奇数,p 为偶数,且pq<05.(5分)(2021•安阳三模)已知幂函数f (x )=x a 满足2f (2)=f (16),若a =f (log 42),b =f (ln 2),c =f (5−12),则a ,b ,c 的大小关系是( ) A .a >c >bB .a >b >cC .b >a >cD .b >c >a6.(5分)(2020•福田区校级模拟)已知幂函数g (x )=(2a ﹣1)x a +1的图象过函数f (x )=m x ﹣b −12(m >0,且m ≠1)的图象所经过的定点,则b 的值等于( ) A .±12B .±√22C .2D .±27.(5分)(2020•红河州一模)函数f (x )=x 2﹣bx +c 满足f (x +1)=f (1﹣x ),且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .与x 有关,不确定 B .f (b x )≥f (c x ) C .f (b x )>f (c x )D .f (b x )≤f (c x )8.(5分)(2021•石景山区一模)已知f(x)={x 2−2,x ≤03x −2,x >0,若|f (x )|≥ax 在x ∈[﹣1,1]上恒成立,则实数a 的取值范围是( ) A .(﹣∞﹣1]∪[0,+∞) B .[﹣1,0]C .[0,1]D .[﹣1,0)二.多选题(共4小题,满分20分,每小题5分)9.(5分)(2021春•衢州月考)已知幂函数f(x)=(m +95)x m ,则下列结论正确的有( ) A .f(−32)=116B .f (x )的定义域是RC .f (x )是偶函数D .不等式f (x ﹣1)≥f (2)的解集是[﹣1,1)∪(1,3]10.(5分)(2020秋•荆州期末)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>﹣2时,f (x 1)<f (x 2) B .当x 1+x 2=﹣2时,f (x 1)=f (x 2) C .当x 1+x 2>﹣2时,f (x 1)>f (x 2)D .f (x 1)与f (x 2)的大小与a 有关11.(5分)(2020秋•双塔区校级月考)已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)−f(x 2)x 1−x 2>0.若a ,b ∈R ,且f (a )+f (b )的值为负值,则下列结论可能成立的有( ) A .a +b >0,ab <0B .a +b <0,ab >0C .a +b <0,ab <0D .a +b >0,ab >012.(5分)(2020秋•湖南期中)已知函数f (x )=2x 2﹣mx ﹣m 2,则下列命题正确的有( ) A .当m ≠0时,f (x )<0的解集为{x|−m2<x <m}B .当m =1时,∀x 1,x 2∈[1,+∞)时,(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0C .∀x 1,x 2∈(−∞,14m]且x 1≠x 2时,f(x 1)+f(x 2)2>f(x 1+x 22)D .当m <0时,若0<x 1<x 2,则x 2f (x 1)>x 1f (x 2) 三.填空题(共4小题,满分20分,每小题5分)13.(5分)(2020•襄城区校级模拟)函数y =log a (2x ﹣3)+√2的图象恒过定点P ,P 在幂函数f (x )=x α的图象上,则f (9)= .14.(5分)(2020•镇海区校级模拟)设m >﹣1,函数f (x )=x 2﹣3mx +2m 2+1(x <m ),若存在θ≠π4+k π,使得f (sin θ)=f (cos θ),则m 的取值范围是 .15.(5分)(2020•江苏一模)已知函数f (x )=(m ﹣2)x 2+(m ﹣8)x (m ∈R )是奇函数,若对于任意的x ∈R ,关于x 的不等式f (x 2+1)<f (a )恒成立,则实数a 的取值范围是 .16.(5分)(2020•吉林模拟)M(94,32)是幂函数f (x )=x n 图象上的点,将f (x )的图象向右平移2个单位长度,再向上平移32个单位长度,得到函数y =g (x )的图象,若点T n (n ,m )(n ∈N *,且n ≥2)在g (x )的图象上,则|MT 2|+|MT 3|+…+|MT 9|= 四.解答题(共6小题,满分70分)17.(10分)(2019秋•浦东新区期末)已知m 是整数,幂函数f (x )=x ﹣m 2+m +2在[0,+∞)上是单调递增函数.(1)求幂函数f (x )的解析式;(2)作出函数g (x )=|f (x )﹣1|的大致图象;(3)写出g (x )的单调区间,并用定义法证明g (x )在区间[1,+∞)上的单调性.18.(12分)(2020秋•兰州期末)已知幂函数g(x)=(m2﹣3)x m(m∈R)在(0,+∞)为减函数,且对数函数f(x)满足f(﹣m+1)+f(﹣m﹣1)=1 2(1)求g(x)、f(x)的解析式(2)若实数a满足f(2a﹣1)<f(5﹣a),求实数a的取值范围.19.(12分)(2020秋•高安市校级期末)已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=g(x) x.(1)求a,b的值;(2)若不等式f(log2x)﹣2k log2x≥0在x∈[2,8]上有解,求实数k的取值范围.20.(12分)(2021春•让胡路区校级月考)已知二次函数f(x)=x2﹣2ax+3.(1)若f(x)在(﹣∞,1]上单调递减,求实数a的最小值;(2)存在x∈[﹣4,﹣2],使得f(x)≥a有解,求实数a的取值范围.21.(12分)(2020秋•虹口区校级期中)已知函数f(x)=x2+ax+b(a,b∈R).(1)若b=1,且f(x)在[﹣2,2]上存在零点,求实数a的取值范围;(2)若对任意a∈[﹣1,1],存在x∈[﹣2,3]使f(x)>0,求实数b的取值范围.22.(12分)(2021春•吴兴区校级月考)已知幂函数f(x)=(m2−2m−2)x m2−4m+2在(0,+∞)上单调递减.(1)求m的值并写出f(x)的解析式;(2)试判断是否存在a>0,使得函数g(x)=(2a−1)x−af(x)+1在(0,2]上的值域为(1,11]?若存在,求出a的值;若不存在,请说明理由.幂函数与二次函数-重难点题型精练参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.(5分)(2021•日照模拟)已知幂函数y=x a的图象经过点(2,4),则f(﹣3)=()A.﹣9B.9C.3D.﹣3【解题思路】根据幂函数的图象过点(2,4)求出函数解析式,再计算所求的函数值.【解答过程】解:因为幂函数y=x a的图象过点(2,4),所以2a=4,a=2,y=f(x)=x2,所以f(﹣3)=(﹣3)2=9.故选:B.2.(5分)(2021•皇姑区校级模拟)已知幂函数f(x)=(m2﹣2m﹣2)x m2−2在(0,+∞)上为增函数,则实数m的值是()A.﹣1B.3C.﹣1或3D.1或﹣3【解题思路】由题意利用幂函数的定义和性质,可得m2﹣2m﹣2=1,且m2﹣2>0,由此求得m的值.【解答过程】解:∵幂函数f(x)=(m2﹣2m﹣2)x m2−2在(0,+∞)上为增函数,∴m2﹣2m﹣2=1,且m2﹣2>0,求得m=3,故选:B.3.(5分)(2021•3月份模拟)若函数f(x)=x2在区间[a,b]上的值域为[t,t+1](t∈R),则b﹣a()A.有最大值,但无最小值B.既有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值【解题思路】根据二次函数的对称轴与a,b的位置关系,可知对ab进行分类讨论,进而确定函数在[a,b]上取得的值域,进而确定b﹣a的范围.【解答过程】解:由题意知a<b.当ab≤0时,t=0,则b2≤1,a2≤1,即b≤1,a≥﹣1,所以0<b﹣a≤2,则b﹣a有最大值;当ab>0时,不妨设0<a<b,则b2﹣a2=1,所以b−a=1a+b,显然b﹣a有最大值无最小值,故选:A .4.(5分)(2020•舒城县校级模拟)已知幂函数y =x pq (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且p q <0C .q 为奇数,p 为偶数,且pq>0 D .q 为奇数,p 为偶数,且pq <0【解题思路】通过研究函数的图象与性质,得出p 、q 的取值情况即可. 【解答过程】解:因为函数为偶函数,所以p 为偶数, 且由图象形状判定pq <0.又因p 、q 互质,所以q 为奇数.所以选D . 故选:D .5.(5分)(2021•安阳三模)已知幂函数f (x )=x a 满足2f (2)=f (16),若a =f (log 42),b =f (ln 2),c =f (5−12),则a ,b ,c 的大小关系是( ) A .a >c >bB .a >b >cC .b >a >cD .b >c >a【解题思路】根据题意求出幂函数f (x )的解析式,判断f (x )是定义域上的单调增函数,再比较log 42、ln 2和5−12的大小,即可得出结论.【解答过程】解:幂函数f (x )=x a 中,2f (2)=f (16), 所以2×2a =16a ,即2a +1=24a , 所以a +1=4a ,解得a =13,所以f (x )=x 13,所以f (x )是定义域为R 上的单调增函数; 又a =f (log 42),b =f (ln 2),c =f (5−12), 且log 42=12,ln 2>ln √e =12,5−12=1√512, 所以5−12<log 42<ln 2,即f (5−12)<f (log 42)<f (ln 2), 所以b >a >c . 故选:C .6.(5分)(2020•福田区校级模拟)已知幂函数g (x )=(2a ﹣1)x a +1的图象过函数f (x )=m x ﹣b −12(m>0,且m ≠1)的图象所经过的定点,则b 的值等于( ) A .±12B .±√22C .2D .±2【解题思路】根据函数g (x )是幂函数求出a 的值,再写出指数函数f (x )图象所过的定点,代入g (x )中求得b 的值.【解答过程】解:函数g (x )=(2a ﹣1)x a +1是幂函数, ∴2a ﹣1=1,解得a =1, ∴g (x )=x 2;令x ﹣b =0,解得x =b ,∴函数f (x )=m x ﹣b −12的图象经过定点(b ,12),∴b 2=12,解得b =±√22. 故选:B .7.(5分)(2020•红河州一模)函数f (x )=x 2﹣bx +c 满足f (x +1)=f (1﹣x ),且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .与x 有关,不确定 B .f (b x )≥f (c x ) C .f (b x )>f (c x )D .f (b x )≤f (c x )【解题思路】根据题意,由二次函数的性质分析可得b 、c 的值,则有b x =2x ,c x =3x ,由指数的性质分情况讨论x 的值,比较f (b x )和f (c x )的大小,综合即可得答案.【解答过程】解:根据题意,函数f (x )=x 2﹣bx +c 满足f (x +1)=f (1﹣x ),则有b2=1,即b =2,又由f (0)=3,则c =3, b x =2x ,c x =3x ,若x <0,则有c x <b x <1,而f (x )在(﹣∞,1)上为减函数,此时有f (b x )<f (c x ), 若x =0,则有c x =b x =1,此时有f (b x )=f (c x ),若x >0,则有1<b x <c x ,而f (x )在(1,+∞)上为增函数,此时有f (b x )<f (c x ), 综合可得f (b x )≤f (c x ), 故选:D .8.(5分)(2021•石景山区一模)已知f(x)={x 2−2,x ≤03x −2,x >0,若|f (x )|≥ax 在x ∈[﹣1,1]上恒成立,则实数a 的取值范围是( ) A .(﹣∞﹣1]∪[0,+∞) B .[﹣1,0]C .[0,1]D .[﹣1,0)【解题思路】先画出函数f(x)={x 2−2,x ≤03x −2,x >0和|f (x )|的图象;利用图象再结合答案即可解决本题.【解答过程】解:函数f(x)={x 2−2,x ≤03x −2,x >0的图象如图:|f(x)|的图象如图:因为|f(x)|≥ax在x∈[﹣1,1]上恒成立,所以y=ax的图象应在y=|f(x)|的图象的下方,故须斜率为负,或为0.当斜率为负时,排除答案A,C;当a=0,y=0满足要求,排除D.故选:B.二.多选题(共4小题,满分20分,每小题5分)9.(5分)(2021春•衢州月考)已知幂函数f(x)=(m+95)x m,则下列结论正确的有()A.f(−32)=1 16B.f(x)的定义域是RC.f(x)是偶函数D.不等式f(x﹣1)≥f(2)的解集是[﹣1,1)∪(1,3]【解题思路】先利用幂函数的定义求出m的值,得到函数f(x)的解析式,可判定选项A,B的正确,利用偶函数的定义判定选项C的正误,利用函数f(x)的奇偶性和单调性解选项D的不等式.【解答过程】解:幂函数f(x)=(m+95)x m,∴m+95=1,∴m=−4 5,∴f(x)=x−45,定义域为(﹣∞,0)∪(0,+∞),故选项B错误,∵f (﹣32)=(−32)−45=116, ∴选项A 正确, f (x )=x−45=1√x 5,定义域(﹣∞,0)∪(0,+∞)关于原点对称,又∵f (﹣x )=1√(−x)45=1√x 5=f (x ),∴f (x )是偶函数,选项C 正确, ∵f (x )=x−45,∴f (x )在(0,+∞)上单调递减,在(﹣∞,0)上单调递增, 不等式f (x ﹣1)≥f (2)等价于f (|x ﹣1|)≥f (2), ∴{x −1≠0|x −1|≤2解得:﹣1≤x <1,或1<x ≤3, 故选项D 正确, 故选:ACD .10.(5分)(2020秋•荆州期末)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>﹣2时,f (x 1)<f (x 2) B .当x 1+x 2=﹣2时,f (x 1)=f (x 2) C .当x 1+x 2>﹣2时,f (x 1)>f (x 2)D .f (x 1)与f (x 2)的大小与a 有关【解题思路】根据二次函数的图象及二次函数的对称轴,即可判断出每个选项的正误. 【解答过程】解:二次函数f (x )=ax 2+2ax +4(a >0)的图象开口向上,对称轴为x =﹣1, 当x 1+x 2=﹣2时,x 1,x 2关于x =﹣1对称,此时f (x 1)=f (x 2),选项B 正确; 当x 1+x 2>﹣2时,x 1与x 2的中点大于﹣1,又x 1<x 2, ∴点x 2到对称轴的距离大于点x 1到对称轴的距离, ∴f (x 1)<f (x 2),选项A 正确,C 错误;显然当a >0时,f (x 1)与f (x 2)的大小与a 无关,选项D 错误. 故选:AB .11.(5分)(2020秋•双塔区校级月考)已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)−f(x 2)x 1−x 2>0.若a ,b ∈R ,且f (a )+f (b )的值为负值,则下列结论可能成立的有( ) A .a +b >0,ab <0B .a +b <0,ab >0C .a +b <0,ab <0D .a +b >0,ab >0【解题思路】利用幂函数的性质推导出f (x )=x 3,从而求得 f (a )+f (b )=(a +b )(a 2﹣ab +b 2),然后检验各个选项是否正确.【解答过程】解:∵函数f(x)=(m 2−m −1)x m 2+m−3是幂函数,∴m 2﹣m ﹣1=1,求得m =2 或m =﹣1.对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)−f(x 2)x 1−x 2>0,故f (x )在(0,+∞)上是增函数,∴m 2+m ﹣3>0,∴m =2,f (x )=x 3.若a ,b ∈R ,且f (a )+f (b )=a 3+b 3=(a +b )(a 2﹣ab +b 2) 的值为负值. 若A 成立,则 f (a )+f (b )=(a +b )(a 2﹣ab +b 2)>0,不满足题意;若B 成立,则 f (a )+f (b )=(a +b )(a 2﹣ab +b 2)=(a +b )[(a −b 2)2+3b24]<0,满足题意;若C 成立,则 f (a )+f (b )=(a +b )(a 2﹣ab +b 2)<0,满足题意;若D 成立,则 f (a )+f (b )=(a +b )(a 2﹣ab +b 2)=(a +b )[(a −b 2)2+3b24]>0,不满足题意,故选:BC .12.(5分)(2020秋•湖南期中)已知函数f (x )=2x 2﹣mx ﹣m 2,则下列命题正确的有( ) A .当m ≠0时,f (x )<0的解集为{x|−m2<x <m}B .当m =1时,∀x 1,x 2∈[1,+∞)时,(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0C .∀x 1,x 2∈(−∞,14m]且x 1≠x 2时,f(x 1)+f(x 2)2>f(x 1+x 22)D .当m <0时,若0<x 1<x 2,则x 2f (x 1)>x 1f (x 2) 【解题思路】对于A ,分m >0和m <0时求解不等式; 对于B ,根据函数的单调性判断即可;对于C ,根据函数的单调性,任取两点,根据数形结合的方式判断即可;对于D ,构造函数g (x )=f(x)x (x >0),看作y =f (x )在y 轴右侧图象上的点与原点所在的直线的斜率,数形结合可判断单调性.【解答过程】解:对于A :由2x 2﹣mx ﹣m 2<0,当m >0时,原不等式的解集为{x |−m2<x <m }, 当m <0时,原不等式的解集为{x |m <x <−m2},故AC 错误; 对于B :m =1时,f (x )=2x 2﹣x ﹣1=2(x −14)2−98在[1,+∞)递增, 则(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0,故B 正确;对于C :f (x )在(﹣∞,14m ]递减,当x 1,x 2∈(﹣∞,14m ]时,设A (x 1,f (x 1)),B (x 2,f (x 2)),则AB 的中点C (x 1+x 22,f(x 1)+f(x 2)2),设D (x 1+x 22,f(x 1+x 22)),数形结合得:点D 位于点C 的下方, 即f(x 1)+f(x 2)2>f(x 1+x 22),故C 正确;对于D :设g (x )=f(x)x(x >0),则g (x )表示y =f (x )在y 轴右侧图象上的点与原点所在的直线的斜率, 数形结合可知:g (x )是增函数,当0<x 1<x 2时,g (x 1)<g (x 2), 则f(x 1)x 1<f(x 2)x 2,即x 2f (x 1)<x 1f (x 2),故D 错误;故选:BC .三.填空题(共4小题,满分20分,每小题5分)13.(5分)(2020•襄城区校级模拟)函数y =log a (2x ﹣3)+√2的图象恒过定点P ,P 在幂函数f (x )=x α的图象上,则f (9)= 3 .【解题思路】令2x ﹣3=1求出x ,代入解析式求出y ,即求出定点P 的坐标,再代入幂函数f (x )=x α求出α的值,即可求出f (9).【解答过程】解:由题意得,2x ﹣3=1,解得x =2,此时y =log a (2x ﹣3)+√2=√2, 则定点P 的坐标是(2,√2),又P 在幂函数f (x )=x α的图象上,则2α=√2=212,得α=12, 所以f(x)=x 12,则f(9)=912=3, 故答案为:3.14.(5分)(2020•镇海区校级模拟)设m >﹣1,函数f (x )=x 2﹣3mx +2m 2+1(x <m ),若存在θ≠π4+k π,使得f (sin θ)=f (cos θ),则m 的取值范围是 −√23<m <0 .【解题思路】由f (sin θ)=f (cos θ)可知sin θ与cos θ关于二次函数的轴对称,解出m 与θ的关系,进而求出m 的取值范围即可.【解答过程】解;由题意可知{32m <m3m =cosθ+sinθ,因为θ≠π4+kπ(k ∈Z),{m <0m =√23cos(θ+π4),解得−√23<m <0,故答案为:−√23<m <0.15.(5分)(2020•江苏一模)已知函数f (x )=(m ﹣2)x 2+(m ﹣8)x (m ∈R )是奇函数,若对于任意的x ∈R ,关于x 的不等式f (x 2+1)<f (a )恒成立,则实数a 的取值范围是 (﹣∞,1) . 【解题思路】由已知结合奇函数的定义可求m ,然后结合不等式的恒成立与最值的相互关系及二次函数的性质可求.【解答过程】解:由奇函数的性质可得,f (﹣x )=﹣f (x )恒成立, 即(m ﹣2)x 2﹣(m ﹣8)x =﹣(m ﹣2)x 2﹣(m ﹣8)x , 故m ﹣2=0即m =2,此时f (x )=﹣6x 单调递减的奇函数, 由不等式f (x 2+1)<f (a )恒成立,可得x 2+1>a 恒成立, 结合二次函数的性质可知,x 2+1≥1, 所以a <1.故答案为:(﹣∞,1)16.(5分)(2020•吉林模拟)M(94,32)是幂函数f (x )=x n 图象上的点,将f (x )的图象向右平移2个单位长度,再向上平移32个单位长度,得到函数y =g (x )的图象,若点T n (n ,m )(n ∈N *,且n ≥2)在g (x )的图象上,则|MT 2|+|MT 3|+…+|MT 9|= 30【解题思路】由32=(94)n ,解得n =12.可得f (x )=√x .可得:g (x )=√x −2+32,根据点T n (n ,m )(n ∈N *,且n ≥2)在g (x )的图象上,可得:(m −32)2=n ﹣2,(m ≥32).利用抛物线的定义及其性质即可得出.【解答过程】解:由32=(94)n ,解得n =12.∴f (x )=√x .可得:g (x )=√x −2+32,∵点T n (n ,m )(n ∈N *,且n ≥2)在g (x )的图象上, ∴m =√n −2+32.(m −32)2=n ﹣2,(m ≥32).抛物线(y −32)2=x ﹣2的焦点M (94,32),准线方程为x =2−14=74.根据抛物线的性质可得:|MT n|=n−7 4,则|MT2|+|MT3|+…+|MT9|=2−74+3−74+⋯⋯+9−74=(2+9)×82−8×74=30.故答案为:30.四.解答题(共6小题,满分70分)17.(10分)(2019秋•浦东新区期末)已知m是整数,幂函数f(x)=x﹣m2+m+2在[0,+∞)上是单调递增函数.(1)求幂函数f(x)的解析式;(2)作出函数g(x)=|f(x)﹣1|的大致图象;(3)写出g(x)的单调区间,并用定义法证明g(x)在区间[1,+∞)上的单调性.【解题思路】(1)求幂函数f(x)的解析式;(2)作出函数g(x)=|f(x)﹣1|的大致图象;(3)写出g(x)的单调区间,并用定义法证明g(x)在区间[1,+∞)上的单调性.【解答过程】解:(1)由f(x)在[0,+∞)上单调递增可得:﹣m2+m+2>0,∴﹣1<m<2,又∵m∈Z,∴m=0或m=1,∴f(x)=x2;(2)由于f(x)=x2,所以g(x)=|x2﹣1|.如图所示:(3)根据函数的图象:函数的单调减区间为:(﹣∞,﹣1]和[0,1].函数的单调增区间为[﹣1,0]和[1,+∞).证明:设1≤x1<x2,所以x12−1≥0,x22−1>0.所以g(x2)﹣g(x1)=(x2﹣x1)(x2+x1)>0.所以函数在区间[1,+∞)上为增函数.18.(12分)(2020秋•兰州期末)已知幂函数g(x)=(m2﹣3)x m(m∈R)在(0,+∞)为减函数,且对数函数f(x)满足f(﹣m+1)+f(﹣m﹣1)=1 2(1)求g(x)、f(x)的解析式(2)若实数a满足f(2a﹣1)<f(5﹣a),求实数a的取值范围.【解题思路】(1)根据幂函数的定义与性质,列出不等式组{m2−3=1m<0,求出m的值,得g(x)解析式;由f(x)是对数函数,且f(﹣m+1)+f(﹣m﹣1)=12,利用m的值求出f(x)的解析式;(2)根据f(x)的单调性,把f(2a﹣1)<f(5﹣a)转化,求出解集即可.【解答过程】解:(1)幂函数g(x)=(m2﹣3)x m(m∈R)在(0,+∞)为减函数,∴{m2−3=1 m<0,解得m=﹣2,∴g(x)=x﹣2;又∵f(x)是对数函数,且f(﹣m+1)+f(﹣m﹣1)=1 2,∴设f(x)=log a x(a>0且a≠1),∴log a (﹣m +1)+log a (﹣m ﹣1)=12, 即log a (m 2﹣1)=log a 3=12, 解得a =9, ∴f (x )=log 9x ;(2)∵实数a 满足f (2a ﹣1)<f (5﹣a ), 且f (x )=log 9x 在(0,+∞)上单调递增,∴{2a −1>05−a >02a −1<5−a ,解得{a >12a <5a <2;即12<a <2,∴实数a 的取值范围是(12,2).19.(12分)(2020秋•高安市校级期末)已知函数g (x )=ax 2﹣2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.设f(x)=g(x)x . (1)求a ,b 的值;(2)若不等式f (log 2x )﹣2k log 2x ≥0在x ∈[2,8]上有解,求实数k 的取值范围. 【解题思路】(1)首先判断二次函数的开口方向及单调性,再利用二次函数的性质求解. (2)利用换元法求解.【解答过程】解:(1)函数g (x )=a (x ﹣1)2+1+b ﹣a , ∵a >0,∴g (x )为开口向上的抛物线,且对称轴为x =1, ∴g (x )在区间[2,3]上是增函数, ∴{g(2)=1g(3)=4,即{b +1=13a +b +1=4 解得a =1,b =0.(2)由(1)可得g (x )=x 2﹣2x +1,则f(x)=x +1x −2.∴f (log 2x )﹣2k log 2x ≥0在x ∈[2,8]上有解等价于log 2x +1log 2x −2≥2klog 2x 在x ∈[2,8]上有解.即2k ≤1(log 2x)2−2log 2x+1在x ∈[2,8]上有解 令t =1log 2x ,∵x ∈[2,8],∴t ∈[13,1],∴2k ≤t 2﹣2t +1在t ∈[13,1]上有解, 记φ(t )=t 2﹣2t +1=(t ﹣1)2,则φ(t )在[13,1]上为减函数,ϕ(t)max =ϕ(13)=49∴2k ≤49,则k ≤29,∴k 的取值范围为(−∞,29].20.(12分)(2021春•让胡路区校级月考)已知二次函数f (x )=x 2﹣2ax +3. (1)若f (x )在(﹣∞,1]上单调递减,求实数a 的最小值; (2)存在x ∈[﹣4,﹣2],使得f (x )≥a 有解,求实数a 的取值范围. 【解题思路】(1)结合该图象,使用对称轴可解决此问题;(2)存在x ∈[﹣4,﹣2],使得f (x )≥a 有解⇔f (﹣4)≥0或f (﹣2)≥0,可解决此问题. 【解答过程】解:(1)∵二次函数f (x )=x 2﹣2ax +3是开口向上的抛物线且对称轴方程为x =a , ∴若f (x )在(﹣∞,1]上单调递减,则a ≥1, 故a 的最小值是1;(2)存在x ∈[﹣4,﹣2],使得f (x )≥a 有解,即存在x ∈[﹣4,﹣2],使得x 2﹣2ax +3﹣a ≥0有解, 则f (﹣4)≥0或f (﹣2)≥0,解得:a ≥−197, 故a 的取值范围是:[−197,+∞).21.(12分)(2020秋•虹口区校级期中)已知函数f (x )=x 2+ax +b (a ,b ∈R ). (1)若b =1,且f (x )在[﹣2,2]上存在零点,求实数a 的取值范围;(2)若对任意a ∈[﹣1,1],存在x ∈[﹣2,3]使f (x )>0,求实数b 的取值范围.【解题思路】(1)把f (x )在[﹣2,2]上存在零点转化为f (x )=x 2+ax +1=0在[﹣2,2]上有解,分参求值域.(2))先把存在x ∈[﹣2,3],f (x )>0,转化为f (x )max >0,求出f (x )最大值,再把9﹣3a +b >0对任意a ∈[﹣1,1]恒成立,分参求出b 范围.【解答过程】解:(1)当b =1时,f (x )=x 2+ax +1,∵f (x )在[﹣2,2]上存在零点,∴f (x )=x 2+ax +1=0在[﹣2,2]上有解, ∵x ≠0,∴ax =﹣x 2﹣1, ∴a =﹣x −1x ,①当x >0时,x +1x ≥2√1=2,当且仅当x =1x即x =1时取等号, ∴x +1x ≥2,∴a =﹣x −1x ≤−2,即a ≤﹣2.②当x <0时,a =﹣x −1x ≥2√1=2,当且仅当﹣x =−1x即x =﹣1时取等号, ∴a ≥2.综上所述,a 的取值范围为a ≤﹣2或a ≥2.(2)∵存在x ∈[﹣2,3],f (x )>0,∴f (x )max >0, ∵f (x )=x 2+ax +b (a ,b ∈R )是开口向上的二次函数, ∴f (x )max =f (﹣2)=4﹣2a +b 或f (x )max =f (3)=9﹣3a +b ∵f (3)﹣f (2)=9﹣3a +b ﹣4+2a ﹣b =5﹣a >0, ∴f (x )max =f (3)=9﹣3a +b ,即9﹣3a +b >0对任意a ∈[﹣1,1]恒成立,∴b >3a ﹣9对任意a ∈[﹣1,1]恒成立,∴b >(3a ﹣9)max , ∴b >﹣6.22.(12分)(2021春•吴兴区校级月考)已知幂函数f(x)=(m 2−2m −2)x m2−4m+2在(0,+∞)上单调递减.(1)求m 的值并写出f (x )的解析式;(2)试判断是否存在a >0,使得函数g(x)=(2a −1)x −af(x)+1在(0,2]上的值域为(1,11]?若存在,求出a 的值;若不存在,请说明理由.【解题思路】(1)利用幂函数的定义以及单调性,列出关于m 的关系式,求解即可;(2)求出g (x )的解析式,按照a ﹣1与0的大小关系进行分类讨论,利用g (x )的单调性列出方程组,求解即可.【解答过程】解:(1)因为幂函数f(x)=(m 2−2m −2)x m2−4m+2在(0,+∞)上单调递减,所以{m 2−2m −2=1m 2−4m +2<0,解得m =3或m =﹣1(舍),所以f (x )=x ﹣1;(2)由(1)可得,f (x )=x ﹣1,所以g (x )=(2a ﹣1)x ﹣ax +1=(a ﹣1)x +1,假设存在a >0,使得g (x )在(0,2]上的值域为(1,11],①当0<a <1时,a ﹣1<0,此时g (x )在(0,2]上单调递减,不符合题意; ②当a =1时,g (x )=1,显然不成立;③当a>1时,a﹣1>0,g(x)在和(0,2]上单调递增,故g(2)=2(a﹣1)+1=11,解得a=6.综上所述,存在a=6使得g(x)在(0,2]上的值域为(1,11].21。
高中数学总复习:幂函数与二次函数
1
(-∞,- ]
8
.
解析:因为幂函数 y = x -3在区间[-2,0)上单调递减,所以当 x
1
=-2时,函数取得最大值- ,又当 x →0时, y →-∞,所以函数
8
1
-3
y = x 在区间[-2,0)上的值域为(-∞,- ].
8
目录
高中总复习·数学(提升版)
1. 幂函数 y = x α在第一象限的两个重要结论
第四节
幂函数与二次函数
1. 通过具体实例,理解幂函数的概念.
2.
1
结合 y = x , y = , y = x 2, y =
, y = x 3的图象,理解它们的
变化规律.
3. 理解并掌握二次函数的定义、图象及性质.
目录
1
C O N T E N T S
2
3
4
知识 体系构建
考点 分类突破
微专题3 一元二次方程根的分布
(简记:“指大图低”),在(1,+∞)上,幂函数的指数
越大,函数图象越远离 x 轴(简记:“指大图高”);
(2)从函数曲线的形状上看:当0<α<1时,曲线上凸;当α>1
时,曲线下凸.当α<0时,幂函数的图象都经过点(1,1),
在第一象限内,曲线下凸.
目录
高中总复习·数学(提升版)
2. 在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借
(1)恒过点(1,1);
(2)当 x ∈(0,1)时,α越大,函数值越小;当 x ∈(1,+∞)
时,α越大,函数值越大.
目录
高中总复习·数学(提升版)
2. 二次函数在闭区间上的最值
设二次函数 f ( x )= ax 2+ bx + c ( a >0),闭区间为[ m , n ]:
新高考数学一轮复习幂函数与二次函数重难点题型精讲(含答案)
幂函数与二次函数-重难点题型精讲1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较R R R {x |x ≥0} {x |x ≠0}2.二次函数的图象和性质R R【题型1 幂函数的图象及性质】【例1】(2021•宜春模拟)已知幂函数f(x)=(m﹣1)x n的图象过点(m,8).设a=f(20.3),b=f (0.32),c=f(log20.3),则a,b,c的大小关系是()A.b<c<a B.a<c<b C.a<b<c D.c<b<a【解题思路】利用幂函数的定义,先求出f(x)的解析式,可得a、b、c的值,从而判断a,b,c的大小关系.【解答过程】解:∵幂函数f(x)=(m﹣1)x n的图象过点(m,8),∴m﹣1=1,且m n=8,求得m =2,n =3,故f (x )=x 3.∵a =f (20.3)=20.9>1,b =f (0.32)=0.36∈(0,1),c =f (log 20.3)=(log 20.3)3<0, ∴a >b >c , 故选:D .【变式1-1】(2021•阳泉三模)已知点(2,8)在幂函数f (x )=x n 图象上, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .b >c >a【解题思路】推导出f (x )=x 3,从而45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0,由此能判断a ,b ,c 的大小关系.【解答过程】解:点(2,8)在幂函数f (x )=x n 图象上, ∴f (2)=2n =8,解得n =3,∴f (x )=x 3, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254), ∴45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0, ∴a ,b ,c 的大小关系是b >a >c . 故选:A .【变式1-2】(2020•金安区校级模拟)已知幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数,设a =f (sin2π7),b =f (cos2π7),c =f (tan2π7),则( ) A .b <a <c B .c <b <aC .b <c <aD .a <b <c【解题思路】根据幂函数的定义与奇函数的定义,求出m 、n 的值,写出f (x ),判断其单调性,再根据cos2π7、sin2π7和tan2π7的大小比较f (cos2π7)与f (sin2π7)、f (tan2π7)的大小.【解答过程】解:根据幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数, 得m =1,且﹣2+n =0,解得n =2;∴f (x )=x 3,且在定义域R 上是单调增函数; 又0<π4<2π7<π2,∴cos2π7<sin2π7<1<tan2π7,∴f (cos 2π7)<f (sin 2π7)<f (tan 2π7),即b <a <c . 故选:A .【变式1-3】(2020•三明模拟)已知幂函数f(x)=(m −1)2x m2−4m+2在(0,+∞)上单调递增,函数g (x )=2x ﹣t ,对于任意x 1∈[1,5)时,总存在x 2∈[1,5)使得f (x 1)=g (x 2),则t 的取值范围是( ) A .∅B .t ≥7或t ≤1C .t >7或t <1D .1≤t ≤7【解题思路】先利用幂函数的定义和单调性,求出m 的值,得到函数f (x )的解析式,设函数f (x )在[1,5)的值域为集合A ,函数g (x )在[1,5)的值域为集合B ,利用函数的单调性分别求出集合A ,集合B ,由题意可得A ⊆B ,利用集合间的包含关系列出不等式组,即可求出t 的取值范围. 【解答过程】解:∵幂函数f(x)=(m −1)2x m 2−4m+2在(0,+∞)上单调递增,∴{(m −1)2=1m 2−4m +2>0,解得m =0,∴f (x )=x 2,当x 1∈[1,5)时,f (x 1)∈[1,25),设集合A =[1,25),又当x 2∈[1,5)时,g (x 2)∈[2﹣t ,32﹣t ),设集合B =[2﹣t ,32﹣t ), 由题意得:A ⊆B ,∴{2−t ≤132−t ≥25,解得:1≤t ≤7, 故选:D .【题型2 二次函数的图象及性质】【例2】(2020•西湖区校级模拟)已知函数f (x )=mx 2+(m ﹣3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( ) A .[0,1]B .(0,1)C .(﹣∞,1)D .(﹣∞,1]【解题思路】本题考查的是函数的图象问题.在解答时,应先结合m 是否为零对函数是否为二次函数进行区别,对于二次函数情况下充分结合图形的特点利用判别式和对称轴即可获得问题解答. 【解答过程】解:由题意可知:当m =0时,由f (x )=0 知,﹣3x +1=0,∴x =13>0,符合题意;当m>0时,由f(0)=1可知:{△=(m−3)2−4m≥0−m−32m>0,解得0<m≤1;当m<0时,由f(0)=1可知,函数图象恒与X轴正半轴有一个交点综上可知,m的取值范围是:(﹣∞,1].故选:D.【变式2-1】(2020秋•龙岩期中)已知二次函数f(x)=ax2+(a﹣5)x+a2﹣6(a≠0)的图象与x轴交于M(x1,0),N(x2,0)两点,且﹣1<x1<1<x2<2,则a的取值范围是()A.(2,1+2√3)B.(2,2√3−1)C.(1+2√3,+∞)D.(−∞,2−2√3)【解题思路】由已知结合二次函数的实根分布中特殊点函数值的符号建立关于a的不等式,可求.【解答过程】解:若a>0,则{f(−1)=a2−1>0f(1)=a2+2a−11<0 f(2)=a2+6a−11>0,解得2<a<2√3−1;若a<0,则{f(−1)=a2−1<0f(1)=a2+2a−11>0f(2)=a2+6a−16<0,不等式组无解.故a的取值范围是(2,2√3−1).故选:B.【变式2-2】(2020秋•咸阳期末)已知二次函数f(x)=x2﹣2ax+3,a∈R.(Ⅰ)若函数f(x)在(﹣∞,﹣2)上单调递减,求a的取值范围;(Ⅱ)若a=1时,函数f(x)的图象恰好在函数g(x)=2x+b的图象上方(f(x)≥g(x)且恰好能取到等号),求实数b的值.【解题思路】(Ⅰ)求出函数的对称轴,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为x2﹣4x+3﹣b≥0恒成立,根据判别式△≤0,求出b的值即可.【解答过程】解:(Ⅰ)f(x)=x2﹣2ax+3=(x﹣a)2+3﹣a2,对称轴是x=a,若函数f(x)在(﹣∞,﹣2)上单调递减,则a≥﹣2,即a的取值范围是[﹣2,+∞);(Ⅱ)a=1时,f(x)=(x﹣1)2+2,f(x)﹣g(x)=x2﹣4x+3﹣b,由题意得f(x)﹣g(x)≥0,即x2﹣4x+3﹣b≥0恒成立,故△=16﹣12+4b ≤0,解得:b ≤﹣1, 当f (x )≥g (x )且恰好能取到等号, 即f (x )=g (x )时,b =﹣1.【变式2-3】(2020秋•越秀区期末)问题:是否存在二次函数f (x )=ax 2+bx +c (a ≠0,b ,c ∈R )同时满足下列条件:f (0)=3,f (x )的最大值为4,____?若存在,求出f (x )的解析式;若不存在,请说明理由.在①f (1+x )=f (1﹣x )对任意x ∈R 都成立,②函数y =f (x +2)的图象关于y 轴对称,③函数f (x )的单调递减区间是[12,+∞)这三个条件中任选一个,补充在上面问题中作答.【解题思路】由f (0)=3,可求得c =3,由条件可得函数的对称轴,又f (x )的最大值为4,可得关于a ,b 的方程组,求解即可.【解答过程】解:由f (0)=3,可得c =3,则f (x )=ax 2+bx +3, 若选择①f (1+x )=f (1﹣x )对任意x ∈R 都成立, 可得f (x )的对称轴为x =1,所以−b2a =1,又f (x )的最大值为4,可得a <0且f (1)=4,即a +b +3=4, 解得a =﹣1,b =2, 此时f (x )=﹣x 2+2x +3;若选择②函数y =f (x +2)的图象关于y 轴对称, 可得f (x )关于x =2对称,则−b2a =2,又f (x )的最大值为4,可得a <0且f (2)=4,即4a +2b +3=4, 解得a =−14,b =1, 此时f (x )=−14x 2+x +3;若选择③函数f (x )的单调递减区间是[12,+∞), 可得f (x )关于x =12对称,则−b2a =12,又f (x )的最大值为4,可得a <0且f (12)=4,即14a +12b +3=4,解得a =﹣4,b =﹣4, 此时f (x )=﹣4x 2﹣4x +3.【题型3 二次函数的最值问题】【例3】(2020春•滨海新区期末)已知函数f (x )=x 2+2ax +a 2在x ∈[﹣1,2].上有最大值是4,则实数a 的值为( ) A .﹣1或3B .﹣4或0C .﹣1或0D .﹣4或3【解题思路】由函数f (x )=x 2+2ax +a 2的图象开口向上知函数f (x )在|﹣1,2]上的最大值在﹣1或2上取得.从而分类讨论求解.【解答过程】解:由函数f (x )=x 2+2ax +a 2的图象开口向上知, 函数f (x )=x 2+2ax +a 2在|﹣1,2]上的最大值在﹣1或2上取得. 若函数f (x )在﹣1上取得最大值4,则 {−a ≥121−2a +a 2=4,解得a =﹣1,若函数f (x )在2上取得最大值4,则 {−a ≤124+4a +a 2=4,解得a =0,故选:C .【变式3-1】(2020秋•仓山区校级期中)如果函数y =4x 2﹣4ax +a 2﹣2a +3在区间[0,2]上有最小值3,那么实数a 的值为 .【解题思路】由二次函数对称轴结合定义域进行讨论即可解决此题. 【解答过程】解:函数y =4x 2﹣4ax +a 2﹣2a +3的对称轴是:x =a2.当a2≤0,即a ≤0时,f (x )在[0,2]上的最小值a 2﹣2a +3=3,解得:a =0或2(舍去);当0<a2<2,即0<a <4时,f (x )的最小值是f (a2)=﹣2a +3=3,解得:a =0(舍去);a 2≥2,即a ≥4时,f (x )的最小值是f (2)=4×22﹣4a ×2+a 2﹣2a +3=a 2﹣8a +19=3,解得:a 1=a 2=4.综上,a 的值是0或4. 故答案为:0或4.【变式3-2】(2020•浙江模拟)已知函数f (x )=ax 2+bx +c (a ≠0),对一切x ∈[﹣1,1],都有|f (x )|≤1,则当x ∈[﹣2,2]时,f (x )的最大值为 .【解题思路】由题知{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,进而求出a ,b ,c ,所以f (x )=f (1)(x 2+x 2)+f (﹣1)(x 2−x2)+f(0)(1﹣x 2)再由题知对一切x ∈[﹣1,1],都有|f (x )|≤1分别再讨论﹣2≤x ≤﹣1与1≤x ≤2区间最值,最后得出最值. 【解答过程】解:由题意{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,有得{a =12[f(1)+f(−1)−2f(0)]b =12[f(1)−f(−1)]c =f(0)所以f (x )=f (1)(x 2+x2)+f (﹣1)(x 2−x2)+f (0)(1﹣x 2) 对一切x ∈[﹣1,1],都有|f (x )|≤1所以当﹣2≤x <﹣1时,|f (x )|≤||||+||||+||||)|≤||+||+|| =(x 2+x2)+(x 2−x2)+(x 2−1)=2x 2−1≤7当1<x ≤2时,|f (x )|≤||||+||||+||||)|≤||+||+||=(x 2+x 2)+(x 2−x 2)+(x 2−1)=2x 2−1≤7综上所述,当x ∈[﹣2,2]时,f (x )的最大值为7.【变式3-3】(2021春•浦东新区校级期末)已知函数f (x )=x 2﹣(a ﹣2)x +a ﹣3. (1)若f (a +1)=f (2a ),求a 的值;(2)若函数y =f (x )在x ∈[2,3]的最小值为5﹣a ,求实数a 的取值范围;(3)是否存在整数m 、n 使得关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ]?若存在,请求出m 、n 的值;若不存在,请说明理由.【解题思路】(1)根据已知条件,得到(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3解方程即可求出结果; (2)由于f (x )的对称轴为x =a−22,根据对称轴与区间的位置关系进行分类讨论,判断单调性求出最小值即可;(3)根据题意转化为 m ,n 是方程 x 2﹣(a ﹣2)x +a ﹣3=x 的两个根,结合韦达定理得到 m +n =2+mn ,分离常数,根据m ,n 为整数即可求解.【解答过程】解:(1)因为f (x )=x 2﹣(a ﹣2)x +a ﹣3,且 f (a +1)=f (2a ), 所以(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3, 整理得2a 2+a ﹣3=0,解得a =1或−32;(2)f (x )=x 2﹣(a ﹣2)x +a ﹣3 的对称轴为 x =a−22, 因为 x ∈[2,3], ①当a−22≤2,即 a ≤6,则f (x )在x ∈[2,3]上单调递增,所以f (x )min =f (2)=22﹣2(a ﹣2)+a ﹣3=5﹣a ,符合题意;②当2<a−22<3,即6<a <8,则f (x )在(2,a−22)上单调递减,在(a−22,3)单调递增, 所以f(x)min =f(a−22)=(a−22)2−a−22(a −2)+a −3=−a 2+8a−164=5﹣a , 则a =6,与6<a <8矛盾,不符合题意; ③a−22≥3,即a ≥8,则f (x )在x ∈[2,3]上单调递减,所以f(x)min =f(3)=32−3(a −2)+a −3=12−2a =5−a , 则a =7,与a ≥8矛盾,不符合题意,综上a ≤6,因此实数a 的取值范围为(﹣∞,6];(3)因为关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ], ①若a−22≤m ,则f (x )在[m ,n ]上单调递增,所以{f(m)=mf(n)=n,即m ,n 是方程x 2﹣(a ﹣2)x +a ﹣3=x ,即x 2﹣(a ﹣1)x +a ﹣3=0的两个根, 由韦达定理得{m +n =a −1mn =a −3,所以 m +n =2+mn ,所以m (1﹣n )=2﹣n ,当n =1时,m 不存在,舍去, 当n ≠1时,m =2−n 1−n =11−n +1,所以当n =0时,m =2;当n =2时,m =0,又因为m <n ,所以n =2,m =0,经检验,此时a =3,关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;②若m <a−22≤n ,则f (x )在(m ,a−22)上单调递减,在(a−22,n +1)上单调递增,所以{f(a−22)≥m f(n)=n f(m)=n ,即{(a−22)2−(a −2)⋅a−22+a −3≥m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n,所以{−a 2+8a −16≥4m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n ,即x 2﹣(a ﹣2)x +a ﹣3﹣n =0有两个不相等的实数根,且m +n =2﹣a ,由于m ,n 为整数,则a 为整数,则a =n 2+n−3n−1=n +2−1n−1,当n =0时,a =3,m =﹣1,经检验关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;当n =2时,a =3,m =﹣1,经检验符合题意; 故m =﹣1,n =2; ③若a−22≥n ,则f (x )在[m ,n ]上单调递减,所以{f(m)=nf(n)=m,即{m 2−(a −2)⋅m +a −3=n n 2−(a −2)⋅n +a −3=m ,则m =n ,不合题意舍去. 综上:存在这样的m ,n 为整数,且m =﹣1,n =2. 【题型4 二次函数的恒成立问题】【例4】(2021•4月份模拟)对于任意a ∈[﹣1,1],函数f (x )=x 2+(a ﹣4)x +4﹣2a 的值恒大于零,那么x 的取值范围是( ) A .(1,3) B .(﹣∞,1)∪(3,+∞)C .(1,2)D .(3,+∞)【解题思路】把二次函数的恒成立问题转化为y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x 的取值范围.【解答过程】解:原问题可转化为关于a 的一次函数y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,只需{(−1)⋅(x −2)+x 2−4x +4>01×(x −2)+x 2−4x +4>0, ∴{x >3,或x <2x <1,或x >2, ∴x <1或x >3.故选:B .【变式4-1】(2020春•玉林期末)已知函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,则k 的取值范围为( )A .(﹣∞,72)B .(72,+∞)C .(﹣∞,143)D .(143,+∞)【解题思路】由题意可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,结合y =g (x )的图象,只需g (1)<0,且g (2)<0,解不等式可得所求范围.【解答过程】解:函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,由于y =g (x )的图象为开口向上的抛物线,只需g (1)<0且g (2)<0,所以{1+4−k −k +2<04+2(4−k)−k +2<0,即{k >72k >143, 可得k >143. 故选:D .【变式4-2】(2020春•浙江期中)已知f (x )=x 2﹣|x ﹣a |+a ,若f (x )≤0对任意x ∈[﹣1,1]恒成立,则a 的取值范围是( )A .(﹣∞,﹣1]B .(﹣∞,0]C .[0,+∞)D .[﹣1,0]【解题思路】利用分段思想,分类讨论,结合二次函数性质即可求解.【解答过程】解:f (x )=x 2﹣|x ﹣a |+a ={x 2−x +2a ,x ≥a x 2+x ,x <a ,∵f (x )≤0对任意x ∈[﹣1,1]恒成立,∴①{x 2−x ≤−2a x ≥a 恒成立, 此时a ≤﹣1;②{x 2+x ≤0x <a在x ∈[﹣1,1]恒成立, 此时a ≤0;综上核对a ≤0,故选:B .【变式4-3】(2021春•虹口区期末)已知函数f (x )=x 2+2ax ﹣a +2.(1)若对于任意x ∈R ,f (x )≥0恒成立,求实数a 的取值范围;(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,求实数a 的取值范围;(3)若对于任意a ∈[﹣1,1],f (x )>0成立,求实数x 的取值范围.【解题思路】(1)利用二次函数的图象与性质可得△≤0,从而可求得a 的取值范围;(2)f (x )≥0恒成立等价于f (x )min ≥0,利用二次函数的图象与性质对a 分类讨论,求出f (x )的最小值,结合题意即可求解a 的取值范围;(3)将函数f (x )看作关于a 的函数g (a ),结合题意可得关于x 的不等式组即可求解x 的取值范围.【解答过程】解:(1)f (x )=x 2+2ax ﹣a +2≥0恒成立,可得△=4a 2﹣4(2﹣a )≤0,解得﹣2≤a ≤1,即实数a 的取值范围是[﹣2,1].(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,则f (x )min ≥0,函数f (x )=x 2+2ax ﹣a +2的对称轴为x =﹣a ,当﹣a <﹣1,即a >1时,f (x )min =f (﹣1)=3﹣3a ≥0,解得a ≤1,矛盾,舍去;当﹣a >1,即a <﹣1时,f (x )min =f (1)=3+a ≥0,可得﹣3≤a <﹣1,当﹣1≤﹣a ≤1,即﹣1≤a ≤1时,f (x )min =f (﹣a )=﹣a 2﹣a +2≥0,可得﹣1≤a ≤1,综上所述,求实数a 的取值范围是[﹣3,1].(3)对于任意a ∈[﹣1,1],f (x )>0成立,等价于对于任意a ∈[﹣1,1],g (a )=(2x ﹣1)a +x 2+2>0,所以{g(−1)=x 2−2x +3>0g(1)=x 2+2x +1>0,解得x ≠1, 所以实数x 的取值范围是{x |x ≠﹣1}.。
第4节幂函数与二次函数
第4节幂函数与二次函数幂函数和二次函数是数学中的两个重要概念,它们在不同的场景中起着不同的作用。
本文将介绍这两个函数的定义、性质以及它们的关系。
一、幂函数的定义与性质幂函数是指由x的正整数幂次构成的函数,其一般形式可以表示为f(x)=ax^n,其中a为非零实数,n为正整数。
幂数n决定了函数图像的性质,下面我们来看几个不同幂次的幂函数。
1. 当n=1时,幂函数就是一次函数,即f(x)=ax。
它的图像是一条斜率为a的直线。
2. 当n=2时,幂函数就是二次函数,即f(x)=ax^2、它的图像是一个开口向上或向下的抛物线。
3. 当n=3时,幂函数就是三次函数,即f(x)=ax^3、它的图像是一个类似于字母"S"形状的曲线。
幂函数的性质如下:1.当n为奇数时,函数图像关于y轴对称;当n为偶数时,函数图像关于原点对称。
2.当a>0时,函数递增;当a<0时,函数递减。
3.当n>1时,函数在原点附近增长或下降得非常快;当n=1时,函数图像为一条直线,增长或下降速度相对较慢。
二、二次函数的定义与性质二次函数是指由x的二次幂和一次幂构成的函数,其一般形式可以表示为f(x)=ax^2+bx+c,其中a、b、c为实数且a不为0。
二次函数的图像是一个开口向上或向下的抛物线。
二次函数的性质如下:1.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 抛物线的顶点坐标为(-b/2a, c-b^2/4a),其中b^2-4ac<0时,抛物线没有实根;b^2-4ac=0时,抛物线与x轴相切;b^2-4ac>0时,抛物线与x轴有两个交点。
3.如果a>0,则抛物线的最小值为c-b^2/4a;如果a<0,则抛物线的最大值为c-b^2/4a。
三、幂函数与二次函数的关系从上面的定义与性质可以看出,二次函数是幂函数的一个特例,即二次函数是幂函数在幂次n=2时的情况。
高三一轮复习二次函数与幂函数
(2)(2014· 杭州模拟 ) 若 (a + 1) ________. 解析 令 f(x)=x
<(3 - 2a)
,则 a 的取值范围是
1 = ,则 f(x)的定义域是{x|x>0},且在(0,+ x
∞)上单调递减, a+1>0, 2 3 则原不等式等价于3-2a>0, 解得3<a<2. a+1>3-2a, 答案 2 3 (3,2)
2. (2014· 烟台调研)幂函数 为 A.1 C.3
n
1 1 y=f(x)的图象经过点4,2, 则 f4的值
Байду номын сангаас
( B.2 D.4
)
1 B [设 f(x)=x ,∵f(4)= , 2 1 1 1n - ∴4 =2,f4=4 =4 n=2,故选 B.]
第六节
二次函数与幂函数
[主干知识梳理] 一、常用幂函数的图象与性质
1
y =x
y=x
2
y=x
3
y=x
2
y=x
-1
图象
定义域
R
R
R
{x|x≥0}
{x|x≠0}
值域 奇偶 性
R
奇 增
{y|y≥0} 偶 (-∞,0]减, (0,+∞)增
R
奇
{y|y≥0}
非奇非偶 增
{y|y≠0} 奇 (-∞,0)和 (0,+∞)减
单调 性
公共 点
增
(1,1)
二、二次函数 1.二次函数的定义 形如 f(x) = ax2 + bx + c(a≠0) 的函数叫做二 次函数. 2.二次函数解析式的三种形式 ax2+bx+c(a≠0) (1)一般式:f( )- = ; ax (x m)2+n(a≠0) (2)顶点式:f(x) ; a= (x-x1)(x-x2)(a≠0) (3) 零 点 式 : f(x) = .
高中 幂函数与二次函数知识点+例题+练习 含答案
教学内容幂函数与二次函数教学目标了解幂函数与二次函数的形式重点幂函数与二次函数难点幂函数与二次函数教学准备教学过程幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0的两实根.教学效果分析教学过程(3)二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0定义域R R值域y∈⎣⎢⎡⎭⎪⎫4ac-b24a,+∞y∈⎝⎛⎦⎥⎤-∞,4ac-b24a对称轴x=-b2a顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a奇偶性b=0⇔y=ax2+bx+c(a≠0)是偶函数递增区间⎝⎛⎭⎪⎫-b2a,+∞⎝⎛⎭⎪⎫-∞,-b2a递减区间⎝⎛⎭⎪⎫-∞,-b2a⎝⎛⎭⎪⎫-b2a,+∞最值当x=-b2a时,y有最小值y min=4ac-b24a当x=-b2a时,y有最大值y max=4ac-b24a辨析感悟1.对幂函数的认识(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.( )(2)幂函数的图象都经过点(1,1)和(0,0).( )(3)幂函数的图象不经过第四象限.( )2.对二次函数的理解(4)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( )(5)(教材习题改编)函数f(x)=12x2+4x+6,x∈[0,2]的最大值为16,最小值为-2.( )教学效果分析教学过程[感悟·提升]三个防范一是幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不经过第四象限,若与坐标轴相交,则交点一定是原点,但并不是都经过(0,0)点,如(2)、(3).二是二次函数的最值一定要注意区间的限制,不要盲目配方求得结论,如(5)中的最小值就忽略了函数的定义域.考点一幂函数的图象与性质的应用【例1】(1)(2014·济南模拟)已知幂函数y=f(x)的图象过点⎝⎛⎭⎪⎫12,22,则log4f(2)的值为________.(2)函数y=13x的图象是________.规律方法(1)幂函数解析式一定要设为y=xα(α为常数)的形式;(2)可以借助幂函数的图象理解函数的对称性、单调性;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【训练1】比较下列各组数的大小:⑴121.1,120.9,1;⑵2322⎛⎫- ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1-.教学效果分析教学过程考点二二次函数的图象与性质【例2】(2013·浙江七校模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是________.规律方法解决二次函数的图象问题有以下两种方法:(1)排除法,抓住函数的特殊性质或特殊点;(2)讨论函数图象,依据图象特征,得到参数间的关系.【训练2】(2012·山东卷改编)设函数f(x)=1x,g(x)=-x2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则x1+x2________0,y1+y2________0(比较大小).教学效果分析教学过程1.对于幂函数的图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.二次函数的综合应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想.3.对于与二次函数有关的不等式恒成立或存在问题注意等价转化思想的运用.答题模板2——二次函数在闭区间上的最值问题【典例】(12分)(经典题)求函数f(x)=-x(x-a)在x∈[-1,1]上的最大值.[反思感悟] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)部分学生易出现两点错误:①找不到分类的标准,无从入手;②书写格式不规范,漏掉结论答题模板第一步:配方,求对称轴.第二步:分类,将对称轴是否在给定区间上分类讨论.第三步:求最值.第四步:下结论.【自主体验】已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a的值.教学效果分析。
2023届高考数学一轮复习讲义:第10讲 幂函数与二次函数
第10讲 幂函数与二次函数1.幂函数 (1)定义形如 的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )= ; ②顶点式:f (x )= ; ③零点式:f (x )= . (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在上单调递减;在上单调递增在上单调递增;在上单调递减奇偶性当时为偶函数,当b≠0时为非奇非偶函数顶点对称性图象关于直线x=-b2a成轴对称图形➢考点1 ******[名师点睛]1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x轴(简记为“指大图高”).[典例]1.(2022·全国·高三专题练习)若幂函数()m nf x x(m,n∈N*,m,n互质)的图像如图所示,则()A.m,n是奇数,且mn<1B.m是偶数,n是奇数,且mn>1C.m是偶数,n是奇数,且mn<1D .m 是奇数,n 是偶数,且m n>1 2.(2022·全国·高三专题练习)幂函数223()(55)()m mf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6B .1C .6D .1或﹣63.(2022·全国·高三专题练习)已知幂函数()(1)n f x m x =-的图象过点(,8)m .设()0.32a f =,()20.3b f =,()2log 0.3c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .a b c <<D .c b a <<[举一反三]1.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x =2.(2022·全国·高三专题练习)已知幂函数y =f (x )经过点(3,则f (x )( ) A .是偶函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是减函数 C .是奇函数,且在(0,+∞)上是减函数 D .是非奇非偶函数,且在(0,+∞)上是增函数 3.(2022·全国·高三专题练习)函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是( ) A .(0,2)B .[0,1)C .[1,2)D .(1,2]4.(多选)(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭5.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________.6.(2022·北京通州·一模)幂函数()mf x x =在()0,∞+上单调递增,()ng x x =在()0,∞+上单调递减,能够使()()y f x g x =-是奇函数的一组整数m ,n 的值依次是__________. 7.(2022·重庆·二模)关于x 的不等式()999999999999121x x x --⋅≤+,解集为___________.8.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.9.(2022·广东深圳·高三期末)已知函数()f x 的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为()f x =______.10.(2022·北京·高三专题练习)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()()11202g x h x h x x ⎫⎡⎫=-∈⎪⎪⎢⎣⎭⎭,的值域.➢考点2 二次函数的解析式[名师点睛]求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:[典例]1.(2022·全国·高三专题练习)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是_______2.(2022·全国·高三专题练习)已知()f x 为二次函数,()00f =,()()22132f x f x x x +-=++,求()f x 的解析式.[举一反三]1.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+B .()224f x x x =-+C .()236f x x x =- D .()224f x x x =-2.(2022·全国·高三专题练习)已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =( ) A .221x x -+ B .221x x ++ C .2221x x -+D .2221x x +-3.(2022·全国·高三专题练习)已知()f x 是二次函数且满足(0)1,(1)()2f f x f x x =+-=,则函数()f x 的解析式为________.➢考点3 二次函数的图象与性质[典例]1.(2022·全国·高三专题练习)函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为( )A .①④B .②③C .③④D .①②③2.(2022·全国·高三专题练习)二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为( ) A .0a ≤B .12a ≤-C .1a ≤-D .2a ≤-3.(2022·全国·高三专题练习)函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是_________.4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.[举一反三]1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( )A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x >2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( )A .B .C .D .3.(2022·全国·高三专题练习)已知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是() A .k ≤-8B .k ≥4C .k ≤-8或k ≥4D .-8≤k ≤44.(2022·山东济南·二模)若二次函数2()(0)f x ax bx c a =++<,满足(1)(3)f f =,则下列不等式成立的是( ) A .(1)(4)(2)f f f << B .(4)(1)(2)f f f << C .(4)(2)(1)f f f <<D .(2)(4)(1)f f f <<5.(多选)(2022·全国·高三专题练习)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>-2时,f (x 1)<f (x 2) B .当x 1+x 2=-2时,f (x 1)=f (x 2) C .当x 1+x 2>-2时,f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小与a 有关6.(多选)(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( )A .2B .3C .4D .57.(2022·全国·高三专题练习)如果函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则实数a 的取值范围是______.8.(2022·天津·高三专题练习)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 的取值范围为____.9.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)若函数()()g x f x mx =-在区间[]12-,上是单调函数,求实数m 的取值范围.10.(2022·全国·高三专题练习)已知函数2()24f x kx x k =-+. (Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.11.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥. (1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围第10讲 幂函数与二次函数1.幂函数 (1)定义形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+n (a ≠0); ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎭⎫-∞,-b2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎭⎫-∞,-b2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点 ⎝⎛⎭⎫-b 2a,4ac -b 24a对称性图象关于直线x =-b2a成轴对称图形➢考点1 ******[名师点睛]1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x=1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴(简记为“指大图高”). [典例]1.(2022·全国·高三专题练习)若幂函数()mn f x x = (m ,n ∈N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.2.(2022·全国·高三专题练习)幂函数223()(55)()m mf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6 B .1 C .6 D .1或﹣6【答案】B 【解析】∵幂函数223()(55)()mmf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∴2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数 1m ∴=或6m =-当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去 因此:m =1 故选:B3.(2022·全国·高三专题练习)已知幂函数()(1)n f x m x =-的图象过点(,8)m .设()0.32a f =,()20.3b f =,()2log 0.3c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .a b c <<D .c b a <<【答案】D 【解析】因幂函数()()1nf x m x =-的图象过点(),8m ,则11m -=,且8n m =,于是得2m =,3n =,函数3()f x x =,函数()f x 是R 上的增函数,而20.32log 0.300.312<<<<,则有20.32(log 0.3)(0.3)(2)f f f <<,所以c b a <<. 故选:D [举一反三]1.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x =【答案】D 【解析】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足. 故选:D2.(2022·全国·高三专题练习)已知幂函数y =f (x )经过点(3,则f (x )( ) A .是偶函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是减函数 C .是奇函数,且在(0,+∞)上是减函数 D .是非奇非偶函数,且在(0,+∞)上是增函数 【答案】D 【解析】设幂函数的解析式为y x α=,将点(的坐标代入解析式得3α=12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数, 故选:D.3.(2022·全国·高三专题练习)函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是( ) A .(0,2) B .[0,1) C .[1,2) D .(1,2]【答案】C 【解析】函数2()-=a f x x 单调递减可得20a -<及2a <;函数4()-⎛⎫= ⎪⎝⎭xg x a 单调递减可得014a <<,解得04a <<,若函数2()-=a f x x与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减,可得02a <<,由题可得所求区间真包含于()0,2,结合选项,函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是C.故选:C.4.(多选)(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =, 对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确; 对于C :因为12()f x x =,所以()f x '=设切点坐标为(0x ,则切线斜率为()0k f x ='切线方程为0)y x x =-,又因为切线过点1(0,)2P ,所以01)2x =-,解得01x =,即切线方程为11(x 1)2y -=-,即1122y x =+,即选项C 正确;对于D :当120x x <<时,()()212221212[]222f x f x x x x x f +++⎛⎫-=- ⎪⎝⎭⎝⎭212024x x +===-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .5.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12 【解析】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭ 故答案为:12.6.(2022·北京通州·一模)幂函数()mf x x =在()0,∞+上单调递增,()ng x x =在()0,∞+上单调递减,能够使()()y f x g x =-是奇函数的一组整数m ,n 的值依次是__________. 【答案】1,1-(答案不唯一) 【解析】因为幂函数()mf x x =在()0,∞+上单调递增,所以0m >,因为幂函数()ng x x =在()0,∞+上单调递减,所以0n <,又因为()()y f x g x =-是奇函数,所以幂函数()f x 和幂函数()g x 都是奇函数,所以m 可以是1,n 可以是1-.故答案为:1,1-(答案不唯一).7.(2022·重庆·二模)关于x 的不等式()999999999999121x x x --⋅≤+,解集为___________.【答案】[)1,-+∞ 【解析】由题设,99999999(1)(2)1x x x --≤+,而9999y x =在R 上递增,当12x x ->即1x <-时,99999999(1)(2)01x x x -->>+,原不等式不成立; 当12x x -≤即1x ≥-时,99999999(1)(2)01x x x --≤≤+,原不等式恒成立. 综上,解集为[)1,-+∞. 故答案为:[)1,-+∞8.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.9.(2022·广东深圳·高三期末)已知函数()f x 的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为()f x =______. 【答案】3x (答案不唯一) 【解析】设幂函数()f x x α=,由题意,得()f x x α=为奇函数,且在定义域内单调递增,所以21n α=+(N n ∈)或m nα=(,m n 是奇数,且互质), 所以满足上述条件的幂函数可以为()3f x x =.故答案为:3x (答案不唯一).10.(2022·北京·高三专题练习)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()102g x h x x ⎫⎡⎫=∈⎪⎪⎢⎣⎭⎭,的值域.【解】(1)∵函数()()2151m h x m m x +=-+为幂函数,2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =,()h x 为奇函数, 当5m =时,()6h x x =,()h x 为偶函数,函数()h x 为奇函数,0m ∴=;(2)由(1)可知,()h x x =,则()g x x =102x ⎡⎫∈⎪⎢⎣⎭,,t ,则21122x t =-+,(]01t ∈,, 则()22111(1)1222f t t t t =-++=--+,(]01t ∈,, 函数()f t 为开口向下,对称轴为1t =的抛物线,∴当0=t 时,函数()102f =, 当1t =,函数()f t 取得最大值为1,∴()f t 的值域为112⎛⎤ ⎥⎝⎦,,故函数()g x 的值域为112⎛⎤ ⎥⎝⎦,. ➢考点2 二次函数的解析式求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:[典例]1.(2022·全国·高三专题练习)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是_______ 【答案】f (x )=-4x 2+4x +7. 【解析】法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得2421,1,48,4a b c a b c ac b a ⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得4,4,7.a b c =-⎧⎪=⎨⎪=⎩∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为2(1)122x +-==,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=21()82a x -+.因为f (2)=-1,所以21(2)812a -+=-,解得a =-4,所以f (x )=214()82x --+=-4x 2+4x +7.法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即24(21)()84a a a a----=.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7. 故答案为:f (x )=-4x 2+4x +7.2.(2022·全国·高三专题练习)已知()f x 为二次函数,()00f =,()()22132f x f x x x +-=++,求()f x 的解析式.【解】解:因为()f x 为二次函数,所以设()2f x ax bx c =++,因为()00f =,所以0c ,所以()2f x ax bx =+,所以()()()()()22212121442f x a x b x ax a b x a b +=+++=++++,因为()()22132f x f x x x +-=++,所以()()223432ax a b x a b x x ++++=++,所以31a =,43a b +=,2a b +=,所以13a =,53b =,所以()21533f x x x =+.[举一反三]1.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+B .()224f x x x =-+C .()236f x x x =- D .()224f x x x =-【答案】A 【解析】 对于函数12x y a -=+,当1x =时,023y a =+=, 所以函数12x y a-=+过定点P ()1,3,设以P ()1,3为顶点且过原点的二次函数()()213f x a x =-+,因为()f x 过原点()0,0,所以()20013a =-+,解得:3a =-,所以()f x 的解析式为:()()2231336f x x x x =--+=-+,故选:A.2.(2022·全国·高三专题练习)已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =( ) A .221x x -+ B .221x x ++ C .2221x x -+ D .2221x x +-【答案】B 【解析】设()()20f x ax bx c a =++≠,则()2f x ax b '=+, 由()()21f x x f x '=+-可得()2221ax bx c x ax b ++=++-,所以,121a b a c b =⎧⎪=⎨⎪=-⎩,解得121a b c =⎧⎪=⎨⎪=⎩,因此,()221f x x x =++.故选:B.3.(2022·全国·高三专题练习)已知()f x 是二次函数且满足(0)1,(1)()2f f x f x x =+-=,则函数()f x 的解析式为________. 【答案】2()1f x x x =-+【解析】解:由题意,设2()(0)f x ax bx c a =++≠, 因为(0)1f =,即1c =,所以2()1f x ax bx =++,所以()22(1)()(1)(1)1122f x f x a x b x ax bx ax a b x ⎡⎤+-=++++-++=++=⎣⎦, 从而有220a a b =⎧⎨+=⎩,解得1,1a b ==-,所以2()1f x x x =-+, 故答案为:2()1f x x x =-+.➢考点3 二次函数的图象与性质[名师点睛]二次函数最值问题的类型及求解策略(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)求解策略:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. [典例]1.(2022·全国·高三专题练习)函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为( )A .①④B .②③C .③④D .①②③【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+.由①②中函数()g x 的图象得00ac bc >⎧⎨<⎩,若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->, 又0a <,所以()f x 的图象开口向下,此时①②均不符合要求;若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->, 又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得00ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->, 又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求;若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->, 又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .2.(2022·全国·高三专题练习)二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为( ) A .0a ≤ B .12a ≤-C .1a ≤-D .2a ≤-【答案】D【解析】解:因为()221f x x ax =+-的对称轴为x a =-,开口向上,所以1a -≥,解得1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的充要条件为1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为2a ≤-;故选:D3.(2022·全国·高三专题练习)函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是_________.【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,∴2()f x x ax a =--在12,2⎡⎤--⎢⎥⎣⎦单调递减,则122a-≤,即1a ≥-,同时 需满足1(2)()02f f -->,即1(4)(21)04a a +-<,解得142a -<<, 综上可知11,2a ⎡⎫∈-⎪⎢⎣⎭故答案为:11,2⎡⎫-⎪⎢⎣⎭4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________. 【答案】[0,1]【解析】对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,即1122()()()()f x g x f x g x --<,令2()()()21F x f x g x x a x =-=--,即12()()F x F x <只需在[0,2]上单调递增即可,当1x =时,()1F x =,函数图象恒过()1,1;当1x >时,2()22F x x ax a =-+; 当1x <时,2()22F x x ax a =+-; 要使()F x 在区间[0,2]上单调递增,则当2x ≤1<时,2()22F x x ax a =-+的对称轴1x a =≤,即1a ≤;当1x ≤0<时,2()22F x x ax a =+-的对称轴0x a =-≤,即0a ≥; 且12121212a a a a +⨯-≤-⨯+, 综上01a ≤≤ 故答案为:[0,1].[举一反三]1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( )A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x >【答案】B 【解析】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为 ()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( )A .B .C .D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项; 故选:A.3.(2022·全国·高三专题练习)已知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是() A .k ≤-8 B .k ≥4 C .k ≤-8或k ≥4 D .-8≤k ≤4【答案】C【解析】函数2()28f x x kx =--对称轴为4kx =, 要使()f x 在区间[-2,1]上具有单调性,则 24k≤-或14k ≥,∴8k ≤-或4k ≥ 综上所述k 的范围是:k ≤-8或k ≥4. 故选:C.4.(2022·山东济南·二模)若二次函数2()(0)f x ax bx c a =++<,满足(1)(3)f f =,则下列不等式成立的是( ) A .(1)(4)(2)f f f << B .(4)(1)(2)f f f << C .(4)(2)(1)f f f << D .(2)(4)(1)f f f <<【答案】B【解析】因为(1)(3)f f =,所以二次函数2()f x ax bx c =++的对称轴为2x =, 又因为0a <,所以(4)(3)(2)f f f <<, 又(1)(3)f f =,所以(4)(1)(2)f f f <<.故选:B.5.(多选)(2022·全国·高三专题练习)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>-2时,f (x 1)<f (x 2) B .当x 1+x 2=-2时,f (x 1)=f (x 2) C .当x 1+x 2>-2时,f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小与a 有关 【答案】AB【解析】二次函数f (x )=ax 2+2ax +4(a >0)的图象开口向上,对称轴为x =-1, 当x 1+x 2=-2时,x 1,x 2关于x =-1对称,则有f (x 1)=f (x 2),B 正确;当x 1+x 2>-2时,而x 1<x 2,则x 2必大于-1,于是得x 2-(-1)>-1-x 1,有| x 2-(-1)|>|-1-x 1|, 因此,点x 2到对称轴的距离大于点x 1到对称轴的距离,即f (x 1)<f (x 2),A 正确,C 错误; 显然当a >0时,f (x 1)与f (x 2)的大小只与x 1,x 2离-1的远近有关,与a 无关,D 错误. 故选:AB6.(多选)(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( )A .2B .3C .4D .5【答案】BC 【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤, 结合a 是正整数,所以BC 正确. 故选: BC.7.(2022·全国·高三专题练习)如果函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则实数a 的取值范围是______. 【答案】[2,0]-【解析】当0a =时,()61f x x =-,在(,1)-∞上为增函数,符合题意,当0a ≠时,要使函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则需满足0a <且对称轴为612a x a+=-≥,解得:2a ≥-,即20a -≤<, 综上所述:实数的取值范围是:[2,0]-. 故答案为:[2,0]-8.(2022·天津·高三专题练习)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 的取值范围为____. 【答案】[]1,3【解析】函数f (x )=x 2﹣2x 的对称轴方程为x =1,在[﹣1,1]上为减函数,且值域为[﹣1,3],当x ≥1时,函数为增函数,且(3)3f =∴要使函数f (x )=x 2﹣2x 在定义域[﹣1,n ]上的值域为[﹣1,3],实数n 的取值范围是[1,3].故答案为:[1,3]9.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)若函数()()g x f x mx =-在区间[]12-,上是单调函数,求实数m 的取值范围. 【解】(1)由题意得:()02f c ==,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=-所以22a =,1a b +=-,解得:1a =,2b =-,所以函数()f x 的解析式为()222f x x x =-+.(2)()()()222g x f x mx x m x =-=-++,对称轴为22m x +=,要想函数()()g x f x mx =-在区间[]12-,上是单调函数,则要满足212m +≤-或222m +≥,解得:4m ≤-或2m ≥,故实数m 的取值范围是(][),42,-∞-+∞.10.(2022·全国·高三专题练习)已知函数2()24f x kx x k =-+. (Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1xk ,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x =+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞11.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥. (1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围.【解】(1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =,所以2(1)2f x x x =++.(2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,曲线上凸;α<0时,曲线下凸.
返回
[通一类] 1.幂函数y=xα,当α取不同的正数时, 在区间[0,1]上它们的图象是一族美 丽的曲线(如图).设点A(1,0),
返回
返回
[热点分析]
二次函数是一种常考常新的函数,特别是二次函数 与二次方程、二次不等式“三个二次”的转化,是高考的 重点内容,其中二次函数的图象与二次不等式的解及二 次方程的根相结合,考查等价转化,数形结合等思想,
仍是高考的一个重要考向.
返回
[考题印证] (2011· 重庆高考)设m,k为整数,方程mx2-kx+2=0在区
2 2 2
∴f(x)=x2-4x+3.
返回
[悟一法] 1.二次函数的解析式有三种形式
(1)一般式:f(x)=ax2+bx+c(a≠0);
(2)顶点式:f(x)=a(x-h)2+k(a≠0); (3)两根式:f(x)=a(x-x1)(x-x2)(a≠0). 2.已知函数的类型(模型),求其解析式,用待定系数法,根 据题设恰当选用二次函数解析式的形式,可使解法简捷.
[做一题] [例2] 设二次函数f(x)满足f(2+x)=f(2-x),且f(x)=0的 两个实根的平方和为10,f(x)的图象过点(0,3),求f(x).
返回
[自主解答]
∵f(2+x)=f(2-x).
∴f(x)的图象关于直线x=2对称. 于是,设f(x)=a(x-2)2+k(a≠0), 则由f(0)=3,可得k=3-4a, ∴f(x)=a(x-2)2+3-4a=ax2-4ax+3. ∵ax2-4ax+3=0的两实根的平方和为10, 6 ∴10=x1 +x2 =(x1+x2) -2x1x2=16-a.∴a=1.
单调性
增
增
增
时,减 x∈ (-∞,0) 时,减
x∈(-∞,0]
时,减
返回
4.二次函数的图象与性质
函数 图象 定义域 值域 y=ax2+bx+c(a>0) y=ax2+bx+c(a<0)
R
4ac-b2 [ 4a ,+∞)
R
4ac-b2 (-∞, 4a ]
返回
函数 单 调 性
y=ax2+bx+c(a>0)
返回
[自主解答]
(1)从图象上看,由于图象不过原点,且在第
一象下降,故m2-2m-3<0,即-1<m<3;又从图象看,函
数是偶函数,故m2-2m-3为负偶数,将m=0,1,2分别代入,
可知当m=1时,m2-2m-3=-4,满足要求. (2)如图所示为函数f(x),g(x),h(x)在(0,1)上 的图象,由此可知 h(x)>g(x)>f(x). [答案] (1)C (2)h(x)>g(x)>f(x)
返回
[通一类]
2.已知f(x)为二次函数,且f(2)=f(-1)=-1,
f(x)max=8,求f(x)的解析式.
返回
解:∵f(2)=f(-1), ∴抛物线的对称轴为 2+-1 1 x= =2.又f(x)max=8, 2 12 ∴设f(x)=a(x-2) +8(a<0). 1 又f(2)=-1,∴a(2-2)2+8=-1.解得:a=-4, 12 ∴f(x)=-4(x-2) +8=-4x2+4x+7.
a+2 解析:由题意知,- 2 =1,故a=-4.又图象关于x=1 对称,故b=6从而函数在[-4,6]上f(x)≥f(1)=5. 答案: 5
返回
1.幂函数的定义
α 形如 y=x (α∈R)的函数称为幂函数,其中x
是 自变量 ,α为 常数.
返回
2.五种幂函数的图像:
返回
3.五种幂函数的性质:
函数
2
返回
3 5 3 (2)当 t≤- <t+1,即- <t≤- 时, 2 2 2 3 29 h(t)=f(- )=- . 2 4 3 (3)当 t>- 时,h(t)=f(t)=t2+3t-5. 2 综上可得,h(t)= 2 t +5t-1t≤-5, 2 29 5 3 - - <t≤- , 2 2 4 2 3 t +3t-5t>-2.
B(0,1),连接AB,线段AB恰好被其
中的两个幂函数y=xα,y=xβ的图象三等分,即有 BM=MN=NA,那么,αβ等于________.
返回
1 2 2 1 解析:法一:由条件得M( , ),N( , ), 3 3 3 3 1 2α 2 1β 可得 =( ) , =( ) , 3 3 3 3 即α= log 2
y=ax2+bx+c(a<0)
4ac-b2 b (-2a, 4a )
对称轴
b x=-2a 函数的图象关于直线 成轴对称
返回
返回
[做一题] [例1] (1)幂函数y= x
m2 2m3
(m∈Z)的图象如 ( )
图所示,则m的值为 A.-1<m<3 C.1 B.0 D.2
返回
(2)(2012· 哈尔滨模拟)当0<x<1时,f(x)=x1.1, g(x)=x0.9,h(x)=x-2的大小关系是________.
返回
本例(1)中,若幂函数为f(x)=(n2+2n-2) x n 3 n (n∈Z).
2
其他条件不变,则n的值是什么?
解析:由于f(x)为幂函数,所以n2+2n-2=1,解得n=1
或-3,经检验当n=1时,符合题意,故n=1.
返回
[悟一法] 幂函数y=xα的图象和性质由于α值的不同而比较
复杂,一般从两个方面考查
间(0,1)内有两个不同的根,则m+k的最小值为
A.-8 C.12 B.8 D.13
(
)
返回
[考题巧解]——————(一样的结果,更简洁的过程) [巧思] 将问题转化为函数图象与x轴有两个不同交点,由
此列出不等式组,在此基础上,巧妙转化为线性规划问题
求解.
返回
[妙解] 设 f(x)=mx2-kx+2, ∵f(0)=2,结合条件,有 Δ=k2-8m>0, 0< k <1 2m m>0 f1>0 k2>8m, m>0 ⇒ 0<k<2m m-k+2>0
返回
[做一题] [例3] 已知f(x)=x2+3x-5,x∈[t,t+1],若f(x)的最小值 为h(t),写出h(t)的表达式.
返回
[自主解答]
如图所示,
3 ∵函数图象的对称轴为x=-2, 3 5 (1)当t+1≤-2,即t≤-2时, h(t)=f(t+1)=(t+1)2+3(t+1)-5, 5 即h(t)=t +5t-1(t≤-2).
返回
[悟一法]
二次函数的区间最值问题,一般有三种情况 (1)对称轴、区间都是给定的; (2)对称轴动,区间固定;
返回
(3)对称轴定,区间变动 解决这类问题的思路是:抓住“三点一轴”数形结合,
三点是指区间两个端点和中点,一轴指的是对称轴,结合
配方法,根据函数的单调性及分类讨论的思想即可完 成.对于(2)、(3)两类,通常要分对称轴在区间内、对称轴 在区间外两大类情况进行讨论.
3
1 2 1 2 ,β= log 1 .所以αβ= log 2 · 1 =1. log 3 3 3 3
3 3 3
1 2α 2 1β 法二:由法一得 =( ) , =( ) , 3 3 3 3 1 αβ 1βα 2α 1 则( ) =[( ) ] =( ) = ,即αβ=1. 3 3 3 3
答案:1
返回
第 二 章 函 数、 导 数 及 其 应 用
第 八 节
高考成功方案第一步
高考成功方案第二步
幂函
数与
二次 函数
高考成功方案第三步
高考成功方案第四步
考纲点击 1.了解幂函数的概念.
1 1 2.结合函数y=x,y=x2,y=x3,y=x,y= x 2 的图象, 了解它们的变化情况.
返回
返回
1.下列函数: 1 3 ①y=x3;②y=3x-2;③y=x4+x2;④y= x2,其中幂函 数的个数为 A.1 C.3 B.2 D.4 ( )
返回
2.若x∈(0,1),则下列结论正确的是 A.2x> x >lg x C. x >2x>lg x
1 2 1 2
(
1 2
)
B.2x>lg x> x
1 2
D.lg x> x >2x
返回
解析:当x∈(0,1)时,2x>1,lg x<0, x ∈(0,1), 故2x> x >lg x.
1 2
1 2
答案:A
答案: A
返回
1 4.幂函数的图象过点(2,4),则它的单调递增区间是____.
1 解析:设幂函数为y=x ,则4=2α,故α=-2.
α
∴y=x-2,其递增区间为(-∞,0).
答案:(-∞,0)
返回
5.当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取 值范围是________.
y=ax2+bx+c(a<0)
b b 在(-∞,-2a) 在(-∞,-2a) 上递减, 上递增,
b 在(-2a,+∞) 上递增
b 在(-2a,+∞) 上递减
b 当x=- 时,函数 2a 最值 4ac-b2 4a 有最小值
b 当x=- 时,函数 2a 4ac-b2 4a 有最大值
返回
函数 顶点
y=ax2+bx+c(a>0)