概率论与数理统计 4.1 数学期望

合集下载

概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望

概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望
32 30 17 21 0 1 2 3 1.27 100 100 100 100
这个数能否作为 X的平均值呢?
若统计100天,
可以想象, 若另外统计100天, 车工小张不出废品, 这另外100天每天的平均废品数也不一定是1.27. 一般来说, 若统计n天 ,
(假定小张每天至多出三件废品)
又设飞机机翼受到的正压力W 是V 的函数 : W kV 2 ( k 0, 常数), 求W 的数学期望.
解: 由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0
2 2

a
例7 设二维连续型随机变量(X , Y)的概率密度为
A sin( x y ) 0 x , 0 y f ( x, y) 2 2 0 其它 (1)求系数A , ( 2)求E ( X ), E ( XY ).
x f ( x )x
i i i
i
阴影面积近似为
这正是:


f ( xi )xi

x f ( x )dx
的渐近和式.
小区间[xi, xi+1)
定义: 设X是连续型随机变量, 其密度函数为 f (x), 如果积分: xf ( x )dx
概率论


绝对收敛, 则称此积分值为X的数学期望, 即:
2. 设二维连续型随机变量 (X, Y) 的联合概率密度为 f (x, y), 则: E ( X )
E (Y )


xf X ( x )dx

yfY
( y )dy




xf ( x , y )dxdy,

《概率论与数理统计》数学期望

《概率论与数理统计》数学期望

§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题

概率论与数理统计复习4-5章

概率论与数理统计复习4-5章
+∞
∑ g ( x ) p 绝对收敛,则Y的期望为 ∞
k =1 k k
∑ g(x
k =1
k
) pk
(2) 设X是连续型随机变量,概率密度为 f ( x) , 如果积分 ∫−∞ g ( x) f ( x)dx 绝对收敛,则Y的期望为
E (Y ) = E[ g ( X )] = ∫ g ( x ) f ( x )dx
例 设X的概率分布律为
X −1
0 12
1
2
p 1 3 1 6 1 6 1 12 1 4
试求Y=-X+1及 Z = X 2 的期望和方差。 X -1 0 1/2 解 由于 P 1/3 1/6 1/6 Y =-X+1 2 1 1/2 Z = X2 1 0 1/4
1 1 1 1 1 1 2 E (Y ) = ( −1) ⋅ + 0 ⋅ + ⋅ + 1⋅ + 2 ⋅ = 4 12 2 6 6 3 3
2 2
D( Z ) = E ( Z 2 ) + [ E ( Z )]2 = 2.23264
1 + x − 1 < x < 0 例 设随机变量X的概率密度为 f ( x ) = 1 − x 0 ≤ x < 1 1)求D(X), 2)求 D ( X 2 )
解 (1) E ( X ) = ∫ x(1 + x)dx + ∫ x(1 − x)dx
第四章 随机变量的数字特征
离散型随机变量的数学期望 连续型随机变量的数学期望 数学期望的性质及随机变量函数的期望 方差及其性质
4.1数学期望 数学期望
数学期望——描述随机变量取值的平均特征 数学期望——描述随机变量取值的平均特征 一、离散型随机变量的数学期望 定义 设离散型随机变量X的概率分布为

概率论与数理统计第四章

概率论与数理统计第四章

)
(
)
(
)
,
(
Y
D
X
Dபைடு நூலகம்
Y
X
Cov
xy
=
r
=4[E(WV)]2-4E(W2)×E(V2)≤0
01
得到[E(WV)]2≤E(W2)×E(V2). →(8)式得到证明.
02
设W=X-E(X),V=Y-E(Y),那么
03
其判别式
由(9)式知, |ρ xy|=1 等价于 [E(WV)]2=E(W2)E(V2). 即 g(t)= E[tW-V)2] =t2E(W2)-2tE(WV)+E(V2) =0 (10) 由于 E[X-E(X)]=E(x)-E(X) =0, E[Y-E(Y)]=E(Y)-E(Y) =0.故 E(tW-V)=tE(W)-E(V)=tE[X-E(X)]-E[Y-E(Y)]=0 所以 D(tW-V)=E{[tW-V-E(tW-V)]2}=E[(tW-V)2]=0 (11) 由于数学期望为0,方差也为0,即(11)式成立的充分必要条件是 P{tW-V=0}=1
随机变量X的数学期望是随机变量的平均数.它是将随机变量 x及它所取的数和相应频率的乘积和.
=
(1)
)
2
3
(
)
(
-
=
ò
µ
µ
-
dx
x
x
E
j
x
可见均匀分布的数学期望为区间的中值.
例2 计算在区间[a,b]上服从均匀分布的随机变量 的数学期望
泊松分布的数学期望和方差都等于参数λ.
其他
02
f(x)=
01
(4-6)
03
(4)指数分布

概率论与数理统计 第4章 随机变量的数字特征

概率论与数理统计 第4章  随机变量的数字特征

解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15

第十讲(数学期望)

第十讲(数学期望)
数学期望 E (Y ), E (
1 y x, x 1 x ,求 W 的 其它
1 )。 XY
4
Eg10:某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产 品可获利 m 元,而挤压一件产品导致 n 元的损失,预测销售量 Y 服从指数分布,其概率密
1 y / e , y 0, 0. 度为: f ( y ) 0, y 0,
i i
i
g ( x) P ,其中 p
i
P{ xi }, i 1,2,
2. 是连续型随机变量,其密度函数为 f (x) ,则 g ( ) 是连续型随机变量 若



g ( x) f ( x)dx <+ ,则称 g () 的数学期望为


E E[ g ( )] g ( x) f ( x)dx

备课时间: 章节 年 月 §4.1 日 课题

第 10 次课 数学期望 3 学时
1、理解数学期望的定义并且掌握它们的计算公式; 2、掌握数学期望的性质,会求随机变量函数的数学期望,特别是利用数学期望的性质 目的 要求 计算某些随机变量函数的数学期望。 3、熟记 0-1 分布、二项分布、泊松分布、正态分布、 均匀分布和指数分布的数学期望。
k 个人共化验 k 1 次. 试问用哪一种方法可减少化验次数?
Eg6:求泊松分布的数学期望。
3
Eg7:求均匀分布的的数学期望。 三、随机变量函数的数学期望 1. 是离散型随机变量 数学期望为:E =E[ g () ]= 教
g ( ) 是离散型随机变量若 g ( xi ) pi <+ ,则定义 的

2022概率论与数理统计4-1

2022概率论与数理统计4-1

2022-11-5
lfb
19
第4.1节:数学期望
例:
已知 X ,Y 的联合密度:
f
x,
y
பைடு நூலகம்
12
y
2
,
0 y x 1
0, else
求E X ,E Y , E XY , E X 2 Y 2 的期望.
解: E X
xf x, ydxdy
1
dx
x x 12 y2dy 4
0
0
5
xf x dx
1 x kxadx
0
1 kxa1dx
0
a
k
2
0.75
f x dx 1
f x dx
1 kxadx
0
a
k
1
1
a a
k k
2 1
0.75 1
a k
2 3
2022-11-5
lfb
23
第4.1节:数学期望
8:已知X的概率密度为:
f
x
1
1
x
x0dx
0
1
2
1 x xdx 2 x 2 xdx
0
1
121 33
lfb
24
0
0
15
2022-11-5
lfb
20
第4.1节:数学期望 u 期望的性质
(1) E C C (2) E CX CE X (3) E X Y E X E Y (4) X ,Y相互独立 E XY E X E Y 注:不能由E XY E X E Y X ,Y相互独立
第4章 ——随机变量的数字特征
u数学期望(*****) u方差(*****) u协方差与相关系数(****) u大数定律与中心极限定理(****)

概率论与数理统计第四章数学期望

概率论与数理统计第四章数学期望
定义1 设X是离散型随机变量,它的分布律是:
如果 | xk | pk 有限,定义X的数学期望
k 1

P(X=xk)=pk , k=1,2,…

E ( X ) xk pk
k 1
也就是说,离散型随机变量的数学期望是一个 绝对收敛的级数的和.
分赌本问题 A 期望所得的赌金即为 X 的数学期望
因此彩票发行单位发行 10 万张彩票的创收利 润为
击中环数 概率 击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
8 9 10
乙射手
0 .2 0 .5 0 .3
试问哪个射手技术较好?
解 设甲、乙射手射中的环数分别为 X 1 , X 2 . 甲射手
击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
E ( X 1 ) 8 0.3 9 0.1 10 0.6 9.3(环),
200
即为 X 的可能值与其概率之积的累加.
引例2 射击问题 设某射击手在同样的条件下, 瞄准靶子相继射击90次,(命中的 环数是一个随机变量).射中次数 记录如下 命中环数 k 0 1 2 3
命中次数 nk
2 13 15
4 20
5
10
30
2 13 15 nk 10 20 30 频率 90 90 90 n 90 90 90 试问:该射手每次射击平均命中靶多少环?
1 3 200 0 4 4
50(元).
若设随机变量 X 为:在 A 胜2局 B 胜1局 的前提下, 继续赌下去 A 最终所得的赌金.
0 3 1 其概率分别为: 4 4 因而A期望所得的赌金即为X的 “期望”值, 3 1 200 0 150(元). 等于 4 4

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。

概率论与数理统计第四章期末复习

概率论与数理统计第四章期末复习

概率论与数理统计第四章期末复习(一)随机变量的数学期望1.数学期望的定义定义1设离散随机变量X 的分布律为)()(i i i x X P x p p ===, ,2,1=i .若+∞<∑+∞=1i i i p x ,则称∑+∞==1)(i i i p x X E 为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.定义2设连续随机变量X 的密度函数为)(x f .若+∞<⎰∞+∞-x x f x d )(,则称xx xf X E d )()(⎰∞+∞-=为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.2.随机变量函数的数学期望定理1设随机变量Y 是随机变量X 的连续函数:)(X g Y =.设X 是离散型随机变量,其分布律为)(i i x X P p ==, ,2,1=i ,若∑+∞=1)(i i i p x g 绝对收敛,则有∑+∞===1)()]([)(i i i p x g X g E Y E .设X 是连续型随机变量,其概率密度为)(x f ,若⎰∞+∞-x x f x g d )()(绝对收敛,则有x x f x g X g E Y E d )()()]([)(⎰∞+∞-==.【例1】设随机变量X 的分布律为X 2-1-0123P1.02.025.02.015.01.0求随机变量X 的函数2X Y =的数学期望.【解】1.0315.022.0125.002.0)1(1.0)2()(222222⨯+⨯+⨯+⨯+⨯-+⨯-=Y E 3.2=.【例2】设随机变量X 具有概率密度⎪⎩⎪⎨⎧≤≤=,其他.;,001)(ππx x f X ,求X Y sin =的数学期望.【解】x x f x g X g E Y E d )()()]([)(⎰∞+∞-==πππ2d 1sin 0=⋅=⎰x x .【例3】某公司经销某种原料,根据历史资料表明:这种原料的市场需求量X (单位:吨)服从)500,300(上的均匀分布.每售出1吨该原料,公司可获利1.5(千元);若积压1吨,则公司损失0.5(千元).问公司应该组织多少货源,可使平均收益最大?【解】设该公司应该组织a 吨货源,则显然应该有500300≤≤a .又记Y 为在a 吨货源条件下的收益额(单位:千元),则收益额Y 为需求量X 的函数,即)(X g Y =.由题设条件知:当a X ≥时,此a 吨货源全部售出,共获利a 5.1.当a X <时,则售出X 吨(获利X 5.1),且还有X a -吨积压(获利)(5.0X a --),所以共获利a X X a X 5.02)(5.05.1-=--.由此知⎩⎨⎧<-≥=.,;,a X a X a X a X g 5.025.1)(则x x g x x f x g Y E X 2001)(d )()()(500300⎰⎰==∞+∞-]d 5.1d )5.02([2001500300x a x a x a a ⎰⎰+-=)300900(200122-+-=a a .易知,当450=a 时,能使)(Y E 达到最大,即公司应该组织450吨货源.定理2设随机变量Z 是随机变量X ,Y 的连续函数:),(Y X g Z =.设),(Y X 是二维离散型随机变量,其联合分布律为),(j i ij y Y x X P p ===,,2,1,=j i ,若∑∑+∞=+∞=11),(i j ij j i p y x g 收敛,则有∑∑+∞=+∞===11),()],([)(i j ij j i p y x g Y X g E Z E .设),(Y X 是二维连续型随机变量,其联合概率密度函数为),(y x f ,若y x y x f y x g d d ),(),(⎰⎰∞+∞-∞+∞-收敛,则有y x y x f y x g Y X g E Z E d d ),(),()],([)(⎰⎰∞+∞-∞+∞-==.【例4】设随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<--=其他.,,,,010102),(y x y x y x f 求)(X E ,)(XY E .【解】⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(125d d )2(1010=--=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x f xy XY E d d ),()(61d d )2(1010=--=⎰⎰y x y x xy .3.数学期望的性质性质1若a 是常数,则a a E =)(.性质2对任意常数a ,有)()(X aE aX E =.性质3对任意的两个函数)(1x g 和)(2x g ,有)]([)]([)]()([2121X g E X g E X g X g E +=+.性质4设),(Y X 是二维随机变量,则有)()()(Y E X E Y X E +=+.推广到n 维随机变量场合,即)()()()(2121n n X E X E X E X X X E +++=+++ .性质5若随机变量X 与Y 相互独立,则有)()()(Y E X E XY E =.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X E X E X E X X X E =.【例5】设随机变量X 与Y 相互独立,X ~)4,1(-N ,Y ~)2,1(N ,则=-)2(Y X E .【解析】因为X ~)4,1(-N ,Y ~)2,1(N ,所以1)(-=X E ,1)(=Y E ,故3)(2)()2(-=-=-Y E X E Y X E .(二)随机变量的方差1.方差的定义定义1设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为)(X D ,即})]({[)(2X E X E X D -=.称方差的平方根)(X D 为随机变量X 的标准差,记为)(X σ或X σ.定理1(方差的计算公式)【例1】设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<<-+=其他.,;,;,0101011)(x x x x x f ,求)(X D .【解】0d )1(d )1()(101=-++=⎰⎰-x x x x x x X E ,61d )1(d )1()(120122=-++=⎰⎰-x x x x x x X E ,所以61)]([)()(22=-=X E X E X D .2.方差的性质性质1常数的方差为0,即0)(=c D ,其中c 是常数.性质2若a ,b 是常数,则)()(2X D a b aX D =+.性质3若随机变量X 与Y 相互独立,则有)()()(Y D X D Y X D +=±.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X D X D X D X X X D +++=±±± .【例2】已知2)(-=X E ,5)(2=X E ,求)31(X D -.【解】9})]([)({9)()3()31(222=-=-=-X E X E X D X D .(三)常见随机变量的数学期望、方差1.两点分布X ~),1(p b p X E =)(,)1()(p p X D -=.2.二项分布X ~),(p n b np X E =)(,)1()(p np X D -=.3.泊松分布X ~)(λP λ=)(X E ,λ=)(X D .4.均匀分布X ~),(b a U )(21)(b a X E +=,12)()(2a b X D -=.5.指数分布X ~)(λE λ1)(=X E ,21)(λ=X D .6.正态分布X ~),(2σμN μ=)(X E ,2)(σ=X D .【例1】设X ~),(p n b 且6)(=X E ,6.3)(=X D ,则下列结论正确的是()A .15=n ,4.0=pB .20=n ,3.0=pC .10=n ,6.0=p D .12=n ,5.0=p 【解析】6)(==np X E ,6.3)1()(=-=p np X D ,解之得15=n ,4.0=p .正确选项为A .【例2】若X ~)5,2(N ,Y ~)1,3(N ,且X 与Y 相互独立,则=)(XY E ()A .6B .2C .5D .15【解析】因为X ~)5,2(N ,所以2)(=X E ,因为Y ~)1,3(N ,3)(=Y E ,故6)()()(==Y E X E XY E ,正确选项为A .【例3】X 与Y 相互独立,X ~)2(P ,Y ~)1(E ,则=-)2(Y X D .【解析】因为X ~)2(P ,所以2)(=X D ,因为Y ~)1(E ,所以1)(=Y D ,又因为随机变量X 与Y 相互独立,所以9)()1()(2)2(22=-+=-Y D X D Y X D .(四)协方差、相关系数与矩1.协方差定义1设),(Y X 是一个二维随机变量,若)]}()][({[Y E Y X E X E --存在,则称其为X 与Y 的协方差,记为),(Cov Y X .即)]}()][({[),(Cov Y E Y X E X E Y X --=.定理1)()()(),(Cov Y E X E XY E Y X -=.【例1】设二维随机变量),(Y X 的联合分布律为:求协方差),(Cov Y X .【解】由题易得32)(=X E ,0)(=Y E ,0311131003111)(=⨯⨯+⨯⨯+⨯⨯-=XY E .于是0)()()(),(Cov =-=Y E X E XY E Y X .定理2若X 与Y 相互独立,则0),(Cov =Y X ,反之不然.定理3对任意二维随机变量),(Y X ,有),(Cov 2)()()(Y X Y D X D Y X D ±+=±.关于协方差的计算,还有下面四条有用的性质.性质1协方差),(Cov Y X 的计算与X ,Y 的次序无关,即),(Cov ),(Cov X Y Y X =.性质2任意随机变量X 与常数a 的协方差为零,即0),(Cov =a X .性质3对任意常数a ,b ,有),(Cov ),(Cov Y X ab bY X a =.性质4设X ,Y ,Z 是任意三个随机变量,则),(Cov ),(Cov ),(Cov Z Y Z X Z Y X +=+.2.相关系数定义2设),(Y X 是一个二维随机变量,且()0D X >,()0D Y >,则称Y X XY Y X Y D X D Y X σσρ),(Cov )()(),(Cov ==为X 与Y 的相关系数.性质11≤XY ρ.性质21=XY ρ的充要条件是X 与Y 间几乎处处有线性关系,即存在)0(≠a 与b ,使得1)(=+=b aX Y P .其中当1=XY ρ时,有0>a ;当1-=XY ρ时,有0<a .性质3设随机变量X 与Y 独立,则它们的相关系数等于零,即0=XY ρ.【例2】设1)()(==Y D X D ,21=XY ρ,则=+)(Y X D 3.【解析】因为21)()(),(Cov ==Y D X D Y X XY ρ,所以)()(21Y D X D XY =ρ21=,故),(Cov 2)()()(Y X Y D X D Y X D ++=+3=.【例3】已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E 6.【解析】)]2([3)]2(3[22-=-X E X E }2)]([)({32-+=X E X D 6=.【例5】设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,,,,02020)(81),(y x y x y x f 求),(Cov Y X ,)(Y X D +和XY ρ.【解】⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(67d d )(822=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(2235d d )(820202=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f xy XY E d d ),()(34d d )(82020=+=⎰⎰y x y x xy ,由轮换对称性,有67)(=Y E ,35)(=Y E ,361)()()(),(Cov -=-=Y E X E XY E Y X ,3611)]([)()()(22=-==X E X E X D Y D ,95),(Cov 2)()()(=++=+Y X Y D X D Y X D ,111)()(),Cov(-==Y D X D Y X XY ρ.。

《概率论与数理统计》六

《概率论与数理统计》六

E( X ) xk pk . k 1
例1 设甲、乙两射手在同样条件下进行射击,其命中环数是一
随机变量,分别记为X、Y,并具有如下分布律
X 10 9 8 7
Y 10 9 8 7
Pk 0.6 0.1 0.2 0.1
Pk 0.4 0.3 0.1 0.2
试问甲、乙两射手的射击水平哪个较高?
解 100.6 90.180.2 70.1 100.4 90.3 80.1 70.2
i1 j1
2
E(Y )
yf ( x, y)dxdy dx
ydy
0
0
3
1
2(1 x )
1
E(XY )
xyf ( x, y)dxdy dx
xydy
0
0
6
三、数学期望的性质
假设以下随机变量的数学期望均存在. 1. E(C)=C, (C是常数) 2. E(CX)=CE(X), (C是常数) 3. E(X+Y)=E(X)+E(Y), 4. 设X与Y相互独立, 则 E(XY)=E(X)E(Y)
1
e
x
,
0,
x0 x0
( 0)
求将这5个元件串联组成的系统的平均寿命.

Xk的分布函数为
F
(
x)
1
e
x
,
0,
x0 x0
串联时系统寿命 N min( X1 , X2 , , X5 ) ,
其分布函数为 Fmin ( x) 1
[1
F(
x)]5
1
e
5x
,
0,
x 0, x 0.
fmin
2 X 3, 一台付款 2500 元; X 3, 一台付款3000元.

概率论与数理统计:数学期望

概率论与数理统计:数学期望

前面讨论了随机变量的分布函数,分布函数能全面地描述随机变量的统计特性,但在实际问题中,一方面,求分布函数有时是困难的;另一方面,有时不需要了解全貌,只需了解随机变量的某些特征或某个侧面就可以了,例如分布的中心,只要知道它的这方面的特征就够了,这时可以用一个或几个实数来描述这个侧面,这种实数就称为随机变量的数字特征.在这些数字特征中最常用的数字特征有:数学期望,方差,协方差,相关系数和矩等,本章将着重介绍这些常用的数字特征, 要求理解数学期望与方差的定义,掌握它们的性质与计算;理解独立于相关的概念;会求协方差与相关系数;了解高阶矩的概念.§4.1 数学期望先看一个例子,某年级有100名学生,17岁的有2人,18岁的有2人,19岁的有30人,20岁的有56人,21岁的有10人,则该年级学生的平均年龄为7.19100)102156203019218217(=⨯+⨯+⨯+⨯+⨯或 22305610171819202119.7100100100100100⨯+⨯+⨯+⨯+⨯= 我们称这个平均值是数17、18、19、20、21的加权平均值,它是把这五个数的地位或权重看得不同。

而1718192021195++++=是把这五个数的地位或权重看得相同。

对于一般随机变量,其平均值定义如下:4.1.1离散型随机变量的数学期望定义4.1 设离散型随机变量X 的分布律为{},1,2,i i P X x p i ===, 若1i i i xp ∞=<+∞∑,则称1i i i x p ∞=∑为随机变量X 的数学期望,简称期望或均值,记为()E X , 即()E X =1i i i x p ∞=∑. 若级数1i i i xp ∞=∑发散,则称随机变量X 的数学期望不存在.注 (1)离散型随机变量的数学期望)(X E 是一个实数,它由分布唯一确定;(2)离散型随机变量的数学期望)(X E 在数学上解释就是X 加权平均,权就是其分布列;(3)级数∑∞=1)(i i i x P x 绝对收敛保证了级数的和不随各项次序的改变而改变,这是因为i x 的顺序对随机变量并不是本质的.(4)离散型随机变量的数学期望)(X E 是一个绝对收敛的级数的和. 引例 设甲、乙两人打靶,击中的环数分别记为Y X ,,且分布如下:试比较他们的射击水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 X 的数学期望为
a xb 其它
x ab E( X ) = x f ( x) dx = dx = a ba 2 即数学期望位于[ a , b ] 的中点 .
b
8
二、随机变量函数的数学期望: 1、定理4.1: 设 Y = g(X)是随机变量 X 的函数, (g为连续函数)
=5 (元)
13
三、数学期望的性质:
设 C 为常数, X 和 Y 是随机变量,
且 E(X) 和 E(Y) 都存在 , 则 (1) E(C) = C ; (2) E(CX) = CE(X ) ; (3) E(X +Y ) = E(X ) + E(Y ) ; (4) 若 X 与 Y 相互独立, 则有 E(XY ) = E(X ) E(Y ) .
若广义积分



x f ( x )dx 绝对收敛, 则称这个
积分为随机变量 X 的数学期望, 记为
E( X ) =



x f ( x )dx
7
例2:设 X 服从 [ a , b ] 上的均匀分布, 求 E(X) 解 X 的密度函数为
1 , f ( x) = b a 0 ,






g( x , y ) f ( x , y ) dxdy 绝对收敛, 则有
E( Z ) =





g( x , y ) f ( x , y ) dxdy
12
例3: 某商店出售某种小饰物, 每销售一件可赚
5元, 根据以往资料, 每天的销售量 X 是随机
变量, 取值为 0, 1, 2, 3 件的概率分别为0.4, 0.3, 0.2, 0.1 . 试求一天的平均利润 . 解 设一天的利润为 Y , 由题设有 Y = 5 X , 由定理4.1, 有 E(Y) = E(5X) =5×0×0.4+5×1×0.3+5×2×0.2+5×3×0.1
第四章、随机变量 的数字特征
4.1数学期望
4.2方差 4.3协方差与相关系数
1
4.1数学期望
1、数学期望的定义 2、随机变量函数的数学期望 3、数学期望的性质 4、常见的六个分布的数学期望
2
引言 前面讨论了随机变量及其概率分布,可 以看出分布函数可以完整地描述随机变量的概 率分布情况。但是随机变量的分布不容易取得,





x f ( x , y )dxdy +



y f ( x , y )dxdy
= E(X ) + E(Y ) .
15
(5) 数学期望的线性性质:
设 X i ( i = 1, 2, Ci ( i = 1, 2,
, n)是 n 个随机变量, , n)是 n 个常数, 则
n n E Ci X i = Ci E ( X i ) i =1 i =1 例如 E(2X+3Y)=2E(X)+3E(Y)
3.泊松分布的数学期望
已知X ~ P( ),求E ( X )
18
解:E ( X ) k
k 0

k
k! k 1 ( k 1)! 4.前面已求均匀分布数学期望
e e

k 1
e e
5.指数分布的数学期望
已知X ~ E( ),求E ( X ).
16
四、常见的六个分布的数学期望 1.二点分布的数学期望 已知:
X P 0 1-p 1 p
求E( X )。
解:E ( X ) xi pi 0 (1 p) 1 p p
i 0 1
2.二项分布的数学期望
17
已知X ~ B(n, p),求E ( X )
解:E ( X ) kC p (1 p)
22
2
2
1


|U | e e
U2 2
dU
2
2

0
Ue
U2 2
dU
2
2 2

U2 2
0
U2 d ( ) 2 2
e
U2 2
|
0

例6:从学校乘公交车到火车站途中有三个交通岗, 假设在各个交通岗遇到红灯的事件是相互独立的, 并且概率都是2/5,设X是途中遇到红灯的次数,求 随机变量X的数学期望。(97年) 解:X服从二项分布,且 X 0 1 2 3 2
P X = xi , Y = y j = Pi j , i , j = 1, 2,

g( x , y ) p
i j i =1 j =1


ij
绝对收敛, 则有 ) pi j
E(Z ) =
11
g( x , y
i i =1 j =1
j
(2) 若( X , Y )是连续型的 , 其密度函数为 f (x , y) ,
(A )EU EV ( B) EX EY
20
( C) EU EV ( D) EX EV
解:由题意知:
X X Y U max{ X , Y } , Y X Y X X Y V min{ X , Y } , 因此UV XY Y X Y
E(UV ) E( XY ) E( X ) E(Y ) (B )
例5(96年):设ξ 和η相互独立,且
, ~ N (0,(
21
1 2
)2 )
则随机变量|ξ-η|的数学期望E(|ξ-η|)=__________
解:由于 ~ N (0,(
1 2
) ), ~ N (0,(
2
1 2
)2 )
令U ,U ~ N (0,1)
E (| U |)
另一方面很多实际问题中,只需求出与分布有
关的二个指标,即随机变量的中心位置,散布 程度。例如:检查一批棉花的质量,主要关心 纤维的平均长度及纤维长度与平均长度的偏离
程度,这二个指标清楚了,棉花的质量也就清 楚了。数学上称之为均值(数学期望)及方差。
3
一、数学期望的定义:
例1:在一次考试中, 10名学生有2人得70分, 5人
解:E ( X )

x e
x
dx

0
x e
x
dx xde
0

x

1

6.正态分布的数学期望
已知X ~ N ( , 2 ),求E ( X )
解:E ( X )
19


x
1 2
e

( x )2 2 2
dx
t
x
得80分, 3人得90分, 问他们的平均成绩是多少? 具体算法: (70×2+80×5+90×3) ÷10 =70×0.2+80×0.5+90×0.3=81
4
推广到一般,设X取有限个或可列无穷多的离 散型随机变量, 它的概率分布为 X P x1 p1 x2 p2 … … xn pn … …
则X 的均值为 xi pi
14
证 第一、第二个性质显然成立 . 仅证第三个性
质 . 第四个性质可类似证明 .
仅就连续型给出证明, 离散型类似可证 . 设( X , Y ) 的联合密度函数为 f ( x , y ) , 则
E( X + Y ) = =




( x + y ) f ( x , y )dxdy

(1)若 X 是离散型随机变量 , 它的分布律为
P X = xk = Pk , k = 1, 2,

g( x
k =1

k
) pk 绝对收敛, 则有

E(Y ) = g( xk ) pk
k =1
9
(2) 若 X 是连续型随机变量 , 其概率 x ) f ( x ) dx 绝对收敛, 则有


1 2



( t )e
t2 2
t2 2
dt
t2 2

1 2
( te dt e dt )



例4(11年考研)设随机变量X与Y相互独立,且E(X),E(Y)
存在,记 U max{ X , Y },V min 求E (UV )=
k 0 k n k n n nk
n! k p k (1 p)nk ( n k )! k ! k 0
n
( n 1)! np pk 1 (1 p)n1( k 1) k 0 ( n 1 ( k 1))!( k 1)!
k 1 k 1 n 1( k 1) n 1 np Cn p ( 1 p ) np ( p ( 1 p )) np 1 k 0 n
X ~ B (3, ) 5
2 6 P 易知E ( X ) np 3 。 5 5
27/ 54/ 36/ 8/1 125 125 125 25
27 54 36 8 6 或E X 0 1 2 3 125 125 125 125 5
23
5
1、定义4.1: (离散型随机变量的期望) 设离散型随机变量 X 的分布律为
P X = xk = pk , ( k = 1, 2, )

x
k =1

k
pk 绝对收敛 , 称这个级数为随机变量
X 的数学期望或均值, 记作 E(X) , 即
E( X ) = xk pk
k =1
6
相关文档
最新文档