辽宁省大连渤海高级中学高中数学数学必修三第二章 统计 教案 精品
高中数学人教A版必修3--第二章 统计本章教材分析教案
第二章统计
本章教材分析
现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.。
人教版高中必修3第二章统计课程设计 (2)
人教版高中必修3第二章统计课程设计一、前言本文档旨在为教师设计一份针对人教版高中必修3第二章统计的课程设计,以提高学生对该知识点的理解和应用能力。
二、课程目标本课程对学生的目标如下:1.理解统计学的基本概念和方法;2.掌握统计中的基础知识,例如:数据调查、频次分布、中心位置度量、离散程度度量等;3.能够通过统计方法进行数据分析以及运用数据解决实际问题;4.提高学生的信息素养,培养科学严谨的思维方式和处理问题的能力。
三、教学内容3.1 统计学基本概念3.1.1 概率和统计的区别学习内容:介绍概率和统计的区别教学方式:授课讲解、实例分析3.1.2 总体和样本学习内容:介绍总体和样本的概念及应用教学方式:组织讨论、实例分析3.1.3 统计推断学习内容:介绍统计推断的基本概念及方法教学方式:组织讨论、实例分析3.2 统计基础知识3.2.1 数据调查学习内容:介绍数据调查的步骤及方法教学方式:授课讲解、实例分析3.2.2 频次分布学习内容:介绍频次分布的概念及绘制的方法教学方式:授课讲解、实例分析3.2.3 中心位置度量学习内容:介绍中心位置度量中的平均数、中位数、众数等概念及应用教学方式:授课讲解、实例分析3.3 统计应用实例3.3.1 调查数据分析学习内容:通过实例介绍如何调查数据和分析数据教学方式:实例分析、诊断分析3.3.2 统计应用学习内容:通过实际应用,让学生学会如何运用所学应对实际问题教学方式:诊断分析、实例分析四、教学设计课时教学内容教学形式学习目标第一课时概率和统计的区别授课讲解、实例分析了解概率和统计的区别,并掌握实际应用第二课时总体和样本组织讨论、实例分析掌握总体和样本的概念及应用第三课时统计推断组织讨论、实例分析掌握统计推断的基本概念及方法第四课时数据调查授课讲解、实例分析掌握数据调查的步骤及方法第五课时频次分布授课讲解、实例分析掌握频次分布的概念及绘制的方法课时教学内容教学形式学习目标第六课时中心位置度量授课讲解、实例分析掌握中心位置度量中的平均数、中位数、众数等概念及应用第七课时调查数据分析实例分析、诊断分析通过实例调查数据并进行数据分析第八课时统计应用诊断分析、实例分析了解如何运用所学应对实际问题五、教学评价本课程设计中,将统计学的基本概念和方法与实践应用相结合,注重引导学生发现并解决实际问题的能力,使其在学习中掌握一定的信息素养,从而完成对于统计学的初步理解和运用。
人教版高中数学必修3第二章统计-《2.1.3分层抽样》教案(6)
2.1.3分层抽样一.教学任务分析:(1)以探究具体问题为导向,引入分层抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用分层抽样的方法从总体中抽取样本.(2正确理解分层抽样的概念,掌握分层抽样的步骤,并能灵活应用相关知识从总体中抽取样本.(3)通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法. 二.教学重点与难点:教学重点:分层抽样的概念,分层抽样的操作步骤.教学难点:对样本随机性的理解.三.教学基本流程:↓↓↓↓四.教学情境设计:1.创设情景,揭示课题探究: 假设某地区有高中生2400人,初中生10900人,小学生11000人,此地区教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?教师引导学生思考,交流,讨论.-----(1)哪些因素可能影响学生的视力?设计抽样方法时需要考虑这些因素吗?(2)要想样本有好的代表性,就应该在样本中使各年级段的学生都有代表,层中的个体多,就应该在样本中的个体数目多,如何合理分配各层所取样本数?(3)各层中的样本如何抽取?(4)叙述抽样过程.教师指出上述实际问题解决的方法就是分层抽样方法.2.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样(stratified sampling).分层抽样的操作步骤:总体分层 ,按照比例, 独立抽取,组成样本总体分层:按某种特征将总体分成若干部分.按照比例: 按比例确定每层抽取个体的个数.独立抽取: 各层分别按简单随机抽样的方法抽取.综合每层抽样,组成样本.3. 分层抽样应用举例例1:某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( D )A.15,5,25B.15,15,15C.10,5,30 D15,10,20例2:某班有男生36人,女生24人,从全班抽取一个容量为10的样本,分析某种身体素质指标,已知这种身体素质指标与性别有关. 问应采取什么样抽样方法?并写出抽样过程.解:因为这种身体素质指标与性别有关,所以男生,女生身体素质指标差异明显,因而采用分层抽样的方法.具体过程如下:(1)将60人分为2层,其中男,女生各为一层.(2)按照样本容量的比例随机抽取各层应抽取的样本.36×1/6=6(人),24×1/6=4(人)因此男,女生各抽取人数分别为6人和4人.(3)利用简单随机抽样方法分别在36名男生中抽取6人, 24名女生中抽取4人.(4)将这10人组到一起,即得到一个样本.4.简单随机抽样、系统抽样、分层抽样的比较探究: 简单随机抽样、系统抽样、分层抽样各有其特点和使用范围,请对这三种抽样方法进行比较,说说它们的优点和缺点.教师引导学生交流,讨论,归纳总结.简单随机抽样、系统抽样、分层抽样的比较5.课堂练习P64.练习6.课后作业:<随堂导练>P27-28.2.阅读与思考:广告中的数据的可靠性.。
人教A版高中数学必修3《二章 统计 小结》优质课教案_14
第二章统计复习教案一、教学目标:1、整合本章知识点,完善知识结构,体会知识之间的相关关系,能应用所学知识解决一些简单的统计问题。
2、在归纳总结知识的过程中完善知识结构。
3、让学生在学习中自觉应用类比,数形结合等数学思想方法帮助学习。
二、教学重难点重点:构建本章(统计)的知识结构,能应用所学知识解决简单的统计问题。
难点:应用所学知识解决简单的统计问题。
三、教学方法:归纳总结法,讲练结合法四、教学用时:1课时五、教学过程设计2、用样本估计总体(1)用样本估计总体的两种情况 ①用样本的频率分布估计总体的分布.②用样本的数字特征估计总体的数字特征. (2)绘制频率分布直方图的步骤 (3)频率分布折线图和总体密度曲线频率分布直方图――――――――→连接各小长方形上端的中点频率分布折线图 ――――――――――――→样本容量不断增大,频率折线图接近于一条光滑曲线总体密度曲线 (4)茎叶图的制作步骤 ①将数据分为茎和叶两部分;②将最大茎和最小茎之间数据按大小次序排成一列; ③将各个数据的“叶”按大小次序写在茎右(左)侧.(5)数字特征①众数:一组数据中重复出现次数最多的数.②中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数叫做这组数据的中位数.③平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.④标准差的计算公式: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2 ⑤方差的计算公式:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],想一想:众数、中位数、平均数与频率分布直方图的关系。
3、两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. (2)正相关与负相关:① 正相关:散点图中的点散布在从左下角到右上角的区域. ② 负相关:散点图中的点散布在从左上角到右下角的区域. (3)回归直线的方程① 回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.② 回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程.二、巩固练习1、要从已编号(1—60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的枚导弹的编号可能是( ) A 、5,10,15,20,25,30 B 、3,13,23,33,43,53 C 、1,2,3,4,5,6 D 、2,4,8,16,32,482、某公司现有普通职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则普通职员,中级管理人员和高级管理人员各应该抽取多少人( )A 、8,15,7B 、16,2,2C 、16,3,1D 、12,3,5 3、右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( ) A 、161cm B 、162cmC 、163cm D 、164cm4、为了了解某地区高中学生的身体发育情况,抽查了该地区100名年龄在17.5~18岁的男生体重(单位:kg ),得到频率分布直方图如下: 求这100名学生中体重在56.5~64.5范围内的人数.5、某商场为了调查旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得数据整理后,画出频率分布直方图如下,已知图中从左到右前3个小矩形的面积之比为1︰2︰3,第二小组的频数为10. (1)求样本容量;(2)估计购鞋尺寸在37.5~43.556.5 60.5 64.5 68.5 72.56、已知某人5次上班途中所花时间的平均数为10分钟,方差为2分钟,其中有三次上班途中所花时间分别为9分钟,10分钟和11分钟,求另两次上班途中所花的时间.7、随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程.8、某工厂经过技术改造后,生产某种产品的产量x 吨与相应的生产能耗y 吨标准煤有如下几组样本数据:(1)样本数据是否具有线性相关关系?若是,求出其回归方程; (2)预测生产100吨产品的生产能耗约需多少吨标准煤?三、课堂小结1、本章中统计的相关知识。
人教A版高中数学必修3第二章 统计2.2 用样本估计总体教案
2.2.1用样本的频率分布估计总体分布一、教学目标分析1.知识与技能目标(1)通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图。
(3)通过实例体会频率分布直方图的特征,能准确地做出总体估计。
2、过程与方法目标:通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
3、情感态度与价值观目标:通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
二、教学的重点和难点重点:会列频率分布表,画频率分布直方图。
难点:能通过样本的频率分布估计总体的分布。
三、教法与学法分析1、教法:遵循观察、探究、发现、总结式的教学模式。
重点以引导学生为主,让他们能积极、主动的进行探索,获取知识。
由于内容较繁琐,所以要借助多媒体辅助教学。
2、学法:根据本节知识的特点,由于学生已具备一定的基础知识,可采取研究性学习的学习方法。
四、教学过程(一)情境引入1.随机抽样有哪几种基本的抽样方法?简单随机抽样、系统抽样、分层抽样.2.随机抽样是收集数据的方法,如何通过样本数据所包含的信息,估计总体的基本特征,即用样本估计总体,是我们需要进一步学习的内容.3.高二某班有50名学生,在数学必修②结业考试后随机抽取10名,其考试成绩如下:82,75,61,93,62,55,70,68,85,78.如果要求我们根据上述抽样数据,估计该班对数学模块②的总体学习水平,就需要有相应的数学方法作为理论指导,本节课我们将学习用样本的频率分布估计总体分布.(二)新课讲解知识探究(一):频率分布表【问题】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.通过抽样调查,获得100位居民2007年的月均用水量如下表(单位:t):3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.20.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.21.7 1.3 3.6 1.7 0.6 4.1 3.22.9 2.4 2.3 1.8 1.43.5 1.9 0.84.3 3.02.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.60.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.61.0 1.0 1.7 0.82.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2思考1:上述100个数据中的最大值和最小值分别是什么?由此说明样本数据的变化范围是什么?0.2~4.3思考2:样本数据中的最大值和最小值的差称为极差.如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?(4.3-0.2)÷0.5=8.2思考3:以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].思考4:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?分组频数累计频数频率[0,0.5) 4 0.04[0.5,1)8 0.08[1,1.5)正正正15 0.15[1.5,2)正正正正22 0.22[2,2.5)正正正正正25 0.25[2.5,3)正正14 0.14[3,3.5)正一 6 0.06[3.5,4) 4 0.04[4,4.5] 2 0.02合计100 1.00思考5:上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种什么统计思想?用样本的频率分布估计总体分布.思考6:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a的取值)有何建议?88%的居民月用水量在3t以下,可建议取a=3思考7:在实际中,取a=3t一定能保证85%以上的居民用水不超标吗?哪些环节可能会导致结论出现偏差?分组时,组距的大小可能会导致结论出现偏差,实践中,对统计结论是需要进行评价的.思考8:对样本数据进行分组,其组数是由哪些因素确定的?思考9:对样本数据进行分组,组距的确定没有固定的标准,组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.按统计原理,若样本的容量为n,分组数一般在(1+3.3lg n)附近选取.当样本容量不超过100时,按照数据的多少,常分成5~12组.若以0.1或1.5为组距对上述100个样本数据分组合适吗?思考10:一般地,列出一组样本数据的频率分布表可以分哪几个步骤进行?第一步,求极差.(极差=样本数据中最大值与最小值的差)第二步,决定组距与组数.(设k=极差÷组距,若k为整数,则组数=k,否则,组数=k+1)第三步,确定分点,将数据分组.第四步,统计频数,计算频率,制成表格.(频数=样本数据落在各小组内的个数,频率=频数÷样本容量)知识探究(二):频率分布直方图思考1:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的图形表示:上图称为频率分布直方图,其中横轴表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的和高度在数量上有何特点?思考2:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积之和为多少?各小长方形的面积=频率各小长方形的面积之和=1思考3:频率分布直方图非常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但原始数据不能在图中表示出来.你能根据上述频率分布直方图指出居民月均用水量的一些数据特点吗?(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;(2)大部分居民月均用水量集中在一个中间值附近,只有少数居民月均用水量很多或很少;(3)居民月均用水量的分布有一定的对称性等.思考4:样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布直方图的作图步骤如何?第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.思考5:对一组给定的样本数据,频率分布直方图的外观形状与哪些因素有关?在居民月均用水量样本中,你能以1为组距画频率分布直方图吗?(三)例题讲解例1、 某地区为了了解知识分子的年龄结构,随机抽样50名,其年龄分别如下:42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58.(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计年龄在32~52岁的知识分子所占的比例约是多少.(1)极差为67-28=39,取组距为5,分为8组.样本频率分布表:分 组 频数 频率[27,32) 3 0.06[32,37) 3 0.06[37,42) 9 0.18[42,47) 16 0.32[47,52) 7 0.14[52,57) 5 0.10[57,62) 4 0.08[62,67) 3 0.06合 计 50 1.00(2)样本频率分布直方图:频率(3)因为0.06+0.18+0.32+0.14=0.7, 故年龄在32例 2、为了了解小学生的体能情况,抽取了某小 学同年级部分学生进行跳绳测试,将所得的数据 整理后画出频率分布直方图(如图),已知图中从 左到右的前三个小组的频率分别是0.1,0.3,0.4。
高中数学 第二章 统计教案 新人教A版必修3
第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.本章教学时间约需7课时,具体分配如下(仅供参考):2.1.1 简单随机抽样约1课时2.1.2 系统抽样约1课时2.1.3 分层抽样约1课时2.2.1 用样本的频率分布估计总体分布约1课时2.2.2 用样本的数字特征估计总体的数字特征约1课时2.3 变量间的相关关系约1课时本章复习约1课时2.1 随机抽样2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果% 选举结果%Roosevelt 43 62Landon 57 38 你认为预测结果出错的原因是什么?由此可以总结出什么教训?(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,…,199,200,…,700. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.。
高中数学 第二章 统计教案 苏教版必修3
第2章统计§2.1抽样方法2.1.1 简单随机抽样(教师用书独具)●三维目标1.知识与技能理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法.2.过程与方法通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题、解决问题的能力.3.情感态度与价值观通过身边事例研究,体会抽样调查在生活中的应用.●重点难点重点:掌握简单随机抽样的特点及常见的两种方法(抽签法、随机数表法).难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性.通过生活实例让学生知道在不适宜普查的情况下,如何进行抽样调查才是比较科学的,结论才是可靠的,通过学生的实际操作,逐步引导学生总结出随机抽样的概念,体会随机抽样在处理现实问题中的必要性和重要性,让学生在概念中找关键词使之加深对概念的理解,并归纳实施步骤从而强化重点.教学时充分让学生自己分析、判断,自主学习、合作交流.采用讨论发现法教学,通过抓阉等游戏尽可能的让学生动手操作,体验并激发学生积极思考,再利用多媒体中随机数生成器等进行随机抽样,让学生感受样本得到的随机性,从而化解难点.(教师用书独具)●教学建议结合本节课的教学内容和学生的认知水平,在教法上,建议教师采用“启发—探究—讨论”式教学模式,以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.运用由浅入深的问题形式,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力,增长才干.由于本节课内容实例多,信息容量大,文字多,采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,从而大大提高学生的学习兴趣.●教学流程创设问题情境,引出问题:要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?⇒引导学生结合初中学习过的抽样知识,观察、比较、分析,得出简单随机抽样的概念.⇒通过引导学生回答所提问题理解简单随机抽样的条件、特征及讨论由简单抽样能够解决的问题.⇒通过例1及其变式训练,使学生理解简单随机抽样的概念与解决问题的方法.⇒通过例2及其变式训练,使学生掌握利用抽签法设计抽样方案问题的解题策略.⇒通过例3及其变式训练阐明随机数表法的原理,使学生明确用随机数表法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体把握这两种抽样设计的优缺点及应用范围.课标解读1.理解简单随机抽样的概念.(重点) 2.学会两种简单随机抽样的方法.(重点) 3.能合理地从总体中抽取样本.(难点)简单随机抽样【问题导思】要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?【提示】不需要,只要将锅里的汤“搅拌均匀”品尝一小勺就知道汤的味道.假设你作为一名食品卫生工作人员,要对某食品店内的一批水果罐头进行卫生达标检验,你准备怎样做?【提示】从中抽取一定数量的罐头作为检验的样本.一般地,从个体数为N的总体中逐个不放回地抽取n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.抽签法和随机数表法都是简单随机抽样.抽签法【问题导思】假设在你们班选派3个人参加学校的某项活动,为了体现选派的公平性,用什么方法确定具体人选?【提示】抽签法.抽签法的步骤(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.随机数表法【问题导思】当总体的个数较多时,怎么抽取质量比较高的样本?【提示】随机数表法随机数表法的步骤(1)将总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.简单随机抽样的判断下列抽取样本的方式是否属于简单随机抽样,并说明理由.(1)从全班50名同学中,选出3名三好学生.(2)从无限多个个体中,选出100个个体作样本.(3)从100件产品中选5件检验质量,抽取一件检验后放回,再抽一件,共抽五次.(4)从全班同学中选两名参观世博会,将全班同学的学号写在大小相同的纸片上,放入箱子里搅拌均匀后,一次取出两张,由纸片上的学号确定人选.【思路探究】根据简单随机抽样的特点逐一判断即可.【自主解答】(1)不是简单随机抽样,选三好学生时,不是每位学生被选上的机会都相等.(2)不是简单随机抽样,因为总体N无限,不符合简单随机抽样的定义.(3)不是简单随机抽样,因为是有放回抽样.(4)不是简单随机抽样,因为一次取了两张纸片,不是逐个抽取.1.简单随机抽样的特点是:(1)总体有限;(2)不放回抽取;(3)逐个抽取;(4)机会均等,不满足其中任何一条都不是简单随机抽样.2.判断一种抽样是不是简单随机抽样,评判的惟一标准就是其特征,尤其是总体有限容易被忽视,如本例中的(4),容易误判为简单随机抽样.判断下列抽取样本的方法是否是简单随机抽样:(1)从8台电脑中不放回地逐个随机抽取2台进行质量检验(假设8台电脑已经编号,对编号随机抽取).(2)某班50名同学,指定年龄最小的5个人参加某项活动;(3)从20个零件中一次性抽出3个进行质量检测.【解】(1)是简单随机抽样,简单随机抽样就是从有限个个体中逐个不放回地抽取个体构成样本.(2)不是简单随机抽样,因为每个个体被抽到的机会不是均等的.(3)不是简单随机抽样,因为不是逐个抽取的.抽签法的应用从某班46名学生中随机选出5名参加某项活动.请用抽签法设计抽样方案.【思路探究】按抽签法的步骤进行抽样.【自主解答】第一步,编号.一般用正整数1,2,3,…,46来给总体中所有的个体编号;第二步,写号码标签.把号码写在形状、大小相同的号签上,号签形式可不限,如小球、卡片等;第三步,均匀搅拌.把上述号签放在同一个容器内均匀搅拌;第四步,抽取.从容器中逐个连续地抽取5次,得到一个容量为5的样本.1.一个抽样能否用抽签法关键看两点:一是制签方便,二是易被搅匀.这就要求总体中个体数量不多.2.采用抽签法最重要的是保证每个个体等可能的被抽取,这就要求把号签搅匀.3.若个体中已有编号如考号、学号、标签号码等,可不必重新编号.从40件产品中抽取10件进行质量检验,写出抽取样本的步骤.【解】第一步将40件产品按1,2,…,40进行编号;第二步将1~40这40个号码写在形状、大小均相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步依次从箱中抽取10个号签;第五步将抽到的10个号签上的号码对应的产品取出,即得样本.随机数表法有一批机器,编号为1,2,3, (112)请用随机数表法抽取10台入样,写出抽样过程.【思路探究】各机器的编号位数不一致,需将编号进行调整.【自主解答】第一步将原来的编号调整为001,002,003, (112)第二步在随机数表中,任选一数作为开始,任选一方向作为读数方向,比如,选第9行第7个数“3”向右读;第三步从数“3”开始,向右读,每次读三位,凡是不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步对应原来的编号74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.1.随机数表的构成与特点:随机数表是由0,1,2,…,9这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同.通常根据实际需要和方便使用的原则,将几个数组合成一组,然后通过随机数表抽取样本.2.随机数表的产生方法并不唯一,如抽签法、抛掷骰子法、计算机生成法,编号时号码的位数一定要一致.读数时,读取的每个数的位数与编号的位数也要一致.3.使用随机数表法时,选取开始读的数是随机的,读数的方向也是随机的.因选取开始读的数不同,读数方向不同,所以抽取的样本号码可能不一致,但均符合抽样的公平性、等可能性.只要按随机数表法的步骤抽取,都是符合要求的、正确的.某校有学生1 200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何获得?【解】简单随机抽样分两种:抽签法和随机数表法.尽管此题总体中的个体数不算少,但依题意其操作过程却是等可能的.法一首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用抽签法,则做1 200个形状、大小相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,连续抽取50次,得到一个容量为50的样本.法二首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用随机数表法,则在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取四位,凡不在0 001~1 200中的数跳过去不读,前面已经读过的也跳过去不读.一直到取够50个为止.忽视抽样方法步骤出错某单位支援西部开发,现从报名的20名志愿者中选取5人组成志愿小组到新疆工作,请用抽签法设计抽样方案.【错解】第一步,将20名志愿者编号,号码是01,02,03,…,20;第二步,将号码分成5份:{01,06,11,16},{02,07,12,17},{03,08,13,18},{04,09,14,19},{05,10,15,20},并将每一份中的号码写在一张纸条上,揉成团,制成号签,得5个号签;第三步,在5个号签中随机抽取1个号签,并记录上面的编号;第四步,所得号签对应的5位志愿者就是志愿小组的成员.【错因分析】设计方案时,没有按照抽签法的一般步骤进行方案设计,不符合简单随机抽样的特点.【防范措施】 1.设计方案时步骤要合理、正确.2.方案的设计要符合简单随机抽样的等可能性.3.正确掌握抽签法的步骤.【正解】第一步,将20名志愿者编号,号码是01,02,03,…,19,20;第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并搅拌均匀;第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号;第五步,所得号码对应的志愿者就是志愿小组的成员.1.抽签法与随机数表法都要求被抽取样本的总体的个体数有限,都是从总体中逐个地进行抽取,都是不放回抽样.2.当总体中的个体数较多,样本容量较小时,抽签法将总体的编号“搅拌均匀”比较困难,因此用此种方法产生的样本代表性差的可能性很大,而随机数表法中每个个体被抽到的可能性相等,用这种方法产生的样本代表性较好.3.简单随机抽样每个个体入样的可能性都相等.1.简单随机抽样的常用方法有________和________.随机地选定随机数表读数,选定开始读取的数后,读数的方向可以是________.【解析】根据简单随机抽样的分类及随机数表法的操作步骤可知.【答案】抽签法随机数表法任意的2.关于简单随机抽样的特点,有以下几种说法,其中不正确的是________.①要求总体的个数有限②从总体中逐个抽取③这是一种不放回抽样④每个个体被抽到的机会不一样,与先后顺序有关【解析】简单随机抽样除了具有特点①②③外,还具有等可能性,每个个体被抽到的机会相等,与先后顺序无关,故只有④不正确.【答案】④3.某校有教学班100个,每班50人,要求每班选派2人参加“学生代表大会”,在该问题中,样本容量是________.【解析】N=100×50=5 000,抽取比例250=1 25.∴n=5 000×125=200.【答案】2004.从20名学生中要抽取5名进行问卷调查,写出抽样的过程.【解】①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌;④依次从箱子中取出5个号签,按这5个号签上的号码抽取学生,即得样本.一、填空题1.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取100名运动员抽查.就这个问题,下列说法中正确的是________.①2 000名运动员是总体;②每名运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100.【解析】 2 000名运动员的年龄是总体,每个运动员的年龄是个体,所抽取的100名运动员的年龄组成一个样本,样本容量为100.【答案】④2.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③3.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用______进行抽样.【解析】由抽签法特点知易采用抽签法.【答案】抽签法4.(2013·苏州高一检测)采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本∴所有可能的样本为{1,3},{1,8},{3,8}.【答案】{1,3},{1,8},{3,8}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________.【解析】简单随机抽样中,每个个体被抽取的机会均等,都为110.【答案】110,1106.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3, (100)②001,002, (100)③00,01,02, (99)④01,02,03, (100)其中正确的序号是________.【解析】采用随机数表编号时,所编号码应位数相同,以保证每个号码被抽到的机率相等.【答案】②③7.某中学高一年级有1 400人,高二年级有1 320人,高三年级有1 280人,以每人被抽到的机会为0.02,从该中学学生中抽取一个容量为n的样本,则n=________.【解析】三个年级的总人数为1 400+1 320+1 280=4 000(人),每人被抽到的机会均为0.02,∴n=4 000×0.02=80.【答案】808.(2013·江西高考改编)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.7816657208026314070243699728019832049234493582003623486969387481 【解析】由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】01二、解答题9.要从北京某中学文艺部30名学生中随机抽取3名参加国庆阅兵仪式,试写出利用抽签法抽样的过程.【解】第一步将30名学生编号为1,2,3, (30)第二步将这30个号码写到形状、大小相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步从箱中每次抽取1个号签,连续抽取3次;第五步抽到的3个号签上的号码对应的3名学生就是参加国庆阅兵仪式的学生.10.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?【解】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.11.某次数学竞赛中要求考生解答的12道题是这样产生的:从30道选择题中随机抽取3道,从50道填空题中随机抽取5道,从40道解答题中随机抽取4道,试确定某考生所要解答的12道题的序号.【解】法一:(抽签法)第一步:将选择题、填空题、解答题编号,号码是1,2,3, (120)第二步:将1~120这120个号码分别写在大小、形状都相同的号签上;第三步:将选择题、填空题、解答题的号签分别放入三个箱子中,都搅拌均匀;第四步:分别从装有选择题、填空题、解答题号签的箱子中逐个抽取3个、5个、4个号签,并且记录所得号签的号码,这就是所要解答的问题的序号.法二:(随机数表法)第一步:对题目编号,选择题编号为001,002,...,030;填空题编号为031,032,...,080;解答题编号为081,082, (120)第二步:在随机数表中任意选择一个数作为开始,任选一个方向作为读数方向,比如,选第15行第6列的数4作为开始,向右读;第三步:从数字4开始向右读下去,每次读三位,凡是不在001~120中的数跳过去不读,遇到已经读过的数也跳过去,从001~030中选3个号码,从031~080中选5个号码,从081~120中选4个号码,依次可以得到038,119,033,099,004,047,094,116,044,068,013,030.第四步:以上号码就是所要解答的问题序号,选择题的序号是4,13,30;填空题的序号是38,33,47,44,68;解答题的序号是119,99,94,116.(教师用书独具)中央电视台希望在春节联欢晚会播出一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A:我把春节联欢晚会收视率调查表放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快反馈到我的电脑中,这样,我就可以很快统计出收视率了.同学B:我给我们居民小区的每一个住户发一份是否在除夕那天晚上看中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案是否能够获得比较准确的收视率?为什么?【思路点拨】判断的标准是所有可能看电视的人群是否有相同的的机会被抽中.【规范解答】调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人群是上网而且登录该网址的人群,那些不能上网的人,或者不登录该网址的人就被排除在外了.因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区的居民,有一定的片面性.因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人,也有一定的片面性.因此C方案抽取的样本的代表性差.所以,这三种方案都有一定的片面性,不能得到比较准确的收视率.1936年,美国进行总统选举.竞选的是民主党的罗斯福和共和党的兰登,罗斯福是在任的总统.美国权威的《文学摘要》杂志社,为了预测总统候选人中谁能当选,采用了大规模的模拟选举.他们以电话簿上的地址和俱乐部成员名单上的地址发出100万封信,收到回信20万封.在调查史上,样本容量这么大是少见的,杂志社花费了大量的人力和物力.他们相信自己的调查统计结果,即兰登将以57%对43%的比例获胜,并大力进行宣传.最后选举结果却是罗斯福以62%对38%的巨大优势获胜,连任总统.这个调查使《文学摘要》杂志社威信扫地,不久只得关门停刊.试分析这次调查失败的原因.【解】统计不当的原因,其中之一是选取了不适当的样本作为统计调查的基础,如果抽样时使用了不适当的方法,往往得到错误的结论.失败的原因:①抽样方法不正确.样本不是从总体(全体美国公民)中随机地抽取.1936年,美国有私人电话和参加俱乐部的家庭,都是比较富裕的家庭.1929~1933年的世界经济危机,使美国经济遭受沉重打击.“罗斯福新政”动用行政手段干预市场经济,损害了部分富人的利益,“喝了富人的血”,但广大的美国人民从中得到了好处.所以,从这部分富人中抽取的样本严重偏离了总体,导致样本不具有代表性.②样本容量相对太小也是导致估计出现偏差的一个原因,因为样本容量越大,估计才越准确,发出的信不少,但回收率太低.2.1.2 系统抽样(教师用书独具)●三维目标1.知识与技能(1)理解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感态度与价值观:(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,合作探讨、相互交流的能力,概括归纳的能力.●重点难点重点:系统抽样的定义及操作步骤;难点:系统抽样中的处理办法.(教师用书独具)●教学建议在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力.让学生体会学数学的成就感.通过师生的互动,理解系统抽样概念.●教学流程创设问题情境,引出问题:从500名学生中抽取50名学生调查对老师的意见除了用简单随机抽样外还有其他方法吗?⇒引导学生结合前面学习过的简单随机抽样的知识,观察、比较、分析,得出系统抽样的概念.⇒通过引导学生回答所提问题,理解系统抽样的应用条件、应用范围及由系统抽样能够解决的问题.⇒通过例1及其变式训练,使学生掌握系统抽样概念问题的解题方法.⇒通过例2及其变式训练,使学生掌握简单的系统抽样的方案设计问题的解题策略.⇒通过例3及其变式训练阐明需剔除个体的系统抽样的方法,使学生明确抽样方法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.。
高中数学必修三第二章统计全章教案
2.1.1简单随机抽样教学目标:1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;3.感受抽样统计的重要性和必要性.教学方法:1.了解抽样调查中样本选择的重要性、代表性.2.掌握简单随机抽样方法的原理与步骤.教学过程:一、问题情境情境1:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?情境2:学校的投影仪灯泡的平均使用寿命是3000小时,“3000小时”这样一个数据是如何得出的呢?二、学生活动由于饼干的数量较大,不可能一一检测,只能从中抽取一定数量的饼干作为检验的样本;考察灯泡的使用寿命带有破坏性,因此,只能从一批灯泡中抽取一部分(例如抽取10个)进行测试,然后用得到的这一部分灯泡的使用寿命的数据去估计这一批灯泡的寿命;(抽样调查),那么,应当怎样获取样本呢?三、建构数学1.统计的有关概念:统计的基本思想:用样本去估计总体;总体:所要考察对象的全体;个体:总体中的每一个考察对象;样本:从总体中抽取的一部分个体叫总体的一个样本;样本容量:样本中个体的数目;抽样:从总体中抽取一部分个体作为样本的过程叫抽样.2.抽样的常见方法:(1)简单随机抽样的概念.一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.说明:简单随机抽样必须具备下列特点:1)简单随机抽样要求被抽取的样本的总体个数N是有限的.2)简单随机样本数n小于等于样本总体的个数N.3)简单随机样本是从总体中逐个抽取的.4)简单随机抽样是一种不放回的抽样.5)简单随机抽样的每个个体入样的可能性均为nN.(2)简单随机抽样实施的方法:情景:为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查,如何抽取呢?1)抽签法:一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n的样本.一般步骤:①将总体中的N个个体编号;②将这N个号码写在形状、大小相同的号签上;③将号签放在同一箱中,并搅拌均匀;④从箱中每次抽取1个号签,连续抽取k次;⑤将总体中与抽到的号签的编号一致的k个个体取出.说明:将个体编号时,可利用已有的编号,例如:学生的学号、座位号等;当总体个数不多时,适宜采用.2)随机数表法:按照一定的规则到随机数表中选取号码的抽样方法.一般步骤:①将个体编号(每个号码位数一致);②在随机数表中任选一个数作为开始;③从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.随机数表的制作:(1)抽签法(2)抛掷骰子法(3)计算机生成法四、数学运用例2某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径.解法2:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.2.练习:课本第46页第1,2题.五、要点归纳与方法小结1.简单随机抽样的特征:每个个体入样的可能性都相等,均为nN;2.抽签法、随机数表法的优缺点及一般步骤.2.1.2系统抽样教学目标:1.正确理解系统抽样的概念,掌握系统抽样的一般步骤;2.通过对解决实际问题的过程的研究学会抽取样本的系统抽样方法,体会系统抽样与简单随机抽样的关系.教学重点:系统抽样的应用.教学难点:对系统抽样中的“系统”的思想的理解,并能加以解决.教学方法:能运用所学知识判断、分析和选择抽取样本的方法;能从现实生活或其他学科中提出有价值的数学问题,并能加以解决.教学过程:二、学生活动用简单随机抽样获取样本,但由于样本容量较大,操作起来费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,你能否设计其他抽取样本的方法?三、建构数学1.系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.说明:由系统抽样的定义可知系统抽样有以下特征:(1)当总体容量N较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为⎥⎦⎤⎢⎣⎡=n N k(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.(4)系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;(5)简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的. 2.系统抽样的一般步骤:(1)采用随机的方式将总体中的个体编号(编号方式可酌情考虑,为方便起见,有时可直接利用个体所带有的号码,如学生的准考证号、街道门牌号等); (2)为将整个的编号分段(即分成几个部分),要确定分段的间隔,当Nn(N 为总体个数,n 为样本容量)是整数时,n N k =,当Nn不是整数时,通过从总体中删除一些个体(用简单随机抽样的方法)使剩下的总体中个体的个数N '能被n 整除,这时nN k '=; 四、数学运用1.例题:例1 某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本. 解:第一步:将624名职工用随机方式进行编号;第二步:从总体中用随机数表法剔除4人,将剩下的620名职工重新编号(分别为000,001,002,…,619),并分成62段;第三步:在第一段000,001,002,…, 009这十个编号中用简单随机抽样确定起始号码l ;第四步:将编号为,10,20,,60l l l l +++的个体抽出,组成样本.例2从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是(B)(A)5,10,15,20,25(B)3,13,23,33,43(C)1,2,3,4,5(D)2,4,6,16,322.练习:课本第47页第1,3,4题.五、要点归纳与方法小结本节课我们学习了以下内容:系统抽样的概念及步骤.2.1.3分层抽样教学目标:1.结合实际问题情景,理解分层抽样的必要性和重要性;2.学会用分层抽样的方法从总体中抽取样本;3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.教学重点:通过实例理解分层抽样的方法.教学难点:分层抽样的步骤.教学过程:一、问题情境1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.2.实例:某校高一、高二和高三年级分别有学生1000,800,700名,为了了解全校学生的视力情况,从中抽取容量为100的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是100025,80025,70025,即40,32,28.三、建构数学1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.2.三种抽样方法对照表:系统抽样个个体被抽取的概率是相同的将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3.分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分.(2)确定比例:计算各层的个体数与总体的个体数的比.(3)确定各层应抽取的样本容量.(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.四、数学运用1.例题.例1(1)分层抽样中,在每一层进行抽样可用_________________.(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;③某班元旦聚会,要产生两名“幸运者”.对这三件事,合适的抽样方法为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如表中所示:很喜爱喜爱一般不喜爱2 435 4 5673 926 1072电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?解:抽取人数与总的比是60∶12000=1∶200,则各层抽取的人数依次是12.175,22.835,19.63,5.36,取近似值得各层人数分别是12,23,20,5.然后在各层用简单随机抽样方法抽取.答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人数分别为12,23,20,5.说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.分析:(1)总体容量较小,用抽签法或随机数表法都很方便.(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.五、要点归纳与方法小结本节课学习了以下内容:1.分层抽样的概念与特征;2.三种抽样方法相互之间的区别与联系.2.2.1频率分布表教学目标:1.了解频数、频率的概念,了解全距、组距的概念;2.能正确地编制频率分布表;会用样本频率分布去估计总体分布;3.通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.教学重点:用样本频率分布估计总体分布;教学难点:对总体分布概念的理解;频率分布表的绘制.教学过程:一、问题情境如下样本是随机抽取近年来北京地区7月25日至8月24日的日最高气温:二、学生活动问题:怎样通过上表中的数据,分析比较两时间段内的高温(33C)状况?三、建构数学一般地:当总体很大或不便获取时,用样本的频率分布去估计总体频率分布;把反映总体频率分布的表格称为频率分布表.四、数学运用例1 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表.并估计身高不小于170的同学的所占的百分率.解:(1)在全部数据中找出最大值180与最小值151,它们相差(极差)29,确定全距为30,决定组距为3;(2)将区间[150.5,180.5]分成10组;分别是[150.5,153.5),[153.5,156.5),…,[177.5,180.5);(3)从第一组[150.5,153.5)开始分别统计各组的频数,再计算各组的频率,列频率分布表:根据频率分布表可以估计,估计身高不小于170的同学的所占的百分率为:171.5170[0.140.070.040.03]100%21%171.5168.5-⨯+++⨯=-.一般地编制频率分布表的步骤如下:(1)求全距,决定组数和组距;全距是指整个取值区间的长度,组距是指分成的区间的长度;(2)分组,通常对组内的数值所在的区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.例2 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)(1)列出样本频率分布表;(2)估计身高小于134cm 的人数占总人数的百分比.分析 根据样本频率分布表、频率分布直方图的一般步骤解题. 解:(1)样本频率分布表如下:(2)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%.2.练习.(1)课本第55~56页练习第1,4题.五、要点归纳与方法小结本节课学习了以下内容1.总体分布的频率、频数的概念;2.绘制频率分布表的一般步骤.2.2.2频率直方图与折线图教学目标:1.根据频率分布表,能画出频率分布的条形图、直方图、折线图;2.会用样本频率分布去估计总体分布.教学重点:绘制频率直方图、条形图、折线图.教学难点:会根据样本频率分布或频率直方图去估计总体分布.教学过程:一、问题情境1.列频率分布表的一般步骤是什么?2.能否根据频率分布表来绘制频率直方图?3.能否根据频数情况来绘制频数条形图?二、学生活动讨论如何作图.三、建构数学1.频数条形图.例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.星期一二三四五件数 6 2 3 5 1累计 6 8 11 16 17解:象这样表示每一天频数的柱形图叫频数条形图.2.频率分布直方图:例2 下表是1002名学生身高的频率分布表,根据数据画出频率分布直方图.分组频数累计频数频率[150.5,153.5) 4 4 0.04[153.5,156.5)12 8 0.08[156.5,159.5)20 8 0.08[159.5,162.5)31 11 0.11[162.5,165.5)53 22 0.22[165.5,168.5)72 19 0.19[168.5,171.5)86 14 0.14[171.5,174.5)93 7 0.07[174.5,177.5)97 4 0.04[177.5,180.5]100 3 0.03合计100 1解:(1)根据频率分布表,作直角坐标系,以横轴表示身高,纵轴表示频率/组距;(2)在横轴上标上表示的点;(3)在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距.频率分布直方图如图:一般地,作频率分布直方图的方法为:把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率/组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率.这些矩形构成了频率分布直方图.2.频率分布折线图.在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图)例2的频率折线图如图:3.密度曲线.如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.四、数学运用例3 为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)135 98 102 110 99 121 110 96 100 103125 97 117 113 110 92 102 109 104 112109 124 87 131 97 102 123 104 104 128105 123 111 103 105 92 114 108 104 102129 126 97 100 115 111 106 117 104 109(1)编制频率分布表;(2)绘制频率分布直方图;(3)估计该片经济林中底部周长小于100cm的树木约占多少,周长不小于120cm的树木约占多少.解:(1)这组数据的最大值为135,最小值为80,全距为55,可将其分为11组,组距为5.频率分布表如下:(2)直方图如图:(3)从频率分布表得,样本中小于100的频率为0.010.020.040.140.21+++=,样本中不小于120的频率为0.110.060.020.19++=,估计该片经济林中底部周长小于100cm的树木约占21%,周长不小于120cm的树木约占19%.五、要点归纳与方法小结本节课学习了以下内容1.什么是频数条形图、频率直方图、折线图、密度曲线?2.绘制频率分布直方图的一般方法是什么?3.频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势.(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.2.2.3茎叶图教学目标:1.掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计;2.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.教学重点:茎叶图的意义及画法.教学难点:用茎叶图进行数据统计.教学方法:1.通过组织学生观察茎叶图特点,用图形直观的方法引出茎叶图的概念,有利于学生对概念的了解.2.通过本课的学习,使学生进一步体会观察、比较、归纳、分析等一般科学方法的运用.教学过程:一、问题情境情境:某篮球运动员在某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.二、学生活动如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?三、建构数学1.茎叶图的概念:一般地:当数据是一位和两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示;(2)茎叶图只便于表示两位(或一位)有效数字的数据,对位数多的数据不太容易操作;而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰;(3)茎叶图对重复出现的数据要重复记录,不能遗漏四、数学运用1.例题.例1 (1)情境中的运动员得分的茎叶图如图:(2)从这个图可以直观的看出该运动员平均得分及中位数、众数都在20和40之间,且分布较对称,集中程度高,说明其发挥比较稳定.例 2 甲、乙两篮球运动员在上赛季每场比赛的得分如下,试比较这两位运动员的得分水平.甲12,15,24,25,31,31,36,36,37,39, 44,49,50.乙8,13,14,16,23,26,28,33,38,39,51解:画出两人得分的茎叶图.2.练习:(1)右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( A )A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分(2)课本第61页练习第1,3题.五、要点归纳与方法小结1.绘制茎叶图的一般方法;2.茎叶图的特征.2.3.1平均数及其估计甲12345乙8247199362 50328754219441教学目标:1.理解为什么能用样本数据的平均值估计总体的水平;2.初步了解如何运用数学知识和方法进行统计研究,提高统计的准确性和科学性;3.掌握从实际问题中提取数据,利用样本数据计算其平均值,并对总体水平作出估计的方法.教学重点与难点:掌握从实际问题中提取数据,利用样本数据计算其平均值,并对总体水平作出估计的方法.教学方法:引导发现、合作探究.教学过程:一、引入新课某校高一(1)班同学在老师的布置下,用单摆进行测试,以检查重力加速度.全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:2/m s )9.62 9.54 9.78 9.94 10.01 9.66 9.88 9.68 10.32 9.76 9.45 9.99 9.81 9.56 9.78 9.72 9.93 9.949.65 9. 79 9.42 9.68 9.70 9.84 9.90 怎样利用这些数据对重力加速度进行估计? 二、师生活动处理实验数据的原则是使这个近似值与实验数据之间的离差.设这个近似值为x ,那么它与n 个实验值)21(n i a i ,,,=的离差分别为1a x -,2a x -,3a x -,…,n a x -.由于上述离差有正有负,故不宜直接相加.可以考虑离差的平方和,即22221)()()(n a x a x a x -+⋯+-+-=22221212)(2n n a a a x a a a nx ⋯+++⋯++-.所以当 时,离差的平方和最小.故可用算术平均数作为表示这个物理量的理想近似值.结论:三、数学运用例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总 分:150分),试确定这次考试中,哪个班的语文成绩更好一些. 甲班 112 86 106 84 100 105 98 102 94 107 87 112 94 94 99 90 120 98 95 119 108 100 96 115 111 104 95 108 111 105 104 107 119 107 93 102 98 112 112 99 92 102938494941009084114乙班 116 95 109 96 106 98 108 99 110 103 94 98 105 101 115 104 112 101 113 96 108 100 110 98 107 87 108 106 103 97 107 106 111 121 97 107 114 122 101 107 107 11111410610410495111111110例2 下面是某校学生日睡眠时间抽样频率分布表(单位:h ),试估计该 校学生的日平均睡眠时间.睡 眠 时间人 数频 率naa a x n ⋯++=21__)5.66[ ,5 0.05 )75.6[ , 17 0.17 )5.77[ ,33 0.33 )85.7[ ,37 0.37 )5.88[ , 6 0.06 )95.8[ ,2 0.02 合 计1001例3某单位年收入在10000到15000,15000到20000,20000到25000,25000到30000,30000到35000,35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.分析 上述百分比就是各组的频率.巩固深化:3.如果两组数n x x x x ,,,, 321和n y y y ,,, 21的样本平均数分别是x 和y ,那么一组数1122,,,n n x y x x y ++⋯+的平均数是 .4.从某校全体高考考生中任意抽取20名考生,其数学成绩(总分150分) 分别为:102, 105,131,95,83,121,140,100,97,96,95,121,124,135,106,109,110,101,98,97,试估计该校全体高考考生数学成绩.四、归纳整理能根据需要合理选取样本,从中提取基本的数字特征(平均数),会用样本的基本数字特征估计总体的基本数字特征;平均数对数据有“取齐”的作用,代表一组数据的平均水平;形成对数据处理过程进行初步评价的意识.2.3.2方差与标准差(1)教学目标:1.正确理解样本数据方差、标准差的意义和作用,2.学会计算数据的方差、标准差;3.会用样本的基本数字特征估计总体的基本数字特征.教学方法:引导发现、合作探究.教学过程:一、创设情景,揭示课题有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.甲110 120 130 125 120 125 135 125 135 125 乙115 100 125 130 115 125 125 145 125 145 提出问题:哪种钢筋的质量较好?二、学生活动由图可以看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range ).由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.考察样本数据的分散程度的大小,最常用的统计量是方差和标准差. 三、建构数学 1.方差:2.标准差:21)(1-=-=∑x x n s ni i 标准差也可以刻画数据的稳定程度. 3.方差和标准差的意义:描述一个样本和总体的波动大小的特征数,标准差大说明波动大.四、数学运用例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm 2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种 第1年 第2年 第3年 第4年 第5年 甲 9.8 9.9 10.1 10 10.2 乙9.410.310.89.79.8解:甲品种的样本平均数为10,样本方差为 ÷5=0.02.乙品种的样本平均数也为10,样本方差为 ÷5=0.24因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定. 例2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差. 天数151~1181~2211~2241~2271~3301~3331~3361~3。
最新人教版高中数学必修3第二章《第二章统计》示范教案
示范教案整体设计教学分析本节是对第二章知识和方法的归纳和总结,从总体上把握本章,使学生的基本知识系统化和网络化,基本方法条理化,本章内容是相互独立的,随机抽样是基础,在此基础上学习了用样本估计总体和变量间的相关关系,要注意它们的联系.本章介绍了从总体中抽取样本的常用方法,并通过实例,研究了如何利用样本对总体的分布规律、整体水平、稳定程度及相关关系等特性进行估计和预测.当总体容量大或检测具有一定的破坏性时,可以从总体中抽取适当的样本,通过对样本的分析、研究,得到对总体的估计,这就是统计分析的基本过程.而用样本估计总体就是统计思想的本质.要准确估计总体,必须合理地选择样本,我们学习的是最常用的三种抽样方法.获取样本数据后,将其用频率分布表、频率直方图、频率折线图或茎叶图表示后,蕴涵于数据之中的规律得到直观的揭示.运用样本的平均数可以对总体水平作出估计,用样本的极差、方差(标准差)可以估计总体的稳定程度.对两个变量的样本数据进行相关性分析,可发现存在于现实世界中的回归现象.用最小二乘法研究回归现象,得到的线性回归方程可用于预测和估计,为决策提供依据.总之,统计的基本思想是从样本数据中发现统计规律,实现对总体的估计.三维目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.3.通过本节学习,培养学生的直觉思维和归纳能力.重点难点教学重点:会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.教学难点:能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.课时安排1课时教学过程导入新课思路1.为了系统掌握本章的知识,我们复习本章内容,教师直接点出课题.思路2.同一支球队,在不同的教练带领下战斗力会有很大的不同,例如达拉斯小牛队在“小将军”约翰逊的带领下攻防俱佳所向披靡,同样一张书桌有的整洁、有的凌乱,为什么呢?因为球队需要系统的训练、清晰的战术、完整的攻防体系.书桌需要不断整理,我们学习也是一样需要不断归纳整理、系统总结、升华提高,现在我们就统计这章进行归纳复习,教师点出课题.推进新课新知探究提出问题(1)随机抽样的内容包括哪些?(2)用样本估计总体包括几部分?(3)变量的相关性包括几部分?(4)画出本章知识网络.讨论结果:(1)随机抽样①简单随机抽样抽签法:将总体中的所有个体编号(号码可以从1到 N);将1到N 这N 个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作).将号签放在同一不透明的容器中,并搅拌均匀;从箱中每次抽出1个号签,并记录其编号,连续抽取k 次;从总体中将与抽到的签的编号相一致的个体取出.抽样具有公平性原则:等可能性、随机性;抽签法适用于总体中个数N 不大的情形.随机数表法:对总体中的个体进行编号(每个号码位数一致);在随机数表中任选一个数作为开始;从选定的数开始按一定的方向读下去,得到数码.若不在编号中,则跳过;若在编号中,则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止;根据选定的号码抽取样本.②系统抽样采用随机的方式将总体中的个体编号;将整个的编号按一定的间隔(设为k)分段,当N n (N 为总体中的个体数,n 为样本容量)是整数时,k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时k =N ′n,并将剩下的总体重新编号;在第一段中用简单随机抽样或系统抽样确定起始的个体编号;将编号为,+k ,+2k ,…,+(n -1)k 的个体抽出. ③分层抽样将总体按一定标准分层;计算各层的个体数与总体的个体数的比;按各层个体数占总体的个体数的比确定各层应抽取的样本容量;在每一层进行抽样(可用简单随机抽样或系统抽样).适用于总体中个体有明显的层次差异.(2)用样本估计总体①用样本的频率分布估计总体分布频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图反映样本的频率分布.其一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;决定分点;列频率分布表;画频率分布直方图.频率分布直方图的特征:从频率分布直方图可以清楚地看出数据分布的总体趋势;从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.茎叶图.画茎叶图的步骤如下:a .将每个数据分为茎(高位)和叶(低位)两部分.b .将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧;c .将各个数据的叶按大小次序写在其茎右(左)侧.用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观、清晰.②用样本的数字特征估计总体的数字特征a .利用频率分布直方图估计众数、中位数、平均数估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. 众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中的很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大.三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.b .标准差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. c .方差从数学的角度考虑,人们有时用标准差的平方s 2(即方差)来代替标准差,作为测量样本数据分散程度的工具:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.(3)变量间的相关关系①变量之间的相关关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:a .确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;b .带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.②两个变量的线性相关a .散点图:将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫作散点图.b .正相关与负相关:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)c .最小二乘法与回归直线方程:y ^=a ^+b ^x ,其中b ^=∑i =1n x i y i -n x y∑i =1n x 2i -n x 2,a ^=y -b ^x . 上述方程中的b ^,a ^是在所得样本数据的点到这条直线的距离的平方和最小的情形下得到的,这种使“偏差平方和为最小”的方法就是最小二乘法.(4)本章知识网络应用示例 思路1例1某单位有老人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .先从老人中剔除1人,再用分层抽样解析:总体总人数163人,样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163分配无法得到整数解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则依次为12、18、6.答案:D点评:选择抽样方法过程中,应结合三种抽样方法的使用范围和实际情况灵活使用各种抽样方法.在现实生活中,由于资金、时间有限,人力、物力不足,加之不断变化的环境条件,普查往往不可能,因此采取抽样调查.在实际操作中,为了使样本具有代表性,通常要了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%. 为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.分析:本题的抽样方法属于分层抽样,根据分层抽样的方法求解.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x=10%,解得b =50%,c =10%. 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人). 点评:分层抽样适用于数目较多且各部分之间具有明显差异的总体,由于在分层抽样中抽取样本应该在各层用同一抽样比抽取,所以应首先求出各个年级的人数分别是多少,再根据抽样比计算各层分别应该抽取的人数,另外还要注意,不论用哪一种抽样方法,在整个抽程.分析:因为1 002=20×50+2,为保证“等距”分段,应先剔除2人.对“多余”个体的剔除应不影响总体中每个个体被抽到的可能性,仍然能保证抽样的公平性.解:(1)将1 002名学生用随机方式编号;(2)从总体中剔除2人(可用随机数表法),将剩下的 1 000名学生重新编号(000,001,002,…,999),并分成20段;(3)在第一段000,001,002,…,049这50个编号中用简单随机抽样抽出一个(如003)作为起始号码;(4)将编号为003,053,103,…,953的个体抽出,组成样本.点评:选用系统抽样方法时,应着力解决N不能被n整除的问题.在剔除“多余”的思路1例1为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生的总人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率.解:(1)由于各小组概率的和是1,因此第四小组的频率为1-0.1-0.3-0.4=0.2;由于第一小组的频数是5,频率为0.1,因此总人数为5÷0.1=50.(2)由于第三小组的频率最大,因此学生跳绳次数的中位数落在第三小组内.(3)由于第三小组的频率和第四小组的频率和为0.6,因此该校此年级跳绳成绩的优秀率是0.6.点评:本题考查对直方图的理解及读图能力,直方图中横轴表示试验结果,纵轴表示频率与组距的比值.例2下面是关于世界20个地区受教育的人口的百分比与人均收入的散点图.(1)两个变量有什么样的相关关系?(2)利用散点图中的数据建立的回归方程为y ^=3.193x +88.193,若受教育的人口百分比相差10%,其人均收入相差多少?解:(1)散点图中的样本点基本集中在一个条型区域中,因此两个变量呈线性相关关系.(2)回归系数为3.193,因此当人口的百分比相差10%时,其人均收入相差3.193×10=知能训练1.为了了解所加工的一批零件的长度,抽测了200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C2.为了解电视对生活的影响,就平均每天看电视的时间,一个社会调查机构对某地居民调查了10 000人,并根据所得数据画出样本的频率分布直方图(如下图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人做进一步调查,则在[2.5,3](小时)时间段内应抽出的人数是()A.25 B.30C.50 D.75解析:抽出的100人中平均每天看电视的时间在[2.5,3](小时)时间内的频率是0.5×0.5=0.25,所以这10 000人中平均每天看电视的时间在[2.5,3](小时)时间内的人数是10000×0.25=2 500,抽样比是10010 000=1100,则在[2.5,3](小时)时间段内应抽出的人数是 2500×1100=25.答案:A3.某校共有师生1 600人,其中教师有100人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取的学生数为________.解析:抽样比是801 600=120,该校有学生 1 600-100=1 500(人).则抽取的学生为 1500×120=75.答案:754.从两个班中各随机抽取10名学生,他们的数学成绩如下:通过作茎叶图,分析两个班学生的数学学习情况.解:茎叶图为:从这个茎叶图中可以看出乙班的数学成绩更好一些.5.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从下面随机数表第2行第18列的数7开始向右读,请你依次写出最先检测的5袋牛奶的编号.84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 56 67 1998 10 50 71 7512 86 73 58 0744 39 62 58 7973 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 06 13 4299 66 02 79 54……解:从第2行第18列的数开始向右读,是小于或等于799的数就为1个,即719,050,717,512,358是最先检测的5袋牛奶的编号.6.某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为应怎样进行抽样?分析:因为总体中人数较多,所以不宜采用简单随机抽样.又由于持不同态度的人数差异较大,故也不宜用系统抽样方法,所以应采用分层抽样.解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000=4872 400,应取60×4872 400≈12人;“喜爱”占4 56712 000,应取60×4 56712 000≈23人;“一般”占3 92612 000,应取60×3 92512 000≈20人;“不喜爱”占1 07212 000,应取60×1 07212 000≈5人.因此,采用分层抽样的方法在“很喜爱”“喜爱”“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.拓展提升为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);(Ⅱ)补全频率分布直方图;(Ⅲ)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?分析:(Ⅰ)利用频率分布表的第2行求出样本容量,根据频率=频数/样本容量,来填充频率分布表的空格;(Ⅱ)根据(Ⅰ)补全频率分布直方图;根据频率分布表解决.解:(1)(2)频率分布直方图如下图所示.(3)成绩在75.5~80.5分的学生占70.5~80.5分的学生的510=12,因为成绩在70.5~80.5分的学生频率为0.2,所以成绩在75.5~80.5分的学生频率为0.1,成绩在80.5~85.5分的学生占80.5~90.5分的学生的510=12,因为成绩在80.5~90.5分的学生频率为0.32,所以成绩在80.5~85.5分的学生频率为0.16.所以成绩在75.5~85.5分的学生频率为0.1+0.16=0.26,由于有900名学生参加了这次竞赛,所以该校获得二等奖的学生约为0.26×900=234(人).课堂小结本节课主要是对第二章基本知识进行系统化、网络化,并对常见题型加以巩固提高.作业本章小结Ⅲ.巩固与提高1、5.设计感想本教学设计依据高中数学课程标准,并结合高考,对本章进行了全面复习和巩固.所选题例新颖,贴近学生实际,是一节非常好的探究性复习课.备课资料广告中数据的可靠性今天已进入数字时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观具体,所以让数据说话是许多广告的常用手法,但广告中的数据可靠吗?在各类广告中,你会经常遇到由“方便样本(即样本没有代表性)”所产生的结论.例如,某减肥药的广告称,其减肥的有效率为75%.见到这样的广告你会怎么想?通过学习统计这部分内容,你会提出下面的问题吗?这个数据是如何得到的;该药在多少人身上做过试验,即样本容量是多少;样本是如何选取的;等等.假设该药仅在4个人身上做过试验,样本容量为4,用这样小的样本容量来推断总体是不可信的.“现代研究证明,99%以上的人感染有螨虫……”这是一家化妆品公司的广告.第一次听到此话的人会下意识地摸一下自己的皮肤,甚至会感觉到有虫在里面蠕动,恨不得立即弄些药膏抹抹,广告的威慑作用不言而喻.但这里99%是怎么得到的?研究共检测了多少人?这些人是如何挑选的?如果检测的人都是去医院看皮肤病的人,这个数据就不适用于一般人群.某化妆品的广告声称:“它含有某种成分,可以彻底地清除脸部皱纹,只需10天,就能让肌肤得到改善.”我们看到的数字很精确,而“能让肌肤得到改善”却是很模糊的.这样的数字能相信吗?试验是在什么样的皮肤上做的?试验的人数是多少?当我们见到广告中的数据时一定要多提几个问题.。
必修三第二章统计复习教案
必修三第二章统计复习教案一、基础知识回顾1.1 数据的分类数据可以分成两类:定量数据和定性数据。
定量数据又可以分成离散型数据和连续型数据。
1.2 数据的搜集与整理数据搜集包括问卷调查、观察、实验、采访、统计报表等方式。
数据整理包括数据的分类、汇总、整理等。
1.3 数据的描述统计1.3.1 频数和频率频数是指每种取值出现的次数,频率是指每种取值出现的次数占总次数的比例。
1.3.2 累计频数和累计频率累计频数是指某个区间的频数加上前面所有区间的频数之和,累计频率是指某个区间的频率加上前面所有区间的频率之和。
1.3.3 均值、中位数和众数均值是指所有数据的总和除以数据个数,中位数是指将所有数据按大小排序后排在中间的数,众数是指出现次数最多的数。
1.3.4 极差和标准差极差是指最大值和最小值的差,标准差是指各个数据和均值的差的平方和的平均数的算术平方根。
二、实践应用2.1 统计图的绘制统计图包括条形图、饼图、直方图、折线图等,可以反映数据的频数和分布规律。
2.2 描述统计的应用应用描述统计可以对数据进行初步分析,为后续的推断统计提供参考,也可以为决策提供数据支持。
2.3 推断统计的基本原理推断统计包括参数估计和假设检验两个方面。
参数估计是指利用样本数据推断总体参数的取值,假设检验是指根据样本数据推断总体参数是否满足某个假设。
三、拓展应用3.1 正态分布和标准化分布正态分布是指在概率论和统计学中最重要的分布之一,其分布图像呈钟形。
标准化分布是指将正态分布转化为符合标准正态分布的过程。
3.2 相关系数和回归分析相关系数是指用于反映两个变量是否有相关关系的一种统计指标,回归分析是指建立两个或多个变量之间关系的一种数学模型。
3.3 统计软件的应用随着计算机技术的发展,统计软件的应用越来越广泛,可以大大提高数据分析的效率和准确性。
四、考试重点必修三第二章的考试重点包括数据的描述统计、统计图的绘制、推断统计的基本原理以及常见的综合应用题型。
【精品】必修三第二章统计全章学案
必修三第二章统计阅读教材P48章前语,回答下列问题.1.为什么要学习统计?2.统计学要进行哪些研究?3.本章的学习内容是什么?2.1随机抽样阅读教材P49,回答下列问题.1.对全校高中学生的身高情况的调查,是否可以通过测量所有学生的身高来获得数据?2.对全校高中学生的身高情况的调查,如果用抽样的方法来获得数据,请回答如下问题:个体:_______________________________________________________________总体:_______________________________________________________________总体容量:___________________________________________________________样本:_______________________________________________________________样本容量:___________________________________________________________样本与总体的关系:___________________________________________________抽样:_______________________________________________________________随机抽样:___________________________________________________________3.在对全校高中学生的身高情况调查过程中,如何抽样才能使样本有代表性,才能够准确的反应出总体的情况?2.1.1简单随机抽样一、学习目标理解简单随机抽样的概念;学会用抽签法、随机数表法进行简单随机抽样;理解简单随机抽样的优缺点和适用情况二、重、难点重点:简单的随机抽样以及应用难点:随机数表法进行简单随机抽样三、学习过程1、阅读教材P50,回答下列问题?a.什么叫简单随机抽样?b.简单随机抽样要满足的条件是________________________________;c.常用的简单随机抽样方法有________________,__________________________;2、抽签法a.抽签法的步骤?①②③④b.抽签法的优点____________________________________________________________________;缺点____________________________________________________________________;c.抽签法的适用情况:_______________________________________________________________;3、随机数表法a.随机数表法的步骤?①②③④b.与抽签法相比较,随机数表法的优势是_______________________________________________;缺点是____________________________________________________________________________;c.随机数表法的注意事项①②③4、请为下列统计问题设计随机抽样方案,并分析你所设计的抽样方法的优劣a.学校希望了解高一1班日常管理情况,要求随机选派5名同学参与问卷调查b.调查我校学生使用的手机品牌,希望随机抽取容量为100的样本(我校在校生一共人)2.1.2 系统抽样一、学习目标通过实例了解系统抽样的方法;掌握系统抽样的一般步骤;理解系统抽样与简单随机抽样的关系 二、重、难点重点:通过实例了解系统抽样的方法 难点:分析系统抽样方法的优劣 三、学习过程1.当总体中的个体数较多时,可将总体分成的几个部分,然后按照预先制定的规则,从每一部分,得到所需要的样本,这样的抽样叫系统抽样.由于抽样的间隔相等,因此系统抽样也被称作。
[精品]新人教A版必修三高中数学数学人教A版必修3第二章《统计》教案和答案
2. 1.1简单随机抽样一、三维目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
三、教学设想:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
(为什么?)那么,应当怎样获取样本呢?【探究新知】一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
二、抽签法和随机数法1、抽签法的定义。
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
【说明】抽签法的一般步骤:(1)将总体的个体编号。
辽宁省大连渤海高级中学高中数学数学必修三2-2-1 用样
2017—2018学年度第一学期渤海高中高一教案主备人:使用人:时间:2018年3月9日〖例1〗:下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高 (单位cm)列出样本频率分布表﹔ (2)一画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.。
分析:根据样本频率分布表、频率分布直方图的一般步骤解题。
解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3) 由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.〖例2〗:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1) 第二小组的频率是多少?样本容量是多少?(2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?cm )(3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.0824171593=+++++又因为频率=第二小组频数样本容量所以 121500.08===第二小组频数样本容量第二小组频率(2)由图可估计该学校高一学生的达标率约为171593100%88%24171593+++⨯=+++++(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内。
辽宁省大连渤海高级中学高中数学数学必修三1-2 算法的语句 教案 精品
2017—2018学年度第一学期渤海高中高一教案主备人:使用人:时间:2018年3月1日1.关于循环语句的说法不.正确的是()A.算法中的循环结构由while语句来实现B.循环语句中有for语句和while语句C.一般来说for语句和while语句可以互相转换D.算法中的循环结构由循环语句来实现答案 A解析算法中的循环结构由循环语句来实现,循环语句包括for语句和while语句两种不同的格式,且一般情况下这两种语句可以相互转换.所以选项A是错误的,其余都正确.2.下列问题可以设计成循环语句计算的有()①求1+3+32+…+39的和;②比较a,b两个数的大小;③对于分段函数,要求输入自变量,输出函数值;④求平方值小于100的最大整数.A.0个 B.1个 C.2个 D.3个答案 C解析①和④用到循环语句;②③用不到.故选C.3.下面程序输出的结果为()for i=1:2:9S=2*i+3endSA.17 B.19 C.21 D.23答案 C解析S=2×9+3=21.4.有以下程序段,其中描述正确的是()k=8;while k=0k=k+1;endA.while循环执行10次B.循环体是无限循环C.循环体语句一次也不执行D.循环体语句只执行一次答案C解析对于while语句条件为真,则执行循环体,而本题k=8,不满足条件k=0,所以循环体语句一次也不执行.[呈重点、现规律]1.应用循环语句编写程序要注意以下三点:(1)循环语句中的变量一定要合理设置变量的初始值.(2)循环语句在循环的过程中需要有“结束”的语句,即有跳出循环的机会.(3)在循环中要改变循环条件的成立因素.程序每执行一次循环体,循环条件中涉及到的变量就会发生改变,且在步步逼近跳出循环体的条件.2.循环语句主要用来实现算法中的循环结构,处理一些需要反复执行的运算任务,如累加求和,累乘求积等问题时常用到.一、基础过关1.下列给出的四个框图,其中满足while语句格式的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)答案 B解析while语句的特点是“前测试”,由于(2),(3)符合,故选B.2.以下程序执行完毕后a的值是()a=1;for i=0:2:100a=a+1;endaA.50 B.51 C.52 D.53答案C解析由于i=0,2,4,6,…,100,共51个数,即程序进行51次循环,而a=a+1经51次循环后由1变为52.3.下列程序的运行结果为()i=0;S=0;while S<=20i=i+1;S=S+i;endiA.5 B.6 C.7D.8答案B解析S=0+1+2+…,由于0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,∴i=6.4.下列的程序执行后输出的结果是( ) n=5; S=0; while S<15 S=S+n n=n-1 endA.-1 B.0 C.1 D.2 答案 B 解析当S=5+4+3+2=14时,n=2-1=1,此时S<15继续执行循环体,则S=5+4+3+2+1=15,n=1-1=0,此时S=15,循环结束,输出0. 5.下面的程序运行后第3次输出的数是________. x=1; for i=1:1:6 x=x+1/2;end 答案 2解析 该程序中关键是循环语句, 第一次输出的数是1,第二次输出的数是x=1+12=32,第三次输出的数是x=1+12+12=2.6.求1+2+22+…+2100的程序如下,请补全.答案 S =S +2^i解析 由于进行1+2+22+…+2100为有规律的累加运算,其中底数为2,指数i的步长为1.7.写出计算102+202+…+1 0002的算法程序,并画出相应的程序框图.解程序如下:S=0;i=10;S=0;while i<=1 000或 for i=10:10:1 000 S=S+i^2;S=S+i^2;i=i+10; endend SS程序框图如图所示:二、能力提升8.在下面的程序中,输出的结果应为()x=3;sum=0;while x<=7sum=sum+x;x=x+1;print(%io(2),x);endsumA.7,25 B.8,25C.3,4,5,6,7,25 D.4,5,6,7,8,25答案 D9.执行下列程序,计算机能输出结果仅是15的是()A.S=0;for x=1:5,S=S+x,disp(S);endB.S=0;for x=1:5,S=S+x,end;disp(S)C.S=0;for x=1:5,S=S+x;disp(S);endD.S=0; for x=1:5,S=S+x;end;disp(S)答案 D解析由disp(S)在end前,知A、C输出的为S=1,3,6,10,15,而B中循环体“S=S+x”后应用“;”而不是“,”.10.写出以下程序的算术表达式.N=2;T=1;while N<=5T=N*T;N=N+1;End该程序的表达式为________________.答案T=1×2×3×4×511.已知程序框图如图所示.试分析算法的功能,并用for语句写出其程序.解此程序框图的功能是求方程x(x+2)=48的正整数解.for语句为for i=1:48if i*(i+2)=48print(%io(2),i);endend12.根据下列程序画出相应的程序框图,并写出相应的算法.。
高中数学必修三教案:第2章+统计复习与小结
第2章统计复习与小结教学目标:1.结合具体的实际问题情境,理解随机抽样的必要性和重要性.2.学会用简单随机抽样方法从总体中抽取样本;3.通过对实际问题的分析,了解分层抽样和系统抽样方法.教学重点、难点:1.简单随机抽样,分层抽样和系统抽样的准确应用;2.会列频率分布表,画频率分布直方图,频率折线图,茎叶图;3.计算数据的标准差和方差;4.利用散点图直观认识变量间的相关关系.能根据给出的线性回归方程的系数公式建立线性回归方程.教学方法:讲练结合.教学过程:一、复习统计相关知识点1.抽样方法.(1)简单随机抽样(2)系统抽样(3)分层抽样2.样本分布估计总体分布.(1)频率分布表(2)直方图(3)折线图(4)散点图(5)茎叶图3.样本特征数估计总体特征数.(1)平均数(2)方差(标准差)(3)众数(4)中位数二、数学运用例1 在一次有奖明信片的100000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.例2 某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用___________抽样法.例3 某社区有500个家庭,其中高收入家庭125户,中等收入家庭280 户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是①__________②______________.例4 某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______________辆.例5 两名跳远运动员在10次测试中的成绩分别如下(单位:m):甲:5.58 5.93 6.07 5.91 5.99 6.13 5.89 6.05 6.00 6.19 乙:6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21 试估计哪位运动员的成绩比较稳定.例6 如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5~89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)练习:1.如图,是某单位职工年龄(取正整数)的频数分布图,根据图形提供的信息,回答下列问题(直接写出答案)注:每组可含最低值,不含最高值.(1)该单位职工共有多少人?(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?2.为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60 的样本(60名男生的身高),分组情况如下:(1)求出表中a,m的值.(2)画出频率分布直方图和频率折线图.三、归纳小结根据简单随机抽样,分层抽样和系统抽样的特点准确应用;会列频率分布表,画频率分布直方图,能够根据数据的平均数及方差对总体估计.精美句子1、善思则能“从无字句处读书”。
必修3第二章 统计 教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第二章统计统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据。
在客观世界中,需要认识的现象无穷无尽。
要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象。
如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题。
现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视。
“课标”中指出统计与概率的基础知识已经成为一个未来公民的必备常识。
从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学要求随着学段的升高逐渐提高。
在义务教育阶段的统计与概率知识的基础上,“课标”要求教科书通过实际问题及情景,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
全章共安排了3个小节,教学约需16课时,具体内容和课时分配(仅供参考)如下:2.1 随机抽样约5课时2.2 用样本估计总体约5课时2.3变量间的相关关系约4课时实习作业约1课时小结约1课时一、教科书内容与课程学习目标通过实际问题情境,学习随机抽样、用样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异。
本章知识展开的结构框图如下:现代社会是信息化的社会,人们面临形形色色的问题,把问题用数量化的形式表示,是利用数学工具解决问题的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年度第二学期
渤海高中高一教案
主备人:使用人:时间:2018年 3 月 13 日
=x+2
1.执行如图的程序框图,则输出S 的值为( )
A .2
B .﹣3
C .
D .
2.若下面的程序框图输出的S 是30,则条件①可为( )
A.n≤3 B.n≤4 C.n≤5 D.n≤6
3.如图给出的是计算的值的一个框图,其中菱形判断框内应填入的条件是()
A.i>5 B.i<5 C.i>6 D.i<6
4.
图中的程序框图所描述的算法称为欧几里得展转相除法,若输入m=209,n=121,则输出m的值等于()
A.10 B.11 C.12 D.13
5.
四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:
①y与x负相关且=2.347x﹣6.423;
②y与x负相关且=﹣3.476x+5.648;
③y与x正相关且=5.437x+8.493;
④y与x正相关且=﹣4.326x﹣4.578.
其中一定不正确的结论的序号是()
A.①②B.②③C.③④D.①④
6.
右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为()
A.B.C.D.
7.某学校共有师生3200人,先用分层抽样的方法,从所有师生中抽取一个容量为160的样本.已知从学生中抽取的人数为150,那么该学校的教师人数是.
8.已知变量x,y的取值如表所示:
如果y与x线性相关,且线性回归方程为=x+2,则的值是.
9.前不久商丘市因环境污染严重被环保部约谈后,商丘市近期加大环境治理力度,如表提供了商丘某企业节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(Ⅱ)已知该企业技改前100吨甲产品的生产能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6
×4.5=66.5)参考公式: =, =﹣.
10.
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说。