第6章状态反馈控制与观测器设计
现代控制理论习题之状态观测设计
对应于原系统的观测器矩阵: ⎡0 ⎤ ⎡0 ⎤ P1 = V0 −1 ⎢ ⎥ = ⎢ ⎥, Po = [ p1 ⎣1 ⎦ ⎣1 ⎦
u
∑ ( A, B, C )
y
6.5
2
1 x
x1
15.3 x
x3
题 6-2 图 1
(2) 确定降维观测器的维数:m=1,n=3,则 n-m= 2。 分解输出系数矩阵 c,获得线性变换矩阵 T,对原状态空间表达式进行线性变换,使 各输出变量 y 变成各状态变量的单值函数:
f *(s) = (s + 3)(s + 4) = s2 + 7s +12 ⎡s 0⎤ ⎡−1 −1⎤ ⎡l1⎤ f (s) = sI − (A22 − LA 12) = ⎢ ⎥ −⎢ ⎥ + ⎢ ⎥[− 2 − 4] ⎣0 s⎦ ⎣−1 −1⎦ ⎢ ⎣l2⎥ ⎦ = s2 + (−4l2 − 2l1 + 2)s + (2l1 − 2l2) ⎡l ⎤ ⎡ 3.1667⎤ f *(s) = f (s) ⇒ L = ⎢ 1⎥ = ⎢ ⎥ ⎢l2⎦ ⎥ ⎣− 2.8333 ⎦ ⎣
系统能观,可设计观测器。 求希望特征多项式:
f * ( s ) = ( s + 3)( s + 4)( s + 5) = s 3 + 12 s 2 + 47 s + 60
求观测器特征多项式:
f ( s ) = sI − A + LC
一阶倒立摆系统模型分析状态反馈与观测器设计
一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。
以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。
一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。
在进行线性化之前,首先需要确定系统的状态变量和输入变量。
对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。
在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。
A、B、C和D是系统的矩阵参数。
二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。
在设计状态反馈控制器之前,首先需要确定系统的可控性。
对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。
如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。
在确定系统可控性之后,可以通过状态反馈控制器来实现控制。
状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。
具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。
状态反馈控制器的输入是状态变量,输出是控制输入变量。
然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。
三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。
在设计观测器之前,首先需要确定系统的可观性。
对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。
如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。
在确定系统可观性之后,可以通过观测器来实现状态估计。
观测器的设计可以通过选择适当的观测增益矩阵L来实现。
具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。
现代控制实验状态反馈器和状态观测器的设计
现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。
状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。
状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。
本文将分别介绍状态反馈器和状态观测器的设计原理和方法。
一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。
其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。
2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。
常用的设计方法有极点配置法、最优控制法等。
3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。
状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。
4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。
二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。
其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。
常用的设计方法有极点配置法、最优观测器法等。
3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。
状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。
4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。
现代控制实验--状态反馈器和状态观测器的设计
现代控制实验--状态反馈器和状态观测器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN状态反馈器和状态观测器的设计一、实验设备PC 计算机,MATLAB 软件,控制理论实验台,示波器二、实验目的(1)学习闭环系统极点配置定理及算法,学习全维状态观测器设计法;(2)掌握用极点配置的方法(3)掌握状态观测器设计方法(4)学会使用MATLAB工具进行初步的控制系统设计三、实验原理及相关知识(1)设系统的模型如式所示若系统可控,则必可用状态反馈的方法进行极点配置来改变系统性能。
引入状态反馈后系统模型如下式所示:(2)所给系统可观,则系统存在状态观测器四、实验内容(1)某系统状态方程如下10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =理想闭环系统的极点为[]123---.(1)采用 Ackermann 公式计算法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1; 3; -6];P=[-1 -2 -3];K=acker(A,B,P)Ac=A-B*Keig(Ac)(2)采用调用 place 函数法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6];eig(A)'P=[-1 -2 -3];K=place(A,B,P)eig(A-B*K)'(3)设计全维状态观测器,要求状态观测器的极点为[]---123代码:a=[0 1 0;0 0 1;-4 -3 -2];b=[1;3;-6];c=[1 0 0];p=[-1 -2 -3];a1=a';b1=c';c1=b';K=acker(a1,b1,p);h=(K)'ahc=a-h*c(2)已知系统状态方程为:10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =(1)求状态反馈增益阵K ,使反馈后闭环特征值为[-1 -2 -3];代码:A=[0 1 0;0 0 1;4 -3 -2];b=[1;3;-6];p=[-1 -2 -3];k=acker(A,b,p)A-b*keig(A-b*k)(2)检验引入状态反馈后的特征值与希望极点是否一致。
状态观测器设计
Chapter6 状态观测器设计在工程实际中能量测的信号只是系统的输出y ,而不是系统的内部状态。
有的状态变量是物理量,有的则不是物理量,因而状态变量未必都可以测量得到。
当状态不能全部量测时,我们就无法获得系统的状态信息,因而状态反馈在工程上就不能实现。
1964年,Luenberg er G D ⋅⋅(龙伯格)提出的“状态观测器”理论成功的解决了系统状态信息的获取问题。
Luenberg er G D ⋅⋅认为,当已知系统输入为u ,系统的输出为y ,他们必然与其内部状态x 有联系,也就是说我们应该能通过测量),(y u 对未知的状态量x 进行推论和估计。
“状态观测器”本质上是一个“状态估计器”(或称动态补偿器),其基本思路是利用容易量测的被控对象的输入u 和输出y 对状态进行估计(和推测)。
6.1 观测器设计考虑线性时不变系统Cx y Bu Ax x=+=,& (6-1) 基于(6-1)人为地构造一个观测器,观测器的输出为x ~,如果能满足 0)~(lim =-∞→x x t (6-2)则观测器的输出x ~可以作为内部状态)(t x 的估值,从而实现“状态重构-即重新构造“状态x ~”来作为“原状态x ”的估值。
观测器的输出x ~应该能由系统输入u 和系统输出y 综合而成(系统输入u 和系统输出y 在工程实际中容易检测到)。
∞→t 只是数学上的表述,实际工程中是很快的过程(<s 1)。
为了得到估计值x ~,一个很自然的想法是构造一个模拟系统 Bu x A x +=~~&,x C y ~~= (6-3) 用该模拟部件(6-3)去再现系统(6-1)。
因为模拟系统(6-3)是构造的,故x ~是可量测的信息,若以x ~作为x 的估值。
其估计误差为x x e -≡~,(6-3)减(6-1),满足方程 Ae e =& (6-4) 讨论:①若A 存在不具有负实部的特征值,Ae e=&将不会稳定,则当初始误差0)0(≠e ,即)0()0(~x x ≠时,有0)]()(~[lim ≠-∞→t x t x t ,这样x ~就不能作为x 的估计值,即Ae e =&不能作为一个观测器。
现代控制理论-6-状态反馈和状态观测器-第111讲
第6章 状态反馈和状态观测器
经典控制:只能用系统输出作为反馈控制器的输入; 现代控制:由于状态空间模型刻画了系统内部特征, 故而还可用系统内部状态作为反馈控制器的输入。 根据用于控制的系统信息:状态反馈、输出反馈
• 控制系统的动态性能,主要由其状态矩阵的特征 值(即闭环极点)决定。
• 基于状态空间表达式,可以通过形成适当的反馈 控制,进而配置系统的极点,使得闭环系统具有 期望的动态特性。
(2)确定将原系统化为能控标准型 (A, B,C ) 的变换阵 Pc2
若给定状态方程已是能控标准型,那么 Pc2 I ,无需转换
只需要求系统不变量 i
,
然后确定Pc
即可
2
系统不变量: f () I A n n1n1 1 0
1 0 0
n1 1
Pc2 [ An1b, An2b,, b]
2
0
1 2 n1 1
2019/7/21
20
(3)根据给定或求得的期望闭环极点,写出期望的特征多项式:
f *( ) ( 1() 2 )
(
n )
0
B
P 1 c2
B
0
1
能控标准型下,加入状态反馈后,系统矩阵为:
0
1
0
0
0
0
1
A BK
0
0
0
0
1
(0 k1 ) (1 k2 ) ( 2 k3 ) ( n1 kn )
现代控制理论状态反馈和状态观测器的设计实验报告
本科实验报告课程名称:现代控制理论实验项目:状态反馈和状态观测器的设计实验地点:中区机房专业班级:自动化学号:学生:指导教师:年月日现代控制理论基础一、实验目的(1)熟悉和掌握极点配置的原理。
(2)熟悉和掌握观测器设计的原理。
(3)通过实验验证理论的正确性。
(4)分析仿真结果和理论计算的结果。
二、实验要求(1)根据所给被控系统和性能指标要求设计状态反馈阵K。
(2)根据所给被控系统和性能指标要求设计状态观测器阵L。
(3)在计算机上进行分布仿真。
(4)如果结果不能满足要求,分析原因并重复上述步骤。
三、实验容(一)、状态反馈状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制作为受控系统的控制输入,采用状态反馈不但可以实现闭环系统的极点任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。
1.全部极点配置给定控制系统的状态空间模型,则经常希望引入某种控制器,使得该系统的闭环极点移动到某个指定位置,因为在很多情况下系统的极点位置会决定系统的动态性能。
假设系统的状态空间表达式为(1)其中 n m C r n B n n A ⨯⨯⨯::;:;: 引入状态反馈,使进入该系统的信号为Kx r u -=(2)式中r 为系统的外部参考输入,K 为n n ⨯矩阵. 可得状态反馈闭环系统的状态空间表达式为(3)可以证明,若给定系统是完全能控的,则可以通过状态反馈实现系统的闭环极点进行任意配置。
假定单变量系统的n 个希望极点为λ1,λ2, …λn, 则可以求出期望的闭环特征方程为=)(*s f (s-λ1)(s-λ2)…(s-λn)=n n n a s a s +++- 11这是状态反馈阵K 可根据下式求得K=[])(100*1A f U c -(4)式中[]b A Ab b U n c 1-= ,)(*A f 是将系统期望的闭环特征方程式中的s 换成系统矩阵A 后的矩阵多项式。
例1已知系统的状态方程为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=•111101101112 采用状态反馈,将系统的极点配置到-1,-2,-3,求状态反馈阵K..其实,在MATLAB的控制系统工具箱中就提供了单变量系统极点配置函数acker(),该函数的调用格式为K=acker(A,b,p)式中,p为给定的极点,K为状态反馈阵。
第六章状态反馈和状态观测器1
G(s)
s(s
1 6)(s
12)
s3
1 18s 2
72s
综合指标为: % 5%;tS 0.5s,ep 0,试用状态反馈实现上述指标。
解:将极点配置为一对主导极点和一个非主导极点;根据二阶
系统的性能指标,求出 0.707,n 10。取 0.707,n 10
则,主导极点为:
s1,2 0.707 j7.07
变量,也没有增加系统的维数,但可以通过K阵的选择自由地改变闭环系统 的特征值,从而使系统达到所要求的性能。
6.1.2 输出反馈
输出反馈是将受控系统的输出变量,按照线性反馈规律反馈到输入端, 构成闭环系统。这种控制规律称为输出反馈。经典控制理论中所讨论的反馈 就是这种反馈,其结构图如下 :
r(t) u(t) B
r(t) u(t) B
x(t) x(t) C
y(t)
A
K
图中受控系统的状态空间表达式为 (A, B,C)的状态空间表达式为 0 x Ax Bu
y Cx
式中,A为n×n矩阵;B为n×r矩阵;C为m×n矩阵。
状态反馈控制律为
u r Kx
式中,r为r×1参考输入;K为r×n状态反馈阵。对单输入系统,K为1×n的 行向量。
sn rn1sn1 r0 0
实际系统与希望系统的特征方程的系数应当相一致。
3、状态反馈阵K的计算步骤 1)判断A,b能控性 2)写出实际的闭环特征方程(传递阵的分母为0的方程)
SI [A bK] 0
3)根据要配置的特征根,写出希望的特征方程
f (s) (s 1)(s n ) 0
4)对应实际的与希望的特征方程,求出K。
被控系统 模拟系统
x Ax Bu y Cx xˆ (A GC)xˆ Bu Gy yˆ Cxˆ
现代控制理论之状态反馈与状态观测器介绍课件
状态反馈的设计方法
确定系统状态方程
设计状态反馈控制器
计算状态反馈增益矩阵
验证状态反馈控制器的性能
状态反馈的优缺点
优点:能够有效地减小系统的动态响应时间,提高系统的稳定性和动态性能。
优点:可以实现对系统的解耦控制,使得系统的控制更加简单和直观。
现代控制理论之状态反馈与状态观测器介绍课件
演讲人
01.
状态反馈
02.
03.
目录
状态观测器
状态反馈与状态观测器的关系
状态反馈
状态反馈的基本概念
状态反馈是一种控制策略,通过调整系统的状态来达到控制目标。
状态反馈控制器的设计基于系统的状态方程,通过调整输入信号来影响系统的状态。
状态反馈控制器可以改善系统的动态性能,提高系统的稳定性和鲁棒性。
04
状态反馈与状态观测器的区别
状态反馈需要知道系统的模型,状态观测器不需要知道系统的模型
04
状态反馈用于控制系统,状态观测器用于估计系统状态
03
状态观测器:通过观测系统的输出,估计系统的状态
02
状态反馈:通过调整系统的输入,使系统达到期望的状态
01
状态反馈与状态观测器在实际应用中的选择
状态反馈适用于系统模型已知且可控的情况,能够实现最优控制。
02
状态观测器通过测量系统的输入和输出,利用数学模型来估计系统的内部状态。
04
状态观测器在现代控制理论中具有重要地位,广泛应用于各种控制系统的设计与实现。
状态观测器的设计方法
状态观测器性能评估:通过仿真或实验,评估观测器的性能,如观测精度、响应速度等
重庆大学现代控制工程-第六章线性系统状态反馈
第五章 线性定常系统的状态反馈和状态观测器设计闭环系统性能与闭环极点(特征值)密切相关,经典控制理论用输出反馈或引入校正装置的方法来配置极点,以改善系统性能。
而现代控制理论由于采用了状态空间来描述系统,除了利用输出反馈以外,主要利用状态反馈来配置极点。
采用状态反馈不但可以实现闭环系统极点的任意配置,而且还可以实现系统解耦和形成最优控制规律。
然而系统的状态变量在工程实际中并不都是可测量的,于是提出了根据已知的输入和输出来估计系统状态的问题,即状态观测器的设计。
§5-1 状态反馈与闭环系统极点的配置一、状态反馈1、状态反馈的概念状态反馈就是将系统的每一个状态变量乘以相应的反馈系数反馈到输入端与参考输入相加,其和作为受控系统的输入。
设SISO 系统的状态空间表达式为:bu Ax x+= cx y =状态反馈矩阵为k ,则状态反馈系统动态方程为:()()xAx b v kx A bk x bv =+-=-+cx y =式中:k 为n ⨯1矩阵,即[]11-=n o k k k k ,称为状态反馈增益矩阵。
)(bk A -称为闭环系统矩阵。
闭环特征多项式为)(bk A I --λ。
可见,引入状态反馈后,只改变了系统矩阵及其特征值,c b 、阵均无变化。
【例5.1.1】已知系统如下,试画出状态反馈系统结构图。
u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100200110010 , []x y 004= 解:[]x k k k v kx v u21-=-=其中[]21k k k k=称为状态反馈系数矩阵或状态反馈增益矩阵。
⎪⎪⎩⎪⎪⎨⎧=+-=+-==1333222142x y u x x x x xx x说 明:如果系统为r 维输入、m 维输出的MIMO 系统,则反馈增益矩阵k 是一个m r ⨯维矩阵。
即mr rm r r m m k k k k k k k k k k ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 2122221112112、状态反馈增益矩阵k 的计算控制系统的品质很大程度上取决于该系统的极点在s 平面上的位置。
状态反馈和状态观测器
01
02
03
经典控制理论方法
采用频率响应法、根轨迹 法等经典控制理论方法进 行控制器参数整定。
现代控制理论方法
利用最优控制、鲁棒控制 等现代控制理论方法进行 控制器设计。
智能优化算法
应用遗传算法、粒子群算 法等智能优化算法进行控 制器参数寻优。
仿真验证与实验结果分析
仿真验证
利用MATLAB/Simulink等仿真工具对设计的控制系统进行仿真 验证,观察系统性能。
性能评估
除了稳定性外,状态反馈控制系统的性能还包括动态响应、稳态精度、鲁棒性等方面。通过对 这些性能指标的评估,可以全面了解系统的控制效果,为进一步优化控制策略提供指导。
应用领域与案例分析
应用领域
状态反馈控制技术广泛应用于航空航天、机器人、自动化生 产线等领域。在这些领域中,系统的动态性能和稳定性要求 较高,状态反馈控制能够提供更加精确和可靠的控制方案。
化和环境变化,提高状态估计的准确性和实时性。
THANKS
感谢观看
基于状态观测器的控制系统
03
设计
控制系统结构框架搭建
确定被控对象
01
明确被控对象的动态特性和输入输出关系,建立被控对象的数
学模型。
设计状态观测器
02
根据被控对象的数学模型,设计状态观测器以估计系统状态。
构建控制系统
03
将状态观测器与控制器相结合,构建基于状态观测器的控制系
统。
控制器参数整定方法论述
姿态和位置反馈
利用姿态传感器和位置传感器获取机器人的姿态和位置信 息,通过状态反馈控制机器人的平衡和定位精度。
力和力矩反馈
在机器人末端执行器上安装力传感器,实时监测机器人与 环境之间的交互力和力矩,通过状态反馈实现机器人的柔 顺控制和自适应能力。
第六章状态反馈和状态观测器
4。跟踪问题
优化型性能指标
思路: 1)可综合条件; 2)算法
(不等式) (极值)
综合实际中的理论问题:状态反馈构成\建模\观测器、鲁棒性、对外扰的抑制
6.2 状态反馈和输出反馈
状态反馈
设连续时间线性时不变系统 0 : x = Ax + Bu x(0) = x0 t 0 y = Cx
状态反馈下受控系统的输入为:u=-Kx+υ,K∈Rp×n,反馈系统∑xf的状态空间 描述为:
C1 = C
0
变换后
A1
=
P−1 A1P
=
A
− BK 0
C1 = C1P = C 0
BK A − HC
B1
=
P −1 B1
=
B
0
考虑到当R、T可逆时,有
R S −1 R−1 − R−1ST −1
0
T
=
0
T −1
(sI
−
A1 ) −1
=
sI
−
(A− 0
BK
)
− BK −1 sI − ( A − HC)
x = Ax + Bx y = Cx
只能使用闭环系统极点配置到根轨迹上,而不能任意配置到根轨迹以外位置上。
6.5 状态反馈镇定
所谓状态镇定问题就是:对给定时间线性时不变受控系统,找到一个状态反馈型控制律 u = −Kx + v
使所导出的状态反馈型闭环系统 x = ( A − BK ) x + Bv为渐近稳定,即系统闭环特征值均具有负实部。
− 0 ,1*
−
1
,
* 2
−2 ] = [4,−66,−14]
计算
实验6_状态反馈与状态观测器.doc
实验6_状态反馈与状态观测器自动控制原理实验报告自动控制原理实验报告院系名称:仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=-仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=:其中维状态反馈系数矩阵,由计算机算出。
维观测器的反馈矩阵,由计算机算出。
为使跟踪所乘的比例系数。
三、实验原理1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。
这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。
在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。
2. 已知线形定常系统的状态方程为为了实现状态反馈,需要状态变量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。
现代控制理论状态反馈和状态观测器的设计实验报告
现代控制理论状态反馈和状态观测器的设计实验报告本次实验是关于现代控制理论中状态反馈与状态观测器的设计与实现。
本次实验采用MATLAB进行模拟与仿真,并通过实验数据进行验证。
一、实验目的1、学习状态反馈控制的概念、设计方法及其在实际工程中的应用。
3、掌握MATLAB软件的使用方法。
二、实验原理1、状态反馈控制状态反馈控制是指将系统状态作为反馈控制的输出,通过对状态反馈控制器参数的设计,使系统的状态响应满足一定的性能指标。
状态反馈控制的设计步骤如下:(1) 确定系统的状态方程,即确定系统的状态矢量、状态方程矩阵和输出矩阵;(2) 设计状态反馈控制器的反馈矩阵,即确定反馈增益矩阵K;(3) 检验状态反馈控制器性能是否满足要求。
2、状态观测器(1) 确定系统的状态方程;(2) 设计观测器的状态估计矩阵和输出矩阵;(3) 检验观测器的状态估计精度是否符合标准。
三、实验内容将简谐信号加入单个质点振动系统,并对状态反馈控制器和状态观测器进行设计与实现。
具体实验步骤如下:1、建立系统状态方程:(1)根据系统的物理特性可得单自由度振动系统的运动方程为:m¨+kx=0(2)考虑到系统存在误差、干扰等因素,引入干扰项,得到系统状态方程:(3)得到系统状态方程为:(1)观察系统状态方程,可以发现系统状态量只存在于 m 行 m 到 m 行 n 之间,而控制量只存在于 m 行 1 到 m 行 n 之间,满足可控性条件。
(2)本次实验并未给出状态变量的全部信息,只给出了系统的一维输出,因此需要设计状态反馈器。
(3)我们采用极点配置法进行状态反馈器设计。
采用 MATLAB 工具箱函数,计算出极点:(4) 根据极点求解反馈矩阵,得到状态反馈增益矩阵K:(1)通过矩阵计算得到系统的可观性矩阵:(2)由若干个实测输出建立观测器,可将观测器矩阵与可观测性矩阵组合成 Hankel 矩阵,求解出状态观测器系数矩阵:(3)根据系统的状态方程和输出方程,设计观测方程和状态估计方程,如下:4、调试控制器和观测器(1)经过上述设计步骤,将反馈矩阵和观测矩阵带入 MATLAB 工具箱函数进行仿真。
状态反馈与状态观测器
状态反馈与状态观测器实验状态反馈与状态观测器一、实验目的1.自学全系列状态意见反馈布局极点的方法。
2.自学降维状态观测器的设计方法。
3.学习带有状态观测器的状态反馈系统的设计方法。
二、实验仪器1.el-at-ii型自动控制系统实验箱一台2.计算机一台三、实验建议1.1)用全状态反馈配置极点的方法,按给定的性能指标进行综合设计。
2)检验极点布局理论的正确性。
2.设计一个带有状态观测器的状态反馈系统。
四、实验前分析排序和设计已知被控系统如图所示:u10.05s+1x210.1sx1y图5-1被控系统结构图1、设计一个全状态反馈系统,闭环系统性能要求为ξ=0.707,ts≤0.2s.设计k阵,并图画出来尖萼电路图挑选适当元件参数。
2、假设x2不能直接测量,设计一个降维状态观测器将x2进行估计得到估计值,然后用2形成全系列状态意见反馈,并使闭环系统ξ=0.707,ts≤0.2s,并图画出来尖萼电路图挑选x1和x独以适当元件参数。
100k50k1uf1ufda1100k25k2-out650k2-out63100k+3+x2100k2-out6x1ad131k100k0-6out+321k0+1k100k01k0图5-2状态反馈系统演示电路图图5-3带有状态观测器的状态反馈系统模拟电路图五、实验步骤1.连接被测量典型环节的模拟电路。
电路的输入u1接a/d、d/a卡的da1输出,电路的输入u2接a/d、d/a卡的ad1输出。
检查有误后拨打电源。
2.启动计算机,在桌面双击图标[自动控制实验系统]运转软件。
3.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
4.在实验课题下拉菜单中挑选实验二[二阶系统阶跃积极响应],具有状态观测器的状态反馈系统挑选实验五[状态意见反馈与状态观测器],鼠标单击该选项弹头出来实验课题参数窗口。
5.观测表明的波形记录最小市场汇率量mp和调节时间ts的数值和积极响应动态曲线,并与理论值比较。