中性无LOG H1216S- V2014V1

合集下载

2013-2014高二化学《化学反应与能量变化》单元测试

2013-2014高二化学《化学反应与能量变化》单元测试

高二《化学反应与能量变化》单元测试相对原子质量:H1 C12 N 14 O 16 S32 Cl35.5 Zn 65 Na 23 Mg 24 Al 27 Cu 64 Ag 108 Hg 201第Ⅰ卷(共54分)一、选择题(共26小题,每题只有一个正确的答案,每题2分,共52分。

) 1.废电池的污染引起人们的广泛重视,废电池中对环境形成污染的主要物质是A .锌B .汞C .石墨D .二氧化锰 2.吸热反应一定是( )A .释放能量B .化学能转化为热能C .反应物总能量高于生成物总能量D .反应物总能量低于生成物总能量 3.已知H 2(g)+Cl 2(g)=2HCl(g) △H=―184.6kJ·mol -1, 则反应HCl(g)=12H 2(g)+12Cl 2(g)的△H 为A .+184.6kJ·mol -1B .―92.3kJ·mol -1C .―369.2kJ·mol -1D . +92.3kJ·mol -1 4.下列反应中生成物总能量高于反应物总能量的是A .碳酸钙受热分解B .乙醇燃烧C .铝粉与氧化铁粉末反应D .氧化钙溶于水 5.钢铁发生吸氧腐蚀时,正极上发生的电极反应是 ( ) A .2H ++2e - H 2B .Fe 2++2e - FeC .2H 2O+O 2+4e - 4OH -D .Fe 3++e - Fe 2+6.关于电解NaCl 水溶液,下列叙述正确的是 ( ) A .电解时在阳极得到氯气,在阴极得到金属钠B .若在阳极附近的溶液中滴入KI 溶液,溶液呈棕色C .若在阴极附近的溶液中滴入酚酞试液,溶液呈无色D .电解一段时间后,将全部电解液转移到烧杯中,充分搅拌后溶液呈中性 7.下列叙述正确的是A. 物质燃烧不一定是放热反应B. 放热反应不需要从外界吸收任何能量就能发生C. 在一个确定的化学反应中,反应物总能量总是高于生成物总能量D. 化学反应除了生成新的物质外,还伴随着能量的变化 8.下列属于热化学方程式的是A .C + O 2 CO 2 + 393.5kJB .H 2 + CuOH 2O + Cu -QC .H 2(气) + Cl 2(气) === 2HCl + QD .C(固) + O 2(气) === CO 2(气) ; H(298K) =393.5kJ9.下列叙述中不正确的是 ( )A .电解池的阳极上发生氧化反应,阴极上发生还原反应B .原电池的正极上发生氧化反应,负极上发生还原反应C .电镀时,电镀池里的阳极材料发生氧化反应D .用原电池做电源进行电解时,电子从原电池负极流向电解池阴极10.已知葡萄糖(C 6H 12O 6)在人体内发生生化反应生成CO 2和H 2O ,则下列论述正确的是A .该反应是一个吸热反应B .该反应不可能是氧化还原反应C .该反应一定是氧化还原反应,同时也是一个放热反应D .该反应不一定要有氧气参加11.已知蓄电池在充电时作电解池,放电时作原电池。

气相色谱在农残中

气相色谱在农残中

样品的洗脱
装好柱子后,用溶剂冲洗研钵和研棒,之 后转入柱子,容积通常用量为8m1。实验表 明:0.5g样品与2g吸附剂,用4m1溶剂即可将大 多目标分析物洗脱。用一系列洗脱剂冲洗柱 子,开始用非极性的正己烷,之后逐渐增加极 性(乙酸乙酯、乙晴、甲醇)最后如有必要可用 水冲洗。
洗脱剂选择
典型单一化合物洗脱,选择中等极性洗脱 剂、用酸、盐等调整的溶剂或改变其它溶剂 的比例进行洗脱。大多 MSPD 洗脱剂靠重力 流动,一些情况下可用橡皮球在柱顶加压, 或使用真空减压装置控制流速。
MSPD的样品的处理
象牛奶 或血等粘稠样品,应放在试管中 搅拌,用平勺将样品与吸附剂混合。固体样 品先匀浆均质后用类似方法处理。一旦MSPD 混合过程完成后,混合物装入柱中,柱子由 注射器或其它类似装置改装而成,柱底放一 滤纸片,以免样品损失。
样品放入注射器
在样品上方放另一滤纸片,用注射 器活塞将样品压紧。分离过程中经典 的理论仍适合于MSPD,一是装柱时要 防止起泡和缝隙的产生,二是避免过 分挤压柱中的材料。
正相萃取小柱填料规格
官能团 硅胶 氨丙基 氰丙基 二醇基 弗罗里土 氧化铝 (酸性、中性 、碱性) 基质 硅胶 硅胶 硅胶 硅胶 平均颗粒度 孔径 50um 50um 50um 50um 60 A 60 A 60 A 60 A 60 A 碳覆盖率 0 5. 0% 6. 0% 4. 0% 0 封尾 没有 没有 有 没有 没有 没有
75μm/部分交联
65μm/部分交联 50μm/部分交联 85μm/部分交联
极性化合物 表面活性剂 (仅用于HPLC) 极性半挥发性化合物
“快易廉”(QuEChERS) 样品处理法
QuEChERS 方法
2003 年 QuEchERS (Quick, Easy, Cheap, Effective, Rugged and Safe) 方法出现,以一种快速、简便、价格低 廉的分析方法实现高质量的农药多残留 分析。

荷移光谱法测定鸡肉中左氧氟沙星残留

荷移光谱法测定鸡肉中左氧氟沙星残留

荷移光谱法测定鸡肉中左氧氟沙星残留庞艳玲;孟德素【摘要】采用荷移光谱法测定了鸡肉中左氧氟沙星残留量.左氧氟沙星与茜素在水与乙醇的混合溶液中发生反应,生成的荷移络合物的最大吸收波长为532 nm;表观摩尔吸光系数是6.47×103 L/mol·cm;药物浓度在1~50 mg/L内符合比耳定律;鸡肉中左氧氟沙星的加标回收率为92.0%~96.8%,相对标准偏差为5.2%,方法检出限为1.0 mg/kg(按S/N =3计).用红外光谱法探讨了反应机理.【期刊名称】《食品与发酵工业》【年(卷),期】2014(040)011【总页数】3页(P233-235)【关键词】左氧氟沙星;茜素;荷移反应;荷移分光光度法;鸡肉【作者】庞艳玲;孟德素【作者单位】菏泽学院化学化工系,山东菏泽,274015;菏泽学院化学化工系,山东菏泽,274015【正文语种】中文左氧氟沙星(LVFX)为化学合成的抗菌药,是第四代喹诺酮类药物,具有抗菌谱广、抗菌作用强、使用安全等特点,是治疗泌尿、呼吸道、胃肠系统细菌感染性疾病的首选药物,目前测定分析方法主要是荧光法[1]、紫外分光光度法[2]、HPLC 法[3]、紫外吸收系数法[4]、紫外检测法[5]、毛细管电泳法[6]、高效液相色谱法[7~8]、一阶导数分光光度法[9]等。

几年来,部分养殖户存在不合理甚至“滥用”左氧氟沙星的现象,由此形成了畜禽产品左氧氟沙星残留超标的安全隐患。

荷移反应是基于电子给体和电子受体之间的电荷转移形成荷移复合物的一类反应,由于荷移络合物的形成,使吸收光谱发生较大幅度红移,从而避开药物制剂或体液中其他物质的干扰,使其选择性显著提高。

本文研究了左氧氟沙星与茜素的荷移反应,确定了最佳反应条件,并对反应机理进行了初步探讨。

1 仪器与试剂TU-1810型紫外可见分光光度计,北京普析通用仪器有限公司;红外光谱仪,傅里叶红外光谱仪-FTIR370;pHS-3型精密酸度计,上海雷磁仪器厂。

ST BTA16 BW CW, BTB16 BW CW 数据手册

ST BTA16 BW CW, BTB16 BW CW 数据手册

BTA16BW/CW BTB16BW/CWMarch 1995SNUBBERLESS TRIACSSymbol ParameterValueUnit I T(RMS)RMS on-state current (360°conduction angle)BTA Tc =80°C 16ABTBTc =90°C I TSMNon repetitive surge peak on-state current (Tj initial =25°C )tp =8.3ms 170Atp =10ms 160I 2t I 2t valuetp =10ms 128A 2s dI/dtCritical rate of rise of on-state currentGate supply :I G =500mA di G /dt =1A/µsRepetitive F =50Hz 20A/µsNon Repetitive100Tstg Tj Storage and operating junction temperature range-40to +150-40to +125°C °C TlMaximum lead temperature for soldering during 10s at 4.5mm from case260°CTO220AB (Plastic)A1A2G.HIGH COMMUTATION :(dI/dt)c >14A/ms without snubber.HIGH SURGE CURRENT :I TSM =160A .V DRM UP TO 800V .BTA Family :INSULATING VOLTAGE =2500V (RMS)(UL RECOGNIZED :E81734)DESCRIPTIONSymbol ParameterBTA /BTB16-...BW/CWUnit400600700800V DRM V RRM Repetitive peak off-state voltage Tj =125°C400600700800VABSOLUTE RATINGS (limiting values)FEATURESThe BTA/BTB16BW/CW triac family are high per-formance glass passivated chips technology.The SNUBBERLESS ™concept offer suppression of RC network and it is suitable for application such as phase control and static switching on in-ductive or resistive load.1/5查询BTA16 BW供应商GATE CHARACTERISTICS (maximum values)Symbol ParameterValue Unit Rth (j-a)Junction to ambient60°C/W Rth (j-c)DC Junction to case for DCBTA 3.1°C/WBTB2.3Rth (j-c)AC Junction to case for 360°conduction angle(F=50Hz)BTA 2.3°C/W BTB1.75SymbolTest ConditionsQuadrantSuffix UnitBWCW I GTV D =12V(DC)R L =33ΩTj=25°CI-II-IIIMIN 21mAMAX5035V GT V D =12V(DC)R L =33ΩTj=25°C I-II-III MAX 1.5V V GD V D =V DRM R L =3.3k ΩTj=125°C I-II-III MIN 0.2V tgt V D =V DRM I G =500mA dI G /dt =3A/µs Tj=25°C I-II-III TYP 2µsI LI G =1.2I GTTj=25°CI-III TYP 40-mA II TYP 80-I-III MAX -50IIMAX -80I H *I T =500mA gate open Tj=25°C MAX 5035mA V TM *I TM =22.5A tp=380µs Tj=25°C MAX 1.60V I DRM I RRM V DRM Rated V RRMRatedTj=25°C MAX 0.01mA Tj=125°C MAX 2dV/dt *Linear slope up to V D =67%V DRM gate open Tj=125°CMIN 500250V/µsTYP750500(dI/dt)c *Without snubberTj=125°CMIN 148.5A/msTYP2817*For either polarity of electrode A 2voltage with reference to electrode A 1.P G (AV)=1WP GM =10W (tp =20µs)I GM =4A (tp =20µs)V GM =16V (tp =20µs).ELECTRICAL CHARACTERISTICSTHERMAL RESISTANCESBTA16BW/CW /BTB16BW/CW2/5ORDERING INFORMATIONPackage I T(RMS)V DRM/V RRM Sensitivity SpecificationA V BW CWBTA (Insulated)16400X X600X X700X X800X XBTB (Uninsulated)400X X 600X X 700X X 800X XFig.1:Maximum RMS power dissipation versus RMS on-state current(F=50Hz).(Curves are cut off by(dI/dt)c limitation)Fig.2:Correlation between maximum RMS power dissipation and maximum allowable temperatures(T amb and T case)for different thermal resistances heatsink+ contact(BTA).Fig.3:Correlation between maximum RMS power dissipation and maximum allowable temperatures(T amb and T case)for different thermal resistances heatsink+ contact(BTB).Fig.4:RMS on-state current versus case temperature.BTA16BW/CW/BTB16BW/CW3/5Fig.6:Relative variation of gate trigger current and holding current versus junction temperature.Fig.7:Non Repetitive surge peak on-state current versus number of cycles.Fig.8:Non repetitive surge peak on-state current for a sinusoidal pulse with width :t ≤ 10ms,and corresponding value of I 2t.Fig.9:On-state characteristics (maximum values).1E-31E-21E-11E+01E+11E+25E+20.010.11Zth/Rth Zth(j-c)Zth(j-a)tp(s)Fig.5:Relative variation of thermal impedance versus pulse duration.BTA16BW/CW /BTB16BW/CW4/5PACKAGE MECHANICAL DATA TO220AB PlasticCooling method :CMarking :type number Weight :2.3gRecommended torque value :0.8m.N.Maximum torque value :1m.N.I==AGDBCFPN OMLJHREF.DIMENSIONSMillimeters Inches Min.Max.Min.Max.A 10.2010.500.4010.413B 14.2315.870.5600.625C 12.7014.700.5000.579D 5.85 6.850.2300.270F 4.500.178G 2.54 3.000.1000.119H 4.48 4.820.1760.190I 3.55 4.000.1400.158J 1.15 1.390.0450.055L 0.350.650.0130.026M 2.10 2.700.0820.107N 4.58 5.580.180.22O 0.80 1.200.0310.048P0.640.960.0250.038Information furnished is believed to be accurate and reliable.However,SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.Specifications mentioned in this publication are subject to change without notice.This publication supersedes and replaces all information previously supplied.SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.©1995SGS-THOMSON Microelectronics -Printed in Italy -All rights reserved.SGS-THOMSON Microelectronics GROUP OF COMPANIESAustralia -Brazil -France -Germany -Hong Kong -Italy -Japan -Korea -Malaysia -Malta -Morocco -The Nether-lands -Singapore -Spain -Sweden -Switzerland -Taiwan -Thailand -United Kingdom -U.S.A.BTA16BW/CW /BTB16BW/CW5/5。

第八章-电位法和永停滴定法

第八章-电位法和永停滴定法

第八章-电位法和永停滴定法————————————————————————————————作者:————————————————————————————————日期:第八章 电位法和永停滴定法一、选择题1.Daniell 原电池中锌极是( )A 、还原反应B 、正极C 、氧化反应、负极D 、阴极2.玻璃电极膜电位产生的机理是( )A 、电子传导B 、离子交换和扩散C 、电流D 、电子扩散3.璃电极测量溶液pH 值时,采用的定量方法为( )A 、校正曲线法B 、直接比较法C 、一次加入法D 、增量法差4.下列关于玻璃电极叙述不正确的是( )A 、玻璃电极属于离子选择性电极B 、玻璃电极可测定任意溶液的pH 值C 、玻璃电极可用作指示电极D 、玻璃电极可用于测量混浊溶液的pH 值5.测定溶液pH 时,用标准缓冲溶液进行校正的主要目的是消除( )。

A 、不对称电位B 、液接电位C 、不对称电位和液接电位D 、温度6.在电位法中离子选择性电极的电位应与待测离子的浓度( )A 、成正比B 、对数成正比C 、符合扩散电流公式的关系D 、符合能斯特方程式7.pH 玻璃电极产生的不对称电位来源于( )A 、内外玻璃膜表面特性不同B 、内外溶液中H +浓度不同C 、内外溶液的H +活度系数不同D 、内外参比电极不一样8.玻璃电极使用前必须在水中浸泡,其主要目的是( )。

A 、清洗电极B 、活化电极C 、校正电极D 、清除吸附杂质9.理论上,pH 玻璃电极在1-14范围内,E 与pH 应成线性关系,实际上pH >9时测定电极电位比理论值高,则测得pH ( )A 、等于真实值B 、大于真实值C 、小于真实值D 、无规律10.在电位滴定中,以∆E /∆V-V(E 为电位,V 为滴定剂体积)作图绘制滴定曲线,滴定终点为( )A 、曲线的最大斜率点B 、曲线的最小斜率点C 、峰状曲线的最高点D 、∆E /∆V 为零时的点11.电位滴定中,以△2E/△V2~V作图绘制滴定曲线,滴定终点为( )A 、△2E/△V2为零的点B 、曲线的最大斜率点C 、曲线的最小斜率点D 、曲线的斜率为零时的点12.电位滴定法中用于确定终点最常用的二次微商法计算滴定终点时所需要的在滴定前后滴定液消耗的体积数和对应的电动势的数据记录最少不少于( )组.A 、2B 、3C 、4D 、513.以下的原电池经改进后可用于测定( )。

水溶液中的化学---练习题及答案解析

水溶液中的化学---练习题及答案解析

水溶液中的化学---练习题及答案解析1.将下列水溶液按蒸气压增加的顺序排列:( l ) 0.1mol •L -1NaCl ( 2 ) 1mol •L -1C 6H 12O 6 ( 3 ) 1.mol •L -1H 2SO 4 ( 4 ) 0.1mol •L -1HAc ( 5 ) 0.1mol •L -1MgCl 2 ( 6 ) 0.1mol •L -1 C 6H 12O 6 1.解:1.mol •L -1H 2SO 4,1mol •L -1C 6H 12O 6,0.1mol •L -1MgCl 2,0.1mol •L -1NaCl ,0.1mol •L -1HAc ,0.1mol •L -1 C 6H 12O 6。

2.已知某水溶液的凝固点为-1℃ ,求出下列数据: ( 1 )溶液的沸点;( 2 )20℃时溶液的蒸气压力 (已知20℃时纯水的蒸气压为2.34kPa) ; ( 3 ) 0℃时溶液的渗透压。

2.解:( 1 )△t f =θf K m m =△t f /θfK =1/1.86=0.5376mol •kg -1 △t b =θb K m =θb K ×△t f /θf K =0.51×1/1.86=0.274℃t b =100+△t b =100+0.274=100.274℃ ( 2 )p =p o x A =2.34×5376.018/100018/1000+=2.32 kPa( 3 ) Л = c RT ≈mRT =0.5376×1000×8.314×273.15=1220873Pa=1220.9kPa3.将0.450g 某非电解质溶于30.0g 水中,使凝固点降到–0.150℃。

计算该非电解质的相对分子质量。

3.解:△t f =θf K m =θfK 1000/0.30/BM mM B =θfK 301000⨯∆⨯b T m =1.86×30150.01000450.0⨯⨯=186g •mol -1相对分子质量为186。

PurePath Console Motherboard用户指南说明书

PurePath Console Motherboard用户指南说明书

User's GuideSLOU366B–June2013–Revised February2015PurePath TM Console Motherboard This manual describes the operation of the PurePath™Console Motherboard(PPCMB),revisions D,E,and F.The PPCMB connects to device under test(DUT)boards.These can be evaluation modules(EVM) or reference boards(REF).The PurePath Console graphical user interface(PPC)is used to initialize andoperate the PPCMB and the DUT.The main contents of this document are:•Hardware implementation and descriptions•Software implementation and descriptions•System operations(hardware and software)•Example with TAS5760xEVM(DUT)Contents1Hardware Overview (3)1.1PurePath Console Motherboard Features (4)1.2PurePath Console Motherboard Functions (4)1.3PurePath Console Motherboard Detailed Operations (5)2PurePath Console Motherboard Setup and Software Installation (6)2.1PurePath Console Motherboard Setup (6)2.2Software Installation (7)3Using the PurePath Console Software with the PurePath Console Motherboard (9)3.1Device Main Tab (9)3.2Device Block Diagram Tab (9)3.3Pop-up Windows (10)3.4Direct I2C Access Tab (11)3.5Device Registers Tab (11)4Board Layouts,Bill of Materials,and Schematic (12)4.1PurePath Console Motherboard Layouts,Revisions D and E (12)4.2PurePath Console Motherboard Layouts,Revision F (14)4.3Bill of Materials (16)4.4PurePath Console,Revision D and E,Schematic (28)4.5PurePath Console,Revision F,Schematic (38)List of Figures1PurePath Console Motherboard Revision D (3)2PurePath Console Motherboard Signal Flow(Revisions D and E) (4)3Device Manager (5)4PurePath Console Motherboard Connection (6)5Target Selection List (7)6Add Target List (8)7PurePath Console Motherboard and TAS5760xEVM (8)8DUT Block Diagram(TAS5760) (9)9Digital Gain Pop-Up (10)10Analog Gain Pop-Up (10)11Direct I2C Access (11)PurePath,MPS430are trademarks of Texas Instruments.Windows is a registered trademark of Microsoft Corporation.All other trademarks are the property of their respective owners.1 SLOU366B–June2013–Revised February2015TM 12Device Registers Tab (11)13PurePath Console Motherboard,Revision D and E,Top Composite Assembly (12)14PurePath Console Motherboard,Revision D and E,Copper Layer2 (12)15PurePath Console Motherboard,Revision D and E,Copper Layer3 (13)16PurePath Console Motherboard,Revision D and E,Bottom Composite Assembly (13)17PurePath Console Motherboard,Revision F,Top Composite Assembly (14)18PurePath Console Motherboard,Revision F,Copper Layer2 (14)19PurePath Console Motherboard,Revision F,Copper Layer3 (15)20PurePath Console Motherboard,Revision F,Bottom Composite Assembly (15)21PurePath Console Revisions D and E(1of10) (28)22PurePath Console Revisions D and E(2of10) (29)23PurePath Console Revisions D and E(3of10) (30)24PurePath Console Revisions D and E(4of10) (31)25PurePath Console Revisions D and E(5of10) (32)26PurePath Console Revisions D and E(6of10) (33)27PurePath Console Revisions D and E(7of10) (34)28PurePath Console Revisions D and E(8of10) (35)29PurePath Console Revisions D and E(9of10) (36)30PurePath Console Revisions D and E(10of10) (37)31PurePath Console Revision F(1of12) (38)32PurePath Console Revision F(2of12) (39)33PurePath Console Revision F(3of12) (40)34PurePath Console Revision F(4of12) (41)35PurePath Console Revision F(5of12) (42)36PurePath Console Revision F(6of12) (43)37PurePath Console Revision F(7of12) (44)38PurePath Console Revision F(8of12) (45)39PurePath Console Revision F(9of12) (46)40PurePath Console Revision F(10of12) (47)41PurePath Console Revision F(11of12) (48)42PurePath Console Revision F(12of12) (49)43PurePath Console Revisions D,E,and F (50)List of Tables1Bill of Materials,Revision D (16)2Bill of Materials,Revision E (19)3Bill of Materials,Revisions F (23) Hardware Overview 1Hardware OverviewThe PPCMB provides control signals and audio signals to the DUT.The PPC sends the control signals to the TAS1020B device through the USB human-interface device(HID)protocol.The TAS1020B deviceconverts to I2C and sends to the appropriate I2C address.The audio signals are provided through USB audio,SPDIF,or analog signals.The aforementioned signals are converted to I2S–see Figure2.Figure1.PurePath Console Motherboard Revision D3 SLOU366B–June2013–Revised February2015TMHardware Overview Figure2shows the PPCMB Revisions D and E signal flow.For Revision F,refer to the block diagram in Section4.5.Figure2.PurePath Console Motherboard Signal Flow(Revisions D and E)1.1PurePath Console Motherboard Features•The PPC sends I2C control signals through the USB link:the initialization sequence is sent utilizing auto DUT detection reducing hardware setup time•Three I2S audio sources:USB audio,SPDIF,and ADC•Audio processing:TLV320AIC3262(mini-DSP)•Dual asynchronous sample-rate converters(ASRC)PWM modulator:TAS5548•Interface with PurePath Smart Amp and audio devices designed for use in TV,mini-component,AVR application1.2PurePath Console Motherboard FunctionsThe PPCMB is organized into two sections:control data and audio data.Control data is routed through the I2C bus and audio data is routed through the I2S bus.An analog signal can also be routed directly to and from the DUT.The control data is sent from the PPC through the TAS1020B USB to I2C commands.The MPS430™microcontroller can also be used independent of the PC host.The MSP430device is used for stand-alone demonstrations;therefore,it is configured for each application. Hardware Overview The digital audio data input is selectable from USB audio,optical SPDIF,coaxial SPDIF,and analog ADC.When a digital audio data input is selected,the PPC will automatically send appropriate scripts to thedevice in-use.When direct audio analog input is required,the PPCMB will provide this signal through a line-in connector.•TLV320AIC3262(mini-DSP)provides programmable algorithms and audio post-processing for many applications•PWM modulator with dual ASRC and post-processing capability can be used in mini-component or AVR systems.The PWM output is connected directly to TI's high-power(300W)amplifier TAS5624AEVM.•I2S audio from the DUT can be captured through the USB link or optical SPDIF for signal analysis1.3PurePath Console Motherboard Detailed OperationsThe following information can be used as a debugging guide.Upon power-on,the PPCMB uses optical SPDIF input(default).The I2S signals can be seen with anoscilloscope probe at the pin headers LRCLK,SCLK,SDIN,and MCLK.EEPROM1(EP1)is flashed with firmware that runs the TAS1020B for the USB audio(USB-miniEVM), HID,and the USB composite device.Figure3shows the Device Manager.Figure3.Device ManagerWhen the PPCMB is plugged in to a PC,the Device Manager should show all of the USB devices shown in Figure3.If one of the devices does not show up,the PPCMB will not work correctly.When the PPC is executed,the PPC uses the USB audio as the default I2S input.The PCM9211acts as the multiplexor that selects among the following I2S signal sources:optical SPDIF,coaxial SPDIF,andUSB audio.The output of the PCM9211device is routed to the TLV320AIC3262device.The signal from the TLV320AIC3262is then routed to the TAS5548device and the output connector(J1).TheTLV320AIC3262can be bypassed by switching the MUX3select control signal to high and the MUX4,MUX5,and MUX6select control signals to low by using the PPC;and adding jumpers between pins1and 2of the header LRCLK,SCLK,SDIN,and MCLK pins.5 SLOU366B–June2013–Revised February2015TMMicro USB24VDCPSU ANALOGINEXT I2SThe I 2S header pins are used for three purposes:probing I 2S signals coming out of PCM9211,bypassing I 2S signals from TLV320AIC3262and using the PCM9211I 2S signals,and bypassing I 2S signals from the TLV320AIC3262and using an external I 2S source.The TAS5548device is used for PWM input devices such as the TAS5624.The TAS5548is TI's latest 8-channel PWM modulator and has dual ASRC with audio post processing.For more information go to /product/TAS5548.The PCM3168A takes analog inputs (AIN1and AIN2)and routes them to the TLV320AIC3262.AIN1is converted to I 2S and routed to TAS5548and J1.The analog switch,MUX2,routes analog input directly to DUT through J1.The GPIO extender (TCA6424A –U8)is used for initialization of the multiplexors and discrete signals.It is controlled from the PPC through the I 2C.The MSP430is populated but is not programmed.It is used in place of a PC for specifically-designed demonstrations using a combination of TI devices on the PPCMB and a DUT evaluation board or reference boards.2PurePath Console Motherboard Setup and Software InstallationThis section describes the PPCMB setup and software installation.Since the PPCMB connects to one of the DUT EVMs,it is necessary to show the connection in this section.The TAS5760xEVM is used for this purpose.2.1PurePath Console Motherboard SetupFigure 4shows the PPCMB connection.Figure 4.PurePath Console Motherboard ConnectionThe hardware requirements are listed as:•Desktop or laptop PC running either Windows®XP or Windows7•DUT EVM such as TAS5760xEVM;It is used here as an example•Power supply24VDC•Speakers and cables•A USB micro type B cable•Audio source:this can be a DVD player with appropriate SPDIF cable or Windows Media Player from Windows XP or Windows7For hardware setup,follow these steps:Step1.Plug in the USB cable from the PC to the PPCMB;the USB Lock LED(blue)is illuminatedStep2.Connect the PPCMB to the DUT EVM,in this case the TAS5760xEVMStep3.Connect the PSU to DUT EVM and turn on the power.5-V and3.3-V LEDs are illuminatedStep4.If an optical SPDIF source is used,the blue SPDIF clock-locked LED is illuminatedStep5.Disregard the orange LED indicating the energy threshold(ET)level is exceeded.The ET value must be cleared for the orange LED to be extinguished.2.2Software InstallationDownload the PPC from the TI Web site(/tool/purepathconsole).The TI Web site has thelatest release of the GUI.Execute the GUI installation program,Setup_PurePathConsole_Main_vxx_revxx.exe.When the program is installed,the program group and shortcut icon is created in Start→Program→Texas Instruments Inc →PurePath Console→Choose Target.The Target Selection window is displayed;select TAS5760as shown in Figure5.Figure5.Target Selection ListIf the device is not listed in the Target Selection list,click the Add Target button.Windows explorerdisplays.Navigate to the folder that contains the target zip files(plugins)and choose the DUT.7 SLOU366B–June2013–Revised February2015TMFigure6.Add Target ListFigure7.PurePath Console Motherboard and TAS5760xEVMClick on the Connect button.The green LED on the bottom left corner of the PurePath Console window indicates the initialization of TAS5760is valid.The PPCMB is initialized with the selected USB audio(USB-miniEVM).Streaming audio from the USB host is routed to the DUT(TAS5760).If optical SPIDF is used,simply click on the SPDIF/OPT symbol on the PPC,the I2S is routed with the optical SPDIF signal.Likewise,if analog input signal(line-in)is selected,the ADC(PCM3168A)is thesource of I2S data.3Using the PurePath Console Software with the PurePath Console Motherboard The TAS5760xEVM is initialized upon PPC startup.Audio is streaming to the speakers if the Windows Media Player(or similar program)is playing and mini-USB EVM is selected in the sound playbackproperties.The following indicators show both the PPC and TAS5760xEVM are operating correctly:•On the PPCMB,the USB blue LED is on,the green LEDs for3.3V and5V are on•On the PPC,the green LED on the bottom left corner is onNOTE:For PPCMB,yellow LED indicator on for ET is normal.This indicates the energy threshold isabove the default limit in the TAS5548.The VALID blue LED is on if the TAS5548is correctlyinitialized.3.1Device Main TabThe DUT tab is displayed when the PPC starts up.Click on the TAS5760icon to be directed back to the device block diagram,as shown in Figure8.3.2Device Block Diagram TabThis tab shows the device major blocks.The boxes with black background are selectable.When one is selected,it shows pop-up settings for the particular setting.Figure8.DUT Block Diagram(TAS5760)9 SLOU366B–June2013–Revised February2015TM3.3Pop-up WindowsFor the TAS5760,several settings are set through the I2C and the GUI facilitates these settings seamlessly using the pop-up windows shown in Figure9and Figure10.Figure9.Digital Gain Pop-UpFigure10.Analog Gain Pop-Up Using the PurePath Console Software with the PurePath Console Motherboard 3.4Direct I2C Access TabI2C registers read and write can be performed on this tab(see Figure11).Type in the device I2C address and click the Set button.On the Direct I2C Read/Write box,type in a valid I2C register for read and type in both valid register and data for write.Figure11.Direct I2C Access3.5Device Registers TabThe device registers tab(Figure12)shows the current I2C registers values(hexadecimal and decimal)in the TAS5760.Figure12.Device Registers Tab11 SLOU366B–June2013–Revised February2015PurePath TM Console Motherboard Submit Documentation FeedbackCopyright©2013–2015,Texas Instruments Incorporated4Board Layouts,Bill of Materials,and Schematic4.1PurePath Console Motherboard Layouts,Revisions D and EFigure13through Figure16show the board layouts for the PurePath Console Motherboard.Figure13.PurePath Console Motherboard,Revision D and E,Top Composite AssemblyFigure14.PurePath Console Motherboard,Revision D and E,Copper Layer212SLOU366B–June2013–Revised February2015 PurePath TM Console MotherboardSubmit Documentation FeedbackCopyright©2013–2015,Texas Instruments IncorporatedFigure15.PurePath Console Motherboard,Revision D and E,Copper Layer3Figure16.PurePath Console Motherboard,Revision D and E,Bottom Composite Assembly13 SLOU366B–June2013–Revised February2015PurePath TM Console Motherboard Submit Documentation FeedbackCopyright©2013–2015,Texas Instruments Incorporated4.2PurePath Console Motherboard Layouts,Revision FFigure17Figure17.Assembly214SLOU366B–June2013–Revised February2015 PurePath TM Console MotherboardSubmit Documentation FeedbackCopyright©2013–2015,Texas Instruments Incorporated3Figure20.Assembly15 SLOU366B–June2013–Revised February2015PurePath TM Console Motherboard Submit Documentation FeedbackCopyright©2013–2015,Texas Instruments Incorporated。

离子色谱法测定注射剂中4种常用水溶性抗氧剂的含量

离子色谱法测定注射剂中4种常用水溶性抗氧剂的含量

文章编号:1001-8689(2021)03-0262-04收稿日期:2020-09-30基金项目:国家科技重大专项-重大新药创制项目(No. 2017ZX9101001)作者简介:高丛丛,女,生于1987年,博士,主要从事药物质量分析研究,E-mail:****************通讯作者,E-mail:*******************第一作者:高丛丛,博士,毕业于北京理工大学化学院,分析化学专业。

现为北京市药品检验所在站博士后,主要从事药物质量分析工作。

在站期间参与国家药品评价性抽验工作,参与并完成部分化学注射剂一致性评价课题中抗氧剂评价与控制子课题的工作。

通讯作者:戴红,主任药师,北京市药品检验所副所长,国家药典委员会委员、国家药品监督管理局药品、保健食品及化妆品审评专家、国家自然科学评奖专家、仿制药研究与评价国家药品监督管理局重点实验室主任。

长期从事生化药、抗生素类药物、血液制品、化学药等质量研究与评价工作,主持完成大量药典质量标准复核与质量标准提高等科研任务,参与完成多项重大课题研究,获北京市科学技术二等奖,发表专业论文近30篇、获得国家专利5项。

离子色谱法测定注射剂中4种常用水溶性抗氧剂的含量高丛丛 李珉 侯金凤 车宝泉 戴红*(北京市药品检验所,中药成分分析与生物评价北京市重点实验室,国家药品监督管理局仿制药研究与评价重点实验室,北京 102206)摘要:目的 建立一种离子色谱法测定注射剂中四种抗氧剂亚硫酸钠、亚硫酸氢钠、硫代硫酸钠和焦亚硫酸钠的方法。

方法 采用DionexIonPac AS11-HC(4mm ×250mm)色谱柱,DionexIonPac AG11-HC(4mm ×50mm)保护柱,以25mmol/L 氢氧化钠溶液为淋洗液,流速1.0mL/min ,抑制电流52mA ,电导检测器检测,电导池温度35℃,柱温30℃。

结果 亚硫酸钠、亚硫酸氢钠在0.1~100µg/mL 范围内线性关系良好,硫代硫酸钠和焦亚硫酸钠分别在0.08~100和0.05~100µg/mL 范围内线性关系良好。

3.2.S.4 原料药的质量控制(修改版)【范本模板】

3.2.S.4 原料药的质量控制(修改版)【范本模板】

他达拉非药学研究资料(CTD)目录3.2.S原料药 (1)3.2.S。

4 原料药的质量控制 (1)3.2。

S。

4。

1质量标准 (1)3。

2。

S.4。

2分析方法 (10)3.2。

S4。

3分析方法的验证 (26)3.2。

S。

4.4批检验报告 (138)3.2。

S。

4。

5质量标准制定依据 (142)3。

2。

S原料药3.2.S.4 原料药的质量控制3。

2。

S.4.1 质量标准第1页第2页第3页他达拉非药学研究资料(CTD) 3.2.S.4原料药的质量控制3.2.S.4.1质量标准临床研究用药品质量标准草案他达拉非TadalafeiTadalafil3C22H19N3O4389.40本品为(6R,12aR)—2,3,6,7,12,12a—六氢—2-甲基—6—[3,4—(亚甲基二氧)苯基]吡嗪并[1’,2':1,6]吡啶并[3,4-b]吲哚-1,4—二酮。

按干燥品计算,含C22H19N3O4应为98。

0%~102。

0%。

【性状】本品为白色至类白色粉末;无臭无味。

在N,N—二甲基甲酰胺、二甲亚砜中易溶,略溶于四氢呋喃和乙二醇单甲醚,微溶于甲醇和乙腈,极微溶解于乙醇和异丙醇,在正己烷、正庚烷和水中不溶。

比旋度取本品,精密称定,加二甲亚砜溶解并定容稀释制成每1mL中约含10mg的溶液,依法测定(附录ⅥE),比旋度为+78°~+84°.【鉴别】(1)取本品,加0.1%三氟乙酸水溶液—乙腈(1:1)制成每1 ml中约含10 μg 的溶液,照紫外—可见分光光度法(附录Ⅳ A)测定,在221 nm、284 nm和291nm的波长处有最大吸收.(2)在含量测定项下记录的色谱图中,供试品溶液主峰的保留时间应与对照品溶液主峰的保留时间一致.(3)本品的红外光吸收图谱应与对照品的图谱一致。

【检查】有关物质取本品,精密称定,用0。

1%三氟乙酸水溶液:乙腈=1:1(v:v)溶解并定容稀释制成每1 ml中约含0。

响应曲面法优化酸奶中嗜热链球菌 H1的生长条件

响应曲面法优化酸奶中嗜热链球菌 H1的生长条件

响应曲面法优化酸奶中嗜热链球菌 H1的生长条件王玉芹;周晶;沙未来【摘要】采用单因素试验和响应曲面法对酸奶中嗜热链球菌 H1的最适生长条件进行了研究和优化.根据回归分析得到的最适培养条件为:温度41.02℃,pH5.74,接种量0.31mL ·50mL -1,盐浓度0.23%,此时菌株的光密度OD600为1.176.经实验验证,在该条件下菌株光密度OD600为1.162,其相对误差小于2%.%The growth conditions of S .thermophilus H1 were studied by single factor experiment and response surface methodology . The results showed that the optimal parameters for the growth conditions as follows :the temperature was 41 .02℃ ,the pH was value 5 .74 ,the inoculum size was 0 .31mL · 50mL -1 ,the salt concentration was0 .23% ,and the OD600 of strain HI was 1 . 176 .Under the optimal conditions the OD600 of strain HI was 1 .162 ,The relative error was bel-lo w 2% .【期刊名称】《山东理工大学学报(自然科学版)》【年(卷),期】2013(000)006【总页数】6页(P26-31)【关键词】嗜热链球菌;响应曲面法;生长条件;优化【作者】王玉芹;周晶;沙未来【作者单位】曲阜师范大学生命科学学院,山东曲阜273165;曲阜师范大学生命科学学院,山东曲阜273165;曲阜师范大学生命科学学院,山东曲阜273165【正文语种】中文【中图分类】TS252.54;Q936乳酸菌是一类能利用可发酵的糖产生大量乳酸的细菌,广泛分布于土壤、植物根茎、湖泊及以动物体内.从形态上可分为球菌和杆菌,为兼性厌氧性细菌,革兰氏染色为阳性[1].早在20世纪20年代初国外就开始益生菌的研究,目前对于嗜热链球菌的研究主要集中于保健作用,抗菌作用,与保加利亚杆菌的共生作用,以及其对酸奶风味、感官品质、凝乳时间的影响等领域[2].现阶段我国酸奶发酵剂的制备技术大都停留在传统的人工型发酵剂水平,包括菌种活化、母发酵剂、中间发酵剂、生产发酵剂等工艺过程,存在活菌含量低、接种量大、生产工序多、劳动强度大、无菌技术要求高、菌种极易污染和退化等弊端[3-5].本研究者采用单因素试验和响应曲面法对酸奶中嗜热链球菌H1在不同温度、pH、接种量及盐浓度条件下嗜热乳酸链球菌的生长情况进行了研究,获得了该菌的最佳培养条件,以期为实际应用中嗜热乳酸链球菌的保存和继代提供参考.1 材料与方法1.1 材料1.1.1 菌种嗜热链球菌H1,曲阜师范大学微生物实验室保存.1.1.2 培养基M17改良培养基[6]:蛋白胨质量分数1%,牛肉膏0.5%,酵母浸膏0.25%,硫酸镁0.025%,甘油1%,磷酸二氢钾0.5%,乳糖0.3%.蛋白胨购自广州威佳科技有限公司,其它均为国产分析纯试剂.1.2 实验方法1.2.1 单因素实验在50mL 的M17液体培养基中接种嗜热链球菌H1,分别放入25℃,33℃,37℃,42℃,45℃的恒温摇床中培养24 h确定最佳培养温度.在pH为5.5,6.5,7.0,7.5,8.5条件下,放置到恒温摇床中培养24h确定佳的培养pH.在50mL的M17液体培养基中,分别接种菌液0.1 ml,0.2 ml,0.3 ml,0.4 ml,0.5 ml,培养24 h确定其最佳培养接种量.将菌株H1的24h的培养物于2000r/min离心10min,培养基盐浓度(质量浓度,单位g/L)为0.2%、0.3%、0.4%、0.5%、0.6%,培养24 h确定其最佳盐浓度.每组均设置3个平行样,最后结果取三者平均值,以确定最佳培养条件.1.2.2 响应曲面实验设计[7-11]基于单因素试验,考察M17液体培养基的温度、pH、接种量、盐浓度对嗜热链球菌H1的影响.将这4个因素作为响应变量,利用Design-Expert 7.1.6软件的中心旋转实验设计(Central Composite Design)原理,以嗜热链球菌H1在600nm 下的吸光度为响应值(OD),通过响应面曲面分析得到最优生长条件,并进行实验验证.2 结果与分析2.1 单因素实验结果2.1.1 嗜热链球菌H1在不同培养温度下的生长状况温度对嗜热乳酸链球菌H1生长的影响见图1.结果表明,嗜热乳酸链球菌H1在25~45℃范围内均能生长,温度对H1的影响相对较小,无明显的上升下降趋势,总的生长活性在42℃时嗜热链球菌H1达最高.图1 温度对嗜热乳酸链球菌的影响2.1.2 嗜热链球菌H1在不同酸碱度条件下的生长状况pH对嗜热乳酸链球菌H1生长的影响见图2.结果表明,嗜热乳酸链球菌H1的pH值适宜生长范围较广,受pH值的影响较小,弱酸和弱碱均能有利于H1的生长,在pH为6.5~7.5时有较高活性.图2 pH值对嗜热乳酸链球菌的影响2.1.3 嗜热链球菌H1在不同接种量条件下的生长状况接种量对嗜热乳酸链球菌H1生长的影响见图3,结果表明,该菌在接种量为0.1 mL~0.5 mL的条件下均能生长,上升下降的幅度不是很大,接种量为0.3mL时嗜热乳酸链球菌H1的生长状况最好.图3 接种量对嗜热乳酸链球菌H1的影响2.1.4 盐浓度对嗜热链球菌H1的影响盐浓度对嗜热乳酸链球菌H1生长的影响见图4,结果表明,盐浓度在0.2%时,菌株生长较好,随着盐浓度的升高,菌株的生长受到抑制.图4 盐浓度对嗜热链球菌H1的影响2.2 生长条件优化2.2.1 响应曲面实验设计基于单因素实验结果,该阶段的实验采用中心旋转实验设计(Central Composite Design)来对嗜热链球菌H1培养条件的主要影响因子进行研究,确定其最佳培养条件.各实验组的编码与取值见表1.共30个实验点,其中24个为析因点,6个为零点.零点实验进行6 次,做误差估计.表1 响应面分析因素与水平表水平因素A:温度/℃B:pH值C:接种量/(mL·50mL-1)D:盐浓度/%+1.6845.368.810.4680.368+1447.50.40.30425.50.30.2-1406.50.20.1-1.6838.644.820.1320.032运用Design-Expert 数据统计分析软件,得到实验方案与结果,见表2.通过对表2 数据进行二次多项式拟合得到响应值与各因子的多元回归方程为:OD=-24.88+1.32A-0.76B+2.66C+11.98D+0.03AB+0.04AC-0.25AD-0.14BC+0.25BD+1.26CD-0.02A2-0.005B2-5.79C2-6.05D2该模型进行回归分析,方差分析结果见表3.表2 旋转中心组合实验设计方案和结果试验编号编号OD600ABCD 试验值预测值1-1-1-1-10.8980.90021-1-1-10.7010.6973-11-1-10.7110.7157411-1-10.780.76575-1-11-10.9410.926761-11-10.7580.75477-111-10.680.68578111-10.7650.76779- 1-1-111.1311.123101-1-110.7220.71811-11-111.0321.0371211-110.8770.88613-1-1111.1831.199141-1110.8360.82615-11111.0591.0571611110.9390.93817-1.680001.0501.043181.680000.7570.771190-1.68000.9981.0122001.68000.9580.9512100-1.6800.9120.91622001.6800.9780.98123000-1.680.7640.776240001.681.1111.1062500001.1051.1112600001.1081.11127 00001.1261.1112800001.1161.1112900001.1101.1113000001.1141.111表3 响应面回归模型方差分析表变异来源平方和自由度平均方差Fp显著性模型0.74140.053385.13<0.0001**A0.1410.141031.99<0.0001**B0.00719910.007 19952.41<0.0001**C0.00814510.00814559.46<0.0001**D0.2110.211527.22 <0.0001**AB0.06410.064470.05<0.0001**AC0.00100810.0010087.360.0160 *AD0.04110.041295.67<0.0001**BC0.00310810.00310822.690.0003**BD0.0 0985110.00985171.91<0.0001**CD0.00252510.00252518.430.0006**A20.08 610.086626.62<0.0001**B20.003510.0035253.76<0.0001**C20.05510.0553 98.47<0.0001**D20.06010.060435.90<0.0001**残差0.002055150.002055失拟项0.001778100.0017783.210.1049纯误差0.00276850.002768总值0.7429R2=0.9994R2Adj=0.9974C.V.=4.35%注: **表示差异极显著(p<0.01), *表示差异显著(p<0.05).通过统计学数据F检验判定模型的准确性,表3可知,该模型的p<0.0001,表明该模型在95%水平上显著.其失拟值为0.1049>0.05,不显著,模型较准确.R2为0.9994,校正决定系数为为0.9974,说明该模型拟合程度良好,实验误差小.变异系数C.V.为4.35%,该值较低,说明实验的可靠性较高,实验操作可信.因此可以用此模型来分析和预测结果.通过分析回归系数可知影响嗜热链球菌H1生长的各因素的主次顺序为盐浓度>接种量>温度>pH值.表3可知,A、B、C、D、A2、B2、C2、D2对嗜热链球菌H1生长影响极其显著,AB、AD、BC、BD、CD交互作用极显著,AC交互作用显著.2.2.2 响应面分析根据回归方程,采用Design Expert 软件对该模型绘制响应曲面图,得到响应曲面图及其等高线.见图5~10.由图5可知,当温度不变,随着pH的升高,OD值先升高后降低,当pH不变,随着温度的升高,OD值先升高后降低,该图中OD可取到最大值.等高线为椭圆形,说明温度和pH的交互作用显著.这与模型的方差分析结果一致.图5 温度和pH交互影响嗜热链球菌H1生长的响应曲面图及其等高线由图6可知,当温度不变,随着接种量的升高,OD值先升高后降低,当接种量不变,随着温度的升高,OD值先升高后降低,该图中OD可取到最大值.等高线为椭圆形,说明温度和接种量的交互作用显著.这与模型的方差分析结果一致.图6 温度和接种量交互影响嗜热链球菌H1生长的响应曲面图及其等高线由图7可知,当温度不变,随着盐浓度的升高,OD值呈增加趋势,当盐浓度不变,随着温度的升高,OD值呈下降趋势.说明该图体现不出温度与盐浓度交互影响嗜热链球菌H1生长最佳条件.但等高线为椭圆形,说明温度和盐浓度的交互作用显著,但不如其他因子之间的交互作用明显,这与模型的方差分析结果一致.图7 温度和盐浓度交互影响嗜热链球菌H1生长的响应曲面图及其等高线由图8可知,当pH不变,随着接种量的升高,OD值先升高后降低,当接种量不变,随着pH的升高,OD值先升高后降低,该图中OD可取到最大值.等高线为椭圆形,说明温度和接种量的交互作用显著.这与模型的方差分析结果一致.图8 pH和接种量交互影响嗜热链球菌H1生长的响应曲面图及其等高线由图9可知,当pH不变,随着盐浓度的升高,OD值先升高后降低,当盐浓度不变,随着PH的升高,OD值先升高后降低,该图中OD可取到最大值.等高线为椭圆形,说明温度和接种量的交互作用显著.这与模型的方差分析结果一致.图9 pH和盐浓度交互影响嗜热链球菌H1生长的响应曲面图及其等高线由图10可知,当接种量不变,随着盐浓度的升高,OD值先升高后降低,当盐浓度不变,随着接种量的升高,OD值先升高后降低,该图中OD可取到最大值.等高线为椭圆形,说明接种量和盐浓度的交互作用显著.这与模型的方差分析结果一致.图10 接种量和盐浓度交互影响嗜热链球菌H1生长的响应曲面图及其等高线利用Design-Expert 软件进行实验结果优化,得到优化结果为:当温度41.02℃,pH5.74,接种量0.31mL/mL,盐浓度0.23%时,OD有最大值,为1.176.2.2.3 实验结果验证对上面得到的预测值进行重复验证实验,实验结果为1.162,其相对误差<2%,证明应用响应曲面优化嗜热链球菌H1生长条件是极其可靠的.3 结果与讨论从酸奶中分离得到的,通过单因素实验研究温度、pH、接种量和盐浓度对生长条件的影响.再利用Design -Expert 设计软件,采用旋转中心组合实验设计法建立优化嗜热链球菌H1最适生长条件的数学模型,根据回归分析得到最适生长条件是:温度41.02℃,pH5.74,接种量0.31mL/mL,盐浓度为0.23%,嗜热链球菌H1的光密度达最大为1.176.从生长温度条件可知,该菌的最适生长温度41.02℃要比37℃偏高,但益生菌株在菌液浓缩或制作膨化、颗粒料时,都要进行加热处理,且在45℃可以检测到活菌,说明该菌可用于工业化生产.由于动物消化道中存在胃酸,能够抵抗较强的酸性环境益生菌能在肠道中存活和正常发挥作用的先决条件[12],该菌的最适pH为5.74,且在pH为2.5时仍可检测到活菌,为该菌的工业化生产提供了可靠的依据. 参考文献【相关文献】[1] 彭磊,司红丽.酸奶中嗜热链球菌初步分离与鉴定[J].现代农业科技,2011(15):359-360.[2] 郜洪涛,吕嘉枥,闫肃,等.嗜热链球菌对酸奶发酵的影响及应用前景[J].中国酿造,2010,11(11):5-8.[3] 佟潇.酸奶中嗜热链球菌的分离和鉴定[J].中国乳品工业,2004,32(3):25-27.[4] 张和平.中国益生乳酸菌及益生发酵乳研究开发现状及发展对策[J].乳业科学与技术,2009,32(2):51-54.[5] 赵红霞,詹勇,许梓荣. 乳酸菌的研究及其应用[J]. 江西饲料,2003(1):9-12.[6] 白建,黄素珍.纯牛奶中抗菌药物残留的检测[J].乳业科学与技术,2006,28(1):15-17.[7] 杨平,曹文涛,张建宇,等.响应曲面法优化红汁乳菇发酵条件[J].江西食品工业,2008,186(2):28-31.[8]丁明亮,欧阳安然,王望斐,等.枯草芽孢杆菌产凝乳酶发酵条件的优化[J].食品科学,2011,32(3):156-160.[9] 于艳琴,李璘佼,车振明.响应面法优化腐乳生产中的培菌条件[J].中国食品学报,2010,10(5):183-188.[10] 郭端强,姬晓娜,管丽冰,等.响应面法优化好氧反硝化细菌N22′的发酵条件[J] .中国酿造,2013,32(1):53-56.[11] Manohar B, Divakar S. Applications of surface plots and statistical designs to selected lipase catalysed esterification reactions[J].Process Biochemistry,2004,39(7):847-853.[12] Gilliland S E.Health and nutritional benefits from lactic acid bacteria[J]. FEMS.Microbiology Reviews,1990,7(1/2):175-188.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Basic Information of Supplier and Component
Supplier Name: Contact Person: E-mail address: TEL: .
.
C
Part No. of : Part No. of Supplier: Part Description: Meet Standard?
N.D N.D N.D N.D N.D N.D N.D Negative N.D N.D N.D N.D N.D N.D N.D
H1216S
序号 构成物料的均质材质 检测报告提供商 检测报告编号 测试日期 测试机构名称 No. Homogeneous Supplier of Test Test Report No. Test Date Test By Material Sub-parts Report Pb 1 2
銅線 -B C ANEC 1 1 0 17 1 2 80 1 2 01 1 .5.1 1 .PDF
銅線 -G C ANEC 1 1 0 17 1 2 80 2 2 01 1 .5.1 1 .PDF
凡立 水 GZ1 1 0 6 0 7 8 6 0 5 .C HEM 2 0 1 1 .6 .2 3 .p d f
無鉛錫條 GZ101214 0960.C HEM 2010.1 2.13.p df
白色油墨 C E.2011.9 0128
2011.9 .8.pdf
Memo: 1. 請依照材料申請的種類 , 勾選 RoHS 或是 GP 2. 合格與否 , 需依照勾選的 RoHS 或是 GP 的要求標準 . 3. ICP 建議每年測試一次 , 或是有 ECN 變更時須重新測試 . FM:3014 REV.A
PRELIMINARY Approved by : 何小文 Checked by : 黎宇华 黎宇华
TITLE: MECHANICAL OUTLINE PART NO:
H1216S
SHEET 1 OF 4
SCALE: NONE
Y
Z
DIM X Y G Z
MILLIMETERS 0.64 1.5 1.27 10.67
鐵芯 SZ C 1 0 1 2 3 1 8 0 4 0 1 - 1 C 2 0 1 1 .1 . 8 .PD F
銅線 -R C ANEC 11 01 7 12 8 03 20 1 1.5 .1 1 .p d f
銅 線 -N C ANE C 1 1 0 1 7 1 2 8 0 4 2 0 1 1 .5 .1 1 .PDF
HSW-
H1216S
RoHS Y GP
製造商 Maker:HSWMEMO:
H1216S
H1216S
PBDE s N.D N.D N.D N.D N.D N.D / N.D N.D N.D 是否合格? PASS? PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS
TITLE: ELECTRICAL PART NO:
H1216S
SHEET 4 OF 4
SCALE: NONE
物料中有害物质含量调查表 表一 Questionnaire for Hazardous Substances(Table 1)
物料名称: Product name: 物料系列: Product serial: 网络滤波器 贴片滤波器 原厂型号: Component Number: 重量(g): Weights(g): 有害物质测试结果(mg/kg=ppm) 备注 RoHs/电池指令/包装指令 Remark Cd Hg Cr(V1) PBBs PBDEs
INCHES MIN MAX 0.49 0.51 0.19 0.2 0.18 0.2 0.35 (typical) 0.0115 0.0275 0.050 (typical) 0.018 (typical) 0.36 0.371 0.028 0.068 0° 8° 0.025 0.045
1.PACKAGE : BLACK PLASTIC SELF-EXTINGUISHING PER UL94V-0. 2.LEAD: SOLDERABILITY PER MIL-STD-202,METHOD 208. NOTES: UNLESS OTHERWISE SPECIFIED
2010-8-9
SGS
N.D
N.D
N.D
N.D
N.D
N.D
6

XIDA
CANML1003577802 2010-8-24
SGS
N.D
N.D
N.D
Negative
N.D
N.D
公司名称(盖章): Supplier name:
填表人: Sபைடு நூலகம்gnature:
联系电话:
填表日期:
2012-03-16
C 材質成份表 Component Composition Sheet
TITLE: ELECTRICAL PART NO:
H1216S
SHEET 3 OF 4
SCALE: NONE
SCHEMATIC :
1 TRANSMITTER 2 3
1CT:1CT
16 15
14 1CT:1CT
6 7 8
11 10
RECEIVER
9
PRELIMINARY Approved by : 何小文 Checked by : 黎宇华 黎宇华
A
H
HSW ****
D I
J B K
H1216S
C E G F
DIM A B C D E F G H I J K
MILLIMETERS MIN MAX 12.45 12.95 7 7.25 4.7 5.2 8.89 (typical) 0.3 0.7 1.27 (typical) 0.46(typical) 9.2 9.7 1.525 1.785 0° 8° 0.64 1.14
膠殼 R LSZD000837480001 2011.3.17.PDF
材料ICP 檢測查核表 Component ICP test results Checklist Data Reporting Structure - Complete BOM ( 材料以完整的BOM展開列表)
組成部品名稱 Component /Part Name 部品編號 Part # 組成材料 Material Composition 鐵芯 銅線-R 銅線-N 銅線-B 网络变压器 HSW -H1216S 銅線-G 塑膠 RLSZD000837480001 金屬 凡立水 無鉛錫條 白色油墨 GZ1106078605/CHEM GZ1012140960/CHEM CE/2011/90128 SGS SGS SGS 2012/6/23 2012/12/13 2011/9/8 CTI 2012/11/17 ICP 報告編號 ICP report # SZC10123180401-1C CANEC1101712803 CANEC1101712804 CANEC1101712801 CANEC1101712802 測試單位 Test Org. HCT SGS SGS SGS SGS 測試日期 Test Date 2012/11/23 2012/5/11 2012/5/11 2012/5/11 2012/5/11 測試結果 Test results (ppm = mg/Kg) Cd N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D Pb N.D N.D N.D N.D N.D N.D 27 N.D 66 N.D Hg N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D Cr+6 Negati ve N.D N.D N.D N.D N.D Negati ve N.D Negati ve N.D PBBs N.D N.D N.D N.D N.D N.D / N.D N.D N.D 第三公正 測試單位
SCALE: NONE
10/100 BASE-TX TRANSFORMER MODULE
ELECTRICAL SPECIFICATIONS @25℃
Operating Temperature 0 ℃ to + 70 ℃
TURN RATIO : 1CT:1CT(TX)/1CT:1CT(RX) OCL (PRIMARY) : 350uH MIN @100KHz,0.1Vrms,8 mA Designed for reflow soldering at temperatures up to 260 ℃ POLARITY : 1-16;6-11 IN-PHASE INSERTION LOSS : 1-100MHz -1.1dB(TX/RX) MAX RETURN LOSS : -18dB MIN (30MHz) , -14dB MIN (60MHz) , -12dB MIN (80MHz) COMMON MODE REJECTION : -42dB MIN(30MHz),-37db MIN(50MHz),-33dB MIN(100MHz) CROSS TALK : -45dB MIN (30MHz), -40dB MIN (60MHz), -35dB MIN (100MHz), WINDING CAPACITANCE (Cww) : 20 PF (typical) ISOLATION(PRIMARY/SECONDARY) : 1500 Vrms RoHs compliance Approved by : 何小文 Checked by : 黎宇华 黎宇华 PRELIMINARY
4

SUNTEK
CANEC1002003102 CANEC1002003103 CANEC1002003104 CANEC1002003105
2010-5-18 2010-5-18 2010-5-18 2010-5-18
相关文档
最新文档