1.2.2 空间中的平行关系(4)——平面与平面平行(人教B版必修2)

合集下载

新人教B版必修2高中数学课堂设计1.2.2空间中的平行关系(4)平面与平面平行学案

新人教B版必修2高中数学课堂设计1.2.2空间中的平行关系(4)平面与平面平行学案

1.2.2 空间中的平行关系(4)——平面与平面平行自主学习学习目标1.掌握两平面平行的定义、图形的画法以及符号表示.2.理解两平面平行的判定定理及性质定理,并能应用定理.证明线线、线面、面面的平行关系.自学导引1.两个平面平行的定义:_______________________________________________________ _________________.2.平面与平面平行的判定定理:_______________________________________________________ ___.图形表示:符号表示:_______________________________________________________ _________________.推论:如果一个平面内有两条____________分别平行于另一个平面内的__________,则这两个平面平行.3.平面与平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么____________________________.符号表示:若平面α、β、γ满足________________________,则a∥b.上述定理说明,可以由平面与平面平行,得出直线与直线平行.对点讲练知识点一平面与平面平行的判定例1已知E、F、E1、F1分别是三棱柱A1B1C1—ABC棱AB、AC、A1B1、A1C1的中点.求证:平面A1EF∥平面E1BCF1.点评要证平面平行,依据判定定理只需要找出一个平面内的两条相交直线分别平行于另一个平面即可.另外在证明线线、线面以及线面平行的判定线面平行面面平行时,常进行如下转化:线线平行―-------→面面平行的判定面面平行.――------→变式训练1 正方体ABCD—A1B1C1D1中,M、N、E、F分别为棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.知识点二用面面平行的性质定理证线面平行与线线平行例2已知M、N分别是底面为平行四边形的四棱锥P—ABCD棱AB、PC的中点,平面CMN与平面PAD交于PE,求证:(1)MN∥平面PAD;(2)MN∥PE.点评该题充分体现了线线平行、线面平行、面面平行之间的相互转化关系.一般来说,证线面平行时,若用线面平行的判定定理较困难,改用面面平行的性质是一个较好的想法.变式训练2如图所示,正方体ABCD—A′B′C′D′中,点E在AB′上,点F在BD上,且B′E=BF.求证:EF∥平面BB′C′C.知识点三综合应用例3如图所示,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE∶ED=2∶1.那么,在棱PC上是否存在一点F,使得BF∥平面AEC?证明你的结论.点评解答开放性问题,要结合题目本身的特点与相应的定理,大胆地猜想,然后证明.变式训练3如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足______时,有MN∥平面B1BDD1.1.在空间平行的判断与证明时要注意线线、线面、面面平行关系的转化过程:2.注意两个问题(1)一条直线平行于一个平面,就平行于这个平面内的一切直线,这种说法是不对的,但可以认为这条直线与平面内的无数条直线平行.(2)两个平面平行,其中一个平面内的直线必定平行于另一平面,但这两个平面内的直线不一定相互平行,也有可能异面.课时作业一、选择题1.设平面α∥平面β,直线α,点B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在惟一一条与a平行的直线2.对于直线m、n和平面α,下列命题中是真命题的是( ) A.如果α,α,m、n是异面直线,那么n∥αB.如果α,α,m、n是异面直线,那么n与α相交C.如果α,n∥α,m、n共面,那么m∥nD.如果m∥α,n∥α,m、n共面,那么m∥n3.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ) A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l24.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,那么所有的动点C( )A.不共面B.当且仅当A、B分别在两条直线上移动时才共面C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面5.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是( )A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内二、填空题6.下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m,n为直线,α,β为平面),则此条件应为________.⎭⎪⎬⎪⎫ααm∥βn∥β α∥β7.平面α∥平面β,△ABC 和△A′B′C′分别在平面α和平面β内,若对应顶点的连线共点,则这两个三角形________.8.下列命题正确的是________.(填序号)①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行; ②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行;③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行.三、解答题9.已知两条异面直线BA 、DC 与两平行平面α、β分别交于B 、A 和D 、C ,M 、N 分别是AB 、CD 的中点.求证:MN∥平面α.10.如图所示E、F、G、H分别是正方体ABCD—A1B1C1D1的棱BC、CC1、C1D1、AA1的中点,求证:(1)GE∥平面BB1D1D;(2)平面BDF∥平面B1D1H.【答案解析】自学导引1.没有公共点的两个平面2.如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行β,β,a∩b=P,a∥α,b∥αβ∥α相交直线两条直线3.它们的交线平行α∥β,γ∩α=a,γ∩β=b对点讲练例1证明∵EF是△ABC的中位线,∴EF∥BC.平面E1BCF1,平面E1BCF1,∴EF∥平面E1BCF1.∵A 1E1EB,∴四边形EBE1A1是平行四边形,∴A1E∥E1B.∵A1平面E1BCF1,E1平面E1BCF1,∴A1E∥平面E1BCF1.又∵A1E∩EF=E,∴平面A1EF∥平面E1BCF1.变式训练1 证明如图,连接A 1C 1,AC.设A 1C 1分别交MN 、EF 于P 、Q , AC 交BD 于O. 连接AP ,OQ ,B 1D 1. 在矩形A 1ACC 1中,PQ∥AO,∵M、N 、E 、F 分别是所在棱的中点, ∴MN 12D 1B 1,EF 12D 1B 1,∴P、Q 分别是四等分点,∴PQ=12AC ,又∵AO=12AC ,∴PQ AO.∴四边形PQOA 为平行四边形,∴AP∥OQ. ∴AP∥平面EFDB.又∵MN∥B 1D 1,EF∥B 1D 1, ∴EF∥MN,∴MN∥平面EFDB , ∴平面AMN∥平面EFDB.例2 证明 (1)取DC 中点Q ,连接MQ 、NQ.∵NQ 是△PDC 的中位线,∴NQ∥PD.平面PAD ,平面PAD ,∴NQ∥平面PAD.∵M 是AB 中点,ABCD 是平行四边形, ∴MQ∥AD,平面PAD ,平面PAD.从而MQ∥平面PAD.∵MQ∩NQ=Q ,∴平面MNQ∥平面PAD.平面MNQ ,∴MN∥平面PAD. (2)∵平面MNQ∥平面PAD , 平面PEC∩平面MNQ =MN , 平面PEC∩平面PAD =PE.∴MN∥PE.变式训练2 证明 方法一 连接AF 延长交BC 于M ,连接B′M. ∵AD∥BC,∴△AFD∽△MFB,∴AF MF =DF BF. 又∵BD=B′A,B′E=BF , ∴DF=AE.∴AF FM =AEEB′.∴EF∥B′M, 又平面BB′C′C,面BB′C′C,∴EF∥平面BB′C′C.方法二 作FH∥AD 交AB 于H ,连接HE. ∵AD∥BC,∴FH∥BC, 又平面BB′C′C ,平面BB′C′C,∴FH∥平面BB′C′C. 由FH∥AD,可得BF BD =BHBA,又BF =B′E,BD =AB′,∴B′E B′A =BHBA ,∴EH∥BB′,平面BB′C′C,面BB′C′C,∴EH∥平面BB′C′C,又EH∩FH=H , ∴平面FHE∥平面BB′C′C,平面FHE ,∴EF∥平面BB′C′C. 例3 解如图所示,当F 是棱PC 的中点时,BF∥平面AEC , 证明如下:取PE 的中点M ,连接FM , 则FM∥CE.①由EM =12PE =ED 知,E 是MD 的中点,连接BM 、BD ,设BD∩AC=O ,则O 为BD 的中点,所以BM∥OE.② 又BM∩FM=M ,③由①②③可得,平面BFM∥平面AEC. 又平面BFM ,所以BF∥平面AEC.变式训练3 M∈线段FH 解析 ∵HN∥BD,HF∥DD 1, H N∩HF=H ,BD∩DD 1=D , ∴平面NHF∥平面B 1BDD 1, 故线段FH 上任意点M 与N 连接, 有MN∥平面B 1BDD 1. 课时作业1.D [直线a 与B 可确定一个平面γ, ∵B∈β∩γ,∴β与γ有一条公共直线b. 由线面平行的性质定理知b∥a,所以存在性成立.因为过点B 有且只有一条直线与已知直线a 平行,所以b 惟一.] 2.C [若α,α,m ,n 是异面直线,如图(1)所示,此时n 与α相交,故A 不正确.B 项若α,α,m ,n 是异面直线,如图(2)所示,此时m 与n 为异面直线,而n 与α平行,故B 不正确.D 项如果m∥α,n∥α,m ,n 共面,如图(3)所示,m 与n 可能相交,故D 不正确.]3.B如图,在正方体ABCD—A1B1C1D1中,AB∥面A1B1CD,CD∥面A1B1BA,但面A1B1CD与面A1B1BA相交,故A不正确;取AD中点为E,BC中点为F,则EF∥面ABB1A1,C1D1∥面ABB1A1,但面ABB1A1与面EFC1D1不平行,故C不对;虽然EF∥AB且C1D1∥面A1B1BA,但是面EFC1D1与面A1B1BA 不平行,故D不正确.对于选项B,当l1∥m,l2∥n且α,α时,有l1∥α,l2∥α.又l1与l2相交且都在β内,∴α∥β,而α∥β时,无法推出m∥l1且n∥l2.∴l1∥m且l2∥n是α∥β的充分不必要条件.]4.D如图所示,A′、B′分别是A、B两点在α、β上运动后的两点,此时AB中点变成A′B′中点C′,连接A′B,取A′B中点E.连接CE、C′E.则CE∥AA′,∴CE∥α.C′E∥BB′,∴C′E∥β.又∵α∥β,∴C′E∥α.∵C′E∩CE=E.∴平面CC′E∥平面α.∴CC′∥α.所以不论A、B如何移动,所有的动点C都在过C点且与α、β平行的平面上.]5.D [A,B,C在平面α的异侧时,A错;而A,B,C在平面α同侧时,B错;A,B,C在平面α的异侧时,平面ABC有可能垂直于平面α,C错.]6.m,n相交7.相似解析由于对应顶点的连线共点,则AB与A′B′共面,由面与面平行的性质知AB∥A′B′,同理AC∥A′C′,BC∥B′C′,故两个三角形相似.8.③④9.证明过A作AE∥CD交α于E,取AE的中点P,连接MP、PN、BE、ED.∵AE∥CD,∴AE、CD确定平面AEDC.则平面AEDC∩α=DE,平面AEDC∩β=AC , ∵α∥β,∴AC∥DE.又P 、N 分别为AE 、CD 的中点,α,α,∴PN∥α.又M 、P 分别为AB 、AE 的中点, ∴MP∥BE,且α,α,∴MP∥α,又∵MP∩PN=P ,∴平面MPN∥α. 又平面MPN ,∴MN∥α.10.证明 (1)取B 1D 1中点O ,连接GO ,OB ,易证OG∥B 1C 1, 且OG =12B 1C 1,BE∥B 1C 1,且BE =12B 1C 1,∴OG∥BE 且OG =BE ,四边形BEGO 为平行四边形.∴OB∥GE.平面BDD 1B 1,平面BDD 1B 1,∴GE∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD, ∵B 1D 1平面BDF ,平面BDF , ∴B 1D 1∥平面BDF.连接HB ,D 1F ,易证四边形HBFD1是平行四边形,得HD1∥BF.∵HD1平面BDF,平面BDF,∴HD1∥平面BDF,∵B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.。

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第一章 1.2.2(一)

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第一章 1.2.2(一)
证明 如图,取 BB1 的中点 G,连接 GC1、GE.
本 课 时 栏 目 开 关
∵F 为 CC1 的中点,
∴BG 綊 C1F.
∴四边形 BGC1F 为平行四边形.
∴BF 綊 GC1. 又∵EG 綊 A1B1,A1B1 綊 C1D1,
∴EG 綊 D1C1.
∴四边形 EGC1D1 为平行四边形.
∴ED1 綊 GC1.∴BF 綊 ED1.
-A1B1C1D1 的棱 AD, A1D1 的中点.求证: ∠C1E1B1 = ∠CEB.
本 课 时 栏 目 开 关
证明 由于 E, 1 分别是正方体 ABCD-A1B1C1D1 的棱 AD, E A1D1 的中点,
所以 EE1∥DD1,且 EE1=DD1,
又因 DD1∥CC1 且 DD1=CC1,
∴四边形 MNA1C1 是梯形.
研一研· 问题探究、课堂更高效
1.2.2(一)
(2)由(1)可知 MN//A1C1,
又∵ND//A1D1,
本 课 时 栏 目 开 关
∴∠DNM 与∠D1A1C1 相等或互补. 而∠DNM 与∠D1A1C1 均是直角三角形的一个锐角,
∴∠DNM=∠D1A1C1.
研一研· 问题探究、课堂更高效
研一研· 问题探究、课堂更高效
1.2.2(一)
问题 2
你能画出一个空间四边形,并指出空间四边形的对
角线Байду номын сангаас?
本 课 时 栏 目 开 关
答 如图,是一个空间四边形, AC、BD 是它的对角线.
研一研· 问题探究、课堂更高效
1.2.2(一)
问题 3
空间四边形的常见画法经常用一个平面衬托,你能
画出吗?

人教B版高中必修二数学教学参考书电子版

人教B版高中必修二数学教学参考书电子版
人教B版高中必修二数学教学参考书电子版
第一章 立体几何初步
1.1空间几何体
1.1.1构成空间几何体的基本元素
1锥、圆台和球
1.1.4投影与直观图
1.1.5三视图
1.1.6棱柱、棱锥、棱台和球的表面积
1.1.7柱、锥、台和球的体积
实习作业
1.2点、线、面之间的位置关系
1.2.1平面的基本性质与推论
1.2.2空间中的平行关系
1.2.3空间中的垂直关系
本章小结
阅读与欣赏
散发着数学芳香的碑文
第二章 平面解析几何初步
2.1平面直角坐标系中的基本公式
2.1.1数轴上的基本公式
2.1.2平面直角坐标系中的基本公式
2.2直线的方程
2.2.1直线方程的概念与直线的斜率
2.2.2直线方程的几种形式
2.2.3两条直线的位置关系
2.2.4点到直线的距离
2.3圆的方程
2.3.1圆的标准方程
2.3.2圆的一般方程
2.3.3直线与圆的位置关系
2.3.4圆与圆的位置关系
2.4空间直角坐标系
2.4.1空间直角坐标系
2.4.2空间两点的距离公式
本章小结
阅读与欣赏
笛卡儿
附录
部分中英文词汇对照表
后记

人教B版高中数学必修2-1.2教学课件-空间中的平行关系:平行直线2

人教B版高中数学必修2-1.2教学课件-空间中的平行关系:平行直线2

互相平行。(通常称为空间平行线
的传递性)
a
b
c
若a// b,b// c,则a//c
Network Optimization Expert Team
教学过程
探索合作
问题5:刚才的折纸中,两个角是否相等?能从平 移的角度来理解这个结论吗?
如果一个角的两边与另一个角的两边分别对应平行, 并且方向相同,那么这两个角相等。
A
分析 为证明BAC B1 A1C1,我们构造两个全 等三角形, 使BAC与B1 A1C1 是它们的对应角。
Network Optimization Expert Team
教学过程
探索合作
证 分别在BAC和B1 A1C1的两
边上截取AD A1 D1 , AE A1 E1 ,
平行是立体几何中两大基本关系之一。而“线线 平行”又是“线面平行”、“面面平行”的知识基础, 对它的研究将为今后学习提供思路和方法,从而形成空 间平行的知识体系。
Network Optimization Expert Team
教材与学情
教材的地位与作用
本节的内容,在立体几何的学习中起着承前启 后的作用。一方面是巩固前面学习过的平面的基本 性质,形成对平面完整地、系统地认识;另一方面 为后续课程中的一些内容提供平移的理论依据,如 求各种“空间角”与“距离”等,从而为学习好立 体几何打下坚实的基础。
Network Optimization Expert Team
教法与学法
“支架式” 自主探究 教学模式 合作交流
教法
学法
教法选择,学法指导
Network Optimization Expert Team
教学过程
搭脚手架 进入情景 探索合作 归纳总结

2020人教版高一数学必修2(B版)电子课本课件【全册】

2020人教版高一数学必修2(B版)电子课本课件【全册】

1.1.4 投影与直观图
1.1.6 棱柱、棱锥、棱台和球的表面积
实习作业
1.2.2 空间中的平行关系
本章小结
第二章 平面解析几何初步
2.1.2 平面直角坐标系中的基本公式
2.2.2 直线方程的几种形式
2.2.4 点到直线的距离
2.3.2 圆的一般方程
2.3.4 圆与圆的位置关系
2.4.2 空间两点的距离公式
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1.3 圆柱、圆锥、圆台和球
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1.4 投影与直观图
阅读与欣赏
笛卡儿
后记
第一章 立体几何初步
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1 空间几何体
1.1.1
构成空间几何体的基本元素
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1.2 棱柱、棱锥和棱台的结 构特征
2020人教版高一数学必修2(B版)电 子课本课件【全册】
2020人教版高一数学必修2(B版) 电子课本课件【全册】目录
0002页 0075页 0147页 0181页 0218页 0305页 0357613页 0719页 0765页
第一章 立体几何初步
1.1.2 棱柱、棱锥和棱台的结构特征

新教材数学人教B版选择性必修第一册课件:1.2.2 空间中的平面与空间向量

新教材数学人教B版选择性必修第一册课件:1.2.2 空间中的平面与空间向量

⊥―F→E ,得n n
·―G→E =12y-12z=0, ·―F→E =12x-12y=0,
∴zx==yy,.
令 y=1,可得平面 GEF 的一个法向量为 n =(1,1,1).
利用待定系数法求法向量的步骤
[跟踪训练] 如图,在正方体ABCD-A1B1C1D1中,P是DD1的中点,O为底面 ABCD的中心,求证:―OB→1 是平面PAC的一个法向量.
解:如例题建系定坐标,D1(0,0,1),E1,1,12 ,M1,0,12 , ∴―D1→E=1,1,-12 ,即直线D1E的一个方向向量.
设平面EFM的法向量为n 1=(x1,y1,z1),
∵F0,12,0 ,∴―E→F =-1,-12,-12 ,―EM→=(0,-1,0),
n 由
n
1·―E→F =0, 1·―EM→=0,
利用三垂线定理证明垂直的步骤 (1)找平面(基准面)及平面的垂线; (2)找射影线(平面上的直线与斜线在平面上的射影线); (3)证明射影线与直线垂直,从而得线线垂直,更进一步证明线面垂直或 面面垂直.
[跟踪训练] 在四面体PABC中,PA⊥BC,PB⊥AC,求证:PC⊥AB. 证明:如图,过P作PH⊥平面ABC,连接AH延长交BC于E,
轴的正方向建立坐标系如图,设正方体的棱长为1.
则D(0,0,0),A(1,0,0),E 1,1,12 ,C1(0,1,1),M 1,0,12 , ―D→A =(1,0,0),―D→E =1,1,12 ,―C1→M=1,-1,-12 .
设平面ADE的法向量为m =(a,b,c),
m ·―D→A =0, a=0,
(4)面面垂直:①证明两平面的法向量垂直;②证明一个平面的法向量平行于另一个 平面.

1.2.2空间中的平行关系(一)平行直线

1.2.2空间中的平行关系(一)平行直线

D
D)
(3)空间两角α、β的两边对应平行, 且α=600, 则β等( A. 60° B. 120° C. 30° D. 60°或120°
D)
(4)若空间四边形的对角线相等,则以它的四条边的中点为顶点 的四边形是( )
D
A.空间四边形
B.梯形
C.正方形
D.菱形
(5)设AA1是正方体的一条棱,这个正方体中与AA1 平行的
没 有
一、 平行直线
1. 平行直线的定义:同一平面内不相交 的两条直线叫做平行线. 2. 平行公理:过直线外一点有且只有一 条直线和已知直线平行. 3. 性质:在平面内,如果两条直线都和第三 条直线平行,那么这两条直线也互相平行.
4. 基本性质4:平行于同一直线的两条直 线互相平行。 此性质又叫做空间平行线的传递性.
1
C1
E1 A1 B1
D E A B
C
练习题
(1) 下列结论正确的是( ) A.若两个角相等,则这两个角的两边分别平行 B.空间四边形的四个顶点可以在一个平面内 C.空间四边形的两条对角线可以相交 D.空间四边形的两条对角线不相交 (2) 下面三个命题, 其中正确的个数是( ①三条相互平行的直线必共面; ②两组对边分别相等的四边形是平行四边形; ③若四边形有一组对角都是直角,则这个四边形是圆的内 接四边形 A. 1个 B. 2 个 C. 3个 D. 一个也不正确
棱共有___条.
(6)如果OA∥O1A1, OB∥O1B1 ,那么∠AOB与∠A1O1B1 ( A.相等 B.互补 C.相等或互补
3
C
)
D.以上答案都不对
课堂小结
一、平行直线
二、等角定理
三、空间四边形
定理证明

高中数学教材人教B版目录(详细版).doc

高中数学教材人教B版目录(详细版).doc

数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。

数学人教B版教材目录(必修选修)

数学人教B版教材目录(必修选修)

数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。

高中数学第一章立体几何初步1.2.2第1课时平行直线学案新人教B版必修2

高中数学第一章立体几何初步1.2.2第1课时平行直线学案新人教B版必修2

第1课时 平行直线学习目标 1.掌握空间中两条直线的位置关系,理解空间平行性的传递性.2.理解并掌握基本性质4及等角公理.知识点一 基本性质41.文字表述:平行于同一条直线的两条直线互相平行.这一性质叫做空间平行线的传递性. 2.符号表达:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c .知识点二 等角定理思考 观察图,在长方体ABCD —A ′B ′C ′D ′中,∠ADC 与∠A ′D ′C ′,∠ADC 与∠D ′A ′B ′的两边分别对应平行,这两组角的大小关系如何?答案 从图中可以看出,∠ADC =∠A ′D ′C ′,∠ADC +∠D ′A ′B ′=180°. 梳理 等角定理如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等. 知识点三 空间四边形顺次连接不共面的四点A ,B ,C ,D 所构成的图形,叫做空间四边形.这四个点中的各个点叫做空间四边形的顶点;所连接的相邻顶点间的线段叫做空间四边形的边;连接不相邻的顶点的线段叫做空间四边形的对角线.空间四边形用表示顶点的四个字母表示.1.若AB ∥A ′B ′,AC ∥A ′C ′,则∠BAC =∠B ′A ′C ′.( × ) 2.没有公共点的两条直线是异面直线.( × )3.若a ,b 是两条直线,α,β是两个平面,且a ⊂α,b ⊂β,则a ,b 是异面直线.( × )类型一 基本性质4的应用例1 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,E ,F ,G ,H 分别为PA ,PB ,PC ,PD 的中点,求证:四边形EFGH 是平行四边形.解 在△PAB 中,因为E ,F 分别是PA ,PB 的中点, 所以EF ∥AB ,EF =12AB ,同理GH ∥DC ,GH =12DC .因为四边形ABCD 是平行四边形, 所以AB ∥CD ,AB =CD . 所以EF ∥GH ,EF =GH .所以四边形EFGH 是平行四边形.反思与感悟 证明两条直线平行的两种方法(1)利用平行线的定义:证明两条直线在同一平面内且无公共点.(2)利用基本性质4:寻找第三条直线,然后证明这两条直线都与所找的第三条直线平行,根据基本性质4,显然这两条直线平行.若题设条件中含有中点,则常利用三角形的中位线性质证明直线平行.跟踪训练1 如图所示,E ,F 分别是长方体A 1B 1C 1D 1-ABCD 的棱A 1A ,C 1C 的中点. 求证:四边形B 1EDF 是平行四边形.证明 设Q 是DD 1的中点,连接EQ ,QC 1.∵E 是AA 1的中点, ∴EQ 綊A 1D 1. 又在矩形A 1B 1C 1D 1中,A 1D 1綊B 1C 1,∴EQ綊B1C1(基本性质4).∴四边形EQC1B1为平行四边形,∴B1E綊C1Q.又∵Q,F是DD1,C1C的中点,∴QD綊C1F.∴四边形QDFC1为平行四边形.∴C1Q綊DF,∴B1E綊DF.∴四边形B1EDF为平行四边形.类型二等角定理的应用例2 如图,在正方体ABCD-A1B1C1D1中,M,M1分别是棱AD和A1D1的中点.求证:(1)四边形BB1M1M为平行四边形;(2)∠BMC=∠B1M1C1.证明(1)在正方形ADD1A1中,M,M1分别为AD,A1D1的中点,∴A1M1綊AM,∴四边形AMM1A1是平行四边形,∴A1A綊M1M.又∵A1A綊B1B,∴M1M綊B1B,∴四边形BB1M1M为平行四边形.(2)由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角.∴∠BMC=∠B1M1C1.反思与感悟有关证明角相等问题,一般采用下面三种途径(1)利用等角定理及其推论.(2)利用三角形相似.(3)利用三角形全等.本例是通过第一种途径来实现的.跟踪训练2 已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD,AD的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1. 证明 (1)如图,连接AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,MN =12AC .由正方体的性质,得AC ∥A 1C 1,AC =A 1C 1. ∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形.(2)由(1)可知MN ∥A 1C 1,又∵ND ∥A 1D 1, ∴∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形的一个锐角, ∴∠DNM =∠D 1A 1C 1.类型三 空间四边形的认识例3 如图,设E ,F ,G ,H 分别是四面体A -BCD 的棱AB ,BC ,CD ,DA 上的点,且AE AB =AH AD=λ,CF CB =CGCD=μ,求证:(1)当λ=μ时,四边形EFGH 是平行四边形; (2)当λ≠μ时,四边形EFGH 是梯形. 证明 (1)∵AE AB =AH AD =λ,∴EH ∥BD ,∴EHBD =λ.同理,GF ∥BD ,GF BD=μ.又∵λ=μ,∴EH =GF ,∴EH 綊GF . ∴四边形EFGH 是平行四边形.(2)由(1)知EH ∥GF ,又∵λ≠μ,∴EH ≠GF . ∴四边形EFGH 是梯形.反思与感悟 因空间图形往往包含平面图形,在解题时容易混淆,所以把相似的概念辨析一下,区分异同,有利于解题时不出错,如本例中明确给出了“空间四边形ABCD ”,不包含平面四边形,说明“A ,B ,C ,D 四点必不共面”,不能因直观图中AD 与BC 看似平行的关系认为它们是平行的.跟踪训练3 已知空间四边形ABCD 中,AB ≠AC ,BD =BC ,AE 是△ABC 的边BC 上的高,DF 是△BCD 的边BC 上的中线,判定AE 与DF 的位置关系. 解 由已知,得E ,F 不重合. 设△BCD 所在平面为α, 则DF ⊂α,A ∉α,E ∈α,E ∉DF , 所以AE 与DF 异面.1.直线a ∥b ,直线b 与c 相交,则直线a ,c 一定不存在的位置关系是( ) A .相交 B .平行 C .异面 D .无法判断答案 B解析如图,a与c相交或异面.2.下列四个结论中假命题的个数是( )①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.A.1 B.2 C.3 D.4答案 B解析①④均为假命题.①可举反例,如a、b、c三线两两垂直.④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面;当点A在直线l1上运动(其余三点不动)时,会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.3.下列结论正确的是( )A.若两个角相等,则这两个角的两边分别平行B.空间四边形的四个顶点可以在一个平面内C.空间四边形的两条对角线可以相交D.空间四边形的两条对角线不相交答案 D解析空间四边形的四个顶点不在同一平面上,所以它的对角线不相交,否则四个顶点共面,故选D.4.下面三个命题,其中正确的个数是( )①三条相互平行的直线必共面;②两组对边分别相等的四边形是平行四边形;③若四边形有一组对角都是直角,则这个四边形是圆的内接四边形.A.1 B.2 C.3 D.0答案 D解析空间中三条平行线不一定共面,故①错;当把正方形沿对角线折成空间四边形,这时满足两组对边分别相等,也满足有一组对角都是直角,故②、③都错,故选D.5.两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形( )A.全等B.不相似C.仅有一个角相等D.相似答案 D解析由等角定理知,这两个三角形的三个角分别对应相等,故选D.1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.3.注意:等角定理的逆命题不成立.一、选择题1.已知AB∥PQ,BC∥QR,若∠ABC=30°,则∠PQR等于( )A.30° B.30°或150°C.150° D.以上结论都不对答案 B解析由等角定理可知∠PQR与∠ABC相等或互补,故答案为B.2.分别和两条异面直线平行的两条直线的位置关系是( )A.一定平行B.一定相交C.一定异面D.相交或异面答案 D3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是( ) A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行答案 D解析等角定理的实质是角的平移,其逆命题不一定成立,OB与O1B1有可能平行,也可能不在同一平面内,位置关系不确定.4.在正方体ABCD-A1B1C1D1中,E,F分别是平面AA1D1D、平面CC1D1D的中心,G,H分别是线段AB,BC的中点,则直线EF与直线GH的位置关系是( )A.相交B.异面C.平行D.垂直答案 C解析如图,连接AD1,CD1,AC,则E,F分别为AD1,CD1的中点.由三角形的中位线定理知,EF∥AC,GH∥AC,所以EF∥GH,故选C.5.正方体ABCD-A1B1C1D1中,P,Q分别为AA1,CC1的中点,则四边形D1PBQ是( )A.正方形B.菱形C.矩形D.空间四边形答案 B解析设正方体棱长为2,直接计算可知四边形D1PBQ各边均为5,又D1PBQ是平行四边形,所以四边形D1PBQ是菱形.6.已知在正方体ABCD-A1B1C1D1中(如图),l⊂平面A1B1C1D1,且l与B1C1不平行,则下列一定不可能的是( )A.l与AD平行B.l与AD不平行C.l与AC平行D.l与BD垂直答案 A解析假设l∥AD,则由AD∥BC∥B1C1知,l∥B1C1,这与l与B1C1不平行矛盾,所以l与AD 不平行.7.长方体ABCD-A1B1C1D1的12条棱中,所在直线与棱AA1所在直线垂直的共有( )A.6条 B.8条 C.10条 D.12条答案 B解析所在直线与棱AA1所在直线垂直的有AB,BC,CD,DA,A1B1,B1C1,C1D1,D1A1,共8条.8.异面直线a,b,有a⊂α,b⊂β且α∩β=c,则直线c与a,b的关系是( ) A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交答案 D解析若c与a,b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由基本性质4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.二、填空题9.空间两个角α、β,且α与β的两边对应平行且α=60°,则β=________.答案60°或120°10.在正方体ABCD—A1B1C1D1中,判断下列直线的位置关系:(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.答案(1)平行(2)异面(3)相交(4)异面11.a,b,c是空间中三条直线,下面给出几个说法:①若a∥b,b∥c,则a∥c;②若a与b相交,b与c相交,则a与c也相交;③若a,b分别在两个相交平面内,则这两条直线不可能平行.则上述说法中正确的为________.(仅填序号)答案①解析由基本性质4知①正确.若a与b相交,b与c相交,则a与c可能平行,也可能相交或异面,②错误;若平面α∩β=l,a⊂α,b⊂β,a∥l,b∥l,则a∥b,③错误.三、解答题12.如图所示,在长方体ABCD -A 1B 1C 1D 1中的面A 1C 1内有一点P ,经过点P 作棱BC 的平行线,应该怎样画?并说明理由.解 如图所示,在面A 1C 1内过点P 作直线EF ∥B 1C 1,交A 1B 1于点E ,交C 1D 1于点F ,则直线EF 即为所求.理由:因为EF ∥B 1C 1,BC ∥B 1C 1,所以EF ∥BC .13.如图所示,两个三角形△ABC 和△A ′B ′C ′的对应顶点的连线AA ′,BB ′,CC ′交于同一点O ,且AO A ′O =BO B ′O =CO C ′O =23.(1)证明:AB ∥A ′B ′,AC ∥A ′C ′,BC ∥B ′C ′; (2)求S △ABCS △A ′B ′C ′的值.(1)证明 ∵AA ′与BB ′相交于O 点, 且AO OA ′=BO OB ′,∴AB ∥A ′B ′. 同理AC ∥A ′C ′,BC ∥B ′C ′.(2)解 ∵AB ∥A ′B ′,AC ∥A ′C ′且AB 和A ′B ′,AC 和A ′C ′的方向相反, ∴∠BAC =∠B ′A ′C ′. 同理∠ABC =∠A ′B ′C ′, 因此△ABC ∽△A ′B ′C ′,又AB A ′B ′=AO A ′O =23. ∴S △ABCS △A ′B ′C ′=⎝ ⎛⎭⎪⎫232=49. 四、探究与拓展14.如图所示,已知三棱锥A -BCD 中,M ,N 分别为AB ,CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD ) B .MN ≤12(AC +BD ) C .MN =12(AC +BD ) D .MN <12(AC +BD ) 答案 D解析 如图所示,取BC 的中点E ,连接ME ,NE ,则ME =12AC ,NE =12BD ,所以ME +NE =12(AC +BD ). 在△MNE 中,有ME +NE >MN ,所以MN <12(AC +BD ). 15.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綊12AD ,BE 綊12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)判断C ,D ,F ,E 四点是否共面?为什么?(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为FA 的中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG 綊CH ,∴EF ∥CH ,∴EF 与CH 共面. 又D ∈FH ,∴C ,D ,F ,E 四点共面.。

1.2.2空间中的平行关系(二)直线与平面平行

1.2.2空间中的平行关系(二)直线与平面平行

3、已知:直线AB ∥ 平面α ,经过AB的两个 平面 β 和 γ 分别和平面α 交于直线 a、
b
求证: a∥ b .


a α b
β
γ
知识小结
1.证明直线与平面平行的方法:
(1)利用定义; 直线与平面有没有公共点 (2)利用判定定理. 线线平行 空间问题 线线平行
线面平行
平面问题 线面平行
2.数学思想方法:转化的思想
证明:假设直线 a与平面不平行, 则a与一定有公共点, 可设a P, 设a与b确定的平面为, 则根据平面性质 3, 所以,假设不成立,原 命题成立。
β a p
a
b
α
P一定在交线上,即 P b,与a // b矛盾,
α
直线与平面平行判定定理
如果不在一个平面内的一条直线和平面内的一条 直线平行,那么这条直线和这个平面平行.
例2、如图,已知直线a,b,平面α ,且a//b,a//α ,
a,b都在平面α 外.求证:b//α .
证明:过a作平面β,使它与
β
a c
b
平面α相交,交线为c.
α 因为a//α,a β,α∩β=c,
所以 a// c. 因为a//b,所以,b//c.
又因为c α, b α,
所以 b//α.
C
A
B

D
将一本书平放在桌面上,翻动书的 硬皮封面,封面边缘AB所在直线与桌面 所在平面具有什么样的位置关系?
A A
B
B
思考讨论
平面 外有直线 a 平行于平面 内的直线 b . (1)这两条直线共面吗? (2)直线 a 与平面 什么关系呢?
a

最新人教版高一数学必修2(B版)电子课本课件【全册】

最新人教版高一数学必修2(B版)电子课本课件【全册】

1.1.4 投影与直观图
1.1.6 棱柱、棱锥、棱台和球的表面积
实习作业
1.2.2 空间中的平行关系
本章小结
第二章 平面解析几何初步
2.1.2 平面直角坐标系中的基本公式
2.2.2 直线方程的几种形式
2.2.4 点到直线的距离
2.3.2 圆的一般方程
2.3.4 圆与圆的位置关系
2.4.2 空间两点的距离公式
最新人教版高一数学必修2(B版)电 子课本课件【全册】
Байду номын сангаас
阅读与欣赏
笛卡儿
后记
第一章 立体几何初步
最新人教版高一数学必修2(B版)电 子课本课件【全册】
1.1 空间几何体
1.1.1
构成空间几何体的基本元素
最新人教版高一数学必修2(B版)电 子课本课件【全册】
1.1.2 棱柱、棱锥和棱台的结 构特征
最新人教版高一数学必修2(B版) 电子课本课件【全册】目录
0002页 0049页 0087页 0170页 0188页 0223页 0367页 0389页 0460页 0509页 0545页 0562页 0602页 0626页 0684页 0686页
第一章 立体几何初步
1.1.2 棱柱、棱锥和棱台的结构特征

高中数学人教B版教材目录

高中数学人教B版教材目录

高中数学人教B版目录(2019版高中数学B版新教材一共有7本,分别是必修4本,选择性必修3本。

)人教B版(2019)必修一第一章集合与常用逻辑用语1.1 集合1.2 常用逻辑用语第二章等式与不等式2.1等式2.2 不等式第三章函数3.1 函数的概念与性质3.2 函数与方程、不等式之间的关系3.3 函数的应用(一)人教B版(2019)必修二第四章指数函数、对数函数与幂函数4.1 指数与指数函数4.2 对数与对数函数4.3 指数函数与对数函数的关系4.4 幂函数4.5 增长速度的比较4.6 函数的应用(二)第五章统计与概率5.1 统计5.2 数学探究活动:由编号样本估计总数及其模拟5.3 概率5.4 统计与概率的应用第六章平面向量初步6.1 平面向量及其线性运算6.2 向量基本定理与向量的坐标6.3 平面向量线性运算的应用人教B版(2019)必修三第七章三角函数7.1 任意角的概念与弧度制7.2 任意角的三角函数7.3 三角函数的性质与图像7.4 数学建模活动:周期现象的描述第八章向量的数量积与三角恒等变换8.1 向量的数量积8.2 三角恒等变换人教B版(2019)必修四第九章解三角形9.1 正弦定理与余弦定理9.2 正弦定理与余弦定理的应用9.3 数学探究活动:得到不可达两点第十章复数10.1 复数及其几何意义10.2 复数的运算10.3 复数的三角形式及其运算第十一章立体几何初步11.1 空间几何体11.2 平面的基本事实与推论11.3 空间中的平行关系11.4 空间中的垂直关系选择性必修第一册第一章空间向量与立体几何第二章平面解析几何选择性必修第二册第三章排列、组合与二项式定理第四章概率与统计选择性必修第三册第五章数列第六章导数及其应用。

(课堂设计)2020高中数学 1.2.2 空间中的平行关系(1) 平行直线学案 新人教B版必修2

(课堂设计)2020高中数学 1.2.2 空间中的平行关系(1) 平行直线学案 新人教B版必修2

1.2.2 空间中的平行关系(1)——平行直线自主学习学习目标能认识和理解空间平行线的传递性,会证明空间等角定理.自学导引1.____________________________的两条直线叫做平行线,过直线外一点有且只有________直线与这条直线平行.2.基本性质4:________________________________,用符号表述为________________________________.3.等角定理:如果一个角的两边与另一个角的两边________________________________,那么这两个角相等.4.顺次连接不共面的四点A、B、C、D所构成的图形叫做________________,四个点叫做空间四边形的________,所连接的相邻顶点间的线段叫做空间四边形的______,连接不相邻的顶点的线段叫做空间四边形的__________.对点讲练知识点一理解有关概念及性质例1下列叙述是否正确,请说明理由.①空间四边形的四个顶点不共面,它有四条边两条对角线.②空间四边形不是平面图形,可以把它看作同一平面内有一条公共底边的两个三角形沿着公共底边适当翻折而成的空间图形.③顺次连接空间四边形四条边的中点得到一个平行四边形.④四边都相等的四边形都是菱形.⑤有三个角都是直角的四边形是矩形.点评空间四边形是立体几何中的一个重要模型,应掌握其画法及特征.变式训练1 在空间四边形ABCD中,若AC=BD,E、F、G、H分别是AB、BC、CD、DA 的中点,则四边形EFGH是( )A.菱形B.矩形C.梯形D.正方形知识点二平行公理的应用例2如图所示,P 是△ABC 所在平面外一点,D 、E 分别是△PAB、△PBC 的重心.求证:DE∥AC,DE =13AC.点评 空间图形中的平行,往往转化到某一个平面中去,利用平面性质:如中位线、平行截割定理等.变式训练2如图所示,在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且AEEB =AH HD =CF FB =CGGD≠1,那么四边形EFGH 是什么图形?知识点三 等角定理的应用例3如图所示,两个三角形ABC和A′B′C′的对应顶点的连线AA′、BB′、CC′交于同一点O,且AOOA′=BOOB′=COOC′=23.(1)求证:A′B′∥AB,A′C′∥AC,B′C′∥BC;(2)求S△ABCS△A′B′C′的值.点评本题考查了等角定理,等角定理的实质是由两个结论合成的:①若一个角的两边与另一个角的两边分别平行且方向相同,那么这两个角相等;②若一个角的两边与另一个角的两边分别平行且一组边的方向相反,那么这两个角互补.变式训练3如图所示,在正方体ABCD—A1B1C1D1中,E、F、E1、F1分别为所在边中点.求证:(1)EF E1F1;(2)∠EA1F=∠E1CF1.1.空间两条直线的位置关系—⎪⎪⎪⎪⎪—相交—共面,有一个公共点—平行—⎪⎪⎪⎪—共面,无公共点—基本性质4—空间平行线的传递性—等角定理—异面2.注意:等角定理的逆命题不成立.课时作业一、选择题1.已知AB∥PQ,BC∥QR,∠ABC=30°,则∠PQR 等于( ) A .30° B .30°或150° C .150° D .以上结论都不对 2.若∠AOB=∠A 1O 1B 1,且OA∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( ) A .OB∥O 1B 1且方向相同 B .OB∥O 1B 1C .OB 与O 1B 1不平行D .OB 与O 1B 1不一定平行3.正方体ABCD -A 1B 1C 1D 1中,P 、Q 分别为AA 1、CC 1的中点,则四边形D 1PBQ 是( ) A .正方形 B .菱形C .矩形D .空间四边形4.如图所示,设E 、F 、G 、H 依次是空间四边形ABCD边AB 、BC 、CD 、DA 上除端点外的点,且AE AB =AH AD =λ,CF CB =CGCD =μ.则下列结论中不正确的为( )A .当λ=μ时,四边形EFGH 是平行四边形B .当λ≠μ时,四边形EFGH 是梯形C .当λ=μ=12时,四边形EFGH 是平行四边形D .当λ=μ≠12时,四边形EFGH 是梯形5.已知空间四边形ABCD 中,M 、N 分别为AB 、CD 的中点,则下列判断正确的是( )A .MN≥12(AC +BD)B .MN≤12(AC +BD)C .MN =12(AC +BD)D .MN<12(AC +BD)题 号 1 2 3 4 5 答 案二、填空题6.下列命题中,正确的结论有________(填写序号).①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等; ②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补; ④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.7.在空间四边形ABCD 中,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,若AC =BD ,且AC⊥BD,则四边形EFGH 的形状为________.8.如图所示,正方体ABCD —A 1B 1C 1D 1中,判断下列直线的位置关系: (1)直线A 1B 与直线D 1C 的位置关系是________; (2)直线A 1B 与直线B 1C 的位置关系是________; (3)直线D 1D 与直线D 1C 的位置关系是________; (4)直线AB 与直线B 1C 的位置关系是________. 三、解答题 9.如图所示,在一个长方体木块的A 1C 1面上有一点P ,过P 点作一条直线和棱CD 平行,应怎样作?若要求过P 点画一条直线和BD 平行,又该怎样作?10.如图所示,在三棱锥A —BCD 中,E ,F ,G 分别是棱AB ,AC ,AD 上的点,且满足AE AB =AFAC =AG AD. 求证:△EFG∽△BCD.【答案解析】 自学导引1.在同一平面内不相交 一条2.平行于同一条直线的两条直线互相平行 如果a∥b,c∥b,那么a∥c 3.分别对应平行,并且方向相同 4.空间四边形 顶点 边 对角线 对点讲练 例1 解由空间四边形的定义知命题①②③都是真命题.空间四边形的四条边可相等,故命题④为假命题.关于命题⑤可构造正方体ABCD —A 1B 1C 1D 1,如图,∠D 1AB =∠ABC=∠BCD 1=90°,但∠AD 1C =60°,四边形ABCD 1不是矩形,故⑤为假命题.变式训练1 A例2 证明 连接PD 并延长交AB 于M ,连接PE 并延长交BC 于N ,则M 为AB 的中点,N 为BC 的中点,∴MN∥AC,又PD DM =PE EN =21,∴DE∥MN,∴DE∥AC. 又DE MN =PD PM =23, ∴DE=23MN ,又因MN =12AC ,∴DE=13AC.变式训练2 解 四边形EFGH 是平行四边形. 因为AE EB =AH HD =CF FB =CG GD,所以△AEH∽△ABD,△CFG∽△CBD.设AE EB =AH HD =CF FB =CG GD =k(k≠1),则利用相似三角形的性质,知EH =k k +1BD ,FG =k k +1BD ,且EH∥BD,FG∥BD,所以EH FG ,所以四边形EFGH 是平行四边形. 例3 (1)证明 ∵AA′与BB′交于点O ,且AO OA′=BO OB′=23,∴AB∥A′B′. 同理AC∥A′C′,BC∥B′C′.(2)解 ∵A′B′∥AB,AC∥A′C′且AB 和A′B′、AC 和A′C′方向相反,∴∠BAC =∠B′A′C′.同理∠ABC=∠A′B′C′.因此△ABC∽△A′B′C′,且AB A′B′=AO OA′=23. ∴S △ABCS △A′B′C′=⎝ ⎛⎭⎪⎫232=49.变式训练3 证明 (1)连接BD 、B 1D 1. E 、F 分别为AD 、AB 的中点, 则在△ABD 中有EF∥BD 且EF =12BD.同理,E 1、F 1分别为B 1C 1、C 1D 1的中点, 则在△C 1D 1B 1中有E 1F 1∥B 1D 1且E 1F 1=12B 1D 1.而在正方体ABCD — A 1B 1C 1D 1中,BB 1DD 1.∴四边形BB 1D 1D 为平行四边形, ∴BD∥B 1D 1且BD =B 1D 1,∴EF E 1F 1. (2)取A 1B 1的中点M ,连接BM ,则BF =A 1M =12AB ,又BF∥A 1M ,∴BF A 1M ,∴四边形A 1FBM 为平行四边形.∴A 1F∥BM,而M 、F 1分别为A 1B 1、C 1D 1的中点, 则F 1M C 1B 1,而C 1B 1BC. ∴F 1M∥BC 且F 1M =BC.∴四边形F 1MBC 为平行四边形,∴BM∥F 1C ,又BM∥A 1F ,∴A 1F∥CF 1. 同理取A 1D 1的中点N , 连接DN ,则A 1N DE ,所以四边形A 1NDE 为平行四边形. ∴A 1E∥D N ,又E 1N∥CD 且E 1N =CD. ∴E 1NDC 为平行四边形,∴DN∥CE 1. 由基本性质4,A 1E∥CE 1.∴∠EA 1F 与∠E 1CF 1的两边分别对应平行, 即A 1E∥CE 1,A 1F∥CF 1且方向都相反. ∴∠EA 1F =∠E 1CF 1. 课时作业1.B [由等角定理知空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.]2.D [等角定理的实质是角的平移,其逆命题不一定成立,OB 与O 1B 1有可能平行,也可能不在同一平面内,位置关系不确定.]3.B [设正方体棱长为2,直接计算可知四边形D 1PBQ 各边均为 5,又D 1PBQ 是平行四边形,所以四边形D 1PBQ 是菱形.]4.D [当λ=μ时EH FG ,∴EFGH 为平行四边形, 故D 中结论不正确.] 5.D[如右图所示,取BC 中点E ,连接ME ,NE⎭⎪⎬⎪⎫则MN<ME +NE而ME =12AC ,NE =12BD MN<12(AC +BD).] 6.②④ 7.正方形解析 E 、F 、G 、H 分别为所在边的中点, 由中位线性质知EF12AC ,GH 12AC , ∴EF GH.∴四边形EFGH 为平行四边形.又AC =BD ,AC⊥BD,∴EF=FG ,且EF⊥FG. ∴四边形EFGH 为正方形.8.(1)平行 (2)异面 (3)相交 (4)异面 9.解 如图所示,(1)过点P 作EF∥C 1D 1分别交B 1C 1、A 1D 1于点E 、F 即可.因为CD∥C 1D 1,所以EF∥CD.(2)过点P 作GH∥B 1D 1分别交B 1C 1、C 1D 1于点G 、H 即可.因为BD∥B 1D 1,所以GH∥BD. 10.证明 在△ABC 中,∵AE AB =AFAC ,∴EF∥BC 且EF BC =AEAB .同理,EG∥BD 且EG BD =AEAB.又∵∠FEG 与∠CBD 的对应两边方向相同, ∴∠FEG=∠CBD.∵EF BC =EGBD ,∴△EFG∽△BCD.。

37939_《空间中的平行关》教案5(人教B版必修2)

37939_《空间中的平行关》教案5(人教B版必修2)
课题
空间中的平行关系
课型
新课
主备人
上课教师
上课时间
45分钟
学习目标
以所学过的作为推理依据的一些公理和定理为基础,通过直观感知,操作确认,思辨论证,归纳出空间中线、面平行的有关判定定理和性质定理。能运用已获得的结论证明一些空间位置关系的简单命题。
教学重点
平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定。
教学难点
自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用。
教师准备
多媒体教学
教学过程
集备修正
??.直线与平面平行
(1)直线和平面的位置关系有三种,用公共点的个数归纳为
(2)线面平行的判定定理:如果不在一个平面内的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
?????? 过 和 只能确定一个平面
??? , , , 共面
??????点评:先将已知和求证改写成符号语言,要证明诸线共面,一种方法是先由 、 确定一个平面,由公理1证明 、 也在此平面内;另一种方法是先由 、 确定一个平面, 、 确定另一平面,再证两平面重合。
作业
板书
课后反思Байду номын сангаас
符号表示:若 ,则a//b,即“线面平行,则线线平行”。
【说明】
a.此定理可以作为直线与直线平行的判定定理
b.定理中有3个条件:
①直线a和平面α平行,即a//α;
②平面α、β相交,即α∩β=b;
③直线a在平面β内,即 。
三者缺一不可。
???(4)线面平行定理的应用

空间中的平行关系

空间中的平行关系

等角定理:如果一个角的两边与另一个角的两边分 别对应平行,并且方向相同,那么这两个角相等。
// // //
D1 A1
B1 C1 E1
D
A
B
E
C
性质应用 思考 6.如果一个角的两边与另一个角 讨论 的两边分别对应平行,那么这两个 角的关系又如何呢? 推论1 若一个角的两边与另一 个角的两边分别对应平行,且方 向都相反,则这两个角相等。 推论2 若一个角的两边与另一 个角的两边分别对应平行,且一 组对应边方向相同,另一组对应 边方向相反,则这两个角互补。
相等。
性质应用
如果一个角的两边与另一个角的两边分别对应 平行,并且方向相同,那么这两个角相等。
已知:∠BAC和∠B1A1C1的边 AB//A1B1,AC//A1C1,且射线
D1 A1 B B1 C1 E1 D
AB与A1B1同向,
射线AC与A1C1同向 求证:∠BAC=∠B1A1C1
A
E
C
性质应用
3.把一张长方形的纸对折几次, 打开,观察折痕,这些折痕之间 有什么关系?
形成新知
基本性质4:平行于同一条直线的两条直 线互相平行(通常称为平行线的传递性)
公理4是判断证明空 间中两直线平行的重 要依据。
a
b
c
若a// b,b// c,则a//c形成Fra bibliotek知D1
C1
E
练习1
在长方体ABCD-A1B1C1D1, E 、F 分别为B1D1和D1B 的中 点,长方体的各棱中与EF 平 行的直线的条数有___条.
性质应用 空间四边形:顺次连结不共面的四点A、B、 C、D所构成的图形。各个点叫做空间四边形 的顶点;连接相邻顶点间的线段叫做空间四 边形的边;连接不相邻的顶点的线段叫做空 间四边形的对角线。

1.2.2空间中的平面与空间向量(第一课时)学案-高中数学人教B版选择性

1.2.2空间中的平面与空间向量(第一课时)学案-高中数学人教B版选择性

在直三棱柱111ABC-A B C 中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1, 求BM 与AN 所成角的余弦值.1.求平面的法向量;2.利用向量法研究空间的位置关系【尝试与发现1】我们已经知道空间中的直线,根据它的方向向量和一个点可以描述这条直线的位置,那么,对于空间中的平面,能否引进类似的向量来描述其位置?一、平面的法向量1.定义 如果α是空间中的一个平面,n 是空间中的一个非零向量,且表示n 的有向线段所在的直线与平面α垂直,则称n 为平面α的一个法向量.此时,也称n 与平面α垂直,记作n ⊥α.平面ABCD 的一个法向量为_________;思考:上述两个平面的法向量唯一吗?它们之间是什么关系? 若指定过某一点做平面ABCD 的法向量,则法向量有几个呢?2.平面法向量的性质(1)如果直线l ⊥α,则直线l 的任意一个方向向量,都是平面α的一个法向量;(2)如果n 为平面α的一个法向量,则对任意的实数0≠λ,空间向量λn 也是平面α的一个法向量,课题 1.2.2空间中的平面与空间向量(第一课时)学习目标 1.理解平面的法向量定义能在空间直角坐标系中正确地求出某一平面的法向量.2.会用向量语言表达线面、面面的平行关系3.培养学生思维的严谨性与逻辑性,数学抽象与数学运算等素养德育目标培养学生严谨的科学态度 劳动核心素养目标 培养学生攻坚克难的劳动品质.学习重点会用向量语言表达线面、面面的垂直、平行关系 学习难点用向量运算解决空间中线面、面面的平行的判定 课标要求能用向量语言描述直线和平面,理解直线的方向向量与平面的法向量.小试牛刀而且平面α的任意两个法向量都平行;(3)如果n 为平面α的一个法向量,A 为平面α上一个已知的点,则对于平面α上任意一点B ,向量AB 一定与向量n 垂直,即0=⋅n AB,从而已知平面α的位置可由n 和A 唯一确定.【尝试与发现2】1.如果 v 是直线l 的一个方向向量,n 是平面α的一个法向量,分别探讨n ∥v 与n ⊥v 时,直线l 与平面α的关系;请尝试作图,并得出结论.2.如果n 1是平面α1的一个法向量, n 2是平面α2的一个法向量,分别探讨论n 1⊥n 2与n 1∥n 2时,平面α1与平面α2的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2 空间中的平行关系(4)——平面与平面平行自主学习学习目标1.掌握两平面平行的定义、图形的画法以及符号表示.2.理解两平面平行的判定定理及性质定理,并能应用定理.证明线线、线面、面面的平行关系.自学导引1.两个平面平行的定义:________________________________________________________________________. 2.平面与平面平行的判定定理:__________________________________________________________.图形表示:符号表示:________________________________________________________________________. 推论:如果一个平面内有两条____________分别平行于另一个平面内的__________,则这两个平面平行.3.平面与平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么____________________________. 符号表示:若平面α、β、γ满足________________________,则a ∥b. 上述定理说明,可以由平面与平面平行,得出直线与直线平行.对点讲练知识点一 平面与平面平行的判定例1 已知E 、F 、E 1、F 1分别是三棱柱A 1B 1C 1—ABC 棱AB 、AC 、A 1B 1、A 1C 1的中点.求证:平面A 1EF ∥平面E 1BCF 1.点评 要证平面平行,依据判定定理只需要找出一个平面内的两条相交直线分别平行于另一个平面即可.另外在证明线线、线面以及面面平行时,常进行如下转化:线线平行―-------→线面平行的判定线面平行――------→面面平行的判定面面平行.变式训练1 正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别为棱A 1B 1,A 1D 1,B 1C 1,C1D1的中点.求证:平面AMN∥平面EFDB.知识点二用面面平行的性质定理证线面平行与线线平行例2已知M、N分别是底面为平行四边形的四棱锥P—ABCD棱AB、PC的中点,平面CMN与平面PAD交于PE,求证:(1)MN∥平面PAD;(2)MN∥PE.点评该题充分体现了线线平行、线面平行、面面平行之间的相互转化关系.一般来说,证线面平行时,若用线面平行的判定定理较困难,改用面面平行的性质是一个较好的想法.变式训练2如图所示,正方体ABCD—A′B′C′D′中,点E在AB′上,点F在BD上,且B′E =BF.求证:EF∥平面BB′C′C.知识点三综合应用例3如图所示,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE∶ED=2∶1.那么,在棱PC上是否存在一点F,使得BF∥平面AEC?证明你的结论.点评解答开放性问题,要结合题目本身的特点与相应的定理,大胆地猜想,然后证明.变式训练3如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足______时,有MN∥平面B1BDD1.1.在空间平行的判断与证明时要注意线线、线面、面面平行关系的转化过程:2.注意两个问题(1)一条直线平行于一个平面,就平行于这个平面内的一切直线,这种说法是不对的,但可以认为这条直线与平面内的无数条直线平行.(2)两个平面平行,其中一个平面内的直线必定平行于另一平面,但这两个平面内的直线不一定相互平行,也有可能异面.课时作业一、选择题1.设平面α∥平面β,直线a α,点B∈β,则在β内过点B的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在惟一一条与a平行的直线2.对于直线m、n和平面α,下列命题中是真命题的是()A.如果m α,n α,m、n是异面直线,那么n∥αB.如果m α,n α,m、n是异面直线,那么n与α相交C.如果m α,n∥α,m、n共面,那么m∥nD.如果m∥α,n∥α,m、n共面,那么m∥n3.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l24.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,那么所有的动点C()A.不共面B.当且仅当A、B分别在两条直线上移动时才共面C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面5.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是() A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于α6.下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m,n 为直线,α,β为平面),则此条件应为________.⎭⎪⎬⎪⎫m αn αm ∥βn ∥βα∥β 7.平面α∥平面β,△ABC 和△A ′B ′C ′分别在平面α和平面β内,若对应顶点的连线共点,则这两个三角形________.8.下列命题正确的是________.(填序号)①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行; ②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行; ③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行. 三、解答题9.已知两条异面直线BA 、DC 与两平行平面α、β分别交于B 、A 和D 、C ,M 、N 分别是AB 、CD 的中点.求证:MN ∥平面α.10.如图所示E 、F 、G 、H 分别是正方体ABCD —A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点,求证:(1)GE ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H.【答案解析】 自学导引1.没有公共点的两个平面2.如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行 a β,b β,a ∩b =P ,a ∥α,b ∥α β∥α 相交直线 两条直线3.它们的交线平行 α∥β,γ∩α=a ,γ∩β=b 对点讲练例1 证明∵EF 是△ABC 的中位线,∴EF ∥BC. ∵EF 平面E 1BCF 1, BC 平面E 1BCF 1, ∴EF ∥平面E 1BCF 1. ∵A 1E 1EB ,∴四边形EBE 1A 1是平行四边形, ∴A 1E ∥E 1B.∵A 1E 平面E 1BCF 1,E 1B 平面E 1BCF 1, ∴A 1E ∥平面E 1BCF 1.又∵A 1E ∩EF =E ,∴平面A 1EF ∥平面E 1BCF 1. 变式训练1 证明如图,连接A 1C 1,AC.设A 1C 1分别交MN 、EF 于P 、Q , AC 交BD 于O.连接AP ,OQ ,B 1D 1.在矩形A 1ACC 1中,PQ ∥AO ,∵M 、N 、E 、F 分别是所在棱的中点, ∴MN12D 1B 1,EF 12D 1B 1, ∴P 、Q 分别是四等分点,∴PQ =12AC ,又∵AO =12AC ,∴PQ AO.∴四边形PQOA 为平行四边形,∴AP ∥OQ.∴AP ∥平面EFDB.又∵MN ∥B 1D 1,EF ∥B 1D 1, ∴EF ∥MN ,∴MN ∥平面EFDB , ∴平面AMN ∥平面EFDB.例2 证明 (1)取DC 中点Q ,连接MQ 、NQ.∵NQ 是△PDC 的中位线, ∴NQ ∥PD.∵NQ 平面PAD ,PD 平面PAD , ∴NQ ∥平面PAD.∵M 是AB 中点,ABCD 是平行四边形,∴MQ ∥AD ,MQ 平面PAD ,AD 平面PAD. 从而MQ ∥平面PAD.∵MQ ∩NQ =Q ,∴平面MNQ ∥平面PAD. ∵MN 平面MNQ ,∴MN ∥平面PAD. (2)∵平面MNQ ∥平面PAD , 平面PEC ∩平面MNQ =MN ,平面PEC ∩平面PAD =PE.∴MN ∥PE.变式训练2 证明 方法一 连接AF 延长交BC 于M ,连接B ′M. ∵AD ∥BC ,∴△AFD ∽△MFB ,∴AF MF =DF BF. 又∵BD =B ′A ,B ′E =BF , ∴DF =AE.∴AF FM =AEEB ′.∴EF ∥B ′M ,又∵B ′M 平面BB ′C ′C ,EF 面BB ′C ′C , ∴EF ∥平面BB ′C ′C.方法二 作FH ∥AD 交AB 于H ,连接HE. ∵AD ∥BC ,∴FH ∥BC ,又∵BC 平面BB ′C ′C ,FH 平面BB ′C ′C , ∴FH ∥平面BB ′C ′C. 由FH ∥AD ,可得BF BD =BHBA,又BF =B ′E ,BD =AB ′,∴B ′E B ′A =BHBA ,∴EH ∥BB ′,∵B ′B 平面BB ′C ′C ,EH 面BB ′C ′C , ∴EH ∥平面BB ′C ′C ,又EH ∩FH =H , ∴平面FHE ∥平面BB ′C ′C ,∵EF 平面FHE ,∴EF ∥平面BB ′C ′C. 例3 解如图所示,当F 是棱PC 的中点时,BF ∥平面AEC , 证明如下:取PE 的中点M ,连接FM , 则FM ∥CE.①由EM =12PE =ED 知,E 是MD 的中点,连接BM 、BD ,设BD ∩AC =O ,则O 为BD的中点,所以BM ∥OE.② 又BM ∩FM =M ,③由①②③可得,平面BFM ∥平面AEC. 又BF 平面BFM ,所以BF ∥平面AEC. 变式训练3 M ∈线段FH解析 ∵HN ∥BD ,HF ∥DD 1, HN ∩HF =H ,BD ∩DD 1=D , ∴平面NHF ∥平面B 1BDD 1,故线段FH 上任意点M 与N 连接, 有MN ∥平面B 1BDD 1. 课时作业1.D [直线a 与B 可确定一个平面γ, ∵B ∈β∩γ,∴β与γ有一条公共直线b.由线面平行的性质定理知b ∥a ,所以存在性成立.因为过点B 有且只有一条直线与已知直线a 平行,所以b 惟一.]2.C [若m α,n α,m ,n 是异面直线,如图(1)所示,此时n 与α相交,故A 不正确.B 项若m α,n α,m ,n 是异面直线,如图(2)所示,此时m 与n 为异面直线,而n 与α平行,故B 不正确.D 项如果m ∥α,n ∥α,m ,n 共面,如图(3)所示,m 与n 可能相交,故D 不正确.]3.B如图,在正方体ABCD—A1B1C1D1中,AB∥面A1B1CD,CD∥面A1B1BA,但面A1B1CD 与面A1B1BA相交,故A不正确;取AD中点为E,BC中点为F,则EF∥面ABB1A1,C1D1∥面ABB1A1,但面ABB1A1与面EFC1D1不平行,故C不对;虽然EF∥AB且C1D1∥面A1B1BA,但是面EFC1D1与面A1B1BA不平行,故D不正确.对于选项B,当l1∥m,l2∥n且m α,n α时,有l1∥α,l2∥α.又l1与l2相交且都在β内,∴α∥β,而α∥β时,无法推出m∥l1且n∥l2.∴l1∥m且l2∥n是α∥β的充分不必要条件.]4.D如图所示,A′、B′分别是A、B两点在α、β上运动后的两点,此时AB中点变成A′B′中点C′,连接A′B,取A′B中点E.连接CE、C′E.则CE∥AA′,∴CE∥α.C′E∥BB′,∴C′E∥β.又∵α∥β,∴C′E∥α.∵C′E∩CE=E.∴平面CC′E∥平面α.∴CC′∥α.所以不论A、B如何移动,所有的动点C都在过C点且与α、β平行的平面上.]5.D[A,B,C在平面α的异侧时,A错;而A,B,C在平面α同侧时,B错;A,B,C在平面α的异侧时,平面ABC有可能垂直于平面α,C错.]6.m,n相交7.相似解析由于对应顶点的连线共点,则AB与A′B′共面,由面与面平行的性质知AB∥A′B′,同理AC∥A′C′,BC∥B′C′,故两个三角形相似.8.③④9.证明 过A 作AE ∥CD 交α于E ,取AE 的中点P , 连接MP 、PN 、BE 、ED. ∵AE ∥CD ,∴AE 、CD 确定平面AEDC. 则平面AEDC ∩α=DE , 平面AEDC ∩β=AC , ∵α∥β,∴AC ∥DE.又P 、N 分别为AE 、CD 的中点, ∴PN ∥DE.PN α,DE α,∴PN ∥α.又M 、P 分别为AB 、AE 的中点, ∴MP ∥BE ,且MP α,BE α,∴MP ∥α,又∵MP ∩PN =P ,∴平面MPN ∥α. 又MN 平面MPN ,∴MN ∥α.10.证明 (1)取B 1D 1中点O ,连接GO ,OB ,易证OG ∥B 1C 1, 且OG =12B 1C 1,BE ∥B 1C 1,且BE =12B 1C 1,∴OG ∥BE 且OG =BE ,四边形BEGO 为平行四边形.∴OB ∥GE. ∵OB 平面BDD 1B 1,GE 平面BDD 1B 1, ∴GE ∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD ,∵B 1D 1 平面BDF ,BD 平面BDF , ∴B 1D 1∥平面BDF.连接HB ,D 1F ,易证四边形HBFD 1是平行四边形,得HD 1∥BF. ∵HD 1 平面BDF ,BF 平面BDF , ∴HD 1∥平面BDF ,∵B 1D 1∩HD 1=D 1, ∴平面BDF ∥平面B 1D 1H.。

相关文档
最新文档