场论初步

合集下载

第04讲预备知识-场论2

第04讲预备知识-场论2
Δl
ΔS
M
n
Δl
ΔS
存在,称其为a在该点沿n向的环量面密度。由于Δl具 有任意性,所以过M点有无穷多个环量面密度。
旋度
旋度(Rotation)是这样的向量,它的模为环量面密度的最大值,方向是 环量面密度取得最大值的方向,记作rot a,旋度在直角坐标系中的表达式 为:
i ∂a y ∂a x ∂ ∂a z ∂a y ∂a z ∂a x rota = i ( ) + j( ) + k( )= − − − ∂y ∂x ∂x ∂z ∂y ∂z ∂x ax j ∂ ∂y ay k ∂ = ∇×a ∂z az
4.3 正交曲线坐标系中常用表达式
哈密尔顿算子∇ 有微分和向量双重运算性质: 对后面的量发生微分作用 对前面的量不起微分作用 运算顺序为先微分运算,后向量运算 哈密尔顿算子:
∇ = e1
梯度:
∂ ∂ ∂ ∂ + e2 + e3 = ei h1∂q1 h2 ∂q2 h3∂q3 hi ∂qi
∇ϕ = e1
代入弧微分方程得:
⎫ ∂x dq1 ⎪ dx = ∂q1 ⎪ ∂y ⎪ dy = dq1 ⎬ ∂q1 ⎪ ∂z dz = dq1 ⎪ ⎪ ∂q1 ⎭
ds 1 =
(
∂x 2 ∂y 2 ∂z 2 ) +( ) +( ) dq 1 ∂ q1 ∂ q1 ∂ q1
同理,当弧微分ds仅是坐标曲线q2上的微分弧长ds2、或仅是坐标曲线 q3上的微分弧长ds3时,有:
直角坐标系中的弧微分ds可表示为: ds = dx2 + dy2 + dz2 若曲线坐标(q1,q2,q3) 和直角坐标(x,y,z)之间存在函数及反函 数关系:

场论初步

场论初步

就反映了流体关于 L 所围面积的平均环流密度. 当 D M 0 时, (6) 式右边这个极限, 就是流速场 A 在 点 M 0 处按右手法则绕 n 的环流密度. rot A n 另一方面, (6) 式左边的 是 rot A( M 0 ) M0 在 n ( M 0 )上的投影. 由此可见, 当所取的 n ( M 0 ) 与
z 2 2 2 3/ 2 z ( x 返回
因此引力场 F 在每一点处的散度都为零 ( 除原点没
有定义外 ).
前页 后页 返回
设 A( x , y , z ) P ( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k
f f ( u) u .
5. 若 f f ( u1 , u2 ,, um ) , ui ui ( x , y , z ) , 则
f f ui . i 1 ui
m
这些公式读者可利用定义来直接验证.
前页 后页 返回
例1 设质量为 m 的质点位于原点, 质量为 1 的质点 位于 M ( x , y , z ), 记 r OM x 2 y 2 z 2 , m 试求 的梯度 . r m x y z m 2 , , . 解 r r r r r 若以 r0 表示 OM 上的单位向量, 则有 m m 2 r0 . r r
一、场的概念
若对全空间或其中某一区域 V 中每一点 M, 都有一
个数量 (或向量) 与之对应, 则称在 V 上给定了一个
数量场 (或向量场). 例如: 温度和密度都是数量场, 重力和速度都是向量场. 在引进了直角坐标系后, 点 M 的位置可由坐标确定. 因此给定了某个数量场就 等于给定了一个数量函数 u( x , y , z ), 在以下讨论中

数学分析PPT

数学分析PPT

从而 r r ∫ a dl = ∫∫ rota dS .
L S
Yunnan University
§3. 场论初步
注:散度与坐标的选择无关. r r r u r 例1. 设a = 3i + 20 j − 15k , 对下列数量场ϕ 分别求出
gradϕ 及div (ϕ a ) , 其中ϕ = ( x 2 + y 2 + z
2 2
3 − 2 2
)
+ 15 z ( x + y + z
2 2
3 − 2 2
)
例 2.
设 u ( x , y , z ) = xyz .
(1)求u ( x , y , z ) 在点P1 ( 0, 0, 0 ) , P2 ( 1,1,1) 及P3 ( 2,1,1) 处 r r r u r 沿b = 2i + 3 j − 4k的方向导数。
( )
( )
( )
∂P ∂Q ∂R = ∫∫∫ + + dV x ∂y ∂z V ∂
r ∂P ∂Q ∂R 向量 + + 称为向量a的散度,它形成一个数量场,记为 ∂x ∂y ∂z r ∂P ∂Q ∂R . diva = + + ∂x ∂y ∂z
Yunnan University
( )
( )
( )
r ∂R ∂Q ∂P ∂R ∂ Q ∂R , , 称向量 − − − 为向量a的旋度, ∂y ∂z ∂z ∂x ∂x ∂y r 记为rot a .
Yunnan University
§3. 场论初步
即 r i r ∂ rot a = ∂x P r j ∂ ∂y Q r u k ∂ . ∂z R

第03讲预备知识-场论1

第03讲预备知识-场论1

e3
顺时针为负
置换符号说明: i、j 、k取值不同值时, εijk取1 或-1(6个),其余分量(21个)为零。即:
e2 e1 逆时针为正
ε 123 = ε 231 = ε 312 = 1
ε 132 = ε 213 = ε 321 = −1
置换法则:任意2个自由指标对换后差一个负号 正负取值规律:按右图中,逆时针取值为正,顺时针取值为负。
a = ax i + a y j + az k
任意一点M的矢径 矢径微分
r = xi + yj + z k
M z y o x
a
dr = dxi + dyj + dzk
dr × a = 0
r
叉积为零:
这就是向量线的微分方程(Differential Equation) 在直角坐标系(System Of Rectangular Coordinates)当中表示为
可以列表表示:
e1
′ e1
e2
e3
α 11 α12 α13 α 21 α22 α23
α 31 α 32 α 33
ei′ = α ij e j ei = α ji e ′j
e′ 2
′ e3
上述关系可简写为:
同理,老坐标的单位向量可用新坐标的单位向量表示:
根据上述单位向量的性质和关系可导出:
ei ⋅ e j = e′ ⋅ e′j i
a ⋅ bc = (a ⋅ b)c = (b ⋅ a )c = c (a ⋅ b)
ab ⋅ cd = a (b ⋅ c )d = (b ⋅ c )ad = ad (c ⋅ b) c ⋅ ab ⋅ d = (c ⋅ a )(b ⋅ d ) = (b ⋅ d )(c ⋅ a )

场论初步

场论初步

设有向量场 A( x , y , z ) ,在场内作包围点 M 的闭曲面 Σ ,Σ 包围的区域为V ,记体积为V .若 当V 收缩成点 M 时,
限 极 lim
∫∫ A⋅ dS Σ
Σ
V→M
V
在 存 ,
称 极 值 度, 为 则 此 限 为A在 M 处 散 , 记 divA. 点 的 度
散度在直角坐标系下的形式
h ( x , y , z ) = const
(c值不同对应不同等值面) 值不同对应不同等值面
ϕ = c1 ϕ = c2
ϕ = c3
等值线
等值面 等值面
数量场u=u u=u(x,y,z)在点M(x,y,z)处 在点M 定义 数量场u=u 在点 处 的梯度是向量
∂u ∂u ∂u gradu = i+ j+ k ∂x ∂y ∂z ∂u ∂u ∂u 其中, , , 取点M的值。 ∂x ∂y ∂z
由于数量场u=u(M)中每一点都对应着一个梯度 gradu,故gradu形成一个向量场,叫做数量场u(M) 的梯度场 梯度场. 梯度场 根据梯度在直角坐标系的表示式,求数量场的梯 度是一种求导运算,有类似于求导运算的一些法则:
∇u = grandu
1、gradC = 0
3、grad(u ± v) gradu ± gradv = 4、grad(uv) vgradu + ugradv = u 1 5、grad( ) 2 (vgradu − ugradv) = v v 6、gradf(u) f ' (u ) gradu =
c = ∫ A ⋅ dl
称为 A 沿该曲线L的环量或流量。 的环量或流量。
2、旋度: 旋度: 那么 设想将闭合曲线缩小到其内某一点附近, 设想将闭合曲线缩小到其内某一点附近,

「第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2」

「第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2」

§2 场论初步一、 场论的基本概念及梯度、散度与旋度[标量场] 空间区域D 的每点M (x ,y ,z )对应一个数量值ϕ(x,y ,z ),它在此空间区域D 上就构成一个标量场,用点M (x,y,z )的标函数ϕ(x ,y ,z )表示.若M 的位置用矢径r确定,则标量ϕ可以看作变矢r 的函数ϕ=ϕ(r ).例如温度场u (x ,y,z ),密度场),,(z y x ρ,电位场e(x ,y ,z )都是标量场.[矢量场] 空间区域D 的每点M (x ,y,z )对应一个矢量值R (x ,y,z),它在此空间区域D 上就构成一个矢量场,用点M (x ,y ,z )的矢量函数R(x ,y,z)表示.若M 的位置用矢径r 确定,则矢量R 可以看作变矢r的矢函数R (r):R (r )=X(x ,y,z )i +Y(x ,y ,z )j +Z (x ,y,z )k例如流速场 υ(x ,y ,z ),电场E (x,y,z ),磁场H (x ,y ,z )都是矢量场.与标量场的情况一样,矢量场概念与矢函数概念,实质上是一样的.沿用这些术语(标量场、矢量场)是为了保留它们的自身起源与物理意义.[梯度]grad ϕ=(x ∂∂ϕ,y ∂∂ϕ,z ∂∂ϕ)=∇ϕ=x ∂∂ϕi +y ∂∂ϕj+z∂∂ϕk 式中∇=ix ∂∂+jy ∂∂+kz∂∂称为哈密顿算子,也称为耐普拉算子.gr ad ϕ有的书刊中记作de lϕ.grad ϕ的方向与过点(x ,y ,z )的等量面ϕ=C的法线方向N重合,并指向ϕ增加的一方,是函数ϕ变化率最大的方向,它的长度等于N∂∂ϕ. 梯度具有性质:grad(λϕ+μψ)=λ gr ad ϕ+μgrad ψ (λ、μ为常数)grad(ϕψ)=ϕ grad ψ+ψ gr ad ϕ gra dF (ϕ)=()ϕϕgrad F ' [方向导数]l ∂∂ϕ=l·g ra dϕ=x ∂∂ϕcos α+y ∂∂ϕcos β+z∂∂ϕc os γ式中l =(cos α,c os β,cos γ)为方向l 的单位矢量,α,β,γ为其方向角.方向导数为ϕ在方向l 上的变化律,它等于梯度在方向l 上的投影. [散度]d iv R =x X ∂∂+y Y ∂∂+zZ ∂∂=∇·R =div (X , Y , Z) 式中∇为哈密顿算子. 散度具有性质:d iv (λa +μb)=λ div a +μdi vb (λ、μ为常数) div(ϕa )=ϕdiv a+a g rad ϕ div(a ×b )=b·ro t a-a ·rot b[旋度]rot R =(z Y y Z ∂∂-∂∂)i +(xZ z X ∂∂-∂∂)j +(y X x Y ∂∂-∂∂)k =∇×R=ZYXz y x ∂∂∂∂∂∂k j i式中∇为哈密顿算子,旋度也称涡度,rot R有的书刊中记作cu rl R .旋度具有性质:r ot(λa +μb )=λ rot a +μro t b (λ、μ为常数) rot(ϕa )=ϕrot a +a ×grad ϕro t(a ×b )=(b ·∇)a -(a ·∇)b +(div b )a -(di v a)b[梯度、散度、旋度混合运算] 运算g rad 作用到一个标量场ϕ产生矢量场grad ϕ,运算d iv 作用到一个矢量场 R产生标量场d iv R,运算rot 作用到一个矢量场R 产生新的矢量场r ot R .这三种运算的混合运算公式如下:d iv rot R =0 rot gr ad ϕ=0div gr adϕ=22x ∂∂ϕ +22y∂∂ϕ+22z ∂∂ϕ=∆ϕg rad di v R=∇(∇R ) ro t rot R =∇×(∇×R )div gra d(λϕ+μψ)=λ d iv g rad ϕ+μdiv gra dψ (λ、μ为常数)d iv grad(ϕψ)=ϕd iv g rad ψ+ψdiv grad ϕ+2gra dϕ·grad ψg rad div R-ro t ro t R =∆R式中 ∇为哈密顿算子,∆=∇·∇=∇2为拉普拉斯算子.[势量场(守恒场)] 若矢量场R (x,y ,z )是某一标函数ϕ(x ,y ,z )的梯度,即R =gra dϕ 或 X=x ∂∂ϕ,Y =y ∂∂ϕ,Z =z∂∂ϕ则R称为势量场,标函数ϕ称为R 的势函数.矢量场R 为势量场的充分必要条件是:rot R =0,或y X ∂∂ =x Y ∂∂,z Y ∂∂=y Z ∂∂,x Z ∂∂=zX∂∂ 势函数计算公式ϕ(x,y ,z )=ϕ(x0,y 0,z 0)+()⎰xx x z y x X 0d ,,00+()⎰yy y z y x Y 0d ,,0+()⎰zz z z y x Z 0d ,,[无散场(管形场)] 若矢量场R 的散度为零,即div R =0,则R 称为无散场.这时必存在一个无散场T,使R=r ot T,对任意点M有T =14π⎰V r d rot R式中r为d V到M的距离,积分是对整个空间进行的.[无旋场] 若矢量场R 的旋度为零,即r ot R =0,则R 称为无旋场.势量场总是一个无旋场,这时必存在一个标函数ϕ,使R =grad ϕ,而对任意点M 有ϕ=-14π ⎰V r d div R式中r 为d V 到M 的距离,积分是对整个空间进行的.二、 梯度、散度、旋度在不同坐标系中的表达式1.单位矢量的变换[一般公式] 假定x =f(ξηζ,,),y =g (ξηζ,,),z =h (ξηζ,,)把(ξηζ,,)空间的一个区域 一对一地连续映射为(x,y ,z )空间的一个区域D ,并假定f ,g ,h 都有连续偏导数,因为对应是一对一的,所以有ξ=ϕ(x ,y ,z ),()()ηψζχ==x y z x y z ,,,,,再假定ϕψχ,,也有连续偏导数,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=ζζηηξξζζηηξξζζηηξξd d d d d d d d d d d d z z z z y y y y x x x x 或逆变换⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=z z y y x x z z y y x x z z y y x x d d d d d d d d d d d d ζζζζηηηηξξξξ沿d x,dy ,d z 方向的单位矢量记作i ,j ,k ,沿ζηξd ,d ,d 方向的单位矢量记作ζηξe e e ,,,则有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=222222222ζζζζζζηηηηηηξξξξξξζηξz y x z y x z y x zy x z y x z y x k j i e k j i e kj i e [圆柱面坐标系的单位矢量] 对于圆柱面坐标系(图8.11)⎪⎩⎪⎨⎧===z z y x ϕρϕρsin cos ()002≤≤∞≤<-∞<<∞ρϕπ,,z 单位矢量为⎪⎩⎪⎨⎧=+-=+=k e j i e j i e zϕϕϕϕϕρcos sin sin cos 它们的偏导数为000=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂zz z zzze e e e e e e e e e e ϕρϕρρϕϕρρρρϕϕϕ,,[球面坐标系的单位矢量] 对于球面坐标系(图8.12)⎪⎩⎪⎨⎧===θϕθϕθcos sin sin cos sin r z r y r x ()0020≤<∞≤<≤≤r ,,ϕπθπ单位矢量为⎪⎩⎪⎨⎧+-=-+=++=j i e k j i e k j i e ϕϕθϕθϕθθϕθϕθϕθcos sin sin sin cos cos cos cos sin sin cos sin r它们的偏导数为θϕϕθϕϕθθϕθθθϕθϕθϕθθθe e e e e e e 0e e e e e 0e e e cos sin ,cos ,sin ,,--=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂=∂∂=∂∂=∂∂r rr rr rr r 2.矢量的坐标变换[一般公式] 一个由(x ,y ,z)坐标系所表达的矢量可以用(ξηζ,,)坐标系来表达:υ=(x υ,υy,υz)=x υi+υy j +υz k=ζζηηξξυυυe e e ++式中⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=222222222222222222222222222ζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζηξζηξζηξz y x z z y x z z y x z z y x yz y x y z y x y z y x x z y x x z y x x z y x[圆柱面坐标系与直角坐标系的互换] 由圆柱面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧=+=-=z zy x υυϕυϕυυϕυϕυυϕρϕρcos sin sin cos 由直角坐标系到圆柱面坐标系的变换公式⎪⎩⎪⎨⎧=+-=+=z zy x y x υυϕυϕυυϕυϕυυϕρcos sin sin cos [球面坐标系与直角坐标系的互换] 由球面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧-=++=-+=θυθυυϕυϕθυϕθυυϕυϕθυϕθυυθϕθϕθsin cos cos sin cos sin sin sin cos cos cos sin r zr y r x 由直角坐标系到球面坐标系的变换公式⎪⎩⎪⎨⎧+-=-+=++=ϕυϕυυθυϕθυϕθυυθυϕθυϕθυυϕθγcos sin sin sin cos cos cos cos sin sin cos sin y x z y x z y x 3.各种算子在不同坐标系中的表达式设U =U (x,y ,z )是一个标函数,V =V (x ,y ,z )是一个矢函数. [在圆柱面坐标系中各种算子的表达式]哈密顿算子 ~∇=ρρ∂∂e +ϕρϕ∂∂1e +zz ∂∂e梯 度 grad U = ~∇U=ρρ∂∂U e +ϕρϕ∂∂U 1e +z U z ∂∂e散 度 di vV = ~∇·V =()zz ∂∂+∂∂+∂∂υϕυρρυρρϕρ11 旋 度 ro tV= ~∇×V =ρϕυϕυρe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z 1+ϕρρυυe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z +()z e ⎪⎪⎭⎫⎝⎛∂∂-∂∂ϕυρρρυρρϕ11拉普拉斯算子 ∆U =d iv grad U =2222211z UU U ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂ϕρρρρρ [在球面坐标系中各种算子的表达式]哈密顿算子 ~~∇=r r ∂∂e +θθ∂∂r 1e +ϕθϕ∂∂sin r 1e梯 度 grad U= ~~∇U =r U r ∂∂e +θθ∂∂U r 1e +ϕθϕ∂∂U r sin 1e散 度 di v V=~~∇·V =()()ϕυθθυθθυϕθ∂∂+⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂sin sin sin r r r r r r 11122 旋 度 rot V = ~~∇×V=()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ϕυθυθθθϕsin sin r 1r e +()⎥⎦⎤⎢⎣⎡∂∂-∂∂ϕυϕυθr r r r r 11sin θe +()⎥⎦⎤⎢⎣⎡∂∂-∂∂θυυθr r rr r 11ϕe 拉普拉斯算子 ∆U =d iv g rad U=2222221111ϕθθθθθ∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂U r U r r r U r r rsin sin sin三、 曲线积分、曲面积分与体积导数[矢量的曲线积分及其计算公式] 矢量场R (r )沿曲线Γ的曲线积分定义为⎰ΓR (r )·d r =∑=∞→→ni n r 1lim∆R(i r ~)·∆ri-1 式中∆ri -1=ri -r i -1,右边极限与i r ~的选择无关,曲线 Γ由A 到B (图8.13)若矢函数R (r )是连续的(就是它的三个分量是 连续函数), 曲线Γ也是连续的, 且有连续转动的切线, 则曲线积分()⎰⋅Γr r R d存在.若R (r)为一力场,则P=()⎰⋅Γr r R d 就等于把一质点沿着Γ 移动时力R 所作的功. 矢量曲线积分的计算公式如下: ()⎰Γ⋅r r R d =()⎰++z Z y Y x X d d d Γ()⎰+⋅21ΓΓr r R d =()⎰⋅1Γr r R d +()⎰⋅2Γr r R d (图8.14)()⎰⋅Γr r R d =-()⎰-⋅Γr r R d()()[]⎰⋅+Γr r T r R d =()⎰⋅Γr r R d +()⎰⋅Γr r T d()⎰⋅Γr r R d k =k ()⎰⋅Γr r R d(k 为常数)[矢量的环流] 如果Γ为一闭曲线,则沿曲线Γ 的曲线积分()⎰⋅Γr r R d =()⎰++Γz Z y Y x X d d d 称为矢量场R (r )沿闭曲线Γ 的环流.势量场沿任何闭曲线的环流都等于零.如果R(r)为一势量场,且它的势函数为ϕ时,则曲线积分()⎰⋅Γr r R d =()⎰⋅B Ar r R d =ϕ(B )-ϕ(A )与连接A ,B 两点的路径无关,只依赖于A,B 两点的 位置(图8.15).[矢量的曲面积分] 设S 为一曲面,令N =()cos ,cos ,cos αβγ表示在曲面S 上一点的法线单位矢量, 而dS =N d S表示面积矢量元素.又设ϕ(r)=ϕ(x , y ,z )是定义在曲面S 上的连续标函数,R (r )=(X(x , y,z),Y (x , y ,z ), Z (x, y ,z ))是定义在曲面S上的连续矢函数,这里规定法线单位矢量与曲面分布在切面的两侧.则曲面积分有如下的三种形式:1标量场的通量(或流量)ϕS⎰⎰dS =ϕS yz⎰⎰d y d z i +ϕS zx ⎰⎰d z d x j +ϕS xy⎰⎰d x d y k式中S yz ,S zx ,Sxy 分别表示曲面S 在Oyz 平面,Oz x平面, O xy平面上的投影.Sx y的正负号规定如下:当从z轴正方 向看去时,看到的是曲面S 的正面,认为S xy 为正,如果 看到的是曲面的反面,则认为S xy 为负(图8.16).2矢量场的标通量S⎰⎰R ·d S =S yz⎰⎰X d yd z +S zx ⎰⎰Y d z d x+S xy⎰⎰Z d xd y式中S yz 等的意义同1.3矢量场的矢通量S⎰⎰R ×d S=S yz⎰⎰(Z j-Yk )dy d z +S zx ⎰⎰(X k-Z i)dz d x +S xy⎰⎰(Y i -Xj )d x d y式中S y z等的意义同1.[矢量的体积导数] 如果S 是包围体积V 的闭曲面,并包含点r,则沿闭曲面S 的曲面积分(S⎰ϕd S ,S⎰R ·dS,S⎰R ×d S )与体积V之比,当V 趋于零时(即它的直径→0)的极限称为标量场ϕ(或矢量场R )在点r 处的体积导数(或空间导数). 1标量场ϕ的体积导数就是它的梯度:grad ϕ=VSV ⎰→Sd limϕ02矢量场R的体积导数之一是它的散度:div R=VSV ⎰⋅→SR d lim3矢量场R 的另一个体积导数是它的旋度: rot R=-V S V ⎰⨯→S R d lim四、 矢量的积分定理[高斯公式]⎰⎰⎰V div R dV =S ⎰⎰R ·d S=S⎰⎰R ·N d S 即()⎰⎰⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V SS Z Y X z y x z Z y Y x X d cos cos cos d d d γβα 式中S 为空间区域V 的边界曲面,N =()cos ,cos ,cos αβγ为在S 上一点的法线单位矢量,R(r)=(X (x , y,z ),Y (x , y,z ),Z (x , y ,z ))在V +S上有连续偏导数.[斯托克斯公式] S ⎰⎰r ot R ·dS=S ⎰⎰rot R ·N d S =L⎰R ·d r 即y x y X x Y x z x Z z X z y z Y y Z S d d d d d d ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ = ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S S y X x Y x Z z X z Y y Z d cos cos cos γβα = ⎰++L z Z y Y x X d d d式中S 为一定曲面的一侧,L 为曲面S 的闭边界曲线(L 的正向与N 构成右手系).S的每点有切面,其方向连续地依赖于曲面上的点,而边界曲线L上的每点都有切线(图8.17). R (r )=(X (x , y ,z ),Y (x , y ,z ),Z (x , y,z ))在曲面的所有点单值,并在与S 足够靠近的点处有连续偏导数.[格林公式]⎰⎰S ψϕgrad ·dS =()⎰⎰⎰⋅+VV d grad grad Δψϕψϕ ()⎰⎰-S ϕψψϕgrad grad ·d S =()⎰⎰⎰∆-∆VV d ϕψψϕ式中S 为空间区域V 的边界曲面,ϕψ,为两个标函数,在S上具有连续偏导数,且在V 上具有二阶连续偏导数,∆为拉普拉斯算子,特别⎰⎰S ϕgrad ·d S =⎰⎰⎰∆V V d ϕ 即⎰⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂+∂∂+∂∂S V V z y x y x z x z y z y x d d d d d d d 222222ϕϕϕϕϕϕ。

高等流体力学—场论及张量初步

高等流体力学—场论及张量初步
diva lim
Vz diva lim V 0 x y z Q
1.4 矢量的通量.散度.奥高定理
a x a y a z diva lim V 0 x y z Q
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
az a y rotx a y z a x a z rot y a z x a y ax rotz a x y
1.6 环量. 旋度. 斯托克斯定理
grad i j k x y x
dr dxi dyj dzk
梯度的主要性质
grad i j k x y z
dr dxi dyj dzk
dr grad
dx dy dz x y z
an:矢量a在法线方向的投影 an dS:矢量a通过面积元dS的通量
1.4 矢量的通量.散度.奥高定理
在整个曲面上积分,得矢量a通过S面的通量
a dS n
s
实质上相当于函数的面积分
1.4 矢量的通量.散度.奥高定理
当S面为封闭曲面时,通量为:
a dS n
s
1.4 矢量的通量.散度.奥高定理
S 0
a dr
L
S
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系
a dr a dx a dy a dz x y z
L L
a z a y cos(n, x) s z y
i rota x ax j y ay k i z x az x j y y k 0 z z

数学分析22.4场论初步(含习题及参考答案)

数学分析22.4场论初步(含习题及参考答案)

第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。

第一章 场论和张量初步

第一章 场论和张量初步

第一章 场论和张量初步1.1 场的定义及分类设在空间中的某个区域内定义标量函数或矢量函数,则称定义在此空间区域内的函数为场。

均匀场:同一时刻内各点函数的值都相等。

反之为不均匀场。

定常场:场内函数值不依赖于时间。

反之为不定常场。

1.2场的几何表示标量场:等位线。

矢量场:矢量线的微分方程:(,,,)(,,,)(,,,)x y z dx dy dza x y z t a x y z t a x y z t ==积分,将t 看成参数,即得矢量线的分析表达式。

1.3梯度——标量场不均匀性的量度梯度:大小为n ϕ∂∂,方向为n ,的矢量称为标量函数ϕ的梯度,以grad n n ϕϕ∂=∂表之。

在s 方向上的方向导数等于梯度矢量在s 方向上的投影。

梯度grad ϕ在直角坐标系中的表达式为grad i j k x y z ϕϕϕϕ∂∂∂=++∂∂∂总结起来,梯度的主要性质是:1)梯度grad ϕ描写了场内任一点M 领域内函数ϕ的变化状况,它是标量场不均匀性的量度。

2)梯度grad ϕ的方向与等位面的法线重合,且指向ϕ增长的方向,大小是n 方向上的方向导数n ϕ∂∂;3)梯度矢量grad ϕ在任一方向s 上的投影等于该方向的方向导数;4)梯度grad ϕ的方向,即等位线的法线方向是函数ϕ变化最快的方向。

定理1 梯度grad ϕ满足关系式d dr grad ϕϕ=∙定理2 若a grad ϕ=,且ϕ是矢径r 的单值函数,则沿任一封闭曲线L 的线积分La dr⋅⎰等于零,反之,若矢量a 沿任一封闭曲线L 的线积分La 0dr ⋅=⎰则矢量a 必为某一标量函数ϕ的梯度。

例:计算仅与矢径大小r 有关的标量函数ϕ(r )的梯度ϕgrad 。

I )利用性质(2),标量函数=ϕϕ(r )的等位面是以坐标原点为心的球面,而球面的法线方向,即矢径r 的方向,故ϕgrad 的方向就是矢径r 的方向其次的大小是=r r ϕϕ∂∂’()于是rii )利用性质(5),显然x d r dr x ϕϕ∂∂=∂∂,d r y dr y ϕϕ∂∂=∂∂,z d rdr z ϕϕ∂∂=∂∂因222r x y z =++故r x x r ∂=∂,r y y r ∂=∂,r z z r ∂=∂于是x d x r dr ϕϕ∂=∂,y d y r dr ϕϕ∂=∂,z z d r dr ϕϕ∂=∂而=r r xi yj zk d grad ij k x y z r dr ϕϕϕϕϕϕϕ∂∂∂++∂=++==∂∂∂∂’()iii )利用定理1,r r dr rdrrϕϕϕ=’’()d (r)=()因2r r r ⋅=微分得r dr rdr ⋅=于是r d r drrϕϕ=⋅’()根据定理1r最后我们指出,写成a grad ϕ=的矢量场亦称位势场,ϕ称为位势函数。

数学分析简明教程22 各种积分间的联系与场论初步

数学分析简明教程22 各种积分间的联系与场论初步

第二十二章 各种积分间的联系与场论初步§1 各种积分间的联系1.应用格林公式计算下列积分:(1)ydx x dy xy L ⎰-22,其中L 为椭圆22a x +22by =1取正向;(2),)()(⎰-++Ldy y x dx y x L 同(1);(3)dy y xdx y x L)()(222+-+⎰, L 是顶点为)5,2(),2,3(),1,1(C B A 的三角形的边界,取正向;(4),1,)()(223333=+--+⎰y x L dy y x dx y x L为取正向;(5),sin sin ydy exdx e xLy-+⎰L 为矩形d y c b x a ≤≤≤≤, 的边界,取正向;(6)],))cos(sin ())cos(sin [(dy y x xy x dx y x xy y e L xy+++++⎰其中L 是任意逐段光滑闭曲线.解(1)原式 =()()d xdy y x dxdy x yDD⎰⎰⎰⎰+=--2222)(=ab()r dr r b r a d ⎰⎰+122222220sin cos θθθπ(广义极坐标变换)=())(3sin cos 3122202222b a ab d b a ab +=+⎰πθθθπ.(2)⎰-++Ldy y x dx y x )()(=⎰⎰=-Ddxdy 0)11(.(3)原式 ⎰⎰+-=Ddxdy y x x ))(22(⎪⎪⎭⎫ ⎝⎛+-=-=⎰⎰⎰⎰⎰⎰-+-+215231143124322yy y y D dx ydy dx ydy ydxdy9143))5(127)(47(2252221-=-+--=⎰⎰dy y y dy y y .(4)原式π23)(3)33(2222-=+-=--=⎰⎰⎰⎰DD dxdy y x dxdy y x . (5)原式 dxdy x e y e Dy x ⎰⎰--=-)cos sin ( )cos sin (⎰⎰⎰⎰+-=-bad cdcydy b axe dx x ydy dx e)sin )(sin ()cos )(cos 11(a b e e c d ee cd b a --+--=.(6))]cos(sin [),(y x xy y e y x P xy ++=,)]cos(sin [),(y x xy x e y x Q xy++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy x ye xQxy xy --++++=∂∂ )]sin()cos(sin )cos (sin [y x y x y xy xy xy xy e xy --+++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy y xe yPxy xy +-++++=∂∂ )]sin(cos sin )cos (sin [y x xy x xy xy xy xy e xy +-+++=,)cos()(y x x y e yPx Q xy +-=∂∂-∂∂, 所以,原式⎰⎰+-=Dxy dxdy y x x y e ,)cos()( 其中D 为L 包围的平面区域. 2.利用格林公式计算下列曲线所围成的面积: (1)双纽线θ2cos 22a r =;(2)笛卡尔叶形线)0(333>=+a axy y x ;(3)t t a x sin )cos 1(2+=,t t a y cos sin 2⋅=,π≤≤20t . 解(1)⎰⎰⎰⎰==12||D Ddxdy dxdy D ⎰-⨯=L ydx xdy 212 ⎰=--=44)]sin (sin cos cos [ππθθθθθd r r r r 24424422cos a d a d r ===⎰⎰--ππππθθθ,其中1D 由θ=2cos 22a r ,44π≤θ≤π-所围成. (2)作代换,tx y =则得曲线的参数方程为313tatx +=,3213t at y +=.所以, dt t t a dx 233)1()21(3+-=,dt t t at dy 233)1()2(3+-=, 从而,dt t t a ydx xdy 2322)1(9+=-,于是,面积为 D =⎰C x y y x d -d 21=dt t t a ⎰∞++02322)1(29=223a .(3)D =⎰-cydx xdy 21= {}⎰-++⋅--⋅+π2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dtt t t t t a t t a t t t a t t a{}⎰π-++⋅--⋅+2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a=21tdt t t a 2cos )cos 1(sin 22022+⎰π=24a π 3.利用高斯公式求下列积分:(1)y x z x z y z y x sd d d d d d 222++⎰⎰。

1925年 玻恩、海森堡和约当 光的量子场论的初步想法

1925年 玻恩、海森堡和约当 光的量子场论的初步想法

1925年玻恩、海森堡和约当光的量子场论的初步想法
1925年,德国物理学家玻恩(Max Born)、海森堡(Werner Heisenberg)和约当(Pascual Jordan)首次提出了量子场论的
初步想法。

这些想法基于他们对量子力学的深入研究,并试图将其扩展到电磁场等其他物理场。

根据他们的理论,光的量子性可以被描述为一种实体粒子,称为光子。

这与当时主流的光的波动理论相对立,但符合了实验观测到的光的一些奇特性质。

光子被认为具有能量和动量,并以粒子的形式在空间中传播。

量子场论的初步想法也引入了量子力学的统计解释,即光子的出现和转移取决于它们的概率分布。

这一思想与后来发展的量子力学的概率解释有关。

尽管玻恩、海森堡和约当的量子场论的想法还不完备,但它为后续研究的发展奠定了基础,并在理解微观粒子的性质和相互作用方面产生了深远影响。

随着量子场论的进一步研究和发展,人们逐渐建立了现代量子场论的数学框架,包括量子电动力学(QED)、量子色动力学(QCD)等,这些理论解释了基本
粒子的行为,并为理论物理和粒子物理学奠定了坚实的基础。

斯托克斯公式、场论初步

斯托克斯公式、场论初步

其中曲线和曲面的方向由右手法则确定。
斯托克斯公式
GP d x Qd y Rd z
R Q P R d yd z z z x S y Q P d xd y d zd x x y
R Q Q P P R cos cos d S cos β z x x y S y z 其中曲线和曲面的方向由右手法则确定。
第 30 讲
斯托克斯公式、场论初步
区域和其边界上积分的关系
D

DP d x Q d y
Q P d xd y y D x
格林公式

P d y d z Q d z d x R d x d y
P Q R dv y z x

R2 x 2 y 2 d x d y

2 x x y
D
R2 x 2 y 2 y

dx dy
区域 D 关于 x 轴对称, 故
I 2 x d x d y 2 π 2 d 0
D
π2
R cos
r 2 cos d r
πR3 . 4
二重积分
Green
第一型 第二型
曲线积分 Stokes 第一型 第二型
三重积分
Gauss
曲面积分
x y z 2 z x y R R R S
dS.
记 S 在 xoy 面的投影区域为 D .
则 I L
2 RD
x
x y z P d x Q d y R d z 2 z x y R R R S

22_4 场论初步

22_4 场论初步
第3节
第22章
场论初步
一、场的概念 二、梯度场 三、散度场 四、旋度场 五、管量场与有势场
一、场的概念
•若对全空间或其中某一区域V 中每一点M,都有
一个数量(或向量)与之对应,则称在V上给定了一 个数量场(或向量场)。
数量场 (数性函数) 函数 场
如: 温度场, 电位场等
向量场(矢性函数) 如: 力场,速度场等
( P cos Q cos R cos ) d s

数学分析
目录 上页 下页 返回 结束
12
令 A ( P, Q, R) , 引进一个向量
记作
rot A
x y z P Q R
i
j
k
于是得斯托克斯公式的向量形式 :

rot A n d S A d s (rot A) n d S A d s P d x Q d y R d z A d s 称为向量场A
13
定义:
沿有向闭曲线 的环流量. 向量 rot A 称为向量场 A 的 旋度 .
数学分析
目录 上页 下页 返回 结束
旋度的力学意义: 设某刚体绕定轴 l 转动, 角速度为 , M为刚体上任一 点, 建立坐标系如图,则 z
(0, 0, ), r ( x, y, z )
点 M 的线速度为
在场中点 M(x, y, z) 处
A n d S 为向量场 A 通过
P Q R 记作 div A x y z
称为向量场 A 在点 M 的散度.
数学分析
目录 上页 下页 返回 结束
9
说明: 由引例可知, 散度是通量对体积的变化率, 且

场论初步

场论初步
线的方向余弦和向量线上的成比例从而得到向量线应满足的微分方程在向量不为零的条件下由线性微分方程组的理论可知所考虑的整个场被向量线所填满而通过场中每一点由一条且只有一条这样的曲线且过不同的点的两条向量线没有公共点
§4.场论初步
向量场的散度与旋度
1’向量线
如果在空间或某一部分空间的每一点处都确定一个向
曲线积分只与起点和终点有关,而与所沿途径无关, 物理学中称这种场叫保守场。
利用斯托克斯公式,可以推出,一个向量场 a 为空 间保守场的充要条件是
az ay 0, y z
ax az 0, z x
ay ax 0, x y
亦即
rota 0
旋度为零的场称为无旋场,因此保守场也就是无旋场。


az y

ay z
i


ax z

az x

j

ay ax k rota, x y
2 grad div grad
由此可以看出,算子 的作用在于把微分运算化为关于算 子 的向量代数运算。
根据定义,向量场在一给定处的散度是一数量,散度 的全体构成一数量场。
上面所给出的散度的定义好像与坐标的选择有关,其
实不然。为了说明这个事实,我们可给散度另一形式的定 义,设 M 为区域中任一点,在这点周围任取一含有这点 的区域 V ,令 S 为 V 的表面,则有高斯公式
an dS divadV
其中 , 是任意常数,这个性质可由定义直接验证。
关于各种乘积有以下的计算公式,其中 x, y, z
是函数,a axi ay j azk 和 b bxi by j bzk 是向量,

数学分析ch14-5场论初步

数学分析ch14-5场论初步

曲面
f (x, y, z) c (常数)
称为 f 的等值面。若 f x , f y , f z 不同时为零,那么 n
等值面上的一个单位法向量,并且有
f grad f 及 grad f f n 。
n
n
fxi fy j fzk 为
fx2 fy2 fz2
这说明, f 在一点的梯度方向与它的等值面在这点的一个法线方 向相同,这个法线方向就是 f 的方向导数取到最大值 grad f 的方向, 于是,沿着与梯度方向相同的方向, f 的函数值增加最快。而沿着与 梯度方向相反的方向, f 的方向导数取到最小值 grad f ,于是,沿 着与梯度方向相反的方向,函数值减少最快。
如果 为一张封闭曲面,定向为外侧。那么 0说明从曲面内 的流出量大于流入量,此时在 内必有产生流体的源头(源); 0 说明从曲面内的流出量小于流入量,此时在 内必有排泄流体的漏 洞(汇)。
要判断场中一点 M (x, y, z) 是否为源或汇,以及源的“强弱”或汇
的“大小”,可以作一张包含 M 的封闭曲面 (定向为外侧),考察
为场中的定向曲面,称曲面积分
a dS
为向量场 a 沿指定侧通过曲面的通量。
设 M 为这个场中任一点。称
P (M ) Q (M ) R (M )
x
y
z
为向量场 a 在 M 点的散度,记为 diva(M ) 。
定义 14.5.1 设
a(x, y, z) P(x, y, z)i Q(x, y, z) j R(x, y, z)k ,
其中 vx , vy , vz 具有连续偏导数。设 M 0 (x0 , y0 , z0 ) 是场中一点。如果在 M 0
点有旋涡,流体以角速度 旋转(这里 在旋涡的轴线上,且方向与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14场论初步在空间或空间的一部分V 上分布着某一物理量,V 就构成一个场,在生理学中有各种不同的场,如物体的温度场,大气压力场,空间的引力场,流体的速度场等,一般来说,场可分为两类:数量场,如密度场、温度场;向量场,如引力场、速度场等,尽管每种场都有各自的物理特性,但是在数量关系上各类场都有相同的数学形式。

一、梯度设三维欧氏空间的有界体V 是一个数量场,即在V 上定义一个三元函数),,(z y x f ,且函数),,(z y x f 在V 上存在所有定义 向量k zf j y f i x f z f y f x f ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂)(称为函数(数量场)),,(z y x f 在点),,(z y x P 的梯度,记为)(P gradf ,即=)(P gradf ),,(zfy f x f ∂∂∂∂∂∂ 由此可见,数量场的梯度是一个向量场(梯度向量场)如果l 是过点P 的射线,l 的方向余弦是γβαcos ,cos ,cos ,由10.3定理5,函数),,(z y x f 在点P 沿射线l 的方向导数γβαc o s c o s c o s zf y f x f l f ∂∂+∂∂+∂∂=∂∂ 已知)cos ,cos ,(cos γβα=l 是射线l 的单位向量,由向量内积公式,有∙∂∂∂∂∂∂=∂∂),,(zfy f x f l f l P gradf ∙=)()cos ,cos ,(cos γβα =,cos )(cos )(θθP gradf l P gradf =其中θ是在点P 的梯度向量)(P gradf 与单位向量l 之间的夹角,如图14.30由(1)式不难看到,仅当0=θ时,即单位向量l (也就是射线l )的方向与梯度)(P gradf 的方向一致时,方向导数lf∂∂才能取到最大值,换句话说,梯度的方向就是函数),,(z y x f 在点P 变化率最快(或最大)的方向,再从等值面看梯度,如果三元函数),,(z y x f 的所有偏导数在V 连续,V 中的曲面 )(),,(常数C z y x f =称为等值面,例如,气象学中的等温面、等压面等都是等值面的原型,函数222),,(z y x z y x f ++=的等值面C z y x =++222(任意0≥C ) 是以原点为球心的一族同心球面,过场中的每个点只有一个等值面,显然,等值面彼此不相交,数量场),,(z y x f 过点),,(0000z y x P 有一个等值面,由11.4的(4)式,等值面在点0P 的法线方程是zP f z z y P f y y x P f x x ∂∂-=∂∂-=∂∂-)()()(000000于是,等值面法线的方向向量就是梯度 ),)(,)(,)(()(0000zP f y P f x P f P gradf ∂∂∂∂∂∂= 即数量场),,(z y x f 在点0P 的梯度方向就是过点0P 的等值面的法线方向,由数值较小的等值面指向数值较大的等值面,例如,已知物体V 上任意一点P 的温度是)(P f ,即物体V 是一个温度场,若物体V 中有的点温度高有的点温度低,则V 中就有热的流动,那么在一点),,(0000z y x P ,热沿着哪个方向流动最快呢?通过对梯度的讨论我们知道,热沿着梯度方向,也就是过点0P 的等值面的法线方向流动最快,因为热是由温度高处流向温度低处,而梯度方向是由数值较小的等值面指向数值较大的等值面,所以热沿着点)(0P gradf -流动最快。

例1 计算电势场(数量场)222zy x e U ++=在点),,(z y x 的梯度,其中e 是单位正电荷。

解 为了书写简便,设 222z y x r ++=,有32rexr x r e x U -=-=∂∂ 同样有3r eyy U -=∂∂, 3rezz U -=∂∂ 于是,)(3zk yj xi re k z U j y U i x U gradU ++-=∂∂+∂∂+∂∂=已知单位正电荷e 产生的电场强度是 ),(3zk yj xi reE ++= 即,g r a d U E -=由此可见,电场的强度等于电势的梯度,即 gradU E -=,而电场强度的方向与电势梯度的方向相反。

由梯度的定义,不难证明,梯度有下列性质:1:;)(gradv gradu v u grad +=+ 2:;)(ugradvvgradu uv grad += 3:gradu u f u gradf )()('=二、散度设有稳定流体速度场)(P A ,场内有一光滑曲面S ,由14.2第二段知,在单位时间内,流体速度场)(P A 通过曲面S 的流量σnd P A Q S∙=⎰⎰)(其中n 是曲面S 的外法线的单位向量,如果S 是闭曲面, σnd P A Q s⎰⎰=)(表示在单位时间内通过闭曲面S 的流量,通过闭曲面S 的流量Q 是流出量(+)和流入量(—)两者之差(注意,S 的外法线方向为正),可能有下列三种情况: 1)0>Q ,即流出量大于流入量,这时S 内有“源”。

1)0<Q ,即流出量小于流入量,这时S 内有“洞”。

1)0=Q ,即流出量等于流入量,这时S 内可能既无“源”也无“洞”,也可能既有“源”又有“洞”,而“源”与“洞”的流量相互抵消。

为了讨论流体速度场)(P A 在闭曲面S 内“某一点P 的流量”,首先讨论通过闭曲面S 的平均流量(平均散度)σnd P A V V Q SSS ∙=⎰⎰)(1,其中S V 是闭曲面S 围成有界体V 的体积。

定义 设有向场)(P A ,在场内取包含P 的光滑闭曲面S ,设S 围成有界体V 的体积是S V ,若当P S →(闭曲面S 收缩为一点P )时,极限σnd P A V SSP S ∙⎰⎰→)(1lim存在(而与P S →的方式无关),称此极限是向量场)(P A 在点),,(z y x P 的散度,记为)(P divA ,即=)(P divA σnd P A V SSP S ∙⎰⎰→)(1lim由此可见,向量场的散度是一个数量场。

当0)(>P divA 时,表明点P 是“源”,其值表示源的强度;当0)(<P divA 时,表明点P 是“洞”,其绝对值表示洞的强度;当0)(=P divA 时,表明点 既不是“源”也不是“洞”。

用散度定义计算散度很麻烦,下面有(2)式的计算公式,根据奥-高公式和三重积分的中值定理(设向量场)(P A 满足公式和定理的条件),有=)(P divA σnd P A V SSP S ∙⎰⎰→)(1lim=dxdy P A dzdx P A dydz P A V zySxSP S )()()(1lim++⎰⎰→=dxdydz z P A y P A x P A V Vz y x SP S ⎰⎰⎰∂∂+∂∂+∂∂→))()()((1lim=S z y x SP S V z P A y P A x P A V ∙∂∂+∂∂+∂∂→))()()((1lim=))()()((lim zP A y P A x P A z y x PS ∂∂+∂∂+∂∂→其中S V 是有界体V 的体积,点V Q ∈,当P S →时,P Q →,有=)(P divA zP A y P A x P A z y x ∂∂+∂∂+∂∂)()()( 或简写为zA y A x A divA zy x ∂∂+∂∂+∂∂= 由(3)式可将奥-高公式⎰⎰++Sz y xd z n A y n A x n Aσ)],cos(),cos(),cos([=dxdydz zA y A x A zy x V)(∂∂+∂∂+∂∂⎰⎰⎰表为向量形式ivAdxdydzd nd A VS⎰⎰⎰⎰⎰=∙σ于是,奥斯-高公式的物理意义是,向量场A 通过闭曲面S 的总流量等于闭曲面S 所围成有界体V 的每一点散度的总和(即V 的三重积分).例 2 设在坐标原点有点电荷q ,在它周围形成电场,场内任意点),,(z y x P 的电场强度(向量)是02r r q E =, 其中r 是点P 到原点的距离,即222z y x r ++=, 是线段OP 上的单位向量,即)(10zk yj xi rr r r ++==,计算 1)电场强度E 在点P 的强度;2)通过以原)(10zk yj xi r r r r ++==点为球心,以R 为半径球面的流量(电通量);解 1)已知 )(3zk yj xi r qE ++= ,即3r x q E x =, 3r y q E y =, 3rzq E z =有,r x x r =∂∂ ,r y y r =∂∂,rz z r =∂∂52262333r x r q r x rr x r q xE x-=∂∂-=∂∂同样,,3522ry r q y E y-=∂∂ ,3522r z r q z E z -=∂∂ 于是,zP A y P A x P A P d i v E z y x ∂∂+∂∂+∂∂=)()()()( 033)(3352252222=-=++-=rr r q r z y x r q即除原点外,场中任意点的散度皆为0,既不是“源”也不是“洞”。

2)作以原点为球心,以R 为半径的球面S ,通过S 的电通量⎰⎰∙=Se nd E P σ因为E 的方向(从原点出发的射线)与n (球面外法线单位向量)的方向一致,即夹角为 0,由向量的内积公式,有 σσσd E d E nd E P SSSe ⎰⎰⎰⎰⎰⎰==∙=0cos在球面S 上,R r =,有 .2202R q r q r r q E E ==== 于是,⎰⎰⎰⎰⎰⎰===SSSe d R qd R q Ed P σσσ22.4422q R Rq ππ==由(3)式不难证明散度的下列性质: 1.,)(divB divA B A div +=+2. ,)(ξξξgrad A divA A div ∙+= (其中 是数量场)。

只给出性质2的证明,由(3)式,有)()()()(z y x A zA y A x A div ϕϕϕϕ∂∂+∂∂+∂∂=ϕϕϕϕϕϕzA A z y A A y x A A x z x y y x x ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=+∂∂++∂∂+∂∂=)(zA y A x A z y x ϕx y x A z A y A x ∂∂+∂∂+∂∂ϕϕϕ ϕϕgrad A divA ∙+=三、旋度在向量场中,比如河流中,常常出现涡旋现象,在涡旋附近水绕着涡旋中心轴旋转,我们设想有一自由转动的叶轮,将叶轮的轴放在涡旋的中心。

不难想象,叶轮旋转的快慢,一方面与每一点的流速有关;另一方面与叶轮安放位置或叶轮轴的方向有关,因而,描述向量场中一点的涡旋要用向量。

相关文档
最新文档