高等数学2.5函数的微分

合集下载

大学高等数学教材目录

大学高等数学教材目录

大学高等数学教材目录1. 导言2. 函数与极限2.1 实数与数轴2.2 函数的概念2.3 函数的极限2.4 极限的性质2.5 极限的计算2.6 无穷小量与无穷大量2.7 极限存在准则3. 导数与微分3.1 导数的定义3.2 微分的定义3.3 高阶导数及其应用3.4 隐函数与参数方程的导数3.5 微分中值定理3.6 泰勒公式与高阶导数的应用4. 微分中值定理与导数的应用4.1 罗尔中值定理4.2 拉格朗日中值定理4.3 柯西中值定理4.4 极值与最值4.5 函数的单调性与曲线的凹凸性4.6 曲线的渐近线与图形的描绘5. 不定积分5.1 基本积分公式5.2 不定积分的计算方法5.3 定积分的概念5.4 反常积分5.5 积分中值定理与平均值定理6. 定积分6.1 可积性及其判定6.2 定积分的计算方法6.3 定积分的应用7. 微分方程7.1 微分方程的基本概念7.2 一阶微分方程7.3 高阶微分方程7.4 微分方程的解法7.5 应用问题8. 多元函数微积分8.1 二元函数的概念8.2 二元函数的极限8.3 偏导数与全微分8.4 多元函数的极值与条件极值 8.5 多元函数积分8.6 可变上限积分与重积分9. 无穷级数9.1 数项级数的概念与性质9.2 收敛级数的判定方法9.3 幂级数及其收敛域9.4 函数展开成幂级数9.5 泰勒级数与麦克劳林级数10. 向量代数与空间解析几何 10.1 基本概念10.2 向量的运算10.3 空间曲线与曲面10.4 向量值函数及其导数10.5 多元函数积分10.6 曲线积分10.7 曲面积分10.8 可变上限积分与重积分。

高等数学(电子版)

高等数学(电子版)

高等数学(电子版)第一章函数与极限1.1 函数的概念函数是数学中最基本的概念之一,它描述了两个变量之间的依赖关系。

在高等数学中,我们主要研究实数集上的函数,即定义域和值域都是实数集的函数。

1.2 函数的性质函数具有许多重要的性质,如单调性、奇偶性、周期性等。

这些性质有助于我们更好地理解和分析函数的行为。

1.3 极限的概念极限是研究函数在某一点附近行为的一种方法。

当我们讨论一个函数的极限时,我们关注的是当自变量趋近于某个特定值时,函数值的变化趋势。

1.4 极限的运算法则极限运算法则是指对于一些基本函数的极限,我们可以通过简单的运算得到它们的极限。

这些运算法则包括极限的四则运算、复合函数的极限、数列的极限等。

1.5 无穷小与无穷大无穷小与无穷大是描述函数极限的两种特殊情况。

无穷小是指当自变量趋近于某个特定值时,函数值趋近于0;无穷大是指当自变量趋近于某个特定值时,函数值趋近于正无穷大或负无穷大。

1.6 连续性与间断点连续性是函数的一个重要性质,它描述了函数在某一点附近的行为。

如果一个函数在某个点连续,那么它在该点附近的极限存在且等于该点的函数值。

间断点是函数不连续的点,它们在函数图像上表现为跳跃或断开。

第二章导数与微分2.1 导数的概念导数是描述函数在某一点附近变化率的一种方法。

它表示了函数在该点的斜率,即函数图像在该点的切线斜率。

2.2 导数的运算法则导数运算法则是指对于一些基本函数的导数,我们可以通过简单的运算得到它们的导数。

这些运算法则包括导数的四则运算、复合函数的导数、幂函数的导数等。

2.3 高阶导数高阶导数是指函数的导数的导数。

它们描述了函数在某一点附近更复杂的变化率。

高阶导数在研究函数的凹凸性、拐点等方面具有重要意义。

2.4 微分的概念微分是导数的一种应用,它描述了函数在某一点附近的微小变化。

微分运算可以用来求解一些实际问题,如曲线的切线问题、最值问题等。

2.5 微分的应用微分在物理学、工程学等领域有广泛的应用。

高等数学第二章:函数的微分

高等数学第二章:函数的微分

dx
26
注: 由导数的“微商”及一阶微分形式不变性,
(3) 通常把自变量x的增量x 称为自变量的 微分,记作 dx, 即 dx x. 什么意思?
例如: 已知 y x , 求 d y.
解 d y (x)x 1 x x, 由于 y x, 故得 d y d x x.
11
上例表明:
自变量的增量就是自变量的微分:x d x
y A x o(x),
lim y x0 x
lim A o(x)
x0
x

A.
即函数 f ( x)在点 x0可导,且A f ( x0 ).
7
定理 函数 f ( x)在点x0可微 函数 f ( x)
在点 x0处可导,且 A f ( x0 ),即有 dy f ( x0 )x.
(2) 充分性 函数f ( x)在点x0可导,
y lim
x0 x

f ( x0 ),
即 y x

f ( x0 ) , ( x 0,
0)
从而 y f ( x0 ) x (x),
f ( x0 ) x o(x),
函数 f ( x)在点 x0可微, 且 f ( x0 ) A.
d(u v) du dv
d(uv) vdu udv
d
u v


vdu udv v2
18
例 设 y ln( x e x2 ), 求dy.


y

1
x
2
xe ex
x
2
2
,

dy

1
x

高等数学 多元函数的微分中值定理和泰勒公式

高等数学 多元函数的微分中值定理和泰勒公式
一、二元函数的泰勒公式
一元函数 f ( x) 的泰勒公式:
f ( x0 ) 2 f ( x0 h) f ( x0 ) f ( x0 )h h 2!
f ( n ) ( x0 ) n h n!
推广 多元函数泰勒公式
(0 1)
记号 (设下面涉及的偏导数连续): • (h k ) f ( x0 , y0 ) 表示 h f x ( x0 , y0 ) k f y ( x0 , y0 ) x y 2 • (h k ) f ( x0 , y0 ) 表示 x y

1 (h 2! x 1 (h n! x 2 k y) n k y)
f ( x0 , y0 ) f ( x0 , y0 ) Rn

1 ( h k ) n 1 f ( x h, y k ) ② 其中 Rn ( n 0 0 1)! x y
m
( m) (0) (h x k y ) m f ( x0 , y0 )
由 (t ) 的麦克劳林公式, 得
将前述导数公式代入即得二元函数泰勒公式.
说明: 因 f 的各 n+1 阶偏导数连续, (1) 余项估计式. 在某闭
邻域其绝对值必有上界 M , M Rn ( h k ) n 1 (n 1) ! 则有
例1. 求函数 f ( x, y ) ln(1 x y ) 在点 (0,0) 的三阶泰
勒公式. 解:
1 f x ( x, y ) f y ( x, y ) 1 x y f x x ( x, y ) f x y ( x, y ) f y y ( x, y )
3 f x y 4 f x y

微分公式大全高等数学

微分公式大全高等数学

微分公式大全高等数学在高等数学中,微分是研究函数的变化率和导数的一门重要内容。

微分公式的正确掌握是学习和应用微分的重要基础。

下面将列举一些常见的微分公式,供大家参考。

1. 基本微分公式(1)常数函数微分:若y=C,C为常数,则dy/dx=0;(2)幂函数微分:若y=x^n,n为常数,则dy/dx=nx^(n-1);(3)指数函数微分:若y=a^x,a>0且a≠1,则dy/dx=a^x*lna;(4)对数函数微分:若y=log_a x,a>0且a≠1,则dy/dx=1/(xlna);(5)三角函数微分:若y=sin x,则dy/dx=cos x;若y=cos x,则dy/dx=-sin x;若y=tan x,则dy/dx=sec^2 x;(6)反三角函数微分:若y=arcsin x,则dy/dx=1/sqrt(1-x^2);若y=arccos x,则dy/dx=-1/sqrt(1-x^2);若y=arctan x,则dy/dx=1/(1+x^2);(7)双曲函数微分:若y=sinh x,则dy/dx=cosh x;若y=cosh x,则dy/dx=sinh x;若y=tanh x,则dy/dx=sech^2 x;(8)反双曲函数微分:若y=arcsinh x,则dy/dx=1/sqrt(1+x^2);若y=arccosh x,则dy/dx=1/sqrt(x^2-1);若y=arctanh x,则dy/dx=1/(1-x^2)。

2. 复合函数微分法则(1)链式法则:若y=f(u),u=g(x),则dy/dx=dy/du*du/dx;(2)乘积法则:若y=u*v,u=g(x),v=h(x),则dy/dx=u*(dv/dx)+v*(du/dx);(3)商积法则:若y=u/v,u=g(x),v=h(x),则dy/dx=(v*du/dx-u*dv/dx)/v^2。

3. 隐函数微分若方程F(x, y)=0表示一个隐函数,其中y是x的显含函数,则通过隐函数微分可以求出dy/dx。

高等数学教材第二版答案

高等数学教材第二版答案

高等数学教材第二版答案在高等数学教学过程中,教材是学生们学习的主要依据,而答案则是学生们在学习中所追求的。

本篇文章将给出《高等数学教材第二版》的答案,以满足学生们在学习过程中的需求。

第一章极限与连续1.1 初等函数的极限1.2 无穷小与无穷大1.3 极限运算法则1.4 一元函数的连续性1.5 连续函数的运算与初等函数的连续性第二章一元函数微分学2.1 导数的概念与几何意义2.2 导数的计算方法2.3 高阶导数与莱布尼茨公式2.4 隐函数与参数方程的导数2.5 函数的局部性质第三章一元函数积分学3.1 不定积分的定义与基本性质3.2 不定积分的计算3.3 定积分的定义与性质3.4 定积分的计算方法3.5 积分中值定理与换元积分法第四章多元函数微分学4.1 多元函数的极限4.2 偏导数的概念与计算4.3 隐函数的偏导数4.4 多元复合函数的偏导数4.5 方向导数与梯度4.6 多元函数的微分第五章多元函数积分学5.1 二重积分的概念与性质5.2 二重积分的计算方法5.3 三重积分的概念与性质5.4 三重积分的计算方法5.5 曲线与曲面积分第六章微分方程6.1 微分方程的基本概念6.2 可分离变量的微分方程6.3 一阶线性微分方程6.4 高阶线性微分方程6.5 齐次线性微分方程第七章无穷级数7.1 数项级数的概念7.2 数项级数的收敛性7.3 幂级数与函数展开7.4 函数项级数的一致收敛性7.5 幂级数的和函数通过以上各章节的答案,学生们可以对高等数学教材第二版中的各个题目进行参考和对照,以检查自己的学习效果和理解程度。

同时,对于一些较难的问题,答案的给出也可以作为解题思路的参考,引导学生们加深对知识点的理解和应用。

值得注意的是,答案只是学习的辅助工具,学生们在学习过程中应注重理论的学习和问题的解决思路。

与学习过程相比,答案的提供仅是一个参考,对于理解掌握知识点并独立解决问题才是更为重要的。

希望本篇文章所提供的《高等数学教材第二版》答案能够帮助到广大学生,提升他们在高等数学学习中的自信与能力。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结高等数学知识点总结(上)一、微积分微积分是数学中的一个重要分支,包括微分和积分两部分。

微分是研究函数变化率和极值,积分是求解曲线下面的面积。

1.导数和微分导数是函数变化率的衡量指标,定义为函数在一点处的切线斜率。

微分是导数的微小增量,通常用dx来表示。

常见的微分公式:(1)(x^n)' = nx^(n-1)(2)(sinx)’=cosx(3)(cosx)’=-sinx(4)(ex)’=ex2.微分应用微分在科学工程中的应用非常广泛,如曲线的近似计算、变化率的分析和优化问题的求解等。

常见的微分应用题:(1)求解函数在某个点处的导数;(2)求解曲线y=f(x)在某一点x=x0处的切线方程;(3)求解函数极值的位置;(4)求解函数的最大值和最小值。

3.积分积分是微积分的另一大分支,通常被用来求解曲线下的面积。

三种积分:(1)定积分(2)不定积分(3)曲线积分常见的定积分计算方法:(1)换元法(2)分部积分法(3)长条法4.积分应用积分在工程科学中的应用非常广泛,如求解曲线下的面积、物理量的计算、概率分布的求解等。

常见的积分应用题:(1)求解曲线下的面积;(2)求解物理量的分布规律;(3)求解概率分布函数。

二、数学分析数学分析是研究实数域函数极限、连续、可导性以及积分的方法和应用的分支。

可分为实数的函数分析和向量的函数分析两部分。

1.实数的函数分析实数函数的极限,连续性以及可导性是实数的函数分析中研究的重点。

常见的函数分析公式:(1)函数极限的定义(2)连续函数的定义(3)可导函数的定义2.向量的函数分析向量的函数分析是研究向量值函数的极限、连续、可导性以及曲线积分的方法和应用。

常见的向量的函数分析公式:(1)向量函数的极限(2)向量函数的连续性(3)向量函数的导数(4)向量函数的曲线积分3.数列和级数数列和级数是数学分析中的重要概念,常用于求解无限积分与求和等问题。

常见的数列公式:(1)数列极限的定义(2)数列序列收敛定理(3)调和数列发散定理常见的级数公式:(1)级数收敛的定义(2)级数收敛和发散判定标准(3)比值判别法和根值判别法三、线性代数线性代数是数学中的一个重要分支,主要研究向量、矩阵、行列式和线性方程组等内容。

高等数学微分公式大全

高等数学微分公式大全

高等数学微分公式大全微分作为高等数学中的基础概念之一,是描述函数变化率的重要工具。

微分公式是微分学的核心内容,掌握了微分公式,能够帮助我们更好地理解函数的性质和变化规律。

本文将介绍高等数学中常见的微分公式,以帮助读者更好地掌握微分的基本知识。

1. 基本微分公式•常数函数的微分公式:若y=y(C为常数),则yy/yy=0。

•幂函数的微分公式:若y=y y(n为常数),则yy/yy=yy y−1。

•指数函数的微分公式:若y=y y(a>0且不等于1),则 $dy/dx = a^x\\ln{a}$。

•对数函数的微分公式:若 $y = \\log_a{x}$(a>0且不等于1),则 $dy/dx = \\frac{1}{x\\ln{a}}$。

2. 基本函数的微分公式•和差函数的微分公式:若 $y = u \\pm v$,则$dy/dx = du/dx \\pm dv/dx$。

•积函数的微分公式:若y=yy,则 $dy/dx = u \\cdot dv/dx + v \\cdot du/dx$。

•商函数的微分公式:若y=y/y,则 $dy/dx = (v \\cdot du/dx - u \\cdot dv/dx)/v^2$。

3. 高阶微分公式•高阶微分:对于函数 y=f(x),它的n阶导数记作y y y/yy y。

•高阶微分公式:–若y=y y,则y y y/yy y=y(y−1)(y−2)...(y−(y−1))y=y!–若y=y y,则y y y/yy y=y y–若 $y = \\sin{x}$,则 $d^ny/dx^n = \\sin{(x + n\\pi/2)}$–若 $y = \\cos{x}$,则 $d^ny/dx^n = \\cos{(x + n\\pi/2)}$4. 典型微分方程的通解•一阶微分方程:一阶微分方程是只含有一阶导数的方程,通常可以表示为 $\\frac{dy}{dx} = f(x, y)$。

高等数学(微积分学)专业术语名词、概念、定理等英汉对照.

高等数学(微积分学)专业术语名词、概念、定理等英汉对照.

目录第一部分英汉微积分词汇Part 1 English-Chinese Calculus Vocabulary第一章函数与极限Chapter 1 function and Limit (1)第二章导数与微分Chapter 2 Derivative and Differential (2)第三章微分中值定理Chapter 3 Mean Value theorem of differentials and theApplicati on of Derivatives (3)第四章不定积分Chapter 4 Indefinite Intergrals (3)第五章定积分Chapter 5 Definite Integral (3)第六章定积分的应用Chapter 6 Application of the Definite Integrals (4)第七章空间解析几何与向量代数Chapter 7 Space Ana lytic Geomertry and Vector Algebra (4)第八章多元函数微分法及其应用Chapter 8 Differentiation of functions Several variablesand Its Application (5)第九章重积分Multiple Integrals (6)第十章曲线积分与曲面积分Chapter 10 Line(Curve ) Integrals and Sur face Integrals……………………6 第十一章无穷级数Chapter 11 Infinite Series……………………………………………………6 第十二章微分方程Chapter 12 Differential Equation (7)第二部分定理定义公式的英文表达 Part 2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and L imit (19)1.1 映射与函数(Mapping and Function ) (19)1.2 数列的极限(Limit of the Sequence of Number) (20)1.3 函数的极限(Limit of Function) (21)1.4 无穷小与无穷大(Infinitesimal and Inifinity) (23)1.5 极限运算法则(Operation Rule of L imit) (24)1.6 极限存在准则两个重要的极限(Rule for theExistence of Limits Two Important Limits) (25)1.7 无穷小的比较(The Comparison of infinitesimal) (26)1.8 函数的连续性与间断点(Continuity of FunctionAnd Discontinuity Points) (28)1.9 连续函数的运酸与初等函数的连续性(OperationOf Continuous Functions and Continuity ofElementary Functions) (28)1.10 闭区间上联系汗水的性质(Properties ofContinuous Functions on a Closed Interval) (30)第二章导数与数分Chapter2 Derivative and Differential (31)2.1 导数的概念(The Concept of Derivative) (31)2.2 函数的求导法则(Rules for Finding Derivatives) (33)2.3 高阶导数(Higher-order Derivatives) (34)2.4 隐函数及由参数方程所确定的函数的导数相关变化率(Derivatives of Implicit Functions and Functions Determined by Parametric Equation and Correlative Change Rate) (34)2.5 函数的微分(Differential of a Function) (35)第三章微分中值定理与导数的应用Chapter 3 Mean Value Theorem of Differentials and theApplication of Derivatives (36)3.1 微分中值定理(The Mean Value Theorem) (36)3.2 洛必达法则(L’Hopital’s Rule) (38)3.3 泰勒公式(Taylor’s Formula) (41)3.4 函数的单调性和曲线的凹凸性(Monotonicityof Functions and Concavity of Curves) (43)3.5 函数的极值与最大最小值(Extrema, Maximaand Minima of Functions) (46)3.6 函数图形的描绘(Graphing Functions) (49)3.7 曲率(Curvature) (50)3.8 方程的近似解(Solving Equation Numerically) (53)第四章不定积分Chapter 4 Indefinite Integrals (54)4.1 不定积分的概念与性质(The Concept andProperties of Indefinite Integrals) (54)4.2 换元积分法(Substitution Rule for Indefinite Integrals) (56)4.3 分部积分法(Integration by Parts) (57)4.4 有理函数的积分(Integration of Rational Functions) (58)第五章定积分Chapter 5 Definite Integrals (61)5.1 定积分的概念和性质(Concept of Definite Integraland its Properties) (61)5.2 微积分基本定理(Fundamental Theorem of Calculus) (67)5.3 定积分的换元法和分部积分法(Integration by Substitution andDefinite Integrals by Parts) (69)5.4 反常积分(Improper Integrals) (70)第六章定积分的应用Chapter 6 Applications of the Definite Integrals (75)6.1 定积分的元素法(The Element Method of Definite Integra (75)6.2 定积分在几何学上的应用(Applications of the DefiniteIntegrals to Geometry) (76)6.3 定积分在物理学上的应用(Applications of the DefiniteIntegrals to Physics) (79)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geometry and Vector Algebar (80)7.1 向量及其线性运算(Vector and Its Linear Operation) (80)7.2 数量积向量积(Dot Produc t and Cross Product) (86)7.3 曲面及其方程(Surface and Its Equation) (89)7.4 空间曲线及其方程(The Curve in Three-space and Its Equation (91)7.5 平面及其方程(Plane in Space and Its Equation) (93)7.6 空间直线及其方程(Lines in and Their Equations) (95)第八章多元函数微分法及其应用Chapter 8 Differentiation of Functions of SeveralVariables and Its Application (99)8.1 多元函数的基本概念(The Basic Concepts of Functionsof Several Variables) (99)8.2 偏导数(Partial Derivative) (102)8.3 全微分(Total Differential) (103)8.4 链式法则(The Chain Rule) (104)8.5 隐函数的求导公式(Derivative Formula for Implicit Functions). (104)8.6 多元函数微分学的几何应用(Geometric Applications of Differentiationof Ffunctions of Severalvariables) (106)8.7方向导数与梯度(Directional Derivatives and Gradients) (107)8.8多元函数的极值(Extreme Value of Functions of Several Variables) (108)第九章重积分Chapter 9 Multiple Integrals (111)9.1二重积分的概念与性质(The Concept of Double Integralsand Its Properities) (111)9.2二重积分的计算法(Evaluation of double Integrals) (114)9.3三重积分(Triple Integrals) (115)9.4重积分的应用(Applications of Multiple Itegrals) (120)第十章曲线积分与曲面积分Chapte 10 Line Integrals and Surface Integrals………………………………121 10.1 对弧长的曲线积分(line Intergrals with Respect to Arc Length) ………121 10.2 对坐标的曲线积分(Line Integrals with respect toCoordinate Variables) ……………………………………………………123 10.3 格林公式及其应用(Green's Formula and Its Applications) ………………124 10.4 对面积的曲面积分(Surface Integrals with Respect to Aarea) ……………126 10.5 对坐标的曲面积分(Surface Integrals with Respect toCoordinate Variables) ………………………………………………………128 10.6 高斯公式通量与散度(Gauss's Formula Flux and Divirgence) …… 130 10.7 斯托克斯公式环流量与旋度(Stokes's Formula Circulationand Rotation) (131)第十一章无穷级数Chapter 11 Infinite Series (133)11.1 常数项级数的概念与性质(The concept and Properties ofThe Constant series) ………………………………………………………133 11.2 常数项级数的审敛法(Test for Convergence of the Constant Series) ……137 11.3 幂级数(powe r Series). ……………………………………………………143 11.4 函数展开成幂级数(Represent the Function as Power Series) ……………148 11.5 函数的幂级数展开式的应用(the Appliacation of the Power Seriesrepresentation of a Function) (148)11.6 函数项级数的一致收敛性及一致收敛级数的基本性质(The Unanimous Convergence of the Ser ies of Functions and Its properties) (149)11.7 傅立叶级数(Fourier Series).............................................152 11.8 一般周期函数的傅立叶级数(Fourier Series of Periodic Functions) (153)第十二章微分方程Chapter 12 Differential Equation……………………………………………155 12.1 微分方程的基本概念(The Concept of DifferentialEqu ation) ……155 12.2 可分离变量的微分方程(Separable Differential Equation) ………156 12.3 齐次方程(Homogeneous Equation) ………………………………156 12.4 一次线性微分方程(Linear Differential Equation of theFirst Order) (157)12.5 全微分方程(Total Differential Equation) …………………………158 12.6 可降阶的高阶微分方程(Higher-order DifferentialEquation Turned to Lower-order DifferentialEquation) (159)12.7 高阶线性微分方程(Linear Differential Equation of Higher Order) …159 12.8 常系数齐次线性微分方程(Homogeneous LinearDifferential Equation with Constant Coefficient) (163)12.9 常系数非齐次线性微分方程(Non HomogeneousDifferential Equation with Constant Coefficient) (164)12.10 欧拉方程(Euler Equation) …………………………………………164 12.11 微分方程的幂级数解法(Power Series Solutionto Differential Equation) (164)第三部分常用数学符号的英文表达Part 3 English Expression of the Mathematical Symbol in Common Use第一部分英汉微积分词汇Part1 English-Chinese Calculus Vocabulary映射 mappingX到Y的映射 mapping of X ontoY 满射 surjection 单射 injection一一映射 one-to-one mapping 双射 bijection 算子 operator变化 transformation 函数 function逆映射 inverse mapping复合映射 composite mapping 自变量 independent variable 因变量 dependent variable 定义域 domain函数值 value of function 函数关系 function relation 值域 range自然定义域 natural domain 单值函数 single valued function 多值函数 multiple valued function 单值分支 one-valued branch 函数图形 graph of a function 绝对值函数 absolute value 符号函数 sigh function 整数部分 integral part 阶梯曲线 step curve 第一章函数与极限Chapter1 Function and Limit 集合 set元素 element 子集 subset 空集 empty set 并集 union交集 intersection 差集 difference of set 基本集 basic set补集 complement set 直积 direct product笛卡儿积 Cartesian product 开区间 open interval 闭区间 closed interval 半开区间half open interval 有限区间 finite interval区间的长度 length of an interval 无限区间 infinite interval 领域 neighborhood领域的中心 centre of a neighborhood 领域的半径 radius of a neighborhood 左领域left neighborhood 右领域 right neighborhood当且仅当 if and only if(iff) 分段函数 piecewise function 上界 upper bound 下界lower bound 有界 boundedness 无界 unbounded函数的单调性 monotonicity of a function 单调增加的 increasing 单调减少的decreasing单调函数 monotone function函数的奇偶性 parity(odevity) of a function对称 symmetry 偶函数 even function 奇函数 odd function函数的周期性 periodicity of a function 周期 period反函数 inverse function 直接函数 direct function 复合函数 composite function 中间变量 intermediate variable 函数的运算 operation of function基本初等函数 basic elementary function 初等函数 elementary function 幂函数 power function指数函数 exponential function 对数函数 logarithmic function 三角函数 trigonometric function反三角函数 inverse trigonometric function 常数函数 constant function 双曲函数hyperbolic function 双曲正弦 hyperbolic sine 双曲余弦 hyperbolic cosine 双曲正切hyperbolic tangent反双曲正弦 inverse hyperbolic sine 反双曲余弦 inverse hyperbolic cosine 反双曲正切 inverse hyperbolic tangent 极限 limit数列 sequence of number 收敛 convergence 收敛于 a converge to a 发散 divergent极限的唯一性 uniqueness of limits收敛数列的有界性 boundedness of aconvergent sequence子列 subsequence函数的极限 limits of functions函数f(x)当x趋于x0时的极限 limit of functions f(x) as x approaches x0 左极限 left limit 右极限 right limit单侧极限 one-sided limits水平渐近线 horizontal asymptote 无穷小 infinitesimal 无穷大 infinity铅直渐近线 vertical asymptote 夹逼准则 squeeze rule单调数列 monotonic sequence高阶无穷小 infinitesimal of higher order 低阶无穷小 infinitesimal of lower order 同阶无穷小 infinitesimal of the same order 等阶无穷小 equivalent infinitesimal 函数的连续性 continuity of a function 增量 increment函数f(x)在x0连续 the function f(x) is continuous at x0左连续 left continuous 右连续 right continuous区间上的连续函数 continuous function 函数f(x)在该区间上连续 function f(x) is continuous on an interval 不连续点 discontinuity point第一类间断点 discontinuity point of the first kind第二类间断点 discontinuity point of the second kind初等函数的连续性 continuity of the elementary functions定义区间 defined interval最大值 global maximum value (absolute maximum)最小值 global minimum value (absolute minimum)零点定理 the zero point theorem介值定理 intermediate value theorem 第二章导数与微分Chapter2 Derivative and Differential 速度 velocity匀速运动 uniform motion 平均速度 average velocity瞬时速度 instantaneous velocity 圆的切线 tangent line of a circle 切线 tangent line切线的斜率 slope of the tangent line 位置函数 position function 导数 derivative 可导derivable函数的变化率问题 problem of the change rate of a function导函数 derived function 左导数 left-hand derivative 右导数 right-hand derivative 单侧导数 one-sided derivativesf(x)在闭区间【a,b】上可导 f(x)isderivable on the closed interval [a,b] 切线方程 tangent equation 角速度 angular velocity 成本函数 cost function 边际成本 marginal cost 链式法则 chain rule隐函数 implicit function 显函数 explicit function 二阶函数 second derivative 三阶导数 third derivative 高阶导数 nth derivative莱布尼茨公式 Leibniz formula 对数求导法 log- derivative 参数方程 parametric equation 相关变化率 correlative change rata 微分 differential 可微的 differentiable 函数的微分 differential of function自变量的微分 differential of independent variable微商 differential quotient间接测量误差 indirect measurement error 绝对误差 absolute error相对误差 relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle’s theorem 费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点 stationary point 稳定点 stable point 临界点 critical point辅助函数 auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式 indeterminate form of type 0/0不定式 indeterminate form泰勒中值定理Taylor’s mean value theorem泰勒公式 Taylor formula 余项 remainder term拉格朗日余项 Lagrange remainder term 麦克劳林公式Maclaurin’s formula 佩亚诺公式 Peano remainder term 凹凸性 concavity凹向上的 concave upward, cancave up 凹向下的,向上凸的concave downward’ concave down拐点 inflection point函数的极值 extremum of function 极大值 local(relative) maximum 最大值global(absolute) mximum 极小值 local(relative) minimum 最小值 global(absolute) minimum 目标函数 objective function 曲率 curvature弧微分 arc differential平均曲率 average curvature 曲率园 circle of curvature 曲率中心 center of curvature 曲率半径 radius of curvature渐屈线 evolute 渐伸线 involute根的隔离 isolation of root 隔离区间 isolation interval 切线法 tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数 primitive function(antiderivative) 积分号 sign of integration 被积函数integrand积分变量 integral variable 积分曲线 integral curve 积分表 table of integrals换元积分法 integration by substitution 分部积分法 integration by parts分部积分公式 formula of integration by parts有理函数 rational function 真分式 proper fraction 假分式 improper fraction第五章定积分Chapter5 Definite Integrals 曲边梯形 trapezoid with 曲边 curve edge窄矩形 narrow rectangle曲边梯形的面积 area of trapezoid with curved edge积分下限 lower limit of integral 积分上限 upper limit of integral 积分区间 integral interval 分割 partition积分和 integral sum 可积 integrable矩形法 rectangle method积分中值定理 mean value theorem of integrals函数在区间上的平均值 average value of a function on an integvals牛顿-莱布尼茨公式 Newton-Leibniz formula微积分基本公式 fundamental formula of calculus换元公式 formula for integration by substitution递推公式 recurrence formula 反常积分 improper integral反常积分发散 the improper integral is divergent反常积分收敛 the improper integral is convergent无穷限的反常积分 improper integral on an infinite interval无界函数的反常积分 improper integral of unbounded functions绝对收敛 absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法 the element method 面积元素 element of area平面图形的面积 area of a luane figure 直角坐标又称“笛卡儿坐标 (Cartesian coordinates)”极坐标 polar coordinates 抛物线 parabola 椭圆 ellipse旋转体的面积 volume of a solid of rotation旋转椭球体 ellipsoid of revolution, ellipsoid of rotation曲线的弧长 arc length of acurve 可求长的 rectifiable 光滑 smooth 功 work水压力 water pressure 引力 gravitation 变力 variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量 vector自由向量 free vector 单位向量 unit vector 零向量 zero vector 相等 equal 平行parallel向量的线性运算 linear poeration of vector 三角法则 triangle rule平行四边形法则 parallelogram rule 交换律 commutative law 结合律 associative law 负向量 negative vector 差 difference分配律 distributive law空间直角坐标系 space rectangular coordinates坐标面 coordinate plane 卦限 octant向量的模 modulus of vector向量a与b的夹角 angle between vector a and b方向余弦 direction cosine 方向角 direction angle向量在轴上的投影 projection of a vector onto an axis数量积,外积,叉积 scalar product,dot product,inner product曲面方程 equation for a surface 球面 sphere旋转曲面 surface of revolution 母线 generating line 轴 axis圆锥面 cone 顶点 vertex旋转单叶双曲面 revolution hyperboloids of one sheet旋转双叶双曲面 revolution hyperboloids of two sheets柱面 cylindrical surface ,cylinder 圆柱面 cylindrical surface 准线 directrix抛物柱面 parabolic cylinder 二次曲面 quadric surface 椭圆锥面 dlliptic cone 椭球面ellipsoid单叶双曲面 hyperboloid of one sheet 双叶双曲面 hyperboloid of two sheets 旋转椭球面 ellipsoid of revolution 椭圆抛物面 elliptic paraboloid旋转抛物面 paraboloid of revolution 双曲抛物面 hyperbolic paraboloid 马鞍面 saddle surface椭圆柱面 elliptic cylinder 双曲柱面 hyperbolic cylinder 抛物柱面 parabolic cylinder 空间曲线 space curve空间曲线的一般方程 general form equations of a space curve空间曲线的参数方程 parametric equations of a space curve 螺转线 spiral 螺矩 pitch 投影柱面 projecting cylinder 投影 projection平面的点法式方程 pointnorm form eqyation of a plane法向量 normal vector平面的一般方程 general form equation of a plane两平面的夹角 angle between two planes 点到平面的距离 distance from a point to a plane空间直线的一般方程 general equation of a line in space方向向量 direction vector直线的点向式方程 pointdirection form equations of a line方向数 direction number直线的参数方程 parametric equations of a line两直线的夹角 angle between two lines 垂直 perpendicular直线与平面的夹角 angle between a line and a planes平面束 pencil of planes平面束的方程 equation of a pencil of planes行列式 determinant系数行列式 coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数 function of one variable 多元函数 function of several variables 内点 interior point 外点 exterior point 边界点 frontier point,boundary point 聚点 point of accumulation 开集 openset 闭集 closed set 连通集 connected set 开区域 open region 闭区域 closed region有界集 bounded set 无界集 unbounded setn维空间 n-dimentional space 二重极限 double limit 多元函数的连续性 continuity of function of seveal 连续函数 continuous function 不连续点 discontinuity point 一致连续 uniformly continuous 偏导数 partial derivative 对自变量x的偏导数 partial derivative with respect to independent variable x 高阶偏导数 partial derivative of higher order 二阶偏导数 second order partial derivative 混合偏导数 hybrid partial derivative 全微分 total differential 偏增量 oartial increment 偏微分 partial differential 全增量 total increment 可微分 differentiable 必要条件 necessary condition充分条件 sufficient condition 叠加原理 superpostition principle 全导数 total derivative中间变量 intermediate variable 隐函数存在定理 theorem of the existence of implicit function 曲线的切向量 tangent vector of a curve 法平面 normal plane 向量方程vector equation 向量值函数 vector-valued function 切平面 tangent plane 法线 normal line 方向导数 directional derivative梯度 gradient数量场 scalar field 梯度场 gradient field 向量场 vector field 势场 potential field 引力场 gravitational field 引力势 gravitational potential 曲面在一点的切平面 tangent plane to asurface at a point 曲线在一点的法线 normal line to asurface at a point 无条件极值 unconditional extreme values 条件极值 conditional extreme values 拉格朗日乘数法 Lagrange multiplier method 拉格朗日乘子 Lagrange multiplier 经验公式 empirical formula 最小二乘法 method of least squares 均方误差mean square error 第九章重积分 Chapter9 Multiple Integrals 二重积分 double integral 可加性 additivity累次积分 iterated integral 体积元素 volume element 三重积分 triple integral 直角坐标系中的体积元素 volumeelement in rectangular coordinate system 柱面坐标 cylindrical coordinates 柱面坐标系中的体积元素 volumeelement in cylindrical coordinate system 球面坐标 spherical coordinates 球面坐标系中的体积元素 volumeelement in spherical coordinate system 反常二重积分 improper double integral 曲面的面积 area of a surface 质心 centre of mass 静矩 static moment 密度 density 形心centroid 转动惯量 moment of inertia 参变量 parametric variable 第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分 line integrals with respect to arc hength第一类曲线积分 line integrals of the first type对坐标的曲线积分 line integrals with respect to x,y,and z第二类曲线积分 line integrals of the second type有向曲线弧 directed arc单连通区域 simple connected region 复连通区域 complex connected region 格林公式Green formula第一类曲面积分 surface integrals of the first type对面的曲面积分 surface integrals with respect to area有向曲面 directed surface对坐标的曲面积分 surface integrals with respect to coordinate elements第二类曲面积分 surface integrals of the second type有向曲面元 element of directed surface 高斯公式 gauss formula拉普拉斯算子 Laplace operator 格林第一公式Green’s first formula 通量 flux散度 divergence斯托克斯公式 Stokes formula 环流量 circulation 旋度 rotation,curl第十一章无穷级数Chapter11 Infinite Series 一般项 general term 部分和 partial sum 余项 remainder term 等比级数 geometric series 几何级数 geometric series 公比 common ratio调和级数 harmonic series柯西收敛准则 Cauchy convergence criteria, Cauchy criteria for convergence 正项级数series of positive terms 达朗贝尔判别法D’Alembert test 柯西判别法 Cauchy test交错级数 alternating series 绝对收敛 absolutely convergent 条件收敛 conditionally convergent 柯西乘积 Cauchy product 函数项级数 series of functions 发散点 point of divergence 收敛点 point of convergence 收敛域 convergence domain 和函数 sum function 幂级数 power series幂级数的系数 coeffcients of power series 阿贝尔定理 Abel Theorem收敛半径 radius of convergence 收敛区间 interval of convergence 泰勒级数 Taylor series麦克劳林级数 Maclaurin series 二项展开式 binomial expansion 近似计算approximate calculation舍入误差 round-off error,rounding error 欧拉公式Euler’s formula魏尔斯特拉丝判别法 Weierstrass test 三角级数 trigonometric series 振幅 amplitude 角频率 angular frequency 初相 initial phase 矩形波 square wave谐波分析 harmonic analysis 直流分量 direct component 基波 fundamental wave 二次谐波 second harmonic三角函数系 trigonometric function system 傅立叶系数 Fourier coefficient 傅立叶级数 Forrier series 周期延拓 periodic prolongation 正弦级数 sine series 余弦级数cosine series 奇延拓 odd prolongation 偶延拓 even prolongation傅立叶级数的复数形式 complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程 solve a dirrerential equation 常微分方程 ordinary differential equation偏微分方程 partial differential equation,PDE微分方程的阶 order of a differential equation微分方程的解 solution of a differential equation微分方程的通解 general solution of a differential equation初始条件 initial condition微分方程的特解 particular solution of a differential equation初值问题 initial value problem微分方程的积分曲线 integral curve of a differential equation可分离变量的微分方程 variable separable differential equation隐式解 implicit solution隐式通解 inplicit general solution 衰变系数 decay coefficient 衰变 decay齐次方程 homogeneous equation一阶线性方程 linear differential equation of first order非齐次 non-homogeneous齐次线性方程 homogeneous linear equation非齐次线性方程 non-homogeneous linear equation常数变易法 method of variation of constant暂态电流 transient stata current 稳态电流 steady state current 伯努利方程 Bernoulli equation全微分方程 total differential equation 积分因子 integrating factor高阶微分方程 differential equation of higher order悬链线 catenary高阶线性微分方程 linera differentialequation of higher order自由振动的微分方程 differential equation of free vibration强迫振动的微分方程 differential equation of forced oscillation串联电路的振荡方程 oscillation equation of series circuit二阶线性微分方程 second order linera differential equation线性相关 linearly dependence 线性无关 linearly independce二阶常系数齐次线性微分方程 second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程 second order homogeneous linear differential equation with variable coefficient 特征方程 characteristic equation无阻尼自由振动的微分方程 differential equation of free vibration with zero damping 固有频率 natural frequency简谐振动 simple harmonic oscillation,simple harmonic vibration微分算子 differential operator待定系数法 method of undetermined coefficient共振现象 resonance phenomenon 欧拉方程 Euler equation幂级数解法 power series solution 数值解法 numerial solution 勒让德方程 Legendre equation微分方程组 system of differential equations常系数线性微分方程组 system of linera differential equations with constant coefficient第二部分定理定义公式的英文表达Part2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and Limit1.1 映射与函数 (Mapping and Function)一、集合 (Set)二、映射 (Mapping)映射概念 (The Concept of Mapping) 设X, Y是两个非空集合 , 如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应 ,则称f为从X到 Y的映射 , 记作f:X→Y。

高教社2024高等数学第五版教学课件-2.5 函数的微分

高教社2024高等数学第五版教学课件-2.5 函数的微分

故 = ′ (0 ) ⋅ + ⋅ .
当 → 0时,第一项 ′ (0 ) ⋅ 是的线性函数,第二项 ⋅ 是当
→ 0时比高阶的无穷小量.所以就近似等于 ′ (0 ) ⋅ ,即
∆ ≈ ′ (0 ) ⋅ .
例5 当一块正方形金属薄片受到温度变化的影响时,其边长会发生
例1 已知函数 = 2 ,求当 = 1, = −0.01时的微分与增量.

= ′ |=1 ⋅ = 2|=1 ⋅ = 2 × 1 × (−0.01) = −0.02.
= (1 − 0.01)2 − 12 = −0.0199.
可见 ≈ .
2.微分的几何意义
利用公式∆ ≈ ′ (0 ) ⋅ ,得到金属薄片面积的改变量
∆ ≈ ′ 0 ⋅ = 20 × 0.1 = 2cm2 .
2
近似计算( + )
由 = (0 + ) − (0 )可得
0 + ∆ − (0 ) ≈ ′ (0 ) ⋅ ,
第二章 导数与微分
第五节 函数的微分
在实际问题中,我们经常要计算当自变量有一微小增
量 时,相应的函数的增量 的大小. 如果函数比较复
杂,那么计算函数的增量 = (0 + ) − (0 )也会很
复杂.能否找到一个既简单,又有较高精确度的计算近
似值的方法,就是我们即将要讨论的微分.
(13) ( ) =
( )′
=
1
1
1
1−
1

1+ 2
1
( ) =
1 + 2


2
− 2
(15) ( ) =
(12) ( ) = −

第二章第五节 函数的微分

第二章第五节 函数的微分

高等数学
二、微分的几何意义
当x从x0变到x0+∆x时, ∆y是曲线上点的纵坐 标的增量; dy是过点(x0, f(x0))的切 线上点的纵坐标的增量. 当|∆x|很小时, |∆y−dy|比|∆x|小得多. 因此, 在点M的邻近, 我们可以用切线段来近似代 替曲线段. 记 自变量的微分, ∆y = ∆x = dx 称∆x为 自变量的微分 记作 dx dy = f ′(x) 导数也叫作微商 则有 dy = f ′(x) dx 从而 dx
高等数学
§2.5函数的微分 函数的微分
一、微分的概念 二、微分的几何意义 三、微分的运算法则 四、微分在近似计算中的应用
高等数学
一、微分的概念 引例: 引例 一块正方形金属薄片受温度变化的影响, 其 边长由 x0 变到 x0 + ∆x , 问此薄片面积改变了多少? 设薄片边长为 x , 面积为 A , 则 A= x2 , 当 x 在 x0 取 得增量 ∆x 时, 面积的增量为 (∆x)2 x0∆x ∆x 关于△x 的 ∆x →0时为 线性主部 高阶无穷小 故 称为函数在 x0 的微分
高等数学
2、 微分的四则运算法则 、 设 u(x) , v(x) 均可微 , 则
= du ± dv = vdu + udv
3. 复合函数的微分 分别可微 , 则复合函数 的微分为
(C 为常数)
= f ′(u) ϕ′(x) dx dy = f ′(u) du
du
微分形式不变
高等数学
若y=f(u), u=j(x), 则dy=f ′(u)du. 例3 y=sin(2x+1), 求dy. 解 把2x+1看成中间变量u, 则 dy=d(sin u) =cos udu =cos(2x+1)d(2x+1) =cos(2x+1)⋅2dx =2cos(2x+1)dx. 在求复合函数的导数时, 可以不写出中间变量. 例4. y =ln(1+ex2 ) , 求 dy. 解 dy =d ln(1+ex2 ) = 1 2 d(1+ex2 ) 1+ex 1 ⋅ex2d(x2) = 1 ⋅ex2 ⋅2xdx = 2xex2 dx = . x2 x2 x2 1+e 1+e 1+e

《高等数学》第2章导数与微分2-5函数的微分

《高等数学》第2章导数与微分2-5函数的微分

d (a x ) a x ln adx
d (e x ) e xdx
d (loga
x)
1 dx x ln a
d(arcsin x)
1
1
x2
dx
d
(arctan
x
)
1
1 x
2
dx
d(ln x) 1 dx x
d(arccos x)
1
1
x2
dx
d
(arc
cot
x)
1
1 x2
dx
2. 函数和、差、积、商的微分法则
函数 f ( x)在点 x0可微, 且 f ( x0 ) A.
可导 可微. A f ( x0 ).
函数 y f ( x)在任意点 x的微分, 称为函数的 微分, 记作 dy或 df ( x), 即 dy f ( x)x.
例1 求函数 y x 3 当 x 2, x 0.02时的微分.
设函数 y f ( x)有导数 f ( x),
(1) 若x是自变量时 , dy f ( x)dx;
(2) 若x是中间变量时 , 即另一变量 t 的可
微函数 x (t ), 则 dy f ( x)(t)dt
(t )dt dx,
dy f ( x)dx.
结论:无论 x是自变量还是中间变量 , 函数 y f ( x)的微分形式总是 dy f ( x)dx
(1)
(2)
x0
x0x
x (x)2
x
A x02
x0x x0
(1) : x的线性函数,且为A的主要部分;
(2) : x的高阶无穷小,当 x 很小时可忽略.
再例如,
设函数
y
x 3在点

高等数学教学教案 函数的微分

高等数学教学教案 函数的微分
定义:设函数 y=f(x),a<x<b,固定一点 x0 (a,b) . 若:
y = f(x0+x)f(x0)= Ax + o (x) …… (*)
成立(其中,A 与x 无关). 则称函数 y=f(x)在点 x0 可微,称 Ax 为函数在点 x0 的微分,即为 dy = Ax; 若(*)不成立,则称 y = f(x)在点 x0 不可微. 规定:自变量的微分,就是它的增量,即:
近似值. 这一项被称为y 的线性主要部分. 定义:自变量 x 的变化量x 与 x 是无关的,称为自变量的微分,记为 dx;而因变量相应的变化量y 的
线性主要部分 f (x) x f (x)dy则称为函数 y=f(x)在点 x 处相应于自变量的变化量x 的微分,用 df(x)
或 dy 表示,即:
dy df (x) f (x)dx.
讲解方法四
引进实际问题,由研究函数的改变量 y = f(x0+x) f(x0)与自变量改变量 x 之间的关系,计 算函数改变量的大小,引发出微分的根本思想是在局部范围内用线性函数来近似函数的本质.
例如:
计算正方形面积增量
S=2xx + (x)2
计算圆面积增量
S=2 rr + (r)2
计算球体积增量 计算自由落体路程增量
x
y)斜率为
f
' ( x)
的唯一确定的
切线存在. 切线在切点 P(x,y)附近与曲线密合,并且在相当靠近切点的地方,密合得难以区分. 这在分析上意味着
在点 x 的小邻域内,函数值 y = f(x)可用切线上相应点的纵坐标值来近似. 而在 x 充分小的邻域内,近似误 差 R 与x 相比是微不足道的.
若 f 在区间 I 的每一点可微,则称 f 在 I 上可微. 讲解方法三

大一高等数学教材课本目录

大一高等数学教材课本目录

大一高等数学教材课本目录第一章函数与极限1.1 实数与数轴1.2 函数概念和图像1.3 函数的极限1.4 极限的性质1.5 无穷小量与无穷大量1.6 极限存在准则1.7 常用极限1.8 函数连续概念1.9 连续函数性质第二章导数与微分2.1 导数的定义2.2 基本导数公式2.3 高阶导数2.4 微分中值定理2.5 泰勒公式与展开2.6 隐函数导数2.7 弧微分与相对误差2.8 函数的单调性与凹凸性第三章微分中值定理与导数应用 3.1 高阶导数的应用3.2 导数在近似计算中的应用3.3 中值定理的证明3.4 罗尔中值定理与其应用3.5 拉格朗日中值定理与其应用 3.6 卡内尔中值定理与其应用3.7 泰勒中值定理及其应用第四章不定积分4.1 不定积分的定义与符号4.2 基本积分表4.3 定积分与微元法4.4 牛顿-莱布尼兹公式4.5 分部积分法4.6 有理分式的积分4.7 函数积分法4.8 徒手计算的积分第五章定积分5.1 定积分定义与性质5.2 定积分的几何意义5.3 定积分的计算方法5.4 定积分在几何学中的应用5.5 牛顿-莱布尼兹公式的积分形式 5.6 广义积分的定义与判敛5.7 瑕积分的计算方法第六章微分方程6.1 微分方程的基本概念6.2 可分离变量的微分方程6.3 齐次微分方程6.4 一阶线性微分方程6.5 高阶线性微分方程6.6 化简与降阶第七章多元函数及其偏导数7.1 二元函数的概念与图像7.2 二元函数的极限与连续性 7.3 偏导数的定义与几何意义 7.4 偏导数的计算方法7.5 高阶偏导数与混合偏导数 7.6 隐函数偏导数7.7 多元函数的微分学基本定理 7.8 方向导数与梯度第八章多重积分8.1 二重积分概念与性质8.2 二重积分的计算方法8.3 二重积分在几何学中的应用 8.4 三重积分概念与性质8.5 三重积分的计算方法8.6 三重积分在几何学中的应用第九章曲线与曲面积分9.1 曲线积分的概念与性质9.2 第一类曲线积分的计算方法9.3 第二类曲线积分的计算方法9.4 曲面积分的概念与性质9.5 曲面积分的计算方法9.6 格林公式与高斯公式第十章空间曲线与格林公式10.1 空间曲线的参数方程10.2 第一类曲线积分10.3 第二类曲线积分10.4 空间曲面的参数方程10.5 曲面的面积与曲面元10.6 曲面积分10.7 格林公式和高斯公式的空间推广第十一章广义积分11.1 广义积分的概念与性质11.2 广义积分判敛方法11.3 正项级数的判敛11.4 参数积分的连续性条件11.5 瑕积分的计算方法第十二章泰勒展开与无穷级数12.1 函数的泰勒展开12.2 常用函数的泰勒展开式12.3 泰勒展开的应用12.4 函数项级数与定理12.5 幂级数的求和与收敛域12.6 函数项级数的运算与应用以上为大一高等数学教材的目录,各章节主要包括基础概念的介绍,公式的推导及性质的阐述,相关定理的证明,以及典型例题和习题的讲解。

高等数学——函数的微分

高等数学——函数的微分

函数的微分在理论研究和实际应用中,常常会遇到这样的问题:当自变量x 有微小变化时,求函数)(x f y =的微小改变量)()(x f x x f y -∆+=∆这个问题初看起来似乎只要做减法运算就可以了,然而,对于较复杂的函数)(x f ,差值)()(x f x x f -∆+却是一个更复杂的表达式,不易求出其值。

一个想法是:我们设法将y∆表示成x ∆的线性函数,即线性化,从而把复杂问题化为简单问题。

微分就是实现这种线性化的一种数学模型。

一、 微分的定义定义 设函数)(x f y =在点x 的某邻域内有定义,若相对于自变量x 的微小增量x ∆,相应的函数增量)()(x f x x f y -∆+=∆可表示为)(x o x A y ∆+∆⋅=∆ (1)其中A 是与x ∆无关的量,则称函数)(x f y =(在点x 处)可微,并且称x A ∆⋅为函数)(x f y =(在点x 处)的微分, 记作dy , 即x A dy ∆⋅= (2)【例1】求函数3x y =在x ∀点处的微分。

解:若自变量x 在点x 处有增量x ∆,则对应的函数增量为2233)()3(3)(x x x x x x x x y ∆⋅∆++∆=-∆+=∆其中23x 显然与x ∆无关,而当0→∆x 时,)()()3(2x o x x x ∆=∆⋅∆+,由微分定义得x x dy ∆=23二、函数可微的条件在微分定义中,虽然知道A 是与x ∆无关的量,但A 到底是怎样的量?我们尚不知晓,并且若每次求微分都用其定义,显然较麻烦,因此需要寻找微分定义中的A 是什么。

从【例1】结果不难猜测“)(x f A '=”,事实上,关于微分有如下定理。

定理 函数)(x f 可微的充分必要条件是)(x f 可导,且函数的微分等于函数的导数与自变量的增量的乘积,即x x f dy ∆'=)( (3)证明:先证必要性。

设)(x f 可微,由微分定义,有)(x o x A y ∆+∆⋅=∆其中A 与x ∆无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y f ( x0 ) x ( x ), 0
f ( x 0 ) x
( x 0),
o( x ),
又 f ( x0 ) A, 与x 无关
f ( x ) 在 x0可微,
dy f ( x0 )x .
微分的定义 定义 设函数 y f ( x ) 在某区间内有定义 x0及x0 x 在此区间内,如果
定理
y f ( x)
在 x0 可微 可导 且
A
f ( x0 ).
可微的定义 y A x o( x ) 微分的定义 dy A x 证: (2) 充分性
f ( x ) 在 x0 可导, 且 A f ( x0 ).
y f ( x ) , y 0 lim f ( x0 ), 即 x 0 x x
0 0
(1)
( 2)
(1) x 的 线性函数, 且为 y 的主要部分。
(1)
( 2)
( 2) : x 的 高阶无穷小, 当 x 很小时可忽略.
y f ( x0 x) f ( x0 ) A x o(x)
二、微分的定义
定义 设函数 y f ( x )在某区间内有定义
(1) :
且为 A 的主要部分。 x 的 线性函数,
(1)
( 2)
( 2) : x 的 高阶无穷小, 当 x 很小时 可忽略.
一、问题的提出
3 y x 在 x0 的增量为 x 时 再例如, 设函数 求函数 y 的增量 y
y ( x0 x ) x
3
3 0
2 3 x0 x 3 x 0 ( x ) 2 ( x ) 3 .
例1 求函数 y x 当 x 2, x 0.02
3

2 dy ( x ) x 3 x x .
3
dy
x2 x 0.02
3 x 2 x
x2 x 0.02
0.24.
通常把自变量
x 的增量 x 称为 自变量的微分 记作 dx ,
dy dx
(3) A 0, dy ~ y ( x 0);
1 ( x 0).
y o( x ) o( x ) 1 1 dy dy A x
(4) A 是与 x
无关的常数, 但与f ( x )和x0 有关 即 用微分近似增量.
(5) 若 x 1, y dy
f ( x 0 ) x .
x
例1 半径10厘米的金属圆片,加热后,半径 伸长了0.05厘米,问面积增大了多少 解
1
A r ,
2
r 10
r 0.05
y dy
A dA 2 r r 2 10 0.05 (厘米 2 ).
六、微分在近似计算中的应用
u 2 x 1.
y sin u,
dy d (sin u) cos udu
cos( 2 x 1)d ( 2 x 1)
cos( 2 x 1) 2dx
2 cos( 2 x 1)dx .
微分形式的不变性
ax y e sin bx , 求dy . 例4 设
dy
y f ( x)
M
f ( x 0 ) x
T N P
f ( x 0 ) x
dy
x
y 是曲线的纵坐标增量 dy 是切线的纵坐标增量
o x 很小时 附近 在点 M 当
o( x )
dy y
D

x0
x0 x
x
切线段MP 可以近似代替 曲线段MN
五、微分的求法
(1)
( 2)
(1)
(2)
x 的 线性函数, 且为 y 的主要部分。
当 x 的 高阶无穷小,
x 很小时 可忽略.
2 y 3 x0 x .
既容易计算又是较好的近似值
实例:正方形金属薄片受热后面积的增量. 2 边长由 x0 变到 x0 x , 正方形面积 A x0 ,
1 3 x
1 3 x ) 3e , (cos x ) sin x .
dy cos x ( 3e1 3 x )dx e 1 3 x ( sin x )dx
e
1 3 x
(3cos x sin x )dx .
微分形式的不变性 设函数 y f ( x )有导数 f ( x ),
dy f ( x )dx .
(1) 若
x 是自变量时 dy f ( x ) dx ;
(2) 若 x 是中间变量时
y f ( t ) , ) 即y f ( x ), x ( t (可微函数)
dy dt f ( x ) ( t ) dt ; dx= ( t )dt , dy dt
三、可微的条件 可微的定义 y A x o( x ) f ( x0 x ) f ( x0 ) y 可导的定义 lim f ( x 0 ) lim x 0 x x 0 x 定理 y f ( x ) 在 x 可微 可导 且 A f ( x0 ).
2 2 2 ( x x ) x 0 2 x 0 x ( x ) . A 0
3 y x 在 x0 的增量为 x 时 函数 求函数 y 的增量 y 3 3 3 x 2 x 3 x ( x ) 2 ( x ) 3 . 0 0 y ( x x ) x
dy f ( x )dx .
微分形式的不变性 设函数 y f ( x )有导数 f ( x ),
dy f ( x )dx .
(1) 若
x 是自变量时 dy f ( x ) dx ;
(2) 若 x 是中间变量时 即y f ( x ), x ( t ); y f ( t ) ,
dy f ( x )dx .
结论: 无论 x 是自变量 还是中间变量, 函数 y f ( x )的微分形式总是 dy f ( x )dx 微分形式的不变性
微分形式的不变性 例3 设 y sin(2 x 1), 求dy . 解
dy f ( x )dx . d ( uv ) vdu udv
dy f ( x )dx
求法: 计算函数的导数, 乘以自变量的微分.
1.基本初等函数的微分公式
d (C ) 0
d ( x ) x 1 dx d (cos x ) sin xdx d (cot x ) csc 2 xdx
d (sin x ) cos xdx
dx x . dy f ( x )dx .
导数也叫微商
f ( x ).
函数的微分dy 与自变量的微分 dx 之商 等于该函数的导数,
四、微分的几何意义 几何意义:(如图)
PD tan x
y
y f ( x 0 ) x o( x ) dy o( x )
d (tan x ) sec 2 xdx
d (sec x ) sec x tan xdx d (csc x ) csc x cot xdx
五、微分的求法
1.基本初等函数的微分公式 d (a x ) a x ln adx d (e x ) e x dx 1 1 d (log a x ) dx d (ln x ) dx x ln a x 1 1 d (arcsin x ) dx d (arccos x ) dx 2 2 1 x 1 x arc 1 1 d (arctan x ) dx d ( arc cot x ) dx 2 2 1 x 1 x 2. 函数和、差、积、商的微分法则
e ax ( b cos bx a sin bx )dx .
六、微分在近似计算中的应用
1.计算函数增量的近似值
dy f ( x0 )x
dy f ( x )dx
如果 f ( x ) 在 x0 处的导数 f ( x0 ) 0, 且 x 1
y
x x0
dy
x x0
y f ( x0 x) f ( x0 ) A x o(x) 则称 y f ( x ) (其中A是与 x 无关的常数)
可微 并且称 A x 为函数 y f ( x ) 在 x0 相应于自变量增量 x 的微分, 记作 dy ,
即dy
A x . A f ( x0 ).
y f ( x0 x) f ( x0 ) A x o(x)
(其中A 是与 x 无关的常数)
则称 y f ( x )在 x0可微, 并且称 A x 为函数
x0及x0 x 在此区间内,如果
y f ( x ) 在 x0 相应于自变量增量 x 的微分, 记作 dy , 即dy A x .
dy f ( x )dx .
cos x 3e 1 3 x cos x e 1 3 x sin x
1 3 x
dy e
解法2
(3cos x sin x )dx .
1 3 x cos x d ( e ) e1 3 x d (cos x ) dy
(e
0
证:
(1) 必要性 f ( x ) 在 x0 可微 o( x ) y y A x o( x ), x A x ,
y o( x ) lim A lim x 0 x x 0 x
A.
且 A f ( x0 ). 即 f ( x ) 在 x0 可导,
dy f ( x )dx
d ( u v ) du dv
d ( uv ) vdu udv
d (Cu) Cdu u udv vdu d( ) v v2
相关文档
最新文档