线性代数练习题
线性代数习题集(带答案)
第一部分 专项同步练习第一章 队列式一、单项选择题1. 以下摆列是 5 阶偶摆列的是 ().(A) 24315 (B) 14325 (C) 41523(D)243512.假如 n 阶摆列 j 1 j 2j n 的逆序数是 k , 则摆列 j n j 2 j 1 的逆序数是 (). (A) k (B) n kn! kn(n 1)k(C)(D)223. n 阶队列式的睁开式中含 a 11a 12 的项共有 ()项 .(A) 0(B) n 2(C) (n2)!(D) (n1)!0 0 0 14.0 10 ( ).0 1 0 0 1 0 0(A) 0(B) 1(C) 1(D) 20 0 1 00 1 0 0 ).5.0 0 (0 1 10 0 0(A) 0(B) 1(C) 1(D) 22x x 1 11 x 12 ).6. 在函数 f ( x)2 x 中 x3 项的系数是 (33 01(A) 0 (B) 1 (C) 1 (D) 2a11a12a131,则 D 12a 11 a 13 a 112a 127. 若 Da21 a22 a232a 21 a23a212a 22().a31a32a3322a 31a33 a312a 32(A) 4(B) 4(C) 2 (D)28. 若 a 11a 12a ,则 a 12ka 22().a 21 a 22a 11ka 21(A) ka(B) ka(C) k 2 a (D) k 2a9. 已知 4 阶队列式中第 1 行元挨次是4,0,1,3, 第 3行元的余子式挨次为2, 5,1, x , 则 x ().(A) 0(B) 3(C) 3(D) 28 7 4 310.若 D6 2 31 ).1 1 1,则 D 中第一行元的代数余子式的和为 ( 14375(A) 1(B) 2(C) 3(D) 03 04 011. 若 D1 11 1,则 D 中第四行元的余子式的和为 ().0 1 0 05322(A) 1(B) 2(C) 3(D) 0x 1 x 2 kx 3 012. k 等于以下选项中哪个值时,齐次线性方程组x 1kx 2 x 3 0 有非零解 .kx 1 x 2x 3 0()(A) 1(B) 2 (C) 3(D) 0二、填空题优选1. 2n 阶摆列24 (2n)13 ( 2n 1) 的逆序数是.2.在六阶队列式中项a32a54a41a65a13a26所带的符号是.3.四阶队列式中包括a22a43且带正号的项是.4.若一个n阶队列式中起码有n2 n 1 个元素等于0 , 则这个队列式的值等于.1 1 1 05.0 1 0 1队列式1 1.0 10 0 1 00 1 0 00 0 2 06.队列式.0 0 0 n 1n 0 0 0a11 a1(n1)a1n7.队列式a21 a2 (n 1) 0 .an1 0 0a11a12a13a11a13 3a12 3a128.假如D a21 a22a23 M ,则D1a21a23 3a22 3a22 .a31 a32a33a31a33 3a32 3a329.已知某 5 阶队列式的值为5,将其第一行与第 5 行互换并转置,再用 2 乘所有元素,则所得的新队列式的值为.1 1 1 x 1 1 1 x 1 1 10. 队列式x 1 1 .1 1 x 11 1 11 11 11111. n 阶队列式.11112. 已知三阶队列式中第二列元素挨次为 1,2,3, 其对应的余子式挨次为 3,2,1,则该队列式的值为.1 2 3 45 6 7 8 1, 2, 3, 4) 为 D 中第四行元的代数余子式,13.设队列式 D 3 2 ,A 4 j ( j 4 1 8 7 6 5则 4A 41 3A 4214. 已知 D2 A 43 A 44.a bc ac b a b , D 中第四列元的代数余子式的和为.b a cca cb d1 2 3 415. 设队列式 D3 34 4 6 , A 4 j 为 a 4 j ( j 1, 2, 3, 4) 的代数余子式,则1 5 6 711 22A 41A42, A 43A44.优选1 3 5 2n 11 2 0 016.已知队列式 D 1 0 3 0 , D 中第一行元的代数余子式的和为1 0n.kx 1 2x 2x 3 017.齐次线性方程组 2x 1 kx 2 0 仅有零解的充要条件是.x 1x 2 x 3 0x 12x 2 x 3 018. 若齐次线性方程组2x 25x 30 有非零解,则 k = .3x 1 2x 2 kx 3三、计算题a b c dx y x ya 2b 2c 2d 21.;2.y x y x ;a3b3c3d3x yxy b c d a c d a b d a b cx a 1 a 20 1x 1a 1 x a 2.解方程 1 0 1 x 0 ;4. a 1 a 2 x3x 1 1 01 x1 0a 1 a 2 a 3a 1 a 2 a 3a n 2 1 a n 21 a n21 ;x1a n 1 1a0 1 1 11 a1 1 15. 1 1 a2 1 ( a j1, j 0,1, , n );1 1 1a n1 1 1 13 1 b 1 16. 1 1 2 b 1111(n 1) b1 1 1 1b1 a1 a1 a17. b1 b2 a2 a2 ;b1b2b3a n1 x12 x1 x2 x1x n9. x2 x1 1 x22 x2xn ;x n x1 x n x2 1 x n21 a a 0 0 01 1 a a 0 0 11. D 0 1 1 a a 0 .0 0 1 1 a a0 0 0 1 1 ax a1 a2 a na1 x a2 a n 8. a1 a2 x a n ;a1a2a3x2 1 0 0 01 2 1 0 00 1 2 0 0 10.0 0 0 2 10 0 0 1 2优选四、证明题a 2 1a1 1a2ab 2 1b1 1 1. 设 abcd 1,证明:b 2b0 . 211c c1c 2 cd 21d1 1d 2 da 1b 1 x a 1x b 1c 1 a 1 b 1 c 12. a 2 b 2 x a 2 x b 2c 2 (1 x 2 ) a 2 b 2 c 2 .a 3b 3x a 3x b 3c 3a 3b 3c 31 1 1 1 abcd3.2b 2c 2d 2 (b a)(c a)(d a)(c b)(d b)( d c)(a b c d ) . aa 4b 4c 4d 41 1 1 a 1a 2a n222na 1a 2a na i(a j a i ) .4.i 11 ij na 1n 2a 2n 2a n n 2a 1na 2na n n1 1 15. 设 a,b, c 两两不等,证明 a b c 0 的充要条件是 a b c0 .a 3b 3c 3参照答案一.单项选择题ADACCDABCDBB二.填空题1. n ;2. “ ” ;3. a 14 a 22 a 31a 43 ;4. 0 ;5. 0 ;6. ( 1)n 1 n! ;n( n 1)7. ( 1)2a 1n a 2 (n 1) a n1 ; 8. 3M; 9. 160; 10. x 4 ; 11. ( n) n 1 ;12. 2 ;13.0 ; 14.0; 15.12,9; n117. k2,3; 18. k 716. n! (1) ;k 1k三.计算题1. ( a b cd)(b a)(c a)( d a)(cb)(db)(d c) ; 2.2( x 3y 3 ) ;x2,0,1n1a k )3.4.( x;k 1nn15.(a k1)(16.(2 b)(1 b) ((n2) b) ;0 ak) ;k 0k 1( 1) n nnn7.(b ka k ) ;8. ( xa k )( x a k ) ;k 1k 1k 1n9. 1x k ; 10. n 1;k 111. (1 a)(1 a 2a 4 ) .四 . 证明题 (略)优选第二章矩阵一、单项选择题1. A 、B 为 n 阶方阵,则以下各式中建立的是 ( ) 。
线性代数练习题
T
α = 1 , H = En − 2αα T ,证明: H 是对称的矩阵。
3. 4. 5.
⎛1⎞ ⎛ x1 ⎞ ⎜ ⎟ ⎜ ⎟ 设 A = 1 (1 1 1) + x2 ( y1 y2 y3 ) ,其中 x1 , x2 , x3 , y1 , y2 , y3 为任意常数,证明 A ≡ 0 。 ⎜ ⎟ ⎜ ⎟ ⎜1⎟ ⎜x ⎟ ⎝ ⎠ ⎝ 3⎠ 2 2 设 A,B 是 n 阶方阵,如果 B 可逆且满足 A + AB + B = 0 ,证明 A 和 A + B 均可逆。 2 −1 如果 A = A + E ,证明 A 可逆并求 A 。 设向量组 α 1 , α 2 , α 3 线性无关, β 1 = α 1 , β 2 = α 1 + 2α 2 , β 3 = α 1 + 2α 2 + 3α 3 ,证明 β 1 , β 2 , β 3
并求通解。
⎧ x1 + x 2 + 2 x 3 + 4 x 4 = 3 ⎪ 15. 求非齐次线性方程组 ⎨ 3x1 + x 2 + 6 x 3 + 2 x 4 = 3 的通解。 ⎪− x + 2 x − 2 x + x = 1 2 3 4 ⎩ 1 16. 设四元非齐次线性方程组的系数矩阵的秩为 3,已知η1 ,η 2 ,η3 是它的三个解向量, ⎛ 4⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 1⎟ ⎜ 0⎟ 且 η1 = ⎜ ⎟ , η 2 + η 3 = ⎜ ⎟ ,求该方程组的通解。 0 1 ⎜ ⎟ ⎜ ⎟ ⎜ 2⎟ ⎜ 2⎟ ⎝ ⎠ ⎝ ⎠
若 A 为 n 阶方阵,且 AA = E ,则 A =
线性代数练习题
一.填空1.若()r A r =,则A 中必有一个( )阶子式不为零.2.A 为n 阶反对称矩阵,当且仅当对于任意n 维列向量X 均有T X AX =( ). 3.同一个向量在不同基下的坐标( )是不同的. 4.设((,))L V P n σ∈,则{0}Im Ker σσ=⇔=( ). 5.n 阶矩阵,A B 均正定,则A B ( )正定. 6. 设三阶数字方阵A 的特征值为1,2,-2,则||A =().7.设⎪⎪⎪⎭⎫ ⎝⎛=110011001A ,则A 的初等因子为( ).8.若当块0()k J λ的初等因子组为 .9.正交矩阵的行列式为 .10.n 阶数字矩阵A 的所有不变因子的次数之和为 .11.已知n 阶实对称矩阵A 的特征值中共有t 个正实数,则A 的正惯性指数为 . 11. 设线性空间V 的任一向量都可由V 的线性无关向量组r ααα,,,21 线性表示,则V dim =( ).12. 设非零方阵A 的行列式为0,则()一定是A 的特征值.13. n 阶数字矩阵A 的所有初等因子的次数之和为( ). 14. 设三阶矩阵A 的元素均为1,则A 的最小多项式为().15. 若x 是方阵A 的属于特征值λ的特征向量,则()是AP P B 1-=的属于特征值λ的特征向量.参考答案:r,0,一般,V,不一定,3)1(-λ, 0()k λλ- , 1± ,n , t , r, 0,n,)3(-λλ,x P 1- 二.选择题1.设W 为V 的子空间,则W 中的零元必定是V 的零元. ( )2.在复数域C 作成自身上的线性空间中,令σαα=,则σ是C 的线性变换. ( )3.设A 为n 阶可逆矩阵,则A 的特征矩阵E A λ-一定可逆. ( )4.设σ是n 维欧氏空间V 的一个线性变换,则σ是正交变换的充要条件是σ把标准正交基变成标准正交基. ( ) 5.在3F 中定义变换σ(a a a 123,,)=(a a a 321,,),则σ是3F 的一个线性变换. ( )6. 若σ是线性空间V 的一个线性变换,n ααα,,,21 为V 的一组基,则)(,),(),(21n ασασασ 也为V 的一组基.()7. n 阶复矩阵A 与对角矩阵相似当且仅当它的不变因子全是一次的.( ) 8.任一线性空间一定含有无限多个向量. ( ) 9. n 阶复矩阵A 的最小多项式的根一定是A 的特征值.10.正定矩阵特征值都大于零. ( ) 11.同阶方阵,A B 相似的充要条件是有相同的最小多项式.( )12.线性空间的两个子空间的并集也是子空间. ( ) 13. n 阶复矩阵A 的零化多项式无重根,则A 可对角化. ( )14.若σ是线性空间V 的一个线性变换,n ααα,,,21 为V 的线性无关的向量组,则)(,),(),(21n ασασασ 也线性无关.15.有限维欧氏空间V 的正交变换在V 的任一组基下的矩阵皆为正交矩阵.()✓,✗, ✗ , ✓,✓, ✗,✗,✗,对, ✓ , ✗, ✗ , ✓ , ✗,错.三.选择题1.设矩阵A 的每行元素之和均为1,则( )一定是A 的特征值.A. 0B. 1C. 2D. 32.下列命题( )不是矩阵A 正定的判定条件.A .A 与单位矩阵等价. B.A 特征值都大于零.C.A 与单位矩阵合同.D. A 的顺序主子式都大于零.3.设复数域C 是定义在复数域C 上的线性空间,则此线性空间维数为( ).A .无限维 B. 3 C. 2 D. 14.设σ是数域F 上线性空间V 上的线性变换,若2I σ=,I 是恒等变换,则σ可能的特征值为( ). A. 0 B. 1 C. 2 D. 35.已知二次型),,(321x x x f 通过非退化线性替换化为标准形2221y y +-,则二次型),,(321x x x f ( ).A.正定B. 半正定C. 负定D. 不定 6.设矩阵A 的每行元素之和均为1,则()一定是A 的特征值.A. 0B. 1C. 2D. 37.设A 为2阶矩阵,21,λλ是A 的特征值,则正确的是( ).A.2121||,)(λλλλ=+=A A trB. 2121||,)(λλλλ=--=A A trC. 2121||,)(λλλλ+==A A trD. 以上都不对8.已知二次型),,(321x x x f 通过正交线性替换化为标准形2221y y +-,则二次型),,(321x x x f ( ). A.正定 B. 半正定 C. 负定 D. 不定9.下列命题( )不是n 阶实对称方阵A 正定的充要条件.A .A 合同于1(,,),0,1,,n i diag d d d i n >= B. A 的正惯性指数为n C. 存在可逆矩阵n n C R ⨯∈,使得T A C C = D.A 与单位矩阵等价.10.设A 是n 阶矩阵,E 是n 阶单位矩阵,线性方程组0)(=-x A E λ的两个不同解向量分别是,αβ,则( )必是A 对应于特征值λ的特征向量. A.αB. βC. αβ+D. αβ-B, A , D ,B ,D,B,A,D,D,D 四.计算1.设实对称矩阵⎪⎪⎪⎭⎫⎝⎛=122212221A ,求正交矩阵Q ,使得AQ Q T 为对角形矩阵. 1’ 已知实二次型323121232221321444),,(x x x x x x x x x x x x f +++++=.(1)写出二次型),,(321x x x f 的矩阵;(2)用正交替换化),,(321x x x f 为标准形,并写出所用的正交替换及二次型的标准形.2. 若数字矩阵A 的特征矩阵E A λ-与23(1,44,1,1,32)diag λλλλ-+--等价.(1)试写E A λ-的标准形. (2)试写A 的初等因子.(3)试写A 的Jordan 标准形.3.求矩阵⎪⎪⎪⎭⎫⎝⎛----=242422221A 在实数域上的全部特征值与特征向量. 4.设A =3452⎛⎝⎫⎭⎪.(1)求A 的特征值与特征向量.(2)A 是否可以对角化?若能对角化写出相应的过渡矩阵P ,使P AP -1为对角矩阵.1.解:A 的特征多项式)5()1(||)(2-+=-=λλλλA E f故A 的特征值为-1,-1,5.取-1的线性无关的特征向量)1,1,0(),1,0,1(21-=-=αα将其正交单位化得)61,62,61(),21,0,21(21--=-=γγ取特征值5的特征向量)1,1,1(3=α 将其单位化得)31,31,31(3=γ令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=31612131620316121Q 则)5,1,1(--=diag AQ Q T .2. 解:由条件知A 的初等因子为22(2),(2),(1)λλλ--+.(1) E A λ-的标准形为22(1,1,1,2,(2)(1))diag λλλ--+. (2) A 的初等因子为22(2),(2),(1)λλλ--+.(3) A 的Jordan 标准形2212111J ⎛⎫ ⎪⎪⎪= ⎪- ⎪ ⎪-⎝⎭3. 解:A 的特征多项式为2)2)(7(||)(-+=-=λλλλA E f故A 的特征值为-7,2,2.属于特征值2的特征向量为)1,0,2(),0,1,2(,,,21212211=-=∈+αααλR k k k k 属于特征值-7的线性无关的特征向量为)2,2,1(,,33-=∈ααR l l 4.解:(1)A 的特征多项式为34||(7)(2)52E A λλλλλ---==-+--故A 的特征值为7,2-.解其次线性方程组(7)0E A X -=,得其基础解系为1(1,1)ξ=,从而A 的属于特征值7的特征向量为1().k k ξ为任意数解其次线性方程组(2)0E A X --=,得其基础解系为2(4,5)ξ=-,从而A 的属于特征值2-的特征向量为2()k k ξ为任意数.(2)由(1)知A 有两个不同的特征值,故A 可以对角化.令 1415P ⎛⎫=⎪-⎝⎭则172PA P -⎛⎫=⎪-⎝⎭. 证明:1.设n n F ⨯是数域F 上的所有n 阶矩阵的集合,令}|{A APA S Tnn =∈=⨯,}|{A APA T Tnn -=∈=⨯.(1)证明:T S ,是n n F ⨯的子空间; (2)证明:TS F nn ⊕=⨯.证明: (1)由于S E ∈,故φ≠S .F l k S B A ∈∀∈∀,,,则lBkA lB kA T+=+)(故S lB kA ∈+,从而S 为n n F ⨯的子空间.同理可证T 是n n F ⨯的子空间.(法1)先证明TS F nn +=⨯.显然,nn FT S ⨯⊆+. nn FA ⨯∈∀,有22TTA A A A A -++=,而,22TTT A A A A +=⎪⎪⎭⎫⎝⎛+22TTT A A A A --=⎪⎪⎭⎫ ⎝⎛- ,故TA A S A A TT∈-∈+2,2,从而TSA +∈,故T S F nn +⊆⨯.故T S F n n +=⨯.再证T S F n n ⊕=⨯,T S A ∈∀,则A A A T -==,从而0=A ,故}0{=T S . 故结论成立.(法2) T S A ∈∀,则A A A T -==,从而0=A ,故}0{=T S . 从而nn Fnn n n n T S T S T S ⨯==--++=-+=+dim 022)dim(dim dim )dim(222又nn FTS ⨯⊆+,故T S F n n ⊕=⨯.2.设σ为数域F 上的n 维线性空间V 的线性变换.证明:n Ker =+σσdim Im dim . 证明: 设r =σker dim ,取σKer 基r ααα,,,21 扩充为V 的基r ααα,,,21 ,n r αα,,1 +.则))(,),(())(,),(),(,),(),((Im 1121n r n r r L L ασασασασασασασσ ++==下证)(,),(1n r ασασ +线性无关,设)()(11=++++n n r r k k ασασ由σ为线性变换,故0)(11=++++n n r r k k αασ从而σααKer k k n n r r ∈++++ 11,设rr n n r r k k k k k ααααα----=++++ 221111即0112211=++++++++n n r r r r k k k k k ααααα由r ααα,,,21 ,n r αα,,1 +线性无关得01===+n r k k ,故)(,),(1n r ασασ +线性无关,且是σIm 的基,故r n -=σIm dim ,而r Ker =σdim ,从而结论成立. 3.证明:欧氏空间V 上的对称变换的属于不同特征值的特征向量是正交的.证明:设σ为V 的对称变换,μλ,为σ的两个不同特征值,V ∈βα,是σ的分别属于μλ,的特征向量,即μββσλαασ==)(,)(由))(,()),((βσαβασ=可得 ),(),(ββμβαλ=,而μλ≠,故0),=(βα,从而结论成立.4. 证明:方阵A 的行列式为0的充要条件为0是A 的特征值. 证明:必要性.由于|0|||0A E A -==,故0是A 的特征值.充分性.由于0是A 的特征值,故||)1(|||0|0A A A E n-=-=-=,即0||=A .5. 设A 为n 阶可逆实矩阵,在n R 中,定义nT TRY X AY A XY X ∈∀=,,),(证明:),(Y X 是n R 的内积.证明:nRZ Y X ∈∀,,,R k ∈∀由于(1)),()(),(X Y AX A Y AY A XAY A XY X TT TT TTT====;(2)),()(),(Y X k AY A kXAY A kX Y kX TTTT ===;(3)),(),()(),(Z Y Z X AZ A Y AZ A XAZ A Y X Z Y XTTTTTT+=+=+=+;(4)由A A T 正定知,0),(≥=AX A XX X T T.若0=X,则0),(=X X .若AXA XX X TT==),(0,由A A T正定知0=X .6.数域F 上一个n 阶矩阵A (E A A n ≠≠>,0,1),满足A A =2.证明: (1)A 的特征值只能是0或1; (2) ()()Tr A r A =;(3) 对任意的自然数m k ,有()n A E r A r m k =-+)()(. 证明: (1)设λ为A 的任一特征值,α为对应的特征向量,即0,≠=αλααA由A A =2,有αλαλαααλα22)(=====A A A A A ,而0≠α,故λλ=2,于是0=λ或1.从而结论成立.(2) 由A A =2知λλλ-=2)(g 为A 的零化多项式,而)(λg 无重根,从而A 相似于对角阵,即存在可逆矩阵P使得P E PA r ⎪⎪⎭⎫ ⎝⎛=-01其中r A r =)(,而)(A tr 为对角阵对角元之和0011)(+++++= A tr ,故()()Tr A r A =.(3)由(2)有P E P A E P E PA rn m r k ⎪⎪⎭⎫⎝⎛=-⎪⎪⎭⎫ ⎝⎛=---0)(,011从而结论成立.7. 设σ是数域F 上的n 维线性空间V 的线性变换,且I =2σ.(1)证明:σ的特征值只能为1或1-;(2)用11,-V V 分别表示σ的属于特征值1和1-的特征子空间,证明:11-⊕=V V V.证明: (1) 设λ为σ的任意一个特征值,α为属于λ的一个特征向量,即λαασ=)(.由I =2σ,有αλλασασα22)()(===故12=λ,即σ的特征值为1或1-. (2)下证11-⊕=V V V .V ∈∀α,则))((21))((21ασαασαα++-=,且)))((21(21)(21)(21)(21)))((21(2ασααασασασασασ--=-=-=-)))((21(21)(21)(21)(21)))((21(2ασααασασασασασ+=+=+=+即11-+=V V V .11-∈∀V V α,则αασα-==)(,于是0=α.从而11-⊕=V V V8.证明反对称实矩阵的特征值是零或纯虚数.证明:设A 为n 阶反对称实矩阵,C λ∈为A 的任一特征值,n C α∈为对应的特征向量,即,0A αλαα=≠ 上式两边取共轭和转置得TTA A αλααλα=-=于是 TT TA λααααλαα-==而0Tαα>,故λλ-=.即λ为零或纯虚数.。
线性代数练习——向量组的线性相关性
线性代数练习——向量组的线性相关性一、填空题1、 设1(1,0,1)T α=,2(0,1,1)T α=−−3(1,1,1)T α=,(3,5,6)T β=,则β被1α,2α,3α线性表示的表示式为 。
2、 若向量组1(1,2,3)T α=,2(3,1,2)T α=−,3(2,3,)T a α=线性相关,则a = 。
3、 设1(1,3,1)T α=−,2(2,1,0)T α=,3(1,4,1)T α=,则1α,2α,3α线性 关。
4、 已知向量组1α,2α,3α线性无关,若向量组1α+2α,2α+3α,1λα+3α线性无关,则λ=________。
5、 设()n m ij a A ×=,若n m <,则A 的列向量组线性__________。
二、单项选择题1、若向量组s ααα,,,21"线性相关,则一定有( )(A)121,,,−s ααα"线性相关(B)121,,,+s ααα"线性相关 (C)121,,,−s ααα"线性无关 (D)121,,,+s ααα"线性无关2、向量组s ααα,,,21"线性无关的充分条件是( )(A)s ααα,,,21"均不是零向量 (B)s ααα,,,21"中有部分向量线性无关(C)s ααα,,,21"中任意一个向量均不能由其余1−s 个向量线性表示(D)有一组数021====s k k k ",使得11220s s k k k ααα+++="3、给定向量组)3,1,1(1−=αK ,)4,1,2(2=αK ,)7,0,3(3=αK,其最大无关组所含向量的个数为( )(A)0(B)1 (C)2 (D)3三、计算题 1、 求向量组1(2,1,3,5)T α=−,2(4,3,1,3)T α=−,3(3,2,3,4)T α=−,4(4,1,15,17)Tα=−的秩和一个最大无关组,并将其余向量用该最大无关组线性表示。
线性代数第一章行列式练习题
线性代数第一章行列式练习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--班级__________ 姓名__________ 学号_______第一章第一次练习题一)填空题1)计算(1465372)τ=________;[135(21)246(2)]n n τ-=________;2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________;4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________.二)解答题5)计算三阶行列式 222111ab c a b c .6)用定义证明1(1)212100000(1)0000n nn nnλλλλλλ--=-.7)设n阶行列式中有多于2n n-个元素为零,证明这个行列式为零.班级__________ 姓名__________ 学号_______第一章第二次练习题一)填空题1)把行列式111222a b c a b c ++定出两个行列式之和______________________; 2)把行列式132412340000a a a a x yb b z wb b 写成两个行列式之积_________________________________;3)提取行列式第二行公因子后111213212223313233333a a a a a a a a a =__________________________; 4)行列式223456789a b c d a ab ac ad=_________________________________.二)解答题5)化简行列式111122223333x y x a z x y x a z x y x a z +++6)计算行列式5222 2522 2252 22257)计算行列式3112 5134 2011 1533------班级__________ 姓名__________ 学号_______第一章第三次练习题一)填空题1)将行列式123123123x x xy y yz z z按第三列展开为__________________________________;2)已知四阶行列式D中第三行元素依次为2,5,3,4;它们的余子式分别为3,1,2,4;则D=__________;3)计算1111234549162582764125=__________;4)设3961246812035436D=,则41424423A A A++=__________.二)解答题5)计算行列式100 110 011 001abcd ---.6)当λ为何值时,线性方程组12312330(3)22040x x x x x x x λλ++=⎧⎪--+=⎨⎪=⎩有非零解7)设曲线230123y a a x a x a x =+++通过四个点(1,3),(2,4) ,(3,4) , (4,3)-;求系数0123,,,a a a a .班级__________ 姓名__________ 学号_______第一章复习题1) 按定义计算行列式0001000200200100000n n n--2)计算行列式ab b b ba b b bb a b bbba3)计算行列式01000 00100 00010 a b c d e e d c b a4)计算行列式1231111 1111 11111111n aaaa ++++5)问,λμ取何值时,齐次线性方程组12312312320x x xx x xx x xλμμ++=⎧⎪++=⎨⎪++=⎩有非零解6)解非齐次线性方程组12341241341234 2583692254760 x x x xx x xx x xx x x x+-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
07线性代数练习题(含答案)
习题线性代数练习题一、单项选择题111011011.行列式 ( )10110111A. 1B. 3C. -1D. -3a102.行列式b40a2b300b2a30b10() 0a4A. a1a2a3a4 b1b2b3b4B.a1a2a3a4 b1b2b3b4C. (a1a2 b1b2)(a3a4 b3b4)D. (a1a4 b1b4)(a2a3 b2b3) 3、在下列矩阵中,可逆的是()000 A. 010 001 110 011C. 121110B. 220 001 100 111D. 1014、A是n阶方阵,且A 0,则A中()A.必有一列元素全为0 B.必有两列元素成比例C.必有一列向量是其余列向量的线性组合D.任一列向量是其余列向量的线性组合5.对任意n阶方阵A、B总有()A.AB=BAB.|AB|=|BA|TTT222C.(AB)=ABD.(AB)=AB 6、设n阶方阵A、B、C满足关系式ABC=En,则必有()(A)ACB=En (B)BCA=En (C)CBA=En (D)BAC=En 7、设有m维向量组(I): 1, 2, , n,则()A.当m<n时,(I)一定线性相关B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关D.当m>n时,(I)一定线性相关8.设A是m n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是()A.A的行向量组线性无关 B.A的行向量组线性相关 C.A的列向量组线性无关 D.A的列向量组线性相关-19.设A是3阶方阵,且|A|=-2,则|A|等于()习题A.-2B.11C. 22D.2* 110.设A,B均是n阶方阵, 2,B 3,则2AB ()2n 122n 12n 12nn2 (A)(B)( 1) (C)(D) 333 3(A是A的伴随矩阵)*1 111 的秩为2,则 =()11.设矩阵A= 1223 1A.2C.0B.1 D.-112.设A是三阶矩阵,有特征值1,-1,2,则下列矩阵中可逆矩阵是() A. E-A B. E+A C. 2E-A D. 2E+A22213.二次型f(x1,x2,x3) x1 3x2 4x3 6x1x2 10x2x3的矩阵是( C )A. 330 50 4 130C. 335 05 4160B. 0310 00 4 0 16 D. 6310 010 4二、填空题(每小题4分,共20分)0121.行列式123的值为 .2342、=x+1 -1 1 -13.设A 022x123 4 1,已知矩阵A的秩r(A)=2,则x4.已知A 2A 2E 0,则(A E) (其中E是n阶单位阵)习题1 1 0 15、初等矩阵A 0 1 0 ,A0 0 100F6.设 A G13G24H2I, 则 A0JJ0K等于1 1 1 11 1 1 1 ,A的非零特征值为7、A1 1 1 1 1 1 1 1T8、向量组 1 1 -1 2 4 , 2 (0 3 1 2),T3 (3 0 7 14)T,4 (1 -1 2 0)T,5 (2 1 5 6)T的秩为。
线性代数练习题
一、选择题(3⨯15=45分)1.在行列式44det()ij a ⨯中,取“+”的有( )项。
A.8B.12C.16D.202.设D=1010det()1,ij a ⨯=则1010det()ij a ⨯-=( ).A.1B.-1C.10D.-103.设1235A ⎛⎫= ⎪⎝⎭,则1A -=( ). A. 1325-⎛⎫ ⎪-⎝⎭ B.5321-⎛⎫ ⎪-⎝⎭ C. 1235-⎛⎫ ⎪-⎝⎭ D.5231-⎛⎫ ⎪-⎝⎭4.设A,B 均为n 阶方阵,下列结论正确的是( )A.若A,B 可逆,则A+B 可逆;B.若A+B 可逆,则A-B 可逆;C.若A,B 可逆,则AB 可逆;D.若A+B 可逆,则A,B 可逆.5.适用于任意线性方程组的解法是( )A.逆矩阵求法 B 克拉默法则 C.消元法 D.以上方法都行6.已知n 元非齐次线性方程组m n A x b ⨯=关于任意常数项矩阵b 都有解,则( )A.R(A)=n;B.R(A)=m;C.R(A)<n;D.R(A)<m.7.设向量组12,,...,s ααα的秩为r,则( )A.必有s<r;B.向量组中任意小于r 个向量的部分组线性无关;C.向量组中任意r 个向量线性相关;D.向量组中任意r+1个向量线性相关.8.设A 为n 阶方阵,且()1R A n =-,12,αα是0Ax =的两个不同的解向量,则0Ax =的通解为( )A.1k αB.2k αC.12()k αα-D. 12()k αα+9.下列不可对角化的矩阵是( )A.实对称矩阵; B 有n 个不同特征值的的n 阶方阵;C.有n 个线性无关的特征向量的n 阶方阵;D.不足n 个线性无关的特征向量的n 阶方阵.10.若A,B 都是n 阶正定实矩阵,则AB 一定是( )A.实对称矩阵;B.正交矩阵;C.正定矩阵;D.可逆矩阵.11.由m 个n 维向量构成的向量组的秩最大为( )A. mB. nC. max(m, n)D. min(m, n)12.实二次型T f x Ax =正定的充要条件为( )A.0,x ∀≠都有0T x Ax >B.0A >C.存在n 阶矩阵C,使T A C C =D.A 的秩()R A n =13.已知P,Q 都是n (3)n ≥阶正交矩阵,则PQ 是( )A.正交矩阵B.对称矩阵C.正定矩阵D.反对称矩阵14.设A 是n (3)n ≥阶方阵,12,λλ是A 的特征值,12,ξξ是A 的分别对应于1212,()λλλλ≠的特征向量,下列说法正确的是( )A.若12λλ=,则12,ξξ必成比例;B.若12,ξξ≠且312λλλ=+也是A 的特征值,则12ξξ+是3λ对应的A 的特征向量;C.若12,ξξ≠则12ξξ+不可能是A 的特征向量;D.若10,λ=则10ξ=.15.设二阶方阵A 的行列式0A <,*A 是A 的伴随矩阵,则( ) A.0A -> B.A 可相似一对角矩阵 C.*0A > D.A 只有一个线性无关的特征向量二(5分)、设A 是n 阶方阵,2,A A A E =≠,证明:0A =.三(7分)验证123(1,3,1),(2,1,2),(1,2,2)T T T ααα===为3R 的一个极大无关组,并把12(3,0,9),(1,5,7)T T γγ==分别用这个极大无关组表示出来.四(10分)已知五阶行列式51234522211312451112243150D ==27求414243A A A ++和4445A A +,其中4(1,2,3,4,5)j A j =为5D 的第四行第j 个元素的代数余子式。
线性代数练习题及答案
选择题1 A,B 都是n 阶矩阵,且AB =0,(A) A = 0 或 B = 0. (C) A = 0 或 B =0.3若A 为m n 矩阵,且R (A^ r : m n 则()必成立.4向量组 二厂匕,…:',线性无关的充分条件是()(A ) : 1,: 2, : s 均不是零向量. (B ) :忙2,:s 中任一部分组线性无关.(C ) _:» , _込广%中任意两个向量的对应分量都不成比例.(D ) :、,:』,…:*中任一向量均不能由其余 S-1个向量线性表示 5齐次线性方程组AX =0是非齐次线性方程组 AX 二B 的导出组,则()必定成立.(A ) AX =0只有零解时,AX =B 有唯一解. (B ) AX - 0有非零解时,AX = B 有无穷多解.(C )〉是AX J 的任意解,0是AX = B 的特解时,0 •〉是AX = B 的全部解.(D ) !,2是AX =B 的解时,「2是AX =0的解.6若B =二,方程组AX 二B 中,方程个数少于未知量个数,则有(线性代数练习题2设5、b 、1-r <-1b <cd 」0 1丿,<1~r(A).(B)■1—1 1<1 0丿则必有:()(B) A = B = 0 (D) A = | B = 0(A )A 中每一个阶数大于r 的子式全为零。
(B )A 是满秩矩阵。
(C ) A 经初等变换可化为0 0>(D )A 中r 阶子式不全为零。
(B) AX - v 只有零解。
(D) AX =B —定有无穷多组解。
ax — bv = 17线性方程组丿丫 ,若a^b ,则方程组bx + ay = 0(A) AX =B —定无解。
(C) AX - ■ n 必有非零(A)无解 (B)有唯一解 (C)有无穷多解(D)其解需要讨论多种情况B 都是n 阶矩阵,且 AB = 0,则A 和B 的秩(A 必有一个为0, C 必有一个小于n ,B 必定都小于n , D 必定都等于n填空题1方程组x 1+2x 2_ X 3 = 02x 14x 27x 3=0的通解为2设5阶方阵A 的行列式为| A = — J2,贝U |<2A = __________3已知■2-3,求X 二三计算题2 11 D =--5 3 1 3 - 131 1 1 113 4 22 D =2 2 2解:D13 42亠33一 313 42x 0 0 22 x 0 03 D =解:D=x0 2 x 00 0 2 x=(3 -1)(4 -1)(2 -1)(4 -3)(2_3)(2 _4) =12x 0 02x02x0 + 2(-1严 0 2 x =x 4 -16 0 2 x0 0 2—4 2 — 3x a x x4 D =x x a x x x x a2 2 26 设 A=12 3 , B = A 」,求 B 解:A1 3 6一广20 3、(1、‘2 03、7 解矩阵方程: -146 X = -1 解: -1 4 6<3-2 一3」3丿<3_2 一3」125丿"2 0 3、■-18 2、8 解矩阵方程:X-1 46—_3 6<3-2 一3」30 5丿1 1 1 1 1 1x x0 a — x 0 0 3= (3x + 0 00 =(3x + a )( a —x )a x a —x x a0 0 0 a —x1 1 x a D = (3x +a ) x xx x[4 -6 8 1'2 3 4'5设A = 23 4,求矩阵A 的秩。
线性代数练习题及答案
线性代数期中练习 一、单项选择题。
1.12021k k -≠-的充分必要条件是( )。
(A ) 1k ≠- (B ) 3k ≠ (C ) 1k ≠- 且3k ≠ (D ) 1k ≠-或3k ≠2.若AB =AC ,当( )时,有B =C 。
(A) A 为n 阶方阵 (B ) A 为可逆矩阵 (C) A 为任意矩阵 (D) A 为对称矩阵3.若三阶行列式M a a a a a a a a a =333231232221131211,则=---------333231232221131211222222222a a a a a a a a a ( ). (A) -6M (B) 6M (C ) 8M (D ) -8M4.齐次线性方程组123123123000ax x x x ax x x x x ++=⎧⎪++=⎨⎪++=⎩有非零解,则a 应满足( )。
(A) 0a ≠; (B ) 0a =; (C) 1a ≠; (D) 1a =. 5.设12,ββ是Ax b =的两个不同的解,12,αα是0=Ax 的基础解系,则Ax b = 的通解是( )。
(A)11212121()()2c c αααββ+-++ (B)11212121()()2c c αααββ+++-(C )11212121()()2c c αββββ+++- (D) 11212121()()2c c αββββ+-++二.填空题。
6.A = (1, 2, 3, 4),B = (1, -1, 3, 5),则A ·B T = 。
7.已知A 、B 为4阶方阵,且A =-2,B =3,则| 5AB | =。
| ( AB )-1 |=。
8. 在分块矩阵A=B O O C ⎛⎫ ⎪⎝⎭中,已知1-B 、1-C 存在,而O 是零矩阵,则 =-1A .9.设D =7345327254321111-,则=+++44434241A A A A 。
线性代数试题及答案
线性代数试题及答案 线性代数是数学的重点知识,多进⾏试题练习提⾼⾃⼰的能⼒。
以下是由店铺整理线性代数试题及答案,希望⼤家喜欢! 线性代数试题及答案(⼀) 说明:在本卷中,AT表⽰矩阵A的转置矩阵,A*表⽰矩阵A的伴随矩阵,E表⽰单位矩阵。
表⽰⽅阵A的⾏列式,r(A)表⽰矩阵A的秩。
⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分) 在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错癣多选或未选均⽆分。
1.设3阶⽅阵A的⾏列式为2,则 ( )A.-1B. C. D.1 2.设则⽅程的根的个数为( )A.0B.1C.2D.3 3.设A为n阶⽅阵,将A的第1列与第2列交换得到⽅阵B,若则必有( ) A. B. C. D. 4.设A,B是任意的n阶⽅阵,下列命题中正确的是( ) A. B. C. D. 5.设其中则矩阵A的秩为( )A.0B.1C.2D.3 6.设6阶⽅阵A的秩为4,则A的伴随矩阵A*的秩为( )A.0B.2C.3D.4 7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为( )A.-10B.-4C.3D.10 8.已知线性⽅程组⽆解,则数a=( ) A. B.0 C. D.1 9.设3阶⽅阵A的特征多项式为则 ( )A.-18B.-6C.6D.18 10.若3阶实对称矩阵是正定矩阵,则A的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3 ⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分) 请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
11.设⾏列式其第3⾏各元素的代数余⼦式之和为__________. 12.设则 __________. 13.设A是4×3矩阵且则 __________. 14.向量组(1,2),(2,3)(3,4)的'秩为__________. 15.设线性⽆关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表⽰,则r与s的关系为__________. 16.设⽅程组有⾮零解,且数则 __________. 17.设4元线性⽅程组的三个解α1,α2,α3,已知则⽅程组的通解是__________. 18.设3阶⽅阵A的秩为2,且则A的全部特征值为__________. 19.设矩阵有⼀个特征值对应的特征向量为则数a=__________. 20.设实⼆次型已知A的特征值为-1,1,2,则该⼆次型的规范形为__________. 三、计算题(本⼤题共6⼩题,每⼩题9分,共54分) 21.设矩阵其中均为3维列向量,且求 22.解矩阵⽅程 23.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和⼀个极⼤⽆关组. 24.设3元线性⽅程组 , (1)确定当λ取何值时,⽅程组有惟⼀解、⽆解、有⽆穷多解? (2)当⽅程组有⽆穷多解时,求出该⽅程组的通解(要求⽤其⼀个特解和导出组的基础解系表⽰). 25.已知2阶⽅阵A的特征值为及⽅阵 (1)求B的特征值; (2)求B的⾏列式. 26.⽤配⽅法化⼆次型为标准形,并写出所作的可逆线性变换. 四、证明题(本题6分) 27.设A是3阶反对称矩阵,证明|A|=0. 线性代数试题及答案(⼆)【线性代数试题及答案】。
(完整word版)线性代数练习题行列式
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号 第一节 n 阶 行 列 式一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3-2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C)(13,5-) (D )(5,13--)3.方程093142112=x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315a a a a a a (B)655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B)3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n 〉2)阶行列式的值必为零的是 [ BD ] (A ) 行列式主对角线上的元素全为零 (B ) 三角形行列式主对角线上有一个元素为零 (C ) 行列式零的元素的个数多于n 个 (D ) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
大学线性代数练习试题及答案
第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
《线性代数》练习题库参考答案
《线性代数》练习测试题库一.选择题1、=-0000000000121nn a a a a ( B )A. n n a a a 21)1(-B. n n a a a 211)1(+-C. n a a a 212、n 阶行列式0000000000a a a a= ( B )A.na B. (1)2(1)n n n a -- C. (1)n n a -3、n21= ( B )A. (1)!nn - B. (1)2(1)!n n n -- C. 1(1)!n n +-4、 A 是n 阶方阵,m, l 是非负整数,以下说法不正确的是 ( C ). A. ()m l mlA A = B. mlm lA A A+⋅= C. m m mB A AB =)(5、A 、B 分别为m n ⨯、s t ⨯矩阵, ACB 有意义的条件是 ( C ) A. C 为m t ⨯矩阵; B. C 为n t ⨯矩阵; C. C 为n s ⨯矩阵6、下面不一定为方阵的是 (C )A.对称矩阵.B.可逆矩阵.C. 线性方程组的系数矩阵.7、 ⎥⎦⎤⎢⎣⎡-1021 的伴随矩阵是 (A ) A. ⎥⎦⎤⎢⎣⎡1021 B. ⎥⎦⎤⎢⎣⎡-1201 C. ⎥⎦⎤⎢⎣⎡-1021 8、 分块矩阵 00A B ⎡⎤⎢⎥⎣⎦(其中A 、B 为可逆矩阵)的逆矩阵是 ( A )A. 1100A B --⎡⎤⎢⎥⎣⎦ B. 00BA ⎡⎤⎢⎥⎣⎦ C. 1100B A --⎡⎤⎢⎥⎣⎦9、线性方程组Ax b = 有唯一解的条件是 ( A )A.()()r A r A b A ==的列数B.()()r A r A b = .C.()()r A r A b A ==的行数10、线性方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211a ax x x a x ax x x x ax 有唯一解的条件是 (A )A. 2,1-≠aB. 21-==a a 或.C. 1≠a11、 的是则下面向量组线性无关),,,=(),,,=()6,2,4(054312--=--γβα(B )A. 0,,βα B. γβ, C. γα, 12、设A 为正交矩阵,下面结论中错误的是 ( C )A. A T 也为正交矩阵.B. A -1也为正交矩阵.C. 总有 1A =-13、二次型()233221214321342,,,,x x x x x x x x x x f --+=的矩阵为 ( C )A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---340402021B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---320201011 C 、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000032002010011 14、设r 是实二次型),,,(21n x x x f 的秩,p 是二次型的正惯性指数,q 是二次型的负惯性指数,s 是二次型的符号差,那么 ( B )A. q p r -=;B. q p r +=;C. q p s +=; 15、下面二次型中正定的是 ( B )A. 21321),,(x x x x x f =B.2322213212),,(x x x x x x f ++= C.22213212),,(x x x x x f +=二、判断题1、若行列式主对角线上的元素全为0,则此行列式为0. ( ⨯ )2、A 与B 都是3×2矩阵,则A 与B 的乘积也是3×2矩阵。
线性代数考试练习题带答案大全
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数习题答案完整版
c1 c2 2c3 c3 c1 c2 c3
二、计算题.
4. 用行列式性质计算.
103 100 204 (1) 199 200 395 ;
301 300 600
ab ac ae (2) bd cd de .
bf cf ef
3 100 4
314
解:
原式
c1 c2
=
1
200
5 100 1
2
5 2000.
0 010
5 5 0
5 5 3 0
5 11
r2 r1
6
2
0 (1)13 6
2 40 ;
5 5
5 5 0
6 1 1 1 1 1 1 1 r2 r1 1 1 1 1
r3 r1
6 3 1 1 c1c2 c3 c4
1 3 1 1 r4 r1 0 2 0 0
(2) D
6
6
48 ;
6131 1131 0 0 2 0
3
111
111
( A) 2 ; 3
( B )1;
( C )2;
(D)8 . 3
6
xyz
2x 2y 2z x y z x y z
解:因为 4 0 3 1 ,则 4 0 1 2 4 0 3 2 4 0 3 2 1 2 .
3
3 33
33
111
1 1 1 111 111
故选 A .
2. 如果行列式的所有元素变号,则( ).
和
.
答案: a11a23a32a44 , a11a23a34a42 .
三、计算题.
205 10.利用 n 阶行列式定义计算行列式 D = 4 1 9 .
线性代数基础练习题
线性代数基础练习题一、选择题(每题2分,共20分)1. 矩阵的秩是指:A. 矩阵中非零行的最大个数B. 矩阵中非零列的最大个数C. 矩阵中线性无关行的最大个数D. 矩阵中线性无关列的最大个数2. 向量空间的基是指:A. 空间中任意向量的一组表示B. 空间中线性无关的向量集合C. 空间中所有向量的集合D. 空间中能生成整个空间的向量集合3. 线性变换的核是指:A. 变换后为零向量的集合B. 变换后为单位向量的集合C. 变换后保持不变的向量集合D. 变换后向量长度不变的集合4. 方程组有唯一解的条件是:A. 方程个数等于未知数个数B. 方程组的系数矩阵是可逆的C. 方程组的系数矩阵是方阵D. 方程组的系数矩阵是对称的5. 特征值和特征向量是:A. 线性变换中的特定值和向量B. 矩阵对角化过程中的值和向量C. 矩阵行列式为零的值D. 矩阵的秩二、填空题(每题2分,共20分)6. 向量空间 \( \mathbb{R}^3 \) 中,基 \( \{ \mathbf{v}_1,\mathbf{v}_2, \mathbf{v}_3 \} \) 的向量 \( \mathbf{v}_1 = (1, 0, 1) \),\( \mathbf{v}_2 = (0, 1, 1) \),那么\( \mathbf{v}_3 \) 可以是 _________ 。
7. 若矩阵 \( A \) 与 \( B \) 相似,则 \( A \) 和 \( B \) 有相同的 _________ 值。
8. 线性方程组 \( \begin{cases} x + y + z = 1 \\ 2x - y + z = 0 \\ 3x + y - z = 0 \end{cases} \) 的系数矩阵的秩是_________ 。
9. 矩阵 \( A \) 的迹(trace)是 _________ 矩阵元素的和。
10. 线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \),若 \( T(\mathbf{e}_1) = \mathbf{e}_2 \) 且 \( T(\mathbf{e}_3) = \mathbf{e}_1 + \mathbf{e}_3 \),则 \( T(\mathbf{e}_2) \) 是_________ 。
线性代数测试题及答案
补充练习三 矩阵一、选择题:(1)设A 和B 均为n 阶方阵,则必有( )。
(A )|A+B|=|A|+|B|; (B )AB=BA (C )|AB|=|BA| (D )(A+B )-1=A -1+B -1 (2)设A 和B 均为n 阶方阵,且满足AB=0,则必有( )。
(A )A=0或B=0 (B )A+B=0 (C )|A|=0或|B|=0 (D )|A|+|B|=0 (3)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=133312321131131211232221a a a a a a a a a a a a B , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P ,则必有( )。
(A )AP 1P 2=B ; (B )AP 2P 1=B ; (C )P 1P 2A=B ; (D )P 2P 1A=B (4)设n 维行向量⎪⎭⎫⎝⎛=21,0,,0,21α,矩阵ααT E A -=,ααT E B 2+=,其中E 为n 阶单位矩阵,则AB=( )。
(A )0; (B )E ; (C )-E (D )ααTE + (5)设n 阶方阵A 非奇异(n ≥2),A *是A 的伴随矩阵,则( )。
(A )(A *)*=|A|n-1A ; (B )(A *)*=|A|n+1A ; (C )(A *)*=|A|n-2A ; (D )(A *)*=|A|n+2A(6)设n 阶方阵A 、B 、C 满足ABC=E ,其中E 是n 阶单位矩阵,则必有( )。
(A )ACB=E ; (B )CBA=E ; (C )BAC=E ; (D )BCA=E(7)设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211a a a a a a a a a a a a a a a a A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41424344313233342122232411121314a a a a a a a a a a a a a a a a B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00010100001010001P ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000010010000012P ,其中A 可逆,则B -1等于( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数练习题
一、选择题
1.下列排列是5阶偶排列的是 ( ).
(A) 24315 (B) 14325 (C) 41523 (D)24351
2.如果阶排列的逆序数是, 则排列的逆序数是( ).
(A) (B) (C) (D)
3.如果行列式,则()。
(A)可能为1 (B)不可能为1
(C)必为1 (D)不可能为2
4. 设、为阶矩阵,则()成立。
(A)(B)
(C)(D)
5.在函数中项的系数是( ).
(A) 0 (B) (C) (D) 2
6. 若,则中第一行元的代数余子式的和为( ).
(A) (B) (C) (D)
7.设为阶矩阵,且,则()。
(A)(B)
(C)(D)
8.齐次线性方程组有非零解的充要条件是()。
(A)(B)(C)(D)
9.设是矩阵,齐次线性方程组仅有零解的充要条件是()。
(A)的列向量组线性相关(B)的列向量组线性无关
(C)的行向量组线性相关(D)的行向量组线性无关
10.设是矩阵,是阶可逆矩阵,矩阵的秩为,矩阵的秩为,则
().
(A)(B)(C)(D)的关系依而定
11.设与为阶非零矩阵,且= 0 ,则与的秩()
(A)必有一个等于零(B)都小于
(C)一个小于,一个等于(D)都等于
12.关于矩阵,下列命题正确的是()。
(A)若,则或(B)可经过一系列的初等行变换把矩阵化为标准形(C)矩阵的标准形不惟一(D)若为初等矩阵,,则
13. 下列命题正确的是()
(A)维列向量组可以线性无关
(B)矩阵的初等变换可能改变矩阵的秩
(C)维列向量组必线性相关
(D)若方阵,则可逆。
14.设向量组的秩为3,则()。
(A)任意三个向量线性无关(B)中无零向量
(C)任意四个向量线性相关(D)任意两个向量线性无关
15. 若为正交阵,则下列矩阵中不是正交阵的是().
(A)(B)(C)(D)
16.设为阶方阵,是阶正交阵,且,则下列结论不成立的是
()。
A.与相似(B)与有相同的特征向量
(C)与有相同的特征值(D)与等价
17.是阶矩阵与相似的( )。
(A)充要条件(B)充分而非必要条件
(C)必要而非充分条件(D)既不充分也不必要条件
18. 阶方阵有个不同的特征根是与对角阵相似的( )。
(A)充要条件(B)充分而非必要条件
(C)必要而非充分条件(D)既不充分也不必要条件
19.设矩阵与相似,则的值分别为( )。
(A) 0,0 (B) 0,1 (C) 1,0 (D) 1,1
二、填空题
1. 各列元素之和为0的阶行列式的值等于。
2.五阶行列式的项前的符号为,前的符号
为。
3.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.
4.设,且,则
5.设,且,则
6. 设三阶矩阵,则。
7. 设矩阵,,则,
,(为正整数)。
8.设为5阶方阵,是其伴随矩阵,且,则_______。
9.设为4阶方阵的伴随矩阵,且,则
10.设为四阶方阵的伴随矩阵,且,则
11.已知,则
12.已知,则
13. 设,,则。
14.若线性方程组的系数矩阵的秩为,则其增广矩阵的秩为
15.齐次线性方程组有非零解,则
16.向量线性无关的充要条件是。
17.已知向量组,,线性相关,则。
18.已知向量组线性相关,则
19.. 向量组,,的一个最大无关组为。
20..设向量组线性无关,则向量组,,
线性。
21.线性方程组的解空间的维数是
22.若元非齐次线性方程组系数矩阵的秩为3,则其对应的齐次线性方程组解空间的、秩
为
23.已知向量组两两正交,则
24.已知向量组两两正交,则
25. 设三阶可逆矩阵的特征值分别为2、3、5,则,的伴随矩
阵的特征值为。
26.设为矩阵的三个特征值,则。
27.设三阶矩阵的特征值分别为-1,0,2,则行列式。
28.设为矩阵的三个特征值,则。
29.若相似,则,= 。
三、判断题
1、()
2、设均为阶矩阵,则()
3、若,则()
4、设均为可逆矩阵,则也可逆且()
5、向量组是线性无关的()
6、设向量组线性无关,则向量组
也线性无关()
四、计算题
1.计算下列行列式
(1)(2)
(3)(4)
2. 解下列矩阵方程(X为未知矩阵).
(1) (2)
3.设,,若矩阵满足,求。
4.设,且,求。
5.设三阶矩阵满足,且,求。
6. 设,求
7.设,问(1)取何值时,;(2)取何值时,。
8.设,问(1)取何值时,;(2)取何值时,。
9.求下述列向量组的秩、最大无关组,并将其余向量用这个最大无关组线性表出。
10.已知向量组,,,
,(1)求向量组的秩;(2)求该向量组的一个极大无关组,并把其余向量分别用该极大无关组线性表示.
11.求向量组、、、
、的一个极大无关组,并将其余向量用极大无关组线性
表示。
12.已知向量组,求此向量组的一个最大无关
组,并把其余向量用该最大无关组线性表示。
13.当为何值时,线性方程组
有解?在有解的情况下,求其全部解(若有无穷解,用基础解系表示)。
14.求取何值时,线性方程组有解,并用基础解系表达其通
解。
15.对于线性方程组讨论取何值时,方程组无解、有惟一解和有无穷多解?并在方程组有无穷多解时,求其通解。
16.求取何值时,线性方程组有解,并用基础解系表达其通
解。
17.取何值时,非齐次线性方程组
(1)有惟一解;(2)无解;(3)有无穷多解,并求其通解.
18.求下列矩阵的特征值与特征向量
(1)(2)(3)(4)
五、证明题
1.设证明:A及A+3E都可逆,并求,
2.已知n阶方阵满足,证明矩阵可逆,并求.
3.设为阶可逆矩阵,为的伴随矩阵,证明的秩。
4.设,试证线性相关。
5.已知向量组线性无关,又有,试证向
量组线性无关。
6.设向量组线性无关,
试证明向量组也线性无关。