八年级下第十九章一次函数导学案

合集下载

《一次函数》导学案

《一次函数》导学案

(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y是随x的增大而增大还是减小?(3)当图象不过原点时,求出图象与两轴所围成的三角形面积.解:(四)一次函数y=kx+b的图象与正比例函数y=kx的图象之间的位置关系:1.当b>0时,直线y=kx+b由直线y=kx向平移个单位长度;2.当b<0时,直线y=kx+b由直线y=kx向平移个单位长度.【例2】.将一次函数y=2x-3向下平移5个单位的表达式为__________。

(五)用待定系数法求一次函数的解析式:1.常见的直接条件:(1)、对于正比例函数,需要__________个点的坐标。

(2)、对于一次函数,需要__________个点的坐标。

【例3】.(1)、已知正比例函数经过点(-1,2),则其表达式为__________。

(2)、已知一次函数经过点(0,3)和(-2,5),则其表达式为__________。

2.间接条件:围成图形的面积;平行关系等.【例4】.已知一次函数y=kx+2的图象过第一、二、三象限且与x、y轴分别交于A、B两点,O为原点,若ΔAOB的面积为2,求(1)A点坐标.(2) 该一次函数的表达式.解:(六)用函数观点看方程(组)和不等式①一次函数y=kx+b的图象与x轴交点的横坐标-bk⇔一元一次方程kx+b=0的解x=②一次函数y=k1x+b与y=k2x+b两个图象的交点1122y kx by kx b=+⎧⇔⎨=+⎩二元一次方程组的.③使一次函数y=kx+b的函数值y>0(或y<0)的自变量的取值范围⇔一元一次不等式kx+b>0(或kx+b<0)的__________.【例4】.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得二元一次方程组⎩⎪⎨⎪⎧y=ax+b,y=kx的解__________.三、综合演练见《新航标》P39(1——5、8)P40(3、8)P41( 1、3、7)四、课后提升见《新航标》P39——41其余题五、我的困惑第二课时《一次函数的应用》导学案【学习目标】能用一次函数解决实际问题.【点击中考】“命题趋势”见《新航标》第37页。

人教版八年级数学下册第十九章一次函数单元(教案)

人教版八年级数学下册第十九章一次函数单元(教案)
5.培养学生的团队合作意识,通过小组讨论、合作探究,促进学生之间的交流与合作,共同提高数学核心素养。
三、教学难点与重点
1.教学重点
-一次函数的定义:确保学生理解一次函数y=kx+b中,k、x、b分别代表的意义,以及k≠0的条件。
-一次函数的性质:包括图像的直线特征、斜率k的增减性、y轴截距b的几何意义。
3.一次函数图像的绘制:学习如何根据一次函数的解析式绘制其图像,掌握图像与解析式之间的关系。
4.一次函数的应用:掌握一次函数在实际问题中的应用,如求解线性方程组、计算斜率等。
二、核心素养目标
1.培养学生运用数学符号进行表达和交流的能力,通过一次函数的学习,使学生能够准确地用数学语言描述一次函数的定义、性质及其图像特点。
其次,在讲解一次函数在实际问题中的应用时,我应该尽量选择贴近学生生活的例子,让他们感受到数学知识在实际生活中的重要性。同时,鼓励学生在课堂上积极分享自己在生活中遇到的一次函数问题,提高他们运用数学知识解决实际问题的能力。
此外,课堂上的小组讨论环节,我发现有些同学参与度不高,可能是因为他们对讨论主题不够感兴趣或者不知道如何表达自己的观点。针对这个问题,我打算在今后的教学中,多设计一些有趣且具有挑战性的讨论主题,激发学生的兴趣。同时,加强课堂引导,鼓励每一位同学都参与到讨论中来。
举例解释:
-在解析式推导上,难点在于如何引导学生从已知信息中找到两个点,进而求出斜率k和截距b。例如,给出两个点的坐标,通过计算斜率来求解k,再利用其中一个点的信息求解b。
-在图像识别上,难点在于如何区分一次函数图像与其他函数图像的不同,特别是当图像有部分重合或平行时。可以通过对比不同类型函数的图像特点来帮助学生突破这一难点。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义和图像特点这两个重点。对于难点部分,如一次函数解析式的推导,我会通过具体的例子和图示来帮助大家理解。

人教版初中数学八年级下册第十九章:一次函数(全章教案)

人教版初中数学八年级下册第十九章:一次函数(全章教案)

第十九章一次函数教材简析本章的主要内容有:(1)函数、一次函数与正比例函数的概念;(2)函数的表示方法;(3)一次函数的图象与性质;(4)一次函数的应用.函数是刻画各种运动变化的常用模型,其中最为简单的是一次函数,它可以解决现实生活中的许多问题,本章将主要向学生讲授一次函数的相关知识.本章是中考中的必考内容,主要考查用待定系数法求一次函数的表达式,结合函数图象对简单的实际问题进行信息分析,通过分析函数关系式对变量的变化规律进行预测等,题型多样.教学指导【本章重点】通过学习变量间的关系初步体会函数的概念,明确函数的三种表示方法,一次函数的图象、性质及其应用.【本章难点】函数的概念和一次函数的应用.【本章思想方法】1.分类讨论思想:在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得出结论.在本章中,有时确定一次函数的表达式时,要根据一次函数所对应的直线位置来求解,做到不重复、不遗漏.2.数形结合思想:本章在解决与一次函数有关的函数值大小比较时,利用数形结合解决这类问题最快最优.另外解决一次函数图象的综合题时,也常用数形结合法.3.函数与方程思想:将具体问题抽象为函数模型,根据函数之间的关系建立方程,通过方程解决问题的方法称为函数与方程思想.在本章中,经常根据实际问题抽象出一次函数模型,并根据函数图象的交点建立一元一次方程来求某些特殊值.课时计划19.1函数4课时19.2一次函数6课时19.3课题学习选择方案1课时19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .x 与y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时函数教学目标一、基本目标【知识与技能】1.认识变量中的自变量与函数.2.进一步掌握确定函数关系式的方法.3.会确定自变量的取值范围.【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯.二、重难点目标【教学重点】1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.【教学难点】认识函数、领会函数的意义.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P72~P74的内容,完成下面练习.【3 min反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式.3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x=a时,y=b,函数有唯一的值b 与之对应,则这个对应值b叫做x=a时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是v随着t的增大而增大.(3)当t每增加1秒,v的变化情况不相同,在第9秒时,v的增加量最大.(4) 120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t的取值范围;(2)当7:55时,t=55-30=25,将t=25代入(1)中的关系式即可;(3)令y=0,求出t的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t.∵y≥0,∴200-2t≥0,解得t≤100,∴0≤t≤100,∴y关于t的函数关系式为y=200-2t(0≤t≤100).(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升.(3)令y=0,即200-2t=0,解得t=100.100分=1时40分,7时30分+1时40分=9时10分,故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x的值,实际上就是解方程.环节3课堂小结,当堂达标(学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!19.1函数19.1.2函数的图象第1课时函数的图象教学目标一、基本目标【知识与技能】1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.【过程与方法】在研究函数图象的过程中体会数形结合思想,并利用它解决问题,提高解决问题的能力.【情感态度与价值观】1.体会数学方法的多样性,提高学习兴趣.2.认识数学在解决问题中的重要作用,从而加深对数学的认识.二、重难点目标【教学重点】1.函数图象的画法.2.观察分析图象信息.【教学难点】分析概括图象中的信息.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P79的内容,完成下面练习.【3 min反馈】1.什么是函数图象?解:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.2.在学习函数图象时,可以通过以下两点帮助理解:(1)函数图象上的任意点P(x,y)中的x、y都满足其函数解析式;(2)满足函数解析式的任意一对x、y的值,所对应的点一定在函数图象上.3.用函数图象描述实际问题时,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.4.如何作函数图象?具体步骤有哪些?画函数的图象,一般运用描点法.用描点法画函数图象的一般步骤:(1)列表:表中给出一些自变量的值及其对应的函数值.自变量的取值不应使函数太大或太小,以便于描点,点数一般以5到7个为宜;(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;(3)连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连结起来.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s(千米)与所经过的时间t(分钟)之间的大致函数图象是()A BC D【互动探索】(引发学生思考)行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加,但增加的比高速路上慢,故B 符合题意.【答案】B【互动总结】(学生总结,老师点评)此类题目,理解题意是解题关键,根据题干中提供的信息及生活实际,判断图象各阶段的变化情况和特征.【例2】作出函数y =-6x的图象.【互动探索】(引发学生思考)先列表取值,再描点,最后连线. 【解答】列表:【互动总结】(学生总结,老师点评)画函数图象要经过列表、描点、连线三个步骤,列表时自变量取值要有代表性(自变量不可以只取正数,也不可以只取负数).自变量不为0,表示图象不是连续的,在自变量为0时,图象断开,分为两段.活动2 巩固练习(学生独学)1.周末小石去博物馆参加综合实践活动,先骑行共享单车前往,0.5小时后到达公交车站,他在公交车站等了一段时间,遇到了叔叔,搭上了叔叔的电瓶车前往.已知小石离家的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象大致如图.则小石叔叔电瓶车的平均速度为( C )A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时2.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以点A,P,B为顶点的三角形的面积是y,则下列图象能大致反应y与x的函数关系的是(B)A B C D3.在所给的平面直角坐标系中画出函数y=-2x+2的图象,并根据图象回答问题:(1)当x=-1时,y的值;(2)当x为何值时,y>0?(3)若0≤x≤3,求y的取值范围.解:列表如下:(1)根据表格,当x=-1时y=4.(2)根据图象,观察可得,当x<1时,y>0.(3)根据图象,观察可得,若0≤x≤3,则-4≤y≤2.活动3拓展延伸(学生对学)【例3】小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明从家到学校的路程是多少米?(2)小明在书店停留了多久?(3)本次上学途中,小明一共骑行了多少米?一共用了多长时间?(4)我们认为骑单车的速度超过300米/分就超越了安全范围.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全范围内吗?【互动探索】根据图象,获取其中的信息,图象中横、纵坐标表示的是什么?函数值随自变量的变化趋势是怎么样的?【解答】(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米.(2)根据图象,从8分钟到12分钟这段时间内距离不变,故小明在书店停留了4分钟. (3)一共骑行的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米),共用了14分钟.(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14分钟时,平均速度为1500-60014-12=450(米/分).所以,12~14分钟时,小明骑车速度最快,不在安全范围内.【互动总结】(学生总结,老师点评)解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数的图象⎩⎪⎨⎪⎧作法意义应用练习设计请完成本课时对应训练!第2课时函数的三种表示方法教学目标一、基本目标【知识与技能】1.总结函数三种表示方法,并总结三种表示方法的优缺点.2.会根据具体情况选择适当方法.【过程与方法】经历回顾思考训练提高归纳总结能力.【情感态度与价值观】1.积极参与活动,提高学习兴趣.2.在数学活动过程中形成合作交流意识及独立思考习惯.二、重难点目标【教学重点】函数三种表示方法.【教学难点】会根据具体情况选择适当方法.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P79~P81的内容,完成下面练习.【3 min反馈】1.函数的三种表示方法分别是解析式法、列表法、图象法.2.用含自变量x的式子表示函数的方法叫做解析式法.3.把一系列自变量x的值与对应的函数值y列成一个表来表示函数关系的方法叫做列表法.4.用图象来表示函数关系的方法叫做图象法.5.函数的三种表示方法的优缺点有哪些?活动1小组讨论(师生互学)【例1】有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)(2)当所挂重物为x(克)时,用h(厘米)表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量.【互动探索】(引发学生思考)能从表格中直接读出挂重物体的质量与对应的弹簧总长度的值吗?如何根据表格写出所挂物体的质量与弹簧的总长度之间的函数关系?【解答】(1)5÷0.5×1=10(克),即要想使弹簧伸长5厘米,应挂重物10克.(2)h=10+0.5x(0≤x≤50).(3)令10+0.5x=25,解得x=30,即当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.【互动总结】(学生总结,老师点评)列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用,如成绩表、银行的利率表等.【例2】如图描述了一辆汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系,请根据图象回答下列问题:(1)汽车一共行驶的路程是多少? (2)汽车在行驶途中停留了多长时间? (3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?【互动探索】(引发学生思考)从函数图象中我们得到哪些信息?这些信息与所求问题有何关系?【解答】(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米).(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时.(3)①由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是1.5小时,由此算出平均速度80÷1.5=1603(千米/时);②由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;③由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);④由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时).(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.【互动总结】(学生总结,老师点评)图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【例3】一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下,最远能行驶多少千米?【互动探索】(引发学生思考)剩余油量为y(升)与行驶路程为x(千米)之间满足什么样的等量关系?根据自变量的取值怎样求函数值?由函数值怎样求出自变量的取值?【解答】(1)由题意,得y=-0.6x+48.(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升.当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0,即-0.6x+48=0,解得x=80,即这辆车在中途不加油的情况下,最远能行驶80 km.【互动总结】(学生总结,老师点评)解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.活动2巩固练习(学生独学)1.下面说法中正确的是(C)A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的函数关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.某学习小组做了一个实验:从一幢100 m高的楼顶随手放下一个苹果,测得有关数据如下:A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒3.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为(B)。

新人教版八年级数学下册《十九章 一次函数 数学活动》教案_25

新人教版八年级数学下册《十九章 一次函数  数学活动》教案_25

人教版八年级下册合作研学之------第19 章数学活动建立函数模型解决实际问题课题第19 章一次函数授课年级课型课时数学活动八年级新授课 1一、内容和内容解析内容数学活动内容解析函数是反映变量之间对应关系和变化规律的重要模型。

它在研究自然界和现实生活中的变化规律及解决相关问题中有着广泛的应用。

本章是在学生已有的建立方程(组)或不等式的数学模型基础上,继续重视数学与实际的联系,在建立函数这种应用更广泛的数学模型的过程中继续体现数学模型思想。

本节课是人教版八年级教材第十九章《一次函数》中的最后一个内容,为进一步提高学生实践意识与综合应用数学知识的能力,教材安排了这节活动课。

本节数学活动课,具有更强的实际应用背景,进一步学习用函数模型的方法研究问题,主要是建立一次函数模型刻画实际问题中变量关系,并尝试对变量的变化规律进行初步预测。

即将实际问题中两个变量的部分对应数据,用平面直角坐标系中的点表示,观察点的分布特征建立函数模型,求出函数解析式,再利用解析式对变量的变化规律进行初步预测等活动。

目的在于:一方面通过实际生活中的问题,进一步突出函数模型的广泛应用性和有效性;另一方面使学生在解决实际问题的情境中运用所学数学知识,进一步提高分析问题和解决问题的综合能力。

因此本节课的教学重点:根据两个变量的部分对应值建立一次函数函数模型,并利用函数模型解决实际问题,体会数学模型的思想方法。

二、目标和目标解析教学目标知识技能理解一次函数的本质,能够构造一次函数模型,并用一次函数模型描述和研究实际问题中的运动变化规律,探究建立函数模型解决实际问题的基本规律。

数学能力经历建立函数模型刻画实际问题中的变量关系,并解释与应用的基本过程,发展学生的数学核心素养;经历提出问题,收集和整理数据,获取信息,处理信息(图象法),构造一次函数模型,待定系数法求函数解析式,对变量的变化规律进行初步预测的过程,在获得对数学知识和方法进一步理解的同时,发展学生分析问题、解决问题的能力。

人教版八年级数学下册 第19章 一次函数 全章优秀教案

人教版八年级数学下册 第19章 一次函数 全章优秀教案

第19章一次函数19.1.1变量与函数(1)教学目标①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。

能分清实例中的常量与变量,了解自变量与函数的意义。

②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。

③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。

教学重点与难点重点:函数概念的形成过程。

难点:正确理解函数的概念。

教学准备每个小组一副弹簧秤和挂件,一根绳子。

教学设计提出问题:1.汽车以60千米/时的速度匀速行驶。

行驶里程为s千米,行驶时间为t小时。

先填写下面的表,再试着用含t的式子表示s:2.已知每张电影票的售价为10元。

如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?注:(1)让学生充分发表意见,然后教师进行点评。

(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。

动手实验1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示) 。

设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?注:分组进行实验活动,然后各组选派代表汇报。

通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。

(最新)人教版八年级下册数学第19章《一次函数》全章教学案含解析

(最新)人教版八年级下册数学第19章《一次函数》全章教学案含解析

第十九章一次函数1.了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象分析简单的函数关系.2.能确定简单的实际问题中函数自变量的取值范围,并会求函数值.3.结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单的实际问题.1.通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.2.进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,利用函数模型解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系以及以建立一次函数模型来选择最优方案为素材的课题学习.本章是在学习了平面直角坐标系的基础上进行学习的,为画一次函数的图象进而研究性质奠定了基础.一次函数是初中阶段研究的第一个具体的函数,它的研究方法具有一般性和代表性,并为后面学习反比例函数、二次函数奠定了基础.一次函数和一元一次方程、一元一次不等式、二元一次方程等有着密切的联系,学习一次函数将为它们的解法提供新的方法和途径,并使学生更为深刻地理解数形结合的重要思想.本章在整个教材中具有承上启下的作用.【重点】结合实例掌握变量、常量和函数的概念,掌握函数的三种表示方法,能结合图象讨论函数的基本性质,运用一次函数的图象和性质解决实际问题.【难点】函数的概念以及一次函数的图象和性质的应用.本章内容是初中数学教学中的重点,也是难点.要重视学生对基本概念的理解,及时了解学生在学习过程中的状况,探索有效地教与学的各种方式.在具体的实施过程中应注意:1.加强与学生已学知识的联系.在代数式、方程、不等式等内容的学习、探索中都已渗透了变化的思想,要注意引导学生在原有知识的基础上理解变量和函数的概念.2.创设丰富的现实情境,重视直观感知的作用.3.注重学生对必要的数学语言和符号的理解和准确应用.运用数学的语言和符号去理解、描述现实世界的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.4.给学生充分的自主探索时间.19.1函数19.1.1变量与函数(2课时)19.1.2函数的图象(2课时)19.2一次函数19.2.1正比例函数(2课时)19.2.2一次函数(3课时)19.2.3一次函数与方程、不等式(1课时)19.3课题学习选择方案单元概括整合4课时6课时1课时1课时19.1函数1.理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.2.掌握用描点法画出一些简单函数的图象,能根据函数图象所提供的信息获取函数的性质.3.全面理解函数的三种表示方法,会根据具体情况选择适当方法表示函数.1.在探究问题的过程中,体会从具体的实例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.2.学生通过自己动手,体会用描点法画函数的图象的步骤.1.从图象中获得变量之间的关系的有关信息,并预测变化趋势,进行科学决策,应用于社会生活.2.让学生通过实际操作,体会函数三种表示法在实际生活中的应用价值,渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神、探索精神和合作交流的能力.【重点】会用描点法画函数的图象,并能利用函数的三种表示方法解决实际问题.【难点】函数的概念的理解.19.1.1变量与函数理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.在探究问题的过程中,体会从具体的事例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.通过列举自己身边的事例,体验数学与生活的密切联系,学会观察与发现,激发同学们探究问题的兴趣.【重点】函数的概念和函数自变量的取值范围.【难点】求函数自变量的取值范围.第课时1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.【教师准备】教学中出示的教学插图和例题.【学生准备】预习教材内容导入一:当我们用数学的眼光来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温等.在某一个过程中,有些量固定不变,有些量不断改变.为了更好地认识和了解这些变化现象中所隐含的变化规律,从本节课开始我们将学习这一部分知识.[设计意图]利用学生较熟悉的生活实例引入本课学习的内容,调动学生学习的积极性.导入二:飞机从武汉飞往北京,在这个行驶的过程中,哪些量没有发生改变,哪些量发生了改变?学生说出自己的看法:如飞机上乘客的人数不变;飞机离地面的高度在改变;飞机油箱中的汽油在不停的减少,飞机离武汉越来越远,离北京越来越近,….教师也可以让学生举出自己熟悉的例子,据此引出今天学习的课题:变量与函数.[设计意图]由学生经历的事情提问题,能引起学生的好奇心.1.变量与常量的概念问题:汽车以60km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h12345s/km学生填表,并思考.1.根据题意填写下表:t/h12345s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.教师引导学生交流:从题意中可以知道汽车是匀速行驶,那么它1h行驶60km,2h行驶2×60km,即120km,3h行驶3×60km,即180km,4h行驶4×60km,即240km,5h行驶5×60km,即300km……t/h12345s/km60120180240300因此其中行驶里程s与时间t是变化的量,速度60km/h是不变的量.行驶里程s km与时间t h之间有关系:s=60t.s随t的增大而增大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y的值随x的值的变化而变化吗?学生分析问题,并同桌交流.1.电影票的售价为10元/张,第一场售出150张票,则第一场电影的票房收入为元;第二场售出205张票,则第二场电影的票房收入为元;第三场售出310张票,则第三场电影的票房收入为元.2.设一场电影售票x张,票房收入y元,则用含x的式子表示y为.教师解析:第一场电影的票房收入为150×10=1500(元).第二场电影的票房收入为205×10=2050(元).第三场电影的票房收入为310×10=3100(元).用含x的式子表示y为y=10x,y随x的增大而增大.[设计意图]通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20 cm,30cm时,圆的面积S分别为多少?S的值随r的值的变化而变化吗?学生活动填表,并讨论.(1)填表:半径r(cm)102030圆面积S(cm2)(2)S与r之间满足下列关系:S=.教师解析:(1)半径r(cm)102030圆面积S(cm2)31412562826(2)S=πr2.圆的半径越大,它的面积就越大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题:用10m长的绳子围成一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y 分别为多少?y的值随x的值的变化而变化吗?学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10m的一半,即5m.若矩形一边长为3m,则它的邻边长为5-3=2(m).若矩形一边长为3.5m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4m,则它的邻边长为5-4=1(m).若矩形一边长为4.5m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.[设计意图]在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y……)的值是变化的,有些量的值始终不变(例如速度60km/h;电影票的单价10元……),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量. [设计意图]通过上述的四个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.2.问题讲解在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题(1):下图是某地一天的气温变化图象,任意给出这天中的某一时刻t,你能说出这一时刻的气温T吗?这一问题中涉及哪几个量?它们变化吗?学生结合图,说出每一时刻所对应的温度值,教师进行确认.问题(2):弹簧原长22cm,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:x/kg0123456y/cm2222.52323.52424.525在这个问题中变化的量是什么?不变化的量是什么?学生讨论发现:弹簧的原长不变,为22cm,弹簧伸长的长度随着物体质量的变化而变化.因此,弹簧的总长=原长+伸长的长度.问题(3):你能举出生活中类似的例子吗?可以小组讨论.学生讨论、举例,在上述实例的解决过程中,体会在一个变化过程中各个量的变化规律,进而发现有的量变化、有的量不变.教师引导学生概括:在上面的问题中,我们研究了一些数量关系,出现了各种各样的量,有些量,它们始终保持不变,我们称之为常量,而有些量,在某一变化过程中,可以取不同数值,我们称之为变量.[设计意图]在本环节中,设计了问题情境,并让学生举出生活中类似的例子,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.[知识拓展](1)常量与变量是相对而言的,是相对某个变化过程来说的,换句话说,在这个变化过程中是变量,而在另一个变化过程中有可能以常量身份出现.如s=vt中,若v=20,此式子为s=20t,可见s,t为变量,若t=10,此式子为s=10v,s,v为变量,变量与常量的身份可以相互转化.(2)判断一个量是常量还是变量关键是看这个量所在的变化过程中,该量的值是否发生变化.(3)常数也叫常量,如S=πr2,其中常量是π.3.例题讲解(补充)若球体体积为V,半径为R,则V=πR3.其中变量是、,常量是.〔解析〕根据变量和常量的概念进行求解,解题时注意π是一个常量.答案:V Rπ(补充)写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(小时)的关系式.〔解析〕先根据实际问题确定所给问题的关系式,再根据变量和常量的概念进行求解.解:(1)C=2πr,2π是常量,r,C是变量.(2)s=60t,60是常量,t,s是变量.[设计意图]通过上述几个问题进行具体的讲评,借助实例来理解变量、常量的概念.本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要的意义.1.确定事物变化中的变量与常量.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系式.[设计意图]通过小结、课堂训练和学生反思,进一步理顺学生的学习思路,加深对变量、常量有关概念的理解.1.学校购买某种型号的钢笔作为学生的奖品,钢笔的价格是4元/支,则总金额y(元)与购买支数x(支)的关系式是,其中变量是,常量是.解析:∵钢笔的价格是4元/支,∴总金额y(元)与购买支数x(支)的关系式是y=4x,∴变量为x,y,常量为4.答案:y=4x x,y42.在圆的周长公式C=2πR中,下列说法正确的是()A.π,R是变量,2是常量B.R是变量,C,2,π是常量C.C是变量,2,π,R是常量D.C,R是变量,2,π是常量解析:∵C=2πR,∴变量为C,R,常量为2,π.故选D.3.分别指出下列各关系式中的变量与常量.(1)三角形的一边长为5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是S=h;(2)若直角三角形中的一个锐角的度数为α(度),则另一个锐角β(度)与α(度)间的关系式是β=90-α.解:(1)∵S=h,∴变量为S,h,常量为.(2)∵β=90-α,∴变量为β,α,常量为-1,90.4.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?解:根据圆的面积公式S=πr2,得r=,面积为10cm2的圆半径r=≈1.78(cm).面积为20cm2的圆半径r=≈2.52(cm).用圆面积S的式子表示圆半径r的关系式为r=.第1课时1.变量与常量的概念:变量:在一个变化过程中,数值发生变化的量为变量.常量:在一个变化过程中,数值始终不变的量为常量.2.例题讲解:例1例2一、教材作业【必做题】教材第71页练习.【选做题】教材第81页习题19.1第1,2题.二、课后作业【基础巩固】1.甲、乙两地相距s千米,某人行完全程所用的时间t(小时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中错误的是()A.s是变量B.t是变量C.v是变量D.s是常量2.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系式是()A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+503.(2015·临沂中考)已知甲、乙两地相距20千米,汽车从甲地运输匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/时)的函数关系式是()A.t=20vB.t=C.t=D.t=4.长方形相邻两边长分别为x,y,面积为30,则用含x的式子表示y为,则这个问题中,是常量;是变量.5.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,那么油箱内剩余油量Q(升)与行驶时间t(小时)的关系式是.6.根据下列题意写出适当的关系式,并指出其中的变量与常量.(1)多边形的内角和W与边数n的关系;(2)甲、乙两地相距y千米,一自行车以每小时10千米的速度从甲地驶向乙地,试用行驶时间t(小时)表示自行车离乙地的距离s(千米).【能力提升】7.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.份数/份1234…价钱/元…x与y之间的关系式是.8.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为y=,其中常量是,y和x都是量.9.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为.【拓展探究】10.圆柱形物体如下图(横截面)那样堆放.试确定圆柱形物体的总数y与层数x之间的关系式.【答案与解析】1.A(解析:某人行完全程,甲、乙两地距离不变,故s是常量,因此A不正确.)2.C(解析:单价是8元的笔记本,买这种笔记本x本用了8x元,故Q=50-8x.故选C.)3.B(解析:根据时间=,有t=.故选B.)4.y=30x,y(解析:由长方形的面积=长×宽进行求解.)5.Q=40-5t(解析:根据剩余油量=总油量-已用油量进行求解.)6.解:(1)W=(n-2)×180°,变量为W,n;常量为-2,180°.(2)s=y-10t,变量为s,t;常量为-10,y.7.0.40.81.21.6y=0.4x(解析:根据总金额=单价×数量进行求解.)8.500-5x500,-5变(解析:根据剩余笔记本数=总的笔记本数-已发的笔记本数进行求解.)9.y=23-x10.解析:要求变量间的关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.解:由题意可知:堆放1层,总数y=1,堆放2层,总数y=1+2,堆放3层,总数y=1+2+3,…,堆放x层,总数y=1+2+3+…+x,即y=x(x+1).本节课以问题为载体、以学生为主体、以合作交流为手段、以能力提高为目的.在探究知识上,以学生自主探究分组交流为主线,发挥学生的主体作用.在课堂教学中选择贴近生活的实例,与变量和常量的概念紧密结合,能使课堂效果达到最佳状态.在某个变化过程中,变量和常量是相对而言的,学生理解较困难,解题时学生容易出现把π看成变量这种错误.教学时通过对比教学多举出变量和常量是相对而言的事例,让学生真正理解变量和常量的概念.练习(教材第71页)解:(1)变量为x,y;常量为4.(2)变量为t,w;常量为0.2,30.(3)变量为r,C;常量为π.(4)变量为x,y;常量为10.函数的起源函数的概念在17世纪已经引入,牛顿(Isaac Newton,1642~1727,英国科学家)的《自然哲学的数学原理》中提出的“生成量”就是雏形的函数概念.笛卡儿(R.名言:“我思故我在”)引入变量后,随之而来的便是函数的概念.他指出y和x是变量(“未知量和未定的量”)的时候,也注意到y依赖于x而变.这正是函数思想的萌芽,但是他没有使用“函数”这个词.最早把“函数”(function)这个词用作数学术语的数学家是莱布尼茨(Gottfried Wilhelm Leibniz,1646~1716,德国数学家),但其含义和现在不同,他把函数看成是“像曲线上点的横坐标、纵坐标、切线长度、垂线段长度等所有与曲线上的点有关的量”.1718年,瑞士数学家约翰·贝努利(John Bernoulli,1667~1748,欧拉的数学老师)将函数概念公式化,给出了函数的一个定义,同时第一次使用了“变量”这个词.他写到:“变量的函数就是变量和变量以任何方式组成的量”.他的学生,瑞士数学家欧拉(Leonard Euler,1707~1783,被称为历史上最“多产”的数学家)将约翰·贝努利的思想进一步解析化,他在《无限小分析引论》中将函数定义为:“变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式”,欧拉的函数定义在18世纪后期占据了统治地位.我国“函数”一词,是《代数积拾级》中首先使用的.这本书把函数定义为:“凡此变数中含彼变数,则此为彼之函数”.这里的“函”指包含的意思.这个定义相当于欧拉的解析表达式定义:在一个式中“包含”着变量x,那么这个式子就是x的函数.函数这个概念已成为数学中最重要的几个概念之一,而变量这个词却逐渐被新的词所代替.第课时初步了解函数三种表示方法以及三种表示方法的优缺点,会根据具体情况选择适当方法表示函数.1.经历回顾思考,训练提高归纳总结能力.2.利用数形结合思想,根据具体情况选用适当方法解决问题的能力.通过分析具体的问题中的一个变量的值对应着另一个变量的值,体会到函数是刻画变量之间的对应关系的数学模型.【重点】函数表示方法的应用.【难点】确定实际问题中函数自变量的取值范围.【教师准备】带有网格的纸,三角板.【学生准备】三角板,铅笔,带有网格的纸.导入一:你听说过“两个铁球同时落地”的故事吗?站在比萨斜塔顶部,让两个铁球自由下落,在铁球下落的过程中,随着时间的变化,铁球下落的速度是怎样变化的?铁球下落的速度v随下落的时间t的变化而变化.这就是我们今天要继续学习的内容.[设计意图]结合学生熟悉的故事导入新课,激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.导入二:1.有根弹簧原长10cm,每挂1kg重物,弹簧伸长0.5cm,设所挂的重物为m kg,受力后弹簧的长度为l cm,根据上述信息完成下表:m/kg01233.5…l/cm受力后弹簧的长度l是所挂重物质量m的函数吗?2.有一辆出租车,前3公里内的起步价为8元,每超过1公里收2元,有一位乘客坐了t(t>3)公里,他付费y 元,用含x的式子表示y.3.如图所示的是某地某一天的气温变化图:学生自由思考,自由发言.上面用图、表格或关系式表达的问题反映了两个变量之间的关系.[设计意图]出示题目,同时提出新的问题,让学生在解决旧知的基础上提出问题,从而激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.1.自变量、函数和函数值思路一[过渡语]前面我们学习了变量与常量,下面我们一起来思考下面的问题:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表年份人口数/亿198410.34198911.06199411.76199912.52201013.71学生通过观察发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.引导学生归纳:上面用图或表格表达的问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.教师总结:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.学生分析上面两个问题中的自变量和函数,并交流.。

最新人教版八年级数学下册 第十九章《一次函数》教案

最新人教版八年级数学下册 第十九章《一次函数》教案

最新人教版八年级数学下册第十九章《一次函数》教案教案:一次函数第一课时:一次函数概念新课标要求:1.知道一次函数的有关概念;2.知道正比例函数是特殊的一次函数。

教学重点:一次函数的概念。

教学难点:实际问题用一次函数解析式表示出来。

教学方法:教师提出问题、引导,学生观察、思考、阅读、讨论。

引入新课:教师活动:出示问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温降低6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系。

学生活动:认真思考问题,作出解答,并在小组内讨论交流。

教师活动:1.根据学生解答情况作适当点评;2.给出问题:下列问题中变量间的对应关系可用怎样的函数表示?1)有人发现,在20—25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按1元/分收取;4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单2位:cm)随x的值而变化。

先作出来的同学将函数关系式写在黑板上,其他同学写在练本上。

学生活动:按要求做思考题。

教师活动:提出要求:仔细观察黑板上的解析式,归纳他们的共同点。

学生活动:认真观察总结。

教师活动:让学生阅读下面的“归纳”部分和以下内容,以掌握一次函数的概念。

根据“归纳”部分,我们可以发现,一次函数的形式都是自变量x的k(常数)倍与一个常数的和。

一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数。

当b=0时,y=kx+b即y=kx,因此正比例函数是一种特殊的一次函数。

学生活动:学生应按要求阅读教材,理解并记忆一次函数的概念和一般形式。

第二课时一次函数图像新课标要求一)知识与技能1.知道一次函数的图像是直线,会用两点法画一次函数的图像。

人教版数学八年级下第19章《一次函数》导学案

人教版数学八年级下第19章《一次函数》导学案

人教版数学八年级下第19章《一次函数》导学案共28页19.1变量与函数学习目标、重点、难点【学习目标】1、常量、变量的概念;2、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;3、图象的定义;4、描点法画函数图象的一般步骤;【重点难点】1、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;2、描点法画函数图象的一般步骤;新课导引有资料显示,影响气温有三个方面的因素,即纬度位置、海陆位置和地形.其中,地形对气温的影响是巨大的,地理学家经过多年探测和研究发现,海拔每升高100米,气温下降0.6℃.【问题探究】 如果山脚的气温是24℃,那么相对山脚高度为2000米的山顶的气温又如何呢?相对山脚高度为x 米处的气温又如何表达呢?【解析】 山脚的气温为24℃,相对山脚高度为2000米的山顶的气温应比24℃低,降低的温度为0.6×1002000=0.6×20=12(℃),故可知相对山脚高度为2000米的山顶气温为24-12=12(℃).同理,相对山脚高度为x m 处的气温可表示为(24-0.6×100x )℃教材精华知识点1常量与变量不同的事物在变化过程中,有些量的值是按照某种规律变化的,有些量的值是始终不变的.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.拓展 常量与变量是相对的,判断常量与变量的前提条件是“在某一变化过程中”,在不同的变化过程中,同一个量在不同过程中可能不同.如工作量问题,工作量=工作效率×工作时间,若工作量一定,则工作效率、工作时间为变量;若工作效率一定,则工作量、工作时间为变量.知识点2 函数的概念一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.函数的定义中包括三个要素:(1)自变量的取值范围;(2)两个变量之间的对应关系;(3)后一个变量被唯一确定而形成的变化范围.拓展 (1)自变量与函数都用什么字母表示无关紧要,自变量可用x 表示,也可用t ,u ,p ,…中的任何一个字母表示,函数可用y 表示,也可用s ,v ,q ,…中的任何一个字母表示.(2)在我们所研究的范围内,有时两个变量之间虽然有一定的关系,但却不符合函数中的对应关系,也就是说,这种关系不是“唯一确定”的关系,那么这两个变量之间就不存在函数关系.(3)函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系.必须是“对于x的每一个值,y都有唯一的值与之对应”.例如:“一个数与它的绝对值”,若一个数用x表示,它的绝对值用y表示,其中x可以取任意实数,即自变量的取值范围是全体实数,对应关系是一个数与它的绝对值对应,一个数的绝对值是这个数的函数.规律方法小结确定函数关系的方法:判断变量之间是否构成函数关系,就是看是否存在两个变量.并且在这两个变量中,确定好哪个是自变量,哪个是因变量,自变量在变化过程中处于主动地位,因变量在变化过程中处于被动地位,自变量每变一个值,因变量都必须有唯一确定的值与它相对应,这样,它们才能构成函数关系.知识点3 函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式.我们应从以下几个方面来理解函数关系式的概念:(1)函数关系式是等式.例如:y=2x+3就是一个函数关系式,我们可以说代数式2x+3是x 的函数,但不能说2x+3是函数关系式.(2)函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个变量表示函数.例如:y=2x2+3中,y是x的函数,x是自变量.(3)书写函数关系式是有顺序的.例如:y=x-3表示y是x的函数;若x=y+3,则表示x是y的函数.也就是说,求y关于x的函数关系式,必须用自变量x的代数式表示y,即得到的等式的左边是一个变量y,右边是一个含x的代数式.(4)用数学式子表示函数的方法叫解析法.知识点4 自变量的取值范围的确定函数自变量的取值范围的确定必须考虑两个方面:首先,自变量的取值必须使含自变量的代数式有意义;其次,自变量的取值应使实际问题有意义.这两个方面缺一不可,尤其是后者,在学习过程中特别容易忽略.因此,在分析具体问题时,一定要细致周到地从多方面考虑.拓展在函数关系式中,自变量的取值要使函数关系有意义,可分下列几种情况:(1)当函数关系式是一个只含有一个自变量的整式时,自变量的取值范围是全体实数.例如:y =2x-1中,自变量x的取值范围是全体实数.(2)当函数关系式表示实际问题时,自变量的取值必须使实际问题有意义.例如:S=πR2中,若R表示圆的半径,则R>0.(3)当函数关系式是分式时,自变量的取值范围是使分母不为零的实数.(4)当函数关系式是二次根式时,自变量的取值范围是使被开方数不小于零的实数.(5)自变量的取值范围可以是有限或无限的,也可以是几个数或单独的一个数.识点5 函数值函数值是指自变量在取值范围内取某个值时,因变量与之对应的确定的值.拓展(1)①当已知函数解析式时,给出自变量的值,求相应的函数值,就是将自变量x代入解析式,求代数式的值.②当已知函数解析式时,给出函数值,求相应的自变量x的值.就是解方程.③已知函数解析式,当自变量确定时,函数值也唯一确定;当函数值确定时,自变量不一定唯一.(2)当函数与实际问题相联系时,函数值与自变量的值都要使实际问题有意义.规律方法小结已知函数值和函数解析式求自变量的过程体现的是一种方程思想,所谓方程思想,就是指对所求的数学问题通过列方程(组)使问题得以解决的数学思想.知识点6 函数的图象一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.拓展(1)函数的图象可以是直线、射线、线段,也可以是双曲线、抛物线等,要形象直观地反映两个变量之间的对应关系.(2)观察图象时要注意弄清横轴和纵轴表示的意义,自变量的取值范围以及图象中函数值随着自变量变化的规律.规律方法小结(1)①利用函数图象,可以求方程的解、不等式的解集、方程组的解集,还可以预测变量的变化趋势.②通常判断一个点是否在函数图象上的方法是:将这个点的坐标代入函数的表达式,若满足,则这个点就在函数的图象上;若不满足,则这个点就不在函数的图象上.函数图象上的任意点A(x,y)中的x,y满足函数关系式;反之,满足函数关系式的任意一对x,y的值所对应的点一定在函数的图象上.(2)在求方程的解、不等式解集的问题中,还有解决一些实际问题的时候,为了使问题更简单,通常用图象来辅助解决问题,这就体现了另一种数学思想——数形结合思想.所谓数形结合思想,就是将数与形结合起来进行分析、研究、解决问题的一种思想方法.知识点7 用描点法画函数图象的一般步骤用描点法画函数图象的一般步骤:(1)列表:给出一些自变量的值及其对应的函数值.(2)描点:在平面直角坐标系中,以自变量的值为横坐标.相应的函数值为纵坐标,描出表格中数值对应的各点.(3)连线:按照横坐标由小到大的顺序把所描出的各点用平滑的曲线连接起来.拓展(1)列表时要根据自变量的取值范围取值,从小到大或自中间向两边选取,取值要有代表性,尽量使画出的函数图象能反映出函数的全貌.(2)描点时要以表中每对对应值为坐标,点取得越多.图象越准确.(3)连线时要用平滑的曲线将所描的点顺次连接起来.知识点8 函数的三种表示形式列表法:用表格列出自变量与函数的对应值,表示函数两个变量之间的关系.这种表示函数的方法叫做列表法.它的优点是能明显地显示出自变量的值和与之对应的函数值.但它只能把部分自变量的值和与之对应的函数值列出,不能反映出函数变化的全貌图象法:用图象表示两个变量之间的函数关系,这种表示函数的方法叫做图象法.它的优点是能够形象直观地显示出数据的变化规律,为研究函数的性质提供方便,但所画出的图象是近似的、局部的,所以由图象确定的函数往往不够准确.解析法:用自变量x的各种数学运算构成的式子表示函数y的方法叫做解析法.它的优点是简明扼要,规范准确,便于理解函数的性质,但并非适用于所有函数.课堂检测基本概念题1、(1)在圆的周长公式C=2πR中,常量是,变量是;(2)东风村的耕地面积是109 m2,这个村人均占有耕地面积y随这个村的人数x的变化而变化,其中常量是,变量是,解析式为.基础知识应用题2、如图所示,图中有几个变量?你能将其中某个变量看成是另一个变最的函数吗?如果能,求出当t=12时对应的路程s.3、某地区现有果树1 2000棵,计划今后每年栽果树2000棵.(1)求果树总数y(棵)与年数x(年)的函数关系式;(2)预计到第5年该地区有多少棵果树.综合应用题4、李奶奶晚饭以后外出散步,碰到老邻居交谈一会儿,返回途中,在读报栏前看了一会儿报,如图所示的是据此情况画出的图象,请你回答下列问题.(1)李奶奶是在什么地方碰到老邻居的?交谈了多长时间?(2)读报栏大约离家多远?(3)李奶奶在哪段时间走得最快?你是怎么计算的?(4)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?你能将其中某个变量看成是另一个变量的函数吗?请写出0≤t≤15时,s与t的关系式.5、有一个水箱,它的容积为500 L,水箱内原有水200 L,现需将水箱注满,已知每分钟注入水10 L.(1)写出水箱内水量Q(L)与时间t(min)的函数关系式;(2)求自变量t的取值范围;(3)画出函数图象.探索创新题6、如图所示的图象反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题.(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式;(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度?在哪一段时间内,甲的行驶速度大于乙的行驶速度?(3)从图象中你还能获得什么信息?请写出其中的一条.体验中考1、写出图象经过点(1,-1)的一个函数关系式:.2、一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是(如图所示) ( )学后反思附:课堂检测及体验中考答案课堂检测1、分析本题考查的是常量与变量的概念.常量是在一个变化过程中,数值不发生改变的量;变量是在一个变化过程中,数值发生变化的量.答案:(1)2π C ,R (2)109y 与x x y 910= 【解题策略】 π是常数.而不是变量.另外,常量不一定都是用具体的数表示的,有时也可用字母表示.2、分析 本题考查变量与函数的概念以及求函数值的方法.从图中可以看出,有两个变量t 与s ,而s =vt ,v 是常量,所以t 与s 构成函数关系,从图中还可以看出,当t =3时,s =20,这说明走20米的路程用了3分钟,则速度320=v 米/分. 解:从图中看出,有两个变量t 和s .如果把t 看做自变量,s 看做因变量,那么路程s 、速度v 、时间t 之间的关系式为s =vt .从图中看出,每取一个t 值,都有一个s 值与之对应,当t =3时,s =20,∴20=3v ,∴320=v 米/分. ∴s 与t 之间的关系式为t s 320=(t ≥0), ∴可以将s 看做t 的函数.∴当t =12时,s =320×12=80(米). 规律·方法 要确定函数关系,就要确定两个变量中,哪个是自变量,哪个是因变量,还要注意到其他的量都必须是常量.求函数值的方法有两种,一种是从图中找出来,另一种是用求代数式的值的方法求出来.3、 分析 果树总数y (棵)=现有果树12000(棵)+历年栽树的棵数.解:(1)y =12000+2000x (x ≥0,且x 为整数).(2)当x =5时.y =12000+2000×5=22000(棵),即预计到第5年该地区有22000棵果树.【解题策略】 确定自变量的取值范围时,不仅需要考虑函数关系式有意义,而且还要注意问题的实际意义.4、分析 本题考查的是由图象分析问题的能力.解:(1)李奶奶是在离家600米处碰到老邻居的,交淡了大约10分钟.(2)读报栏大约离家300米.(3)李奶奶在40~45分这段时间内走得最快,这是因为:李奶奶从家出发到返回家中的行程是这样的:①从出发地点到遇到老邻居,用了15分,走了600米,在这15分时间内,她的平均速度是600÷15=40(米/分);②从15分到25分,她和老邻居交谈了约10分;③从25分到35分,她在返回家的途中,走了600-300=300(米),这一段她的平均速度是300÷10=30(米/分);④从35分到40分,她在读报栏读报,也就是读报栏离家大约300米的距离;⑤从40分到45分,她返回家中,共用时5分,行走了300米,这一段她的平均速度是300÷5=60(米/分).因此李奶奶在40~45分这段时间内走得最快.(4)从图中反映出了李奶奶外出散步时间与离家距离这两个变最之间的关系,其中外出散步时间是自变量,离家距离是因变量,离家距离是散步时间的函数.当0≤t ≤15时,s =40t .5、分析 (1)水箱内的水量=原有水量+t 分钟内注入的水量;(2)由于t 表示时间,则有t ≥0,又因为水箱内的水量必小于或等于水箱的容量,所以200+10t ≤500,解得t≤30;(3)用描点法画出图象,但要注意图象应为一条线段,必须突出线段的端点,用实心点表示.解:(1)Q =200+10t . (2)由题意知⎩⎨⎧≤+≥,50010200,0t t 解得0≤t ≤30.(3)图象如图14-5所示.【解题策略】 实际问题中的自变量的取值范围应使实际问题有意义,同时要特别注意实际问题中不可忽略的隐含的限制条件.实际问题的函数图象常为线段或射线,画其图象时必须用实心点或空心圈来表示临界值.6、分析 本题考查对函数图象的观察、理解能力,认真观察图象、理解图象即可解决问题. 解:(1)s =2t (t ≥0).(2)当0<t <1时,甲的行驶速度小于乙的行驶速度;当t >1时,甲的行驶速度大于乙的行驶速度.(3)此题答案不唯一,如在出发后的第3小时两人相遇等.【解题策略】 (1)在描述行程问题的图象中,可以通过点的坐标求速度.比如用P 点坐标(3,6),可以求甲的速度为36=2千米/时,用Q 点坐标(1,3),可以求乙在前一个小时的速度为13=3千米/时.(2)利用坐标系中同一起点处图象的高低可以判断行驶过程中速度的快慢,图象高的行驶速度快.(3)图象相交的时刻就是两人相遇的时刻.体验中考1、分析 本题考查图象上点的坐标与函数关系式的关系,点在图象上,则将点的坐标代入函数关系式,函数关系式成立,本题答案不唯一.可以填y =-x 或y =x 2-2等.2、分析 本题考查用图象表示两个变量之间的关系的能力,随着时间t 的增加,航行的路程先逐渐增加,然后由于停留一段时间,所以有一段时间航行路程保持不变,然后逆流回航.路程仍然逐渐增加,但由于逆行速度比顺流速度慢,所以路程增加的幅度变小.故选C .【解题策略】 本题中明确s 代表的意义是解题的关键,它代表航行的路程而不是离开甲地的距离.19.2一次函数学习目标、重点、难点【学习目标】1、一次函数的有关概念(正比例函数、一次函数)2、一次函数的图象和画法;3、一次函数的性质(正比例函数的性质、一次函数的性质) 【重点难点】1、正比例函数的概念、图象和性质;2、一次函数的概念、图象和性质;3、待定系数法;知识概览图新课导引生活中,我们见到过形形色色的钟表,它是我们日常的计时工具,一声声滴答滴答,提醒我们珍惜时间,时钟的分针每旋转一圈,表示时间过了一个小时,旋转两圈,表示时间过了2个小时,如此下去,时间在不断流逝,那么分针走过的圈数与经过的时间有什么关系呢?应如何表示? 【问题探究】分针旋转一圈,时间便过了相应的一小时,两者之间存在一个一一对应关系,可看做函数,那么可以适当设出变量,用函数关系式表示.【解析】设分针走过的圈数为x ,时间设为y (小时),则两者之间存在一种对应关系,可以用函数关系式y =x 表示,当然也可用表格或图象表示.教材精华知识点1正比例函数的概念、图象和性质概念:一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数.正比例函数中自变量的取值范围是全体实数.图象:一般地,正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y =kx .性质:当k >0时,y 随x 的增大而增大.当x <0时,y 随x 的增大而减小.拓展 (1)正比例函数y =kx ,也可以说成y 与x 成正比例.要求函数关系式只需通过x ,y 的一组对应值求出k ,从而确定关系式.(2)正比例函数的图象是过原点的直线.当k >0时,直线从左到右呈上升趋势,经过第三、一象限;当k <0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时.只需选取除原点外的一点,过原点和选取点画直线即可,选取的点一般为点(1,k ).(3)正比例函数的性质也可以逆用.如当正比例函数y =kx (k ≠0)中y 随x 的增大而增大时,则k >0,反之k <0;再比如,正比例函数的图象过第一、三象限,则k >0等.知识点2一次函数的概念、图象和性质概念:一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数. 图象:一次函数的图象是一条直线.性质:一次函数y =kx +b (k ,b 常数,k ≠0),当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.拓展 (1)一次函数的关系式是关于自变量的一次关系式,要确定一次函数关系式,只需确定k ,b .(2)一次函数的图象是一条直线,要画出图象只需确定图象上的两点,这两点一般选与x 轴、y轴的交点⎪⎭⎫⎝⎛-0,k b ,(0,b ),过这两点画直线即可.(3)直线y=kx+b也可以看做是把直线y=kx向上(b>0)或向下(b<0时)平移b个单位得到的.(4)直线y=k1x+b1与直线y=k2x+b2的位置关系:当k1=k2,b1=b2时,两直线重合.当k1=k2,b1≠b2时,两直线平行.当k1≠k2,b1=b2时,两直线相交于y轴上的一点(0,b1).当k1≠k2,b1≠b2时.两直线相交.(5)直线y=kx+b(k≠0)的位置与k,b符号的关系.由k,b的符号可以确定直线y=kx+b的位置.反过来,由直线y=kx+b的位置也可以确定k,b的符号.这种数形结合的思想方法,是我们解决图象问题的重要方法.由k,b的符号也可以不通过画图象,直接判定直线的位置,k的符号决定直线的倾斜方向,b的符号决定直线与y轴交点的位置.(6)k的大小决定直线的倾斜程度,即k越大,直线与x轴相交成的锐角度数越大;k越小,直线与x轴相交成的锐角度数越小.b决定直线与y轴交点的位置,b>0时,直线与y轴的交点在y轴的正半轴上;b<0时,直线与y轴的交点在y轴的负半轴上.规律·方法(1)要正确理解一次函数成立的条件.①自变量的指数是1;②一次项系数k≠0.(2)弄清楚一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数并不一定是正比例函数.当一次函数y=kx+b中b=0时,一次函数就变成了正比例函数,所以正比例函数是特殊的一次函数.(3)一次函数自变量的取值范围是全体实数,在实际问题中根据实际意义确定.知识点3 待定系数法待定系数法是确定函数关系式的基本方法.用待定系数法确定一次函数表达式的步骤为:(1)设出函数关系式的一般形式y=kx+b.(2)把自变量x 与函数y 的对应值代入函数关系式中,得到关于待定系数的方程或方程组. (3)求出待定系数. (4)写出函数关系式.拓展 确定实际问题中一次函数关系式时,首先要将实际问题转化为数学问题,即建立数学模型,其次是建立函数与自变量之间的关系式,要注意确定自变量的取值范围.课堂检测基础知识应用题1、下列函数(以x 为自变量)中,一次函数有 ,正比例函数有 . ①x y 2=;②131+=x y ;③y =-4x ;④12-=x y ;⑤y =5x 2. 2、若正比例函数y =(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 ( )A .m <0B .m >0C .m <21 D .m >213、已知y -3与x 成正比例,且当x =2时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =4时,求y 的值; (3)当y =4时,求x 的值.综合应用题4、已知直线y =(1-3k )x +2k -1. (1)k 为何值时,直线经过原点?(2)k 为何值时,直线与y 轴交点的纵坐标是-2? (3)k 为何值时,直线与x 轴交于点(43,0)? (4)k 为何值时,直线经过第二、三、四象限? (5)k 为何值时,已知直线与直线y =-3x -5平行?探索创新题5、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h),两车之间的距离为y (km),如图所示的折线表示y 与x 之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度;(4)求线段BC 表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30 min 后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时.体验中考1、对于函数y =k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是 ( )A .是一条直线B .过点⎪⎭⎫⎝⎛k k ,1C .经过一、三象限或二、四象限D .y 随x 的增大而增大2、一次函数y =kx +b ,若x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值 ( ) A .增加4 B .减小4 C .增加2 D .减小23、直线y =-2x -4分别交x 轴、y 轴于点A ,B ,O 为坐标原点,则S △AOB = .4、已知一次函数y =kx +b 的图象经过点A (-1,3)和点B (2,-3). (1)求这个一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积.学后反思附: 课堂检测及体验中考答案 课堂检测1、分析 本题需要运用概念进行判断,要结合一次函数、正比例函数的特征,另外,要特别注意正比例函数是一次函数,而一次函数不都是正比例函数,①中x2是分式,④中x 2是根式,⑤中的5x 2是二次式,因而这几个函数都不是一次函数,当然也不是正比例函数. 答案:②③ ③规律·方法 判定一次函数的方法:(1)必须是整式;(2)自变量的次数必须是一次;(3)一般形式y =kx +b 中k ≠0,k 和b 为常数.2、分析 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,所以y 随x 的增大而减小,所以1-2m <0,所以m >21.故选D . 【解题策略】 此类问题也可以结合图象进行判定.根据两点坐标的关系,找出y 随x 的变化规律,从而利用函数的增减性确定k 的符号,这种类型的问题在中考中经常出现.3、分析 本题考查利用待定系数法求函数解析式的方法.由y -3与x 成正比例,可设y -3=kx ,由x =2,y =7可求出k ,则可以写出关系式. 解:(1)由于y -3与x 成正比例,可设y -3=kx . 把x =2,y =7代入y -3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y -3=2x ,即y =2x +3. (2)当x =4时,y =2×4+3=11. (3)当y =4时,4=2x +3,∴21=x . 【解题策略】 本题中把y -3看做一个整体,从而设y -3=kx .4、分析 (1)正比例函数的图象经过原点(或当b =0时,直线经过坐标原点);(2)直线y =kx +b 与y 轴交点的纵坐标是b ;(3)直线y =kx +b 与x 轴交点的横坐标为-kb;(4)当k <0,b <0时,直线y =kx +b 经过第二、三、四象限;(5)如果直线y 1=k 1x +b 1与直线y 2=k 2x +b 2平行,那么k 1=k 2,b 1≠b 2,反过来也成立. 解:(1)当2k -1=0,即k =21,直线经过原点. (2)当x =0时,y =-2,即2k -1=-2,解得k =-21, 即当k =-21时直线与y 轴交点的纵坐标是-2.(3)当x =43时,y =0,即43(1-3k )+2k -1=0,解得k =-1,即当k =-1时,直线与x 轴的交点坐标为(43,0).(4)当⎩⎨⎧--,0<12,0<31k k ,即31<k <21时,直线经过第二、三、四象限.(5)当1-3k =-3,即k =34时,2k -1=35≠-5,此时,已知直线与直线y =-3x -5平行. 规律·方法 本题从不同的方面考查了一次函数图象的基本知识,解题时,我们应做到由解析式或k ,b 的符号,联想到图象的大致位置,或由图象联想到函数解析式或k ,b 的符号,真正做到数与形的紧密结合.5、 解:(1)900(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇.。

一次函数的解析式的求法(导学案)-八年级数学下册(人教版)

  一次函数的解析式的求法(导学案)-八年级数学下册(人教版)

学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学八年级下册19.2.5一次函数的解析式的求法导学案一、学习目标:1.理解待定系数法的意义.2.会用待定系数法求一次函数的解析式.重点:用待定系数法求一次函数的解析式.难点:能从不同的条件下找出隐含条件求一次函数解析式.二、学习过程:课前自测1.什么叫一次函数?2.一次函数y=kx+b(k,b 是常数,k≠0)有什么性质呢?3.常数k 和b 是怎样影响函数图象的呢?画一画画出函数y=2x 和y=-23x+3的图象.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________自主学习求下图中直线的函数解析式.①图(1)是经过_____的一条直线,因此是_______函数.②设它的解析式为_______.③将点________代入解析式求出______,从而确定该函数的解析式为_______.确定正比例函数的解析式需要___个条件.图(2)设直线的解析式是________,因为此直线经过点______和______,因此将这两个点的坐标代入可得关于k,b 方程组,从而确定k,b 的值,确定了函数解析式.确定一次函数的解析式需要___个条件.【求解】解:设直线的解析式为___________学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________∵直线经过点________与_________∴________________________解方程组得________b k ∴这条直线的解析式为____________.典例解析例1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.【归纳】__________________________________________________________,__________________________________叫做待定系数法.【针对练习】已知一次函数的图象经过点(9,0)和点(24,20),写出函数的解析式.例2.若一次函数的图象经过点A(2,0)且与直线y=-x+3平行,求其解析学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________式.例3.一次函数y=kx+b 的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式.例4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的解析式.达标检测1.一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是()A.k=2B.k=-3C.b=2D.b=-3学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.已知y 是x 的一次函数,表中列出了部分对应值,则m 的值为()A.-1B.0C.12D.23.若直线y=kx+b 经过A(0,2)和B(3,0)两点,则这个一次函数的解析式是()A.y=2x+3B.y=3x+2C.y=-23x+2D.y=x-14.如图,一次函数的图象经过A,B 两点,则这个一次函数的解析式是()A.y=32x-2B.y=12x-2C.y=12x+2D.y=32x+25.已知一次函数y=kx+b,当x 增加3时,y 减小2,则k 的值是()A.-23B.-32C.23D.326.如图,把直线y=-2x 向上平移后得到直线AB,直线AB 经过点(m,n),且2m+n=6,则直线AB 的解析式是()A.y=-2x-3B.y=-2x-6C.y=-2x+3学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________D.y=-2x+67.已知一次函数y=kx+2,当x=5时,y=4,则k=_____.8.若一次函数y=2x+b 的图象经过点A(-1,1),则b=____,该函数图象过点B(,____)和点C(____,0).9.已知一次函数y=kx+b 的图象经过A(4,-5),B(-6,7)两点,则k____0.(填“>”或“<”)10.一次函数y=mx+|m-1|的图象经过点(0,2),且y 随x 的增大而增大,则m 的值是_____.11.已知一次函数y=kx+3的图象与坐标轴围成的三角形的面积是1.5,则此一-次函数的解析式可能为__________________.12.如图,直线l 与y 轴交于点(0,3),与正比例函数y=2x 的图象交于点B,且点B 的横坐标为1,求直线l对应的函数解析式.13.已知一次函数的图象经过A(-2,-3),B(1,3)两点.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(1)求这个一次函数的解析式.(2)判断点P(-1,1)是否在这个一次函数的图象上.(3)求此函数图象与x 轴、y 轴围成的三角形的面积.。

人教版数学八年级下册第十九章《数学活动 一次函数的应用问题》教案

人教版数学八年级下册第十九章《数学活动 一次函数的应用问题》教案

人教版数学八年级下册第十九章《数学活动一次函数的应用问题》教案一. 教材分析人教版数学八年级下册第十九章《数学活动一次函数的应用问题》主要让学生通过解决实际问题,进一步理解一次函数的性质和应用。

本章内容主要包括一次函数的图像与实际问题相结合,培养学生运用数学知识解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了了一次函数的基本性质和图像,能够理解一次函数的斜率和截距。

但部分学生对于如何将一次函数与实际问题相结合,解决实际问题还有一定的困难。

三. 教学目标1.理解一次函数在实际问题中的应用。

2.能够运用一次函数解决实际问题。

3.培养学生的数学思维能力和实际问题解决能力。

四. 教学重难点1.一次函数在实际问题中的应用。

2.如何引导学生将实际问题转化为一次函数问题。

五. 教学方法采用问题驱动法,通过实际问题引导学生思考,运用一次函数的知识解决问题。

同时,采用案例分析法,分析一次函数在不同实际问题中的应用。

六. 教学准备1.准备一些实际问题,如购物问题、行程问题等。

2.准备一次函数的图像资料。

七. 教学过程1.导入(5分钟)通过一个购物问题,引导学生思考如何用数学知识解决实际问题。

2.呈现(10分钟)呈现一次函数的图像,让学生观察一次函数的特点。

同时,引导学生思考一次函数与实际问题之间的关系。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数的知识解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)选取几个小组的解题过程和答案,进行讲解和分析,巩固学生对一次函数应用的理解。

5.拓展(10分钟)引导学生思考一次函数在实际问题中的应用范围,讨论一次函数在其他领域的应用。

6.小结(5分钟)总结本节课的主要内容和解决实际问题的方法。

7.家庭作业(5分钟)布置一些有关一次函数应用的实际问题,让学生课后思考和练习。

8.板书(5分钟)板书本节课的主要内容和解决问题的方法。

教学过程每个环节所用的时间仅供参考,具体时间根据实际教学情况调整。

八年级数学下册19.2.2 一次函数导学案

八年级数学下册19.2.2 一次函数导学案

19.2.2 一次函数第一课时教学目标1.理解一次函数的概念及其与正比例函数的关系,在探索过程中,发展学生的抽象思维及概括能力,体验特殊和一般的辨证关系.2.能根据问题信息写出一次函数的表达式,能利用一次函数解决简单的实际问题.3.经过利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.教学重难点重点:一次函数的概念及其与正比例函数的关系;会根据已知信息写出一次函数的表达式.难点:理解一次函数的概念及其与正比例函数的关系,在探索过程中,发展学生的抽象思维及概括能力.教学过程一、情境引入上节课我们一起学习了函数和正比例函数的概念,同学们能说出函数与正比例函数的概念及它们之间的关系吗?(学生思考后,抢答.)请同学们来看下面的问题:(多媒体演示)【问题1】某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高x km时,他们所在位置的气温是y℃.试用函数解析式表示y与x的关系.【分析】 y随x变化的规律是:从大本营向上,当海拔增加xkm时,气温从5℃减少6x℃,因此,y与x的函数解析式为:y=5-6x,这个函数也可以写为y=-6x+5.当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是当x=0.5时函数y =-6x+5的值,即y=-6×0.5+5=2(℃).【问题2】问题1中的这个函数:y=-6x+5是正比例函数吗?它与正比例函数有什么不同?这种形式的函数还有吗?让学生畅所欲言,将y=-6x+5与正比例函数的解析式y=kx作对比,发现多了一个常数项,学生依照模式举出另外一些例子,教师给予点评.本节课我们就一起来探究这种新型的函数及其图象的特征.二、互动新授请同学们接着看教材P90“思考”中的问题:(多媒体演示)【思考】下列问题中,变量之间的对立关系是函数关系吗?如果是,请写出函数关系式.这些函数解析式有哪些共同特征?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x min的计时费(按0.1元/min收取).(4)把一个长10cm 、宽5cm 的长方形的长减少x cm ,宽不变,长方形的面积y (单位:cm 2)随x 的变化而变化.逐一出示题目并由学生独立完成,此处不必对自变量取值范围作深入追究,重在正确得出函数关系式.教师评讲:上面问题中,表示变量之间关系的函数解析式分别为:(1)c =7t -35(20≤t ≤25); (2)G =h -105;(3)y =0.1x +22; (4)y =-5x +50(0≤x ≤10).正如函数y =-6x +5一样,上面这些函数都是常数k 与自变量的积及与常数b 的和的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.【问题3】 下列函数中哪些是一次函数,哪些又是正比例函数?(1)y =-8x ; (2)y =-8x; (3)y =5x 2+6; (4)y =-0.5x -1. 学生独自思考后交流讨论,形成共识:(1)(4)是一次函数,其中(1)是正比例函数.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了一次函数的概念:形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.四、板书设计五、教学反思本课教学通过创设情境引入一次函数,引导学生类比正比例函数概念的学习过程来学习一次函数.教学中发现学生在判断一个函数是否是一次函数时,往往只凭表象判定,容易出错.因此,教学时要让学生明白:要判断一个函数是否是一次函数,就要先将式子进行变形,看它能否化成y =kx +b(k ,b 是常数,k ≠0)的形式,即x 的指数为1,k ≠0,b 为任意常数,若符合上述条件,且b =0,则这个函数即是一次函数,又是正比例函数.也就是说,正比例函数一定是一次函数,而一次函数不一定是正比例函数.同时,教师还要点明,一次函数的解析式应是整式,自变数指数应为 1.只有让学生把一次函数的概念理解透彻,才能明确辨析一次函数的解析式的结构特征,为今后一次函数的学习打好基础.导学方案一、学法点津学生在学习一次函数概念时,要明确:一次函数的解析式的形式是y =kx +b(k ,b 是常数,k ≠0),它的右边是关于x 的一次式,其中一次项系数必须是不为零的常数,b 可以为任意常数.二、学点归纳总结1.知识要点总结(1)一次函数的概念一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数是一次函数.(2)一次函数与正比例函数的区别与联系.正比例函数一定是一次函数,而一次函数只有当常数项为零时,才变为正比例函数.2.规律方法总结判断一个函数是否是一次函数,就是判断它是否能化成y =kx +b(k ,b 是常数,k ≠0)的形式,能化成y =kx +b(k ,b 是常数,k ≠0)形式的函数一定就是一次函数,不能化成y =kx +b(k ,b 是常数,k ≠0)形式的函数就不是一次函数.第一课时作业设计一、选择题1.下列说法正确的是( ).A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数2.一次函数y =kx +b(k ≠0)满足x =0时,y =-1;x =1时,y =1,则这个一次函数是( ).A .y =2x +1B .y =-2x +1C .y =2x -1D .y =-2x -13.若2y -4与3x -2成正比例函数,则y 与x( ).A .一定是正比例函数B .一定是一次函数C .没有函数关系D .以上答案不对二、填空题4.如图,已知点A(-1,0),点B 是直线y =x 上的一动点,当线段AB 最短时,点B 的坐标为________.5.下列函数:(1)y =x -6;(2)y =2x ;(3)y =x 8;(4)y =7-x 中,y 是x 的一次函数的有________.6.一次函数y =2x +b -3,当b =__________时,此一次函数变成为正比例函数.三、解答题7.k 为何值时,函数y =(k +1)xk 2+k -1是一次函数?此时它是正比例函数吗?8.已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系;(3)求x =2.5时,y 的值.【参考答案】一、1.A 2.C 3.B二、4.⎝⎛⎭⎫-22,-22 5.(1)(3)(4) 6.3 三、7.解:由k 2=1,得k =±1,又∵k +1≠0,∴k ≠-1,∴k =1.此时y =2x ,它是正比例函数.8.解:(1)由y =k(x -3),当x =4时,y =3,得3=k(4-3),解得k =-3,∴y =3(x -3),即y =3x -9.(2)y 与x 之间是一次函数关系.(3)当x =2.5时,由y =3x -9得,y =3×2.5-9=-1.5.第二课时教学目标1.了解一次函数的图象及其画法.2.理解一次函数与正比例函数以及它们图象之间的关系.3.理解一次函数的性质.4.通过一次函数的图象和性质的研究,体会数形结合在问题解决中的作用,并能应用它们解决相关函数问题.5.通过画函数的图象以及用函数图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁性.教学重难点重点:一次函数的图象和性质.难点:由一次函数图象归纳出一次函数性质以及对性质的理解.教学过程一、情境引入大家知道,有句名言“数因形而直观,形因数而入微”,同学们还记得其中反映的数学思想方法吗?学生很容易回答出“利用数形结合来研究问题时,数量关系与图形相互依赖,密不可分”等,之后教师提出以下问题:【问题1】 我们曾用数形结合的方法研究了正比例函数,大家还能回忆它的有关内容吗?学生畅所欲言.【问题2】 还记得上节课的“登山问题”吗?多媒体出示:某登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃.试用解析式表示y 与x 的关系.为了直观地反映登山温度变化情况(y =5-6x ),我们可以怎么做呢?(画出图象). 那么图象是什么形状呢?这就是本节课我们要一起探究的一次函数图象及其性质.二、互动新授【例2】 画出函数y =-6x 与y =-6x +5的图象.学生独自在坐标纸上动手画图后,教师多媒体演示:【解】 函数y =-6x 与y =-6x +5中,自变量x 可以是任意实数,列表表示几组对应值(计算并填写教材表19-9中空格).x -2 -1 0 1 2y=-6x0 -6y=-6x+55 -1教材表19-9画出函数y=-6x与y=-6x+5的图象(教材图19.2-3).教材图19.2-3【思考】比较上面两个函数的图象的相同点与不同点,填出你的观察结果:这两个函数的图象形状都是__________,并且倾斜程度__________,函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点__________,即它可以看作由直线y=-6x向__________平移__________个单位长度而得到.比较两个函数解析式,你能说出两个函数的图象有上述关系的道理吗?联系上面结果,考虑一次函数y=kx+b(k≠0)的图象是什么形状,它与直线y=kx(k≠0)有什么关系.学生思考后,师生共同探究:比较一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的解析式,容易得出:一次函数y=kx+b(k≠0)的图象可以由直线y=kx平移|b|个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).一次函数y=kx+b(k≠0)的图象也是一条直线,我们称它为直线y=kx+b.【例3】画函数y=2x-1与y=-0.5x+1的图象.【分析】由于一次函数的图象是直线,因此只要确定两个点就能画出它.【解】列表表示当x=0,x=1时两个函数的对应值(教材表19-10).x 0 1y=2x-1 -1 1y=-0.5x+1 1 0.5教材表19-10过点(0,-1)与点(1,1)画出直线y=2x-1的图象;过点(0,1)与点(1,0.5)画出直线y=-0.5x+1.(教材图19.2-4)教材图19.2-4【思考】画出函数y=x+1,y=-x+1,y=2x+1,y=-2x+1的图象,由它们联想:一次函数解析式y=kx+b(k,b是常数,k≠0)中,k的正负对函数图象有什么影响?学生练习后,师生共同分析:观察前面一次函数的图象,可以发现规律:当k>0时,直线y=kx+b从左向右上升;当k<0时,直线y=kx+b从左向右下降.由此可知:一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:当k<0时,y随x的增大而减小.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了一次函数的图象及性质:当k>0时,图象由左向右呈上升趋势,y随x的增大而增大.当k<0时,图象由左向右呈下降趋势,y随x的增大而减小.四、板书设计五、教学反思本节课主要是研究一次函数的图象和性质,它是在学习了正比例函数的图象和性质,及初步了解如何研究一个具体函数的图象与性质的基础上进行的,原有的知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善、发展,进一步体验研究函数的基本思路.这些目标的达成,要求教学中必须发挥学生的主体作用.在教学中,部分学生对一次函数y=kx+b的图象位置的确定,k,b所起的作用理解不到位,以致对一次函数的性质把握不准、为了有效地解决这种问题,教师可用数形结合的思想方法来阐述.导学方案一、学法点津学生在画一次函数的图象时,只要在平面直角坐标系中先描出两个点,再连成直线即可,这两点一般选取(0,b)和(-bk,0);同时要记住一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.二、学点归纳总结1.知识要点总结(1)一次函数的图象.①一次函数y=kx+b(k,b是常数,k≠0)的图象是一条直线.②由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.(2)一次函数的性质.一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:①当k>0时,y随x的增大而增大;2.规律方法总结(1)因为两点确定一条直线,所以一般可由点(0,b)和点(-b k,0)确定直线y =kx +b 的解析式,并画出相应的图象.此外还可根据图象的平移求解,即直线y =kx +b 可以看作将直线y =kx 平移|b|个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).(2)根据一次函数的性质,如果已知系数k 的符号就可以直接说出系数y 的值随x 的变化而变化的情况;反之,如果知道一次函数的增减性,就能够推断常数k 的符号.第二课时作业设计一、选择题1.如果函数y =ax +b(a <0,b <0)和y =kx(k >0)的图象交于点P ,那么点P 应该位于( ).A .第一象限B .第二象限C .第三象限D .第四象限2.若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 符号判断正确的是( ).A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <03.点P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点且x 1<x 2,则y 1,y 2的大小关系是( ).A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 2二、填空题4.在一次函数y =2x +3中,y 随x 的增大而__________(填“增大”或“减小”);当0≤x ≤5时,y 的最小值为__________.5.在同一直角坐标系中作出下列直线:(1)y =12x -1;(2)y =2x -1;(3)y =-12x +1;(4)y =-2x +1,则互相平行的直线是__________.6.把直线y =3x 向上平移6个单位长度得到的函数解析式为__________.三、解答题7.已知一次函数y =kx -4,当x =2时,y =-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x 轴的交点坐标.8.已知直线y =2x -3.(1)求直线与y 轴交点到x 轴的距离.(2)在直线上是否存在点A ,使点A 到x 轴的距离为2?若存在,求出点A 的坐标;若不存在,请说明理由.【参考答案】一、1.C 2.D 3.A二、4.增大 3 5.(1)和(3) 6.y =3x +6三、7.(1)y =12x -4. (2)(-4,0). 8.(1)3. (2)存在.点A 的坐标为⎝⎛⎭⎫52,2或⎝⎛⎭⎫12,-2.第三课时教学目标1.学会根据所给信息,用待定系数法求一次函数的解析式.2.了解分段函数的特点,学会根据题意求出分段函数的解析式并画出函数图象.3.能利用一次函数及其图象解决简单的实际问题,发展学生的数学应用能力.4.进一步体会并感知数学建模的一般思想.教学重难点重点:根据所给信息确定一次函数的表达式.难点:培养数形结合解决问题的能力.教学过程一、情境引入请同学们拿出坐标纸,画出函数y =12x 与y =3x -1的图象,回答下列问题:(多媒体演示)【问题1】 在画这两个函数图象时,分别描了几个点?为何选这几个点?可以有不同的取法吗?要求学生根据自己的作图畅所欲言,充分表达自己的观点,以使全班学生在本节课立于同一起跑线上.【问题2】 在上节课中,我们学习了在给定一次函数表达式的前提下,我们可以说出它的图象特征及有关性质;反之,如果给出信息,能否求出函数的表达式呢?这将是本节课我们要研究的问题.二、互动新授【例4】 已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.【分析】 求一次函数y =kx +b 的解析式,关键是求出k ,b 的值.从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b.【解】 设这个一次函数的解析式为y =kx +b.因为y =kx +b 的图象过点(3,5)与(-4,-9),所以⎩⎪⎨⎪⎧3k +b =5,-4k +b =-9.解方程组得⎩⎪⎨⎪⎧k =2,b =-1. 这个一次函数的解析式为y =2x -1.教师总结:像例4这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.由于一次函数y =kx +b 中有k 和b 两个待定系数,因此用待定系数法时,需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.多媒体呈现:K【例5】 “黄金1号”玉米种子的价格为5元/kg.如果一次购买2kg 以上的种子,超过2kg 部分的种子价格打8折.(1)填写教材表19-11.购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …付款金额/元…(2)写出购买量关于付款金额的函数解析式,并画出函数图象.【分析】 付款金额与种子价格有关.问题中种子价格不是固定不变的,它与购买量有关.设购买xkg 种子,当0≤x ≤2时,种子价格为5元/kg ;当x >2时,其中有2kg 种子按5元/kg 计价,其余的(x -2)kg(即超出2kg 部分)种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x ≤2和x >2分段讨论.购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …付款金额/元 2.5 5 7.5 10 12 14 16 18 …(2)设购买量为x kg ,付款金额为y 元.当0≤x ≤2时,y =5x ;当x >2时,y =4(x -2)+10=4x +2.函数图象如教材图19.2-5.教材图19.2-5说明:y 与x 的函数解析式也可合起来表示为:y =⎩⎪⎨⎪⎧5x , 0≤x ≤2,4x +2, x >2. 【思考】 你能由上面的函数解析式解决以下问题吗?由函数图象也能解决这些问题吗?(1)一次购买1.5kg 种子,需付款多少元?(2)一次购买3kg 种子,需付款多少元?学生练习后,小组交流.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了用待定系数法求一次函数的解析式以及分段函数的特点.四、 板书设计五、教学反思在本节课的教学过程中,许多学生对用待定系数法确定一次函数解析式的步骤还不是很清楚,以致解析式求错,因此为便于记忆教师把用待定系数法确定一次函数解析式的步骤归纳为四个字:“设”、“列”、“解”、“代”.“设”.这样,学生记得简单,又不容易出错.另外,求分段函数的解析式,要让学生明白:首先要求出自变量各个范围内所对应的函数解析式,然后用大括号合写成一个函数的形式并标注自变量的取值范围即可.教师还要通过实例,让学生初步感受分段函数在解决问题中的优越性,树立起学生学习的兴趣和信心.导学方案一、学法点津学生要明白用待定系数法确定一次函数y=kx+b(k≠0)的解析式,就是要确定k和b 的值,通过四字口诀:设、列、解、代,来理解并识记其一般步骤.在学习求分段函数时,要明确方法:首先要确定自变量的取值范围,然后用待定系数法求各个自变量取值范围内的函数解析式,最后,合并写成一个函数的形式.二、学点归纳总结1.知识要点总结1.用待定系数法求一次函数解析式的一般步骤:(1)设:设出含有待定系数的函数解析式;(2)列:把已知条件(自变量与函数的对应值)代入解析式得到关于待定系数的方程(组);(3)解:解方程(组),求出待定系数;(4)代:将求出的待定系数的值代回所设的函数解析式,即可得到所求的函数解析式.(2)分段函数的概念.在同一问题中,自变量的不同取值范围内表示函数关系的解析式有不同的形式,这样的函数称为分段函数.2.规律方法总结(1)已知解析式可以画直线,反过来,已知直线也可以求解析式,它们之间的数形转换关系如下所示:K(2)求分段函数的解析式应注意各段自变量的取值范围,分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数的自变量的取值范围.同时,求分段函数的函数值应注意自变量所在的范围,确定相应的函数值.第三课时作业设计一、选择题1.直线y =kx +3与x 轴的交点是(1,0),则k 的值为( ).A .3B .2C .-2D .-32.一次函数图象经过点A(-2,-1),且与直线y =2x -3平行,则此函数解析式为( ).A .y =x +1B .y =2x +3C .y =2x -1D .y =-2x -53.某市出租车收费标准如下:3千米以内收费6元;3千米到10千米部分每千米收费1.3元;10千米以上部分每千米收1.9元,那么出租车收费y(元)与行驶路程x(千米)的函数关系用图象可表示为( ).A BCD二、填空题 4.已知直线y =ax -2经过点(-3,-8)和⎝ ⎛⎭⎪⎫12,b 两点,那么a =__________,b =__________.5.若一次函数y =(1-2m)x +3的图象经过A(x 1,y 1),B(x 2,y 2)两点,当x 1<x 2时,y 1>y 2,则m 的取值范围是__________.6.某图书出租店有一种图书的租金y(元)与出租的天数x(天)之间的函数关系如图所示,则两天后,每过一天,累计租金增加__________元.三、解答题7.已知直线l 与直线y =2x +1的交点的横坐标为2,与直线y =x -8交点的纵坐标为-7,求直线l 的解析式。

八年级数学下册第十九章一次函数全章教案

八年级数学下册第十九章一次函数全章教案

第十九章一次函数变量19.1.1课题:知识目标:理解变量与函数的概念以及相互之间的关系能力目标:增强对变量的理解情感目标:渗透事物是运动的,运动是有规律的辨证思想重点:变量与常量难点:对变量的判断教学媒体:多媒体电脑,绳圈教学说明:本节渗透找变量之间的简单关系,试列简单关系式教学设计:引入::当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?1信息:汽车以2信息,先填写下th,行驶的时间为skm的速度匀速前进,行驶里程为60km/h s. 的式子表示t面的表格,在试用含 1 t/m 5 4 3 2 s/km 新课:张,晚场售出票205张,日场售出票150元,如果早场售出票10)每张电影票的售价为1(问题:的式x元,怎样用含y张,票房收入为x张,三场电影的票房收入各多少元?设一场电影受出票310 y? 子表示在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规(2) 的式子表示kg)单位:m( ,怎样用含重物质量0.5cm重物使弹簧伸长1kg,每10cm律,如果弹簧原长受力后弹簧长度)?cm(单位:l22)要画一个面积为3(呢?怎样用含圆20cm的圆,圆的半径应取多少?圆的面积为10cm r? 的式子表示圆的半径S面积长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。

10m)用4(记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为2S的式子表示x怎样用含,Sm面积为xm, ?数值始终不变的量为常量。

.)variable在一个变化过程中,我们称数值发生变化的量为变量(指出上述问题中的变量和常量。

范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?2(之间的关系式;x(m))与一边长m(S的篱笆围成矩形场地,求矩形的面积60m用总长为)1)2(的关系;)支n((元)与购买的铅笔的数量y元的铅笔,总金额0.4购买单价是4000m运动员在)3(的关系;v(m/s)与跑步的速度t(s)一圈的跑道上训练,他跑一圈所用的时间(元)之间y元本金与所得的本息和x则某人存入2.79%,银行规定:五年期存款的年利率为)4(的关系。

八年级数学下册第十九章一次函数导学案

八年级数学下册第十九章一次函数导学案

2014年八年级数学下册第十九章一次函数导学案2.3一次函数与二元一次方程组学习目标:1、理解一次函数与二元一次方程组的关系,会根据图象求二元一次方程组的解。

2、应用一次函数和二元一次方程组的关系解决实际问题。

学习重点:利用一次函数图像求二元一次方程组的解,并解决简单的实际问题。

学习难点:一次函数与一元一次方程,一元一次不等式,二元一次方程结合解决实际问题。

学习过程:一、创设问题情境:1、解方程组2、画一次函数和的图像,写出交点坐标。

二、自主学习与合作交流:思考:1号探测气球从海拔5米处出发,以1米/分的速度上升。

于此同时,2号探测气球从海拔15米出发,以0.5米/分的速度上升,两个气球都上升了1小时。

(1)、用式子分别表示两个气球所在的位置的海拔(单位:米)关于上升时间(单位:小时)的函数关系式;(2)、在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?归纳:从函数的观点看解二元一次方程组:从“数”的角度看:解方程组相当于求为何值时,两个相等,以及这个函数值是。

2. 从“形”的角度看:解方程组相当于确定两条直线的三、巩固练习:例、一家电信公司给顾客提供两种上网收费方式:方式A以0.1元分的价格按上网时间计费,方式B除收20元月基费外,再以0.05元分的价格上网时间计费,如何选择收费方式能使上网者更合算。

【解法一】设上网时间为x分钟,若按方式A收费,= 元;若按B方式收费, = 元.在同一直角坐标系中分别画出这两个函数图象.两个函数图象交于点,从图象上可以看出:当_________时,, 所以选择方式A省钱;当时,,所以选择省钱;当_________时,,所以选择省钱.【解法二】设上网时间为x分钟,方式B与方式A两种计费的差额为y元,则y随x变化的函数关系式为:y=_________ ,化简:y=_________.在直角坐标系中画出函数的图象.直线y=___________与x轴交点为________.由图象可知:当_______时,y0,即选方式A省钱;当时,y=0,即选方式A、B没有区别;当_______时,y0,即选方式省钱.例2、如图所示,求两直线的解析式及其交点坐标。

一次函数导学案

一次函数导学案

13.1函数(1)学习目标:1.了解常量、变量的意义,能分清实例中出现的常量,变量与自变量和函数.2.了解函数的意义,会举出函数的实例,并能写出简单的函数关系式;学习重点::在了解函数、常量、变量的基础上,能指出实例中的常量、变量,并能写出简单的函数关系式.学习难点:是对函数意义的正确理解.一、学前准备1. 问题1 如图,用热气球探测高空气象.当t=2min,当=1,h为600mt min当t=0min,h为550mh为500m设热气球从海拔500m处的某地升空,它上升后到达的海拔高度hm与上升时间tmin的关系记录如下表:时间t/min 0 1 2 3 4 5 6 7 ,海拔高度500 550 600 650 700 750 800 850 ,h/m(1)在这个问题中,有_______个量.(2)观察上表,热气球在上升的过程中平均每分上升________米.(3)上升后10min时热气球到达的海拔高度________.总结:在某个变化过程中,数值保持______的量叫做常量;可以取______数值的量叫做变量.2.问题2下图是我市某日自动测量仪记下的用电负荷曲线.(1)这个问题中,有________个变量.(2)任意给出这一天中的某一时刻,如 4.5h、20h,这一时刻的用电负荷yMW(兆瓦)是_______,_________._______.找到的值是唯一确定的吗?(3)这一天的用电高峰、用电低谷时负荷各是_______,_______.它们分别是在_______,________达到的.3.问题3汽车在行驶过程中,由于惯性的作用刹车后仍将滑行一段距离才能停住,刹车距离是分析事故原因的一个重要因素。

某型号的汽车在平整路面上的刹车距离sm与车速vkmh之间有下列经验公式:/sv2256(1)上式中涉及哪几个量?_________________________________________.(2)当刹车时车速v分别是40、80、120km/h时,相应的滑行距离s分别是多少?___________,________________,_________________.总结:在上面三个问题中,每个变化过程都只涉及两个变量,当给定其中一个变量(这个量叫_______)的值,相应地就确定了另一个变量(这个量叫______)的值.函数:一般地,设在一个变化过程中有两个变量x与y,如果对于x在它允许取y都有的值与它对应,那么我们就说x是,值范围内的_________,_____________ y是x的_______.有两个变量字母x与y只是代号;对于注意:(1)在一个变化过程中;(2) ()(3)x的每一个值,y都有唯一确定的值与其对应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1变量与函数(1)学习目标:1.掌握常量和变量、自变量和因变量(函数)基本概念;2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.3.通过实际问题,引导学生直观感知,领悟函数基本概念的意义;4.联系代数式和方程的相关知识,探索数量关系,增强数学建模意识,列出函数关系式.学习重点:了解常量与变量的意义;学习难点:较复杂问题中常量与变量的识别 学习过程: 一、自主学习 (一)预习指导:1.在某一变化过程中, 量,叫做变量; 叫做常量 2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是 ,y 是 . 函数概念包含:(1)两个 ;(2)两个变量之间的 关系. 3.函数关系三种表示方法:(1) 法;(2) 法;(3) 法. (二)预习检测1.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm ,它的面积S (cm 2)与这边上的高h (cm)的关系式是h S 25; (2)若直角三角形中的一个锐角度数为α,则另一个锐角β(度)与α间的关系式是β=90-α ; (3)若某种报纸的单价为a 元,x 表示购买这种报纸的份数,则购买报纸的总价y (元)与x 间的关系是:y =ax .2.写出下列函数关系式,并指出式中的自变量与因变量:(1)每个同学购一本代数教科书,书的单价是2元,求总金额Y (元)与学生数n (个)的关系;(2)计划购买50元的乒乓球,求所能购买的总数n (个)与单价a (元)的关系.二、合作探究探究点1:掌握常量和变量、自变量和因变量(函数)基本概念,表示函数关系的三种方法, 1.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2) 一天中,最高气温是多少?最低气温是多少?(3) 一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?(4)从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之。

2.银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.3.收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察上表回答:(1)波长l和频率f数值之间有什么关系?用式子表示出来。

(2)波长l越大,频率f就________.4.圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.利用这个关系式,试求出半径为1 cm、1.5 cm、2 cm、2.6 cm、3.2 cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_________.归纳小结:1.在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化过程。

并在这些问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数.在问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量2.表示函数关系的方法通常有三种:(1)解析法,(2)列表法,(3)图象法,探究点1:对常量和变量、自变量和因变量(函数)基本概念,表示函数关系的三种方法理解与运用1.下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?2.出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;(3)n边形的内角和S与边数n的关系式.三、方法小结:四、达标测评:见学习指要19.1变量与函数(2)学习目标:1.根据函数关系式直观得到自变量取值范围,及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.3.在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;4.联系求代数式的值的知识,探索求函数值的方法.学习重点:根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;学习难点:实际背景对自变量取值的限制学习过程:一、自主学习(一)预习指导:1.什么叫变量、常量、自变量、函数? 2.如何判别一个变化过程是不是函数?(二)预习检测1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x xy ; (4)12-=x y .3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1) y =(x +1)(x -2); (2)y =2x 2-3x +2; (3)12-+=x x y .二、合作探究探究点1:根据函数关系式直观得到自变量取值范围1.(1)填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x 表示,纵向的加数用y 表示,试写出y 与x 的函数关系式.(2)试写出等腰三角形中顶角的度数y 与底角的度数x 之间的函数关系式.(3)如图,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合, 让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分面积 y cm 2与MA 长度x cm 之间的函数关系式.探究归纳:思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有, 请在函数关系式后写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?探究点2: 实际背景对自变量取值的限制1.自学P73-74例1(学生看不懂时教师引导一下)探究点3: 根据函数自变量的值求对应的函数值. 1.求下列函数中自变量x 的取值范围: (1) y =3x -1; (2) y =2x 2+7;(3)21+=x y ; (4)2-=x y .探究点4: 求函数值的方法1.求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ;(3)12-=x y ; (4)x y -=2.三、方法小结:1.求函数自变量取值范围的两个依据: (1)要使函数的解析式 ①函数的解析式是整式时,自变量可取 ②函数的解析式分母中含有字母时,自变量的取值应使分母 ③函数的解析式是二次根式时,自变量的取值应使被开方数(2)对于反映实际问题的函数关系,应使实际问题2.求函数值的方法:把所给出的自变量的值代入 即可求出相应的函数值.四、达标测评:见学习指要19.1.2函数的图象(1)学习目标:1.掌握用描点法画出一些简单函数的图象;2.掌握从图象中获得信息.3.探索用图象表示函数的过程;理解解析法和图象法表示函数关系的相互转换.4.通过自己动手,体会用描点法画函数的图象的步骤.学习重点:掌握用描点法画出一些简单函数的图象;理解从图象中获得信息. 学习难点:用描点法画出一些简单函数的图象 学习过程: 一、自主学习 (一)预习指导:1.表示函数关系的方法有: 、 、 。

2.已知点A (2,4),B (-3,2)C (-2,-3)D (4,-2)请将点描在平面直角坐标系中(二)预习检测1.在所给的直角坐标系中画出函数x y 21=的图象 (先填写下表,再描点、连线).2.画出函数xy 6-=的图象 (先填写下表,再描点、然后用光滑曲线顺次连结各点).3.(1)画出函数y =2x -1的图象(在-2与2之间,每隔0.5取一个x 值,列表;并在直角坐标系中描点画图).(2)判断下列各有序实数对是不是函数y =2x -1的自变量x 与函数y 的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上: (-2.5,-4),(0.25,-0.5),(1,3),(2.5,4).二、合作探究探究点1:用描点法画出一些简单函数的图象 1 画出函数y =x +1的图象.解 取自变量x 的一些值,例如x =-3,-2,-1,0,1,2,3 …,计算出对应的函数值.为表达方便,可(1)列表如下:由这一系列的对应值,可以得到一系列的有序实数对:…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出这些有序实数对(坐标)的对应点,如图所示.(2)描点:(3)连线请用光滑曲线依次把这些点连起来,便可得到这个函数的图象.小结:用描点法画函数图象的步骤:分为 、 、 三步. 2 画出函数x y212的图象. 解(1)列表:(2)描点:(3)连线3.在同一坐标系中画出下列函数的图象:(1)y =4x -1; (2)y =x6(x >0).探究点2:从图象中获得信息 1.完成P76页思考中的问题。

2.请自学P76-77页例2(学不懂的教师引导)三、方法小结:由函数解析式画函数图象,一般按下列步骤进行: 1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来.描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象. 四、达标测评:见学习指要19.1.2函数的图象(2)学习目标:1.掌握用描点法画实际问题的函数图象;2.从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.3.通过观察实际问题的函数图象,感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想学习重点:掌握用描点法画实际问题的函数图象;学习难点:从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.学习过程:一、自主学习(一)预习指导:1.用描点法画函数图象的步骤:分为、、三步.2.如何从函数图象中获得信息?(二)预习检测1.下图为世界总人口数的变化图.根据该图回答:(1)从1830年到1998年,世界总人口数呈怎样的变化趋势?(2)在图中,显示哪一段时间中世界总人口数变化最快?2.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).3.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围;(3)画出这个函数的图象.4.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离S (千米)与时间t(时)的关系可以用图中的曲线表示.根据这个图象回答下列问题:(1)小李到达离家最远的地方是什么时间?(2)小李何时第一次休息?(3)10时到13时,小骑了多少千米?(4)返回时,小李的平均车速是多少?二、合作探究探究点1:用描点法画实际问题的函数图象;图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.1.自学教材P80页例4(最好在教师引导下学习)2.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).(1)图中有一个直角坐标系,它的横轴(x 轴)和纵轴(y 轴)各表示什么? (2) 如图,线段上有一点P ,则P 的坐标是多少?表示的实际意义是什么?(3)我们能否从图象中看出其它信息:小强让爷爷先上多少米?山顶离山脚的距离有多少米?谁先爬上山顶?3. 王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式x x y 58512+-=击球,球正好进洞.其中,y (m)是球的飞行高度,x (m)是球飞出的水平距离.(1)试画出高尔夫球飞行的路线;(2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少? 解 (1)列表如下:在直角坐标系中,描点、连线,便可得到这个函数的大致图象.(2)由图看出高尔夫球的最大飞行高度是约 m ,球的起点与洞之间的距离是 m .4.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.三、方法小结:1.画实际问题的图象时,必须先考虑函数自变量的取值范围.有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以取得不一致;2.在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标的实际意义.然后观察图形,分析两变量的相互关系,给合题意寻找对应的现实情境.四、达标测评:见学习指要19.2.1正比例函数(1)学习目标:1、理解正比例函数的概念2、能够判断两个变量是否能够构成正比例函数关系3、能够利用正比例函数解决简单的数学问题学习重点:正比例函数的概念学习难点:正比例函数的概念学习过程:一、自主学习(一)预习指导:1.细读课本86—87页,完成课本中的“思考”,试着写出函数解析式:⑴;⑵;⑶;⑷。

相关文档
最新文档