一次函数全章教案导学案新人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时变量与函数
教学目标:理解变量与函数的概念以及相互之间的关系
教学重点:变量与常量
教学难点:对变量的判断
一、完成学习目标
1.启发自学
问题1.汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的
2.试练讨论
问题:
(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?
(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?
(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?
(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?
3.穿插讲解
在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
二、小结点评
1. 怎样列变量之间的关系式
2.变量与常量的定义
三、达标检测
必做题 1.写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?
(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;
(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;
(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y (元)之间的关系。
2..分别指出下列各式中的常量与变量.
(1)圆的面积公式S=πr2;
(2)正方形的l=4a;
(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为
y=2.5x.
选做题
1.写出下列问题的关系式,并指出不、常量和变量.
(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息
和y(元)与所存月数x之间的关系式.
(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n 盆花,每个图案的花盆总数是S,求S与n之间的关系式.
【课后反思】
.
第2课时变量与函数
教学目标:理解函数的概念,能准确识别出函数关系中的自变量和函数
教学重点:函数的概念
教学难点:函数的概念
一、完成学习目标
1.启发自学
见课本72页思考
2.试练讨论
1.小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出
2.见课本73页
3.穿插讲解
函数定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
例1 判断下列变量之间是不是函数关系:
(1)长方形的宽一定时,其长与面积;
(2)等腰三角形的底边长与面积;
(3)某人的年龄与身高;
例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。
(1)写出表示y与x的函数关系式.
(2)指出自变量x的取值范围.
(3)汽车行驶200km时,油箱中还有多少汽油?
二、小结点评
(1)函数概念
(2)自变量,函数值
(3)自变量的取值范围确定
(4)解析式
三、达标检测
必做题1. 分别写出下列各问题中的函数关系式及自变量的取值范围:
(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;
(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式;
(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm)的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.
2.求下列函数中自变量x 的取值范围:
(1) y =3x -1; (2) y =2x 2+7; (3)21+=x y ; (4)2-=x y . 3.求下列函数当x = 2时的函数值:
(1)y = 2x -5 ; (2)y =-3x 2 ;
(3)1
2-=x y ; (4)x y -=2 4.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?
选做题
1.如图,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分面积y cm 2与MA 长度x cm 之间的函数关系式.
【课后反思】
.