2017北师版三角形内角和定理的证明.doc

合集下载

初中数学北师大版八年级上册三角形内角和定理的证明

初中数学北师大版八年级上册三角形内角和定理的证明

4.在△ABC中, ∠A=40°,∠A=2∠B,则∠C=_1_2_0_0 5.在△ABC中,已知∠A=80°,能否知∠B,∠C的度数? 不能
应用新知
例1 如图,在△ABC中,∠B=38°,∠C=62°, A AD是△ABC的角平分线,求∠ADB的度数.
B
D
C当Leabharlann 达标B组(必做)1.三角形中三角之比为1∶2∶3,则最大角的度数是多少度?
北师大版义务教育教科书八年级数学(上) 7.5 三角形内角和定理
牛顿曾说:没有大胆的猜想,就没有伟大的发现!
情境导入 三角形家族的官司风波

有一天图形王国里有一些三角形在一起聚会,可是他们因为

内角和的问题吵了起来。一个钝角三角形说:“我的钝角比你们

的角都大,所以我的内角和也最大。”一个锐角三角形说:“我 的个子比你大,我是大三角形,你是小三角形,所以我的内角和 肯定比你大。”一个直角三角形说:“不能只看一个钝角大就说
2.已知:△ABC中,∠C=∠B=2∠A.求∠B的度数? 3.已知:如图,在△ABC中,∠A=60°,∠C=70°
点D、E分別在AB和AC上,且DE∥BC.
求证:∠ADE=50°.
C组(选做)
1.已知,如图,在△ABC中,BD平分∠ABC,CD平分∠ACB
(1)∠A=60°,则∠D =_____ (2)∠D=100°,则∠A=______ (3)你能写出∠A与∠F之间的关系吗?
2 1
B
A
D
4 3
C
总结反思 学 而 不 思 则 罔

头 对自己说:你有什么收获

看 ,
对老师说:你有什么疑惑
我 想
对同学说:你有什么启发

7.5 三角形内角和定理 知识考点梳理(课件)北师大版数学八年级上册

7.5 三角形内角和定理  知识考点梳理(课件)北师大版数学八年级上册

巧 点
又 ∵∠C=90°,
拨 ∴∠D=180°-90°-55°=35°.
[答案] A
返回目录

分 析
领悟提能 三角形的外角是由三角形的一边与另一边的
反向延长线组成的,由外角的性质可以把不在同一个三角
形中的几个内角联系起来.
7.5 三角形内角和定理
返回目录
方 ■方法:转化法求角度
法 技
用已知角的度数求未知角的度数时,若几个角的位置分
巧 点
布比较分散,那么我们利用平行线的性质、对顶角的性质
拨 等将所求角与已知角“转移”到一个图形中求解.
7.5 三角形内角和定理
● 考点清单解读 ● 重难题型突破 ● 易错易混分析 ● 方法技巧点拨
7.5 三角形内角和定理
返回目录
考 ■考点一 三角形内角和定理

清 三角形内角和
单 解
定理
三角形的内角和等于 180°
读 如图,在△ABC 中,∠A+∠B+∠C=180°
数学语言描述
7.5 三角形内角和定理
7.5 三角形内角和定理
返回目录
方 例 如图,已知∠A=35°,∠B=∠C=90°,则∠D 的度

技 数是 (

巧 点
A. 35° B. 45°
C. 55°
D. 65°

7.5 三角形内角和定理
方 [解析] ∵∠A=35 ° ,∠B=90°,
法 技 ∴∠COD=∠AOB=180°-90°-35°=55°.
________(选填“增加”或“减少”)_______°.
7.5 三角形内角和定理
返回目录
重 [解析]如解析图,延长 EF,交 CD 于点 G.

三角形内角和定理的证明说课稿

三角形内角和定理的证明说课稿

三角形内角和定理的证明说课稿马建禄一、说教材:(一)、教材的地位及作用:本节课是北师大版实验教科书八年级下册第六章第五节的内容。

是在学习了平角、同位角、内错角、同旁内角、探索两直线平行的条件及三角形内角和定理的基础上,进一步探索三角形内角和定理的证明。

为今后学习多边形内角和、外角和,圆等知识打下良好的基础,具有承上启下的作用。

且三角形内角和定理在日常生活中,如机械制造、工程设计、国防等领域具有广泛应用。

(二)、教学目标设计:1、知识与技能:(1)掌握“三角形内角和定理”的证明及其简单应用。

(2)对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

(3)通过一题多解,初步体会思维的多向性,引导学生的个性化发展.2、过程与方法:通过动手操作、探索、观察、分析、归纳培养学生获得数学结论的能力。

3、情感与价值观:培养学生创造性,弘扬个性发展,体验解决问题的成就感,使学生感悟逻辑推理的数学价值。

(三)本课重点、难点:教学重点:三角形内角和定理的证明及其简单的应用教学难点:在三角形内角和定理的证明过程中如何添加辅助线二、说学生:三角形内角和定理的内容,学生在小学已经熟悉,但在小学是通过实验得出的,本节课要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添加辅助线是解决数学问题(尤其是几何问题)的重要思想方法.学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件.尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。

从本节开始训练学生将命题翻译为几何符号语言,写出已知、求证,学会分析命题的证明思路,对培养学生的思维能力和推理能力将起到重要的作用.三、说教法和学法:(一)说教法根据课程的特点,本节课以创设问题情境,引导学生探索、运用为主线来展开。

三角形内角和定理的证明 优秀教案

三角形内角和定理的证明 优秀教案

《三角形内角和定理》教学设计教学目标:知识与技能:1.通过测量、折叠、拼接、作平行线等方法,探索和发现三角形内角和等于180°;2.三角形内角和定理的应用;过程与方法:通过三角形内角和定理的多种证明方法,形成独立思考,合作交流的学习模式,培养学生理性说理的能力;情感、态度与价值观:培养学生的创造性,体验解决问题的成就感,使学生感悟逻辑推理的数学价值。

教学重点:三角形内角和定理的证明;教学难点:辅助线的添加,三角形内角和定理的应用;教材分析:北师版八年级上册第七章第五节,它从"角"的角度刻画了三角形的特征,也是"图形与几何"必备的知识基础,其证明方法首次引入辅助线,因此,具有承上启下的作用。

学情分析:学生在之前七年级下册三角形一章中已经学习了三角形内角和为180°和平行线的性质,所以学生具有一定的推理能力。

教法学法:多媒体辅助教学的基础上,采用微课预习、学案导学、合作探究相结合的方式进行教学;培养学生自主学习、合作探究、总结反思的能力,从“学会”到“会学”。

教学过程:一.创设情景,导入新课通过几何画板动态演示创设情境,引出课题三角形内角和为180°。

(设计意图:通过数学实验,即起到了短时间内激发学生学习兴趣的作用,动态演示又使学生意识到三角形的内角和不因三角形的大小和形状而改变,还说明了通过测量的方法可以证明三角形内角和为180°)二.交流合作,探究新知1.动手操作提出问题:有什么方法可以验证三角形的三个内角和是180°呢?学生会说出:测量,拼接的方法,教师通过法国数学家帕斯卡的例子引导学生进行动手折叠。

据说,法国数学家帕斯卡在12岁时,就独自用折叠三角形的方法验证三角形内角和为180°,聪明的你猜一猜:他是如何折叠的?C让学生动手操作折叠三角形亲自验证,之后教师利用几何画板演示折叠过程,最后指出没有折叠成功的原因是:将三角形的三个顶点通过一次性折叠,使它们集中到三角形最长边的垂足上, (设计意图:既涉及到数学史的内容,又让学生动手操作,最后还解决了学生没有折叠成功的原因,符合课标中对学生能力的培养要求)提出问题:无论是拼接还是折叠,验证三角形内角和定理的共同点是什么?师生共同归纳出:把三角形的三个角转化为一个平角或平行线的同旁内角互补。

北师版小学四年级数学下册《认识三角形和四边形》第3课时 探索与发现:三角形的内角和(1)

北师版小学四年级数学下册《认识三角形和四边形》第3课时 探索与发现:三角形的内角和(1)

1、读一读教材例题(教材第24页例题)老师:同学们,你们认同上面的两个三角形的话吗?(请学生发表自己的看法)学生A:一样大学生B:不知道。

学生C:大的三角形的内角和大。

......老师:既然大家的意见的不一样,那我们一起来探讨一下三角形内角和的关系。

1、小组活动:每人准备一个三角形,量一量,填一填老师:从图中可以清晰看到三角形有多少个内角呢?学生:3个。

老师:顾名思义,三角形的内角和代表什么呢?学生:三角形的三个内角的度数之和,即上诉图形中∠1,∠2,∠3度数之和。

小结:三角形的内角指三角形里面的三个角,即三角形每相邻两条边跑的夹角;三角形的内角和指的是这三个内角的度数之和。

(2)实际测量,探索三角形的内角和。

老师:现在我们已经知道什么是三角形的内角了,要想知道三角形的内角和,我们有什么方法呢?学生:用量角器量一量。

老师:不错,我们要想知道一个三角形的内角和,最熟悉的方法就是将三角形的三个内角加起来算一算。

老师:现在就让我们来量一量,算一算,填一填,完成下面这个表格(请学生汇报自己的表格)(PPT展示)2、小组交流发现了什么?老师:同学们,和小组里的其他成员讨论一下自己的表格是否和别人的一样。

同学:一样。

老师:那请同学分享一下自己的发现。

同学A:每个三角形的内角和都是180゜。

同学B:有些不是180゜。

老师:那不是180゜的,是否接近180゜呢?学生:接近。

老师:通过实际测量、计算发现,每个三角形的三个内角和都在180゜左右。

实际上,三角形的内角和就是180゜,只是因为测量有误差,导致计算出的内角和不都是180゜。

3、验证三角形内角和180゜。

验证三角形内角和等于180゜的方法。

方法一:把三角形的三个角撕下来,拼一拼。

老师:从量一量那里我们可以猜测三角形内角和180゜,说起180゜,我们还记得什么角是180゜吗?学生:一个平角是180゜。

老师:是的,要想证明三角形的内角和是否为180゜,我们就得看看三角形的三个内角是否可以拼成一个平角。

《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】

《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的∠ABC的外角. 想一想:一个三角形的外角应具备哪些条件呢?
归纳
三角形的外角应具备的条件:
(1)角的顶点是三角形的顶点; (2)角的一边是三角形的一边; (3)另一边是三角形中一边的延长线.
要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.
证明:∵∠EAC=∠B+∠C (三角形的一个外角等于和它不相邻的两个内角的和), ∠B=∠C (已知), ∴∠C= ∠EAC(等式的性质). ∵AD平分 ∠EAC(已知). ∴∠DAC= ∠EAC(角平分线的定义). ∴∠DAC=∠C(等量代换). ∴AD∥BC(内错角相等,两直线平行).
2.如图,AB//CD,∠A=37°,∠C=63°,那么∠F等于 ( ) A.26° B.63°C.37° D.60°
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,∵ ∠ABD=28° ,∠BEC=91°,∴ ∠BFC=119°.
解:
F
A
C
D
E
B
三角形内角和定理
三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角. 注意:每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.
教科书 第183页习题7.7 第2、3题
三角形内角和定理第2课时
准备好了吗?一起去探索吧!
三角形内角和定理
1.了解三角形外角的定义,掌握三角形外角的两个定理.2.能综合运用三角形内角和定理的推论即外角的两个定理进行几何证明与计算.3.引导学生从内和外、相等和不等的不同角度对三角形的角作全面的思考,体会几何中简单不等关系的证明.4.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识.

初中数学北师大版八年级上册三角形内角和定理的证明

初中数学北师大版八年级上册三角形内角和定理的证明
∴∠A+∠B+∠ACB= 180(°等量代换)
这里的CD,CE 称为辅助线, 辅助线通常 画成虚线.
三角形内角和定理
文字语言: 三角形的内角和等于1800
图形语言:
A
B
C
符号语言:
在△ABC中,∠A+∠B+∠C=180° (三角形内角和定理)
例 、如图,在△ABC中,∠B=380, ∠C=620,AD是△ABC的
学以致用 ☞
1. 直角三角形的两锐角之和是多少度?并说明理由. 2. 正三角形的每一个内角是多少度?并说明理由 .
3.已知:如图在△ABC中,DE∥BC,∠A=600, ∠C=700.
求证: ∠ADE=500 A
D
E
B
C
通过本节课的学 习你学会了… …
作业
习题7.6 : 1、2、3(必做题) 4、5(选做题)
7.5 三角形内角和定理(1)
开发区高中初中部:耿春平
实践操作
将三角形纸片两个内角剪下,再将这三个内角拼 凑在一起,你有什么发现?若剪去一个内角呢?
求证:三角形内角和等于1800
已知:如图,△ABC.
求证:∠A+∠B+∠C=180°. B
证明:作BC的延长线CD,过点则C作射线
A
1 3
Cபைடு நூலகம்
E
2
D
C∠E1∥=A∠BA, (两直线平行,内错角相等) ∠2= ∠B (两直线平行,同位角相等) ∵∠1+∠2+∠3= 180° (平角的定义)
角平分线,
A
求∠ADB的度数.
解:∵∠B=380 ,∠C=620(已知)
∠B+∠C+∠BAC=1800

北师大版八年级上册数学三角形的内角和定理课件

北师大版八年级上册数学三角形的内角和定理课件

A· D
(三角形的一个外角等于和它
不相邻的两个内角的和)
B
·C
∠B=∠C (已知) ∴∠C= ∠12 EAC(等式性质)
请在例题的基 础上通过增加
还∵∴∠有ADDA其平C分=它12∠∠方EEAAC法C(已(角吗知平?)分线的定或换义者个) 适方法当试修试改。,
∴∠DAC=∠C(等量代换)
∴ AD∥BC(内错角相等,两直线平行).
三角形的一个外角等于和
∠1= ∠2+∠3
它不相邻的两个内角的和。
几何语言
∵ ∠1是△ABC的外角 ∴ ∠1= ∠2+ ∠3(三角形的一个外角 等于和它不相邻的两个内角的和)
活动二 : 三角形外角与内角关系
∠1>∠2,∠1>∠3
A
已知:如图,∠1是△ABC的一个外角. 2
求证: ∠1> ∠2, ∠1> ∠3
4 已知:在△ABC中, ∠1是 它的一个外角, E为边AC上 一点延长BC到D,连接DE.
2 C
E5 3
求证: ∠1>∠2.
4
1
A
BF
活动二: 三角形外角与内角关系 已知:∠1是△ABC的一个外角 求证: ∠1= ∠2+∠3
E 证明:过点B做BE∥AC
∴∠ABE= ∠2
(两直线平行,内错角相等)
针对练习2
1.如图:△ABC中,D是BC延长线上一点
1)则∠ ACD >∠ A , ∠ ACD >∠ B ;
2)若∠A=35°,
A
∠DCA=80°,
35°
则 ∠ACB= 100 ° ∠B= 45 ° D 80°
B C
针对练习2
2.若一个三角形的一个外角小于与它相邻的内角,

北师版八年级数学上册课件 第七章 平行线的证明 三角形内角和定理 第1课时 三角形内角和定理的证明

北师版八年级数学上册课件 第七章 平行线的证明 三角形内角和定理 第1课时 三角形内角和定理的证明

三、解答题(共36分) 14.(10分)如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于点 D,AE是∠BAC的平分线.求∠AED的度数.
解:∵AD⊥BC,∴∠ADB=∠ADC=90°. ∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD= 30°.∴∠BAC=∠BAD+∠CAD=50°+30°=80°. ∵AE是∠BAC的平分线,∴∠BAE=40°.∴∠DAE=∠BAD-∠BAE =50°-40°=10°.∴∠AED=90°-∠DAE=80°
7.(4分)(天门中考)如图,AD∥BC,∠C=30°,∠ADB∶∠BDC= 1∶2,则∠DBC的度数是__5_0_°_.
8.(8分)如图,D是AB上一点,E是AC上一点,BE,CD相交于点F, ∠A=57°,∠ACD=35°,∠ABE=19°,求∠BFD的度数.
解:∵∠A=57°,∠ACD=35°,∴∠ADC=180°-∠A-∠ACD= 180°-57°-35°=88°.∴∠BDC=180°-∠ADC=180°-88°= 92°.
A.20° B.40° C.60° D.80°
3.(3分)已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C= 2∠A,则此三角形( B )
A.有一个内角为45° B.有一个内角为60° C.是直角三角形 D.是钝角三角形
4.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC,若 ∠A=70°,∠AED=60°,则∠B的大小为( A)
∵∠ABE=19°,∴∠BFD=180°-∠BDC-∠ABE=180°-92°- 19°=69°
9.(9分)(教材P185复习题T6变式)如图,在△ABC中,CD平分∠ACB,过 点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,求∠CDE的度数.

北师大版八年级上册数学第7章平行线的证明 第5节三角形内角和定理

北师大版八年级上册数学第7章平行线的证明 第5节三角形内角和定理

感悟新知
知识点 2 三角形的外角
知2-讲
1.三角形的外角 三角形内角的一条边与另一条边的反向延 长线组成的角,称为三角形的外角 . 如图 7-5-3,∠ ACD 是 △ ABC 的∠ ACB 的外角 .
感悟新知
2. 外角的特征 (1)顶点是三角形的顶点; (2)一条边是三角形内角的一边; (3)另一条边是该内角另一边的反向延长线 .
第七章
平行线的证明
7.5 三角形内角和定理
学习目标
1 课时讲解 2 课时流程
三角形内角和定理 三角形的外角 三角形内角和定理的推论
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 三角形内角和定理
知1-讲
1.定理: 三角形的内角和等于 180° . 几何语言: 在△ ABC 中,∠ A+ ∠ B+ ∠ C=180° .
感悟新知
2. 三角形内角和定理的证明思路
知1-讲
思路一:利用“两直线平行,内错角及同位角相等”将
三角形的三个内角转化为一个平角 . 如图 7-5-1 ①② .
感悟新知
知1-讲
思路二:利用“两直线平行,内错角相等”将三角形的 三个内角转化为两平行线间的一组同旁内角 . 如图 7-5-2 ① ②.
感悟新知
知2-练
感悟新知
解题秘方:紧扣三角形外角的定义识别外角 .
知2-练
解:图中△ CEF 的三边的延长线只有 EF的延长线 FA,
CE 的延长线 EB,延长线 FA与边 FC 构成的角为∠
AFC;延长线 EB 与边EF 构成的角为∠ BEF.
由三角形外角的定义可以判断∠ AFC,∠ BEF
是△ CEF的外角 .

北师大版八年级上册数学7.5.1三角形内角和定理证明教案

北师大版八年级上册数学7.5.1三角形内角和定理证明教案
-识别问题中的关键信息,如三角形的已知角度、边长等;
-建立数学模型,运用三角形内角和定理列出方程;
-运用数学方法求解,注意检验答案的正确性。
(3)针对特殊情境下的应用,教师可以举例说明:
-在等腰三角形中,如何运用三角形内角和定理求解顶角;
-在直角三角形中,如何利用三角形内角和定理求解未知角度。
四、教学流程
2.提高学生空间想象力和创新思维能力,通过探索三角形内角和定理的证明过程,激发学生对几何图形的兴趣;
3.培养学生团队合作意识,在小组讨论和交流中,学会倾听、表达和协作;
4.培养学生严谨的科学态度,养成用数学语言进行表达和交流的习惯;
5.培养学生运用数学知识解决实际问题的能力,增强数学应用意识,使学生在面对现实问题时能够运用所学知识进行分析和解决。
三、教学难点与重点
1.教学重点
(1)掌握三角形内角和定理:三角形的三个内角的和等于180°。
(2)理解并运用三角形内角和定理的证明方法,如平行线性质、同位角相等、内错角相等等。
(3)学会运用三角形内角和定理求解三角形内角度数。
举例:
在教学过程中,教师需强调三角形内角和定理的核心地位,通过直观演示和实际操作,让学生深刻理解三角形的内角和为180°。例如,可以让学生通过折叠、拼接等方法验证定理的正确性。
1.加强基础知识的教学,帮助学生巩固几何基本概念;
2.注重培养学生的学习兴趣,多举与生活相关的例子;
3.提高学生的逻辑思维能力,引导他们在分析问题时更有条理;
4.加强课后辅导,确保每位同学都能掌握所学知识点。
3.重点难点解析:在讲授过程中,我会特别强调三角形内角和定理及其实际应用这两个重点。对于难点部分,如定理的证明,我会通过举例和逐步推理来帮助大家理解。

北师大版初中数学八年级(上)7-5-2三角形内角和定理 教学课件 教学课件

北师大版初中数学八年级(上)7-5-2三角形内角和定理  教学课件 教学课件
解法吗?
A
1
B
F
所以∠BAE+ ∠CBF+ ∠ACD=2(∠1+ ∠2+ ∠3)=360 °.
2
3
C
D
解法2:如图,∠BAE+∠1=180 °, ①
∠CBF +∠2=180 ° ,②
E
∠ACD +∠3=180 ° .③
A
又知∠1+ ∠2+ ∠3=180 °,
1
①+ ②+ ③得
B
∠BAE+ ∠CBF+ ∠ACD+
又因为∠B=∠BAD,
A
1
所以B 80 40,
2
在△ABC中,
∠B+∠BAC+∠C=180°,
所以∠C=180º-40º-70º=70°.
B
D
C
5.如图,求∠A+ ∠B+ ∠C+ ∠D+ ∠E的度数.
A
解:∵∠1是△FBE的外角,
B
E
∴∠1=∠B+ ∠E.
同理∠2=∠A+∠D.
G
2
∠A < ∠1 < ∠2
D
E
课堂小结
角一边必须是三角形的一边,另一边必
定义
三角形
的外角
须是三角形另一边的延长线
1.三角形的外角等于与它不相邻的两个
内角的和
性质
2.三角形的外角大于与它不相邻的任何
一个内角
三角形的
外 角 和
三角形的外角和等于360 °
当堂检测
1.判断下列命题的对错.
(1)三角形的外角和是指三角形的所有外角的和。(

北师大版数学八年级上册5《三角形内角和定理》教学设计1

北师大版数学八年级上册5《三角形内角和定理》教学设计1

北师大版数学八年级上册5《三角形内角和定理》教学设计1一. 教材分析《三角形内角和定理》是北师大版数学八年级上册第五章的内容。

本节内容主要让学生掌握三角形的内角和定理,即三角形的三个内角之和等于180度。

这个定理是几何学中的基础内容,对于学生后续学习几何学其他知识有着重要的影响。

教材通过丰富的活动,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。

二. 学情分析学生在学习本节内容前,已经学习了多边形的概念、分类,对多边形有了一定的了解。

同时,学生已经掌握了角的度量方法,能够准确地度量角的度数。

此外,学生还学习了平行线的性质、同位角、内错角等知识,对于通过观察、操作、推理等方法探索几何问题的解决策略有了一定的掌握。

但是,部分学生在解决几何问题时,仍存在思维定势,不能灵活运用所学知识。

三. 教学目标1.知识与技能目标:让学生掌握三角形的内角和定理,能运用三角形的内角和定理解决简单的几何问题。

2.过程与方法目标:通过观察、操作、推理等方法,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。

3.情感态度与价值观目标:让学生在探索过程中,体验到数学的乐趣,增强对数学的兴趣,培养学生的团队协作能力和交流表达能力。

四. 教学重难点1.教学重点:三角形的内角和定理。

2.教学难点:如何引导学生通过观察、操作、推理等方法探索并验证三角形的内角和定理。

五. 教学方法1.情境教学法:通过设置情境,让学生在实际问题中感受并探索三角形的内角和定理。

2.引导发现法:引导学生通过观察、操作、推理等方法,自主发现并验证三角形的内角和定理。

3.合作学习法:学生进行小组合作,培养学生的团队协作能力和交流表达能力。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。

2.学具:每个学生准备一套三角板、直尺、圆规等。

七. 教学过程1.导入(5分钟)教师通过多媒体展示一系列与三角形有关的问题,如:什么是三角形?三角形有哪些性质?引发学生对三角形的思考,为新课的学习做好铺垫。

北师大版数学八年级上册7.三角形内角和定理课件

北师大版数学八年级上册7.三角形内角和定理课件

角。
A
E
A
F
F E
A
E
1
2
B
B C
D
CB
CD
图2
图6
1. 如图1,已知D、E在△ABC的边上, DE∥BC,∠B = 60°,∠AED = 40°, 则∠A 的度数为(C ) A.100°B.90° C.80° D.70°
2. 一个三角形三个内角的度数之比为2:3:7,这个 三角形一定是( D ) A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形
2
2
∵ ∠F+∠FBC+∠FCB=180°
∴ ∠F=180°-57.5°=122.5°
变式:若∠A=a,则∠F= 1 a+90°
2
讨论、更正、点拨(3分钟)
你还有其他方法来证明三角形内角和定理吗?
添加辅助线思路:1、构造平角
A
E
A
F
F
E
2、构造同旁内角
A
S
Q
P
N R
B
CB
D
图1
SN P
Q
A R
M
E 图2 A 12 3
我们知道三角形三个内角的和等于1800.你还记得这个
结论的探索过程吗?
A
(1)如图,当时我们是把 ∠A移到了∠1的位置,∠B
1
移到了∠2的位置.如果不
实际移动∠A和∠B,那么
2
你还有其它方法可以到达 B
31 2
C
D
同样的效果?
(2)根据前面的公理和定理,你能用自己的语言说 说这一结论的证明思路吗?你能用比较简捷的语 言写出这一证明过程吗?与同伴交流.

2017届七年级数学下册 三角形课题三角形的概念及内角和导学案新北师大版

2017届七年级数学下册 三角形课题三角形的概念及内角和导学案新北师大版

课题三角形的概念及内角和【学习目标】1.理解三角形内角和定理及其验证方法,能够运用其解决一些简单问题.2.理解直角三角形的相关的性质并能够运用其解决问题.【学习重点】三角形内角和定理和直角三角形性质的推导及应用.【学习难点】熟练应用三角形内角和定理及直角三角形性质解决问题.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.方法指导:三角形内角和定理的证明由剪拼法得到,利用平行线性质将三角形三内角转化为一个平角来证明.情景导入生成问题旧知回顾:1.能从图中找出4个不同的三角形吗?答:任意写4个.如△BFD、△ADF、△CEG、△ADC.2.这些三角形有什么共同的特点?答:都由三条线段首尾顺次相接组成.3.你能从身边或生活中所见物体中举出三角形的例子吗?答:架桥钢梁,测量三角架.自学互研生成能力阅读教材P81,回答下列问题:什么是三角形?答:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.范例1.如图所示,图中三角形的个数共有( C )A.1个B.2个C.3个D.4个(范例1图) (仿例图)仿例如图,以CD为边的三角形共有__3__个,它们分别是__△CDO,△DCB,△CDA__.阅读教材P82,完成下列问题:三角形内角和定理的内容是什么?如何证明?答:三角形三个内角的和等于180°.证明如下:已知△ABC,求证:∠A+∠B+∠C=180°.证明:延长BC到D,过C作CE∥AB.∴∠A=∠ACE,∠B=∠DCE,∵∠ACB+∠ACE+∠DCE=180°,∴∠A+∠B+∠ACB=180°.范例2.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于__80°__.学习笔记:灵活应用三角形内角和与直角三角形两锐角互余求解各题,达到锻炼思维的作用.行为提示:积极发表自己的不同看法和解法,大胆质疑,认真倾听,做每步运算都要有理有据,避免知识上的混淆及符号等错误.检测可当堂完成.仿例1.在△ABC中,已知∠A=3∠C=90°,则∠B的度数是( D )A.100°B.90°C.80°D.60°仿例2.若一个三角形三个内角度数的比为1∶4∶5,那么这个三角形是__直角三角形__.阅读教材P83,完成下列问题:范例3.(泉州中考)在△ABC中,∠A=20°,∠B=60°,则△ABC是( D )A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形仿例1.(黄石中考)如图,一个长方形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( C ) A.30°B.60°C.90°D.120°仿例2.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于__75°__.仿例3.如果∠B+∠C=∠A,那么△ABC按角分,是__直角__三角形.仿例4.在△ABC中,∠A-∠B=36°,∠C=2∠B,则∠A=__72°__,∠B=__36°__,∠C=__72°__.变例一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M,如果∠ADF=100°,那么∠BMD=__85°__.交流展示生成新知1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组长由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一三角形知识模块二三角形的内角和知识模块三三角形分类及直角三角形的锐角互余检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

八年级上册数学《三角形内角和定理》课件-北师版

八年级上册数学《三角形内角和定理》课件-北师版

7.5.1 三角形内角和定理(1)教学设计(二)将三角形纸片的三个角剪下,随便将它们拼凑在一起.由实验可知三角形的内角和正好为一个平角.(三)利用几何画板验证三角形内角和180.但视察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?这节课我们一起探究一下三角形内角和定理的证明. 生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.自主探究1、认真研读课本177—178页;2、求证:三角形三个内角的和等于180°.思考:将准备好的三角形纸片的一个顶角下,并放置在如图∠1的位置,你能说明“三角形内角和定理”结论吗?(提示:利用平行可证明)已知:如右下图,△ABC求证:∠A+∠B+∠C=180°证法一:证明:延长BC到D,过C作CE平行BA,则∠A=∠(两直线平行,内错角相等)1、认真研读课本177—178页;动手操作:通过撕三角形纸板并拼凑成一个平角,体会三角形内角和定理,并利用平行充分发挥学生自主学习、独立思考的能力.第一种证明方法给出辅助线的做法,及以补全证明过程的情势完成,循序渐激情展示一、展示”三角形内角和定理”的两种基本证明方法.这里的CD,CE称为辅助线,辅助线通常画成虚线.证明:延长BC到D,过点C作射线CE//BA,则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等).∵∠l+∠2+∠ACB=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).证法2::过点A作DE∥BC.∵DE∥BC,∴∠1=∠B,∠2=∠C(两直线平行,内错角相等).∵∠1+∠2+∠3=180°(平角的定义),∴∠BAC+∠B+∠C=180°(等量代换).老师点评:强调辅助线的做法和叙述,规范证明过程.(1)辅助线通常画成虚线;(2)辅助线要正确、规范地写出作法,并标明字母,便于书写证明过程;(3)辅助线能把题目中可利用的隐藏条件显露出来,化难为易.二、展示不同的验证方法鼓励学生积极展示,大胆质疑、答疑.学生展示时,可能语言不准确,教师及时引导,让学生自主感悟体会到证明的关键是添加辅助线,把三角形内角和转化成一个平角或同旁内角.教学中的一个难点,学生通过思考、讨论、交流对辅助线的认识,展示思维过程,然后在老师的引导下达成共识,进一步加深了对辅助线的理解,易于突破教学难点,提高学生解决问题的能力.激情展示这个环节充分体现学生的主体性.充分调动学生学习积极性,激发学生学习数学的兴趣.老师点评:添加辅助线基本思路:1、构造平角:"凑”到三角形一个顶点处、"凑"到三角形边上的一点处、"凑"到三角形内部一点处或三角形外部一点处;小小辅助线,作时画虚线,写清其来源,隐藏条件见.2、构造同旁内角.三、展示以下三个问题的分析过程.1、直角三角形的两锐角之和是多少度?2、等边三角形的一个内角是多少度?请证明你的结论.3、四边形的内角和是多少度?证明你的结论。

北师大版-数学-八年级上册-如何利用三角 形内角和定理求角的度数

北师大版-数学-八年级上册-如何利用三角 形内角和定理求角的度数

初中-数学-打印版
如何利用三角形内角和定理求角的度数?
【问题】一、如何利用三角形内角和定理求角的度数?
难易度:★★★★
关键词:三角形内角和定理-角的度数
答案:
可以直接利用三角形内角和定理求解。

对于等腰三角形,先要确定已知的角是顶角还是底角,再根据三角形内角和定理求解。

【举一反三】
典题:在一个等腰三角形中,已知一个角为70°,则另外两个角的度数是__。

思路导引:因为这个角不能确定是等腰三角形的顶角还是底角,所以分两种情况讨论:当这个角是顶角时,则另外的两个角都是(180°-70°)÷2=55°;当这个角是底角时,另一个底角也是70°,则顶角是180°-70°-70°=40°。

标准答案:55°、55°或70°、40°。

初中-数学-打印版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.5 三角形内角和定理的证明
教材与学生现实的分析
1、三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。

在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。

其中辅助线的作法、把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用。

2、三角形内角和定理的内容,学生在小学已经熟悉,但在小学是通过实验得出的,要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添辅助线是解决数学问题(尤其是几何问题)的重要思想方法,它同代数中设末知数是同一思想。

3、学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,而且也渗透了三角形的内角和是180°的证明,它的证明借助了平角定义,平行线的性质。

用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。

尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。

因此定理的证明应是本节引导和探索的重点。

辅助线的作法是学生在几何证明过程中第一次接触,只要教师设置恰当的问题情境,学生再由实验操作、观察、抽象出几何图形,用自主探索的方式是可发完成的,并且这样的过程可以更好地发展他们的创造能力和实验能力。

从本节开始训练学生将命题翻译为几何符号语言,写出已知、求证,学会分析命题的
把三个内角集中在一起有很多种方法,下面提供其中的。

相关文档
最新文档