高考数学真题演练
2024年河南省名校高三数学考前模拟演练试卷附答案解析
2024年河南省名校高三数学考前模拟演练试卷(全卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题日的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给的四个选项中,只有一项是符合题目要求的.1.样本数据45,50,51,53,53,57,60的下四分位数为()A .50B .53C .57D .452.已知i(1i)2i 1iz +=--,则z =()A .2i-+B .12i-+C .2i--D .12i--3.过抛物线28y x =的焦点的直线交抛物线于,A B 两点,若AB 中点的横坐标为4,则AB =()A .16B .12C .10D .84.直线:1l x y +=,圆22:2220C x y x y +---=.则直线l 被圆C 所截得的弦长为()A .2B .C .D 5.()423a b c --的展开式中2abc 的系数为()A .208B .216-C .217D .218-6.已知0,0x y >>,2x y xy +=,则2x y +的最小值为()A .8B .4C .D .7.在ABC 中,1,3AB BAC AD AC =∠=-⊥,且AD 交BC 于点D ,3AD =,则sin C =()A .13B C D8.已知P 为椭圆2222:1(0)x y C a b a b +=>>上一点,12F F 、分别为其左、右焦点,O 为坐标原点,||2PO a =,且21234PF PF a ⋅=,则C 的离心率为()A B .14C .22D .12二、多选题:本题共3小题,每小题6分,共18分.在每小题给的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.数列{}n a 满足:()111,32n n a S a n -==≥,则下列结论中正确的是()A .213a =B .{}n a 是等比数列C .14,23n n a a n +=≥D .114,23n n S n --⎛⎫=≥ ⎪⎝⎭10.已知()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示,则()A .()01f =B .()f x 在区间4π11π,36⎛⎫⎪⎝⎭单调递减C .()f x 在区间π5π,36⎡⎤⎢⎥⎣⎦的值域为⎡-⎣D .()f x 在区间π,2π2⎛⎫⎪⎝⎭有3个极值点11.如图,在棱长为1的正方体1111ABCD A B C D -中,E 是棱1DD 上的动点(不含端点),过1,,A B E 三点的平面将正方体分为两个部分,则下列说法错误的是()A .正方体被平面1AEB 所截得的截面形状为梯形B .存在一点E ,使得点1A 和点C 到平面1AEB 的距离相等C .若E 是1DD 的中点,则三棱锥11A ABE -外接球的表面积是41π8D .当正方体被平面1AEB 所截得的上部分的几何体的体积为13时,E 是1DD 的中点三、填空题:本题共3小题,每小题5分,共15分.12.已知()3,4a =- ,()1,2b = ,则a 在b的方向上的投影向量是.(结果写坐标)13.已知集合{}{}-11,121A x x B x m x m =≤≤=-≤≤-.若B A ⊆,则实数m 的取值范围为.14.已知函数()f x 的定义域为R ,若()()()()()11f x y f x f y f x f y -=+++,且()()02f f ≠,则1021()n f n ==∑.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,sin cos B b A b -=.(1)求角A 的大小;(2)若BD 为AC 边上的中线,且2BD =,求b +2c 的最大值.16.已知函数()1ln f x ax x x =+-的图像在1x =处的切线与直线0x y -=平行.(1)求函数()f x 的单调区间;(2)若()12,0,x x ∀∈+∞,且12x x >时,()()()221212f x f x m x x ->-,求实数m 的取值范围.17.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,两焦点12,F F 与短轴的一个顶点构成等边三角形,点2P ⎫⎪⎪⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)过点1F 且斜率不为0的直线l 与椭圆C 交于,A B 两点,与直线3x =-交于点D .设1121,AD AF BD BF λλ==,证明:12λλ+为定值.18.如图,在三棱锥-P ABC 中,AB BC ⊥,2,==AB BC ,,PB PC BP AP BC ==的中点分别为,,,D E O AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角P BC A --的大小.19.某种植物感染病毒γ极易死亡,当地生物研究所为此研发出了一种抗病毒γ的制剂.现对20株感染了病毒γ的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计,并对植株吸收制剂的量(单位:毫克)进行统计.规定植株吸收在6毫克及以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中“植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.编号12345678910吸收量(毫克)6838956627编号11121314151617181920吸收量(毫克)75106788469(1)补全列联表中的空缺部分,依据0.01α=的独立性检验,能否认为“植株的存活”与“制剂吸收足量”有关?吸收足量吸收不足量合计植株存活植株死亡合计(2)现假设该植物感染病毒γ后的存活日数为随机变量X (X 可取任意正整数).研究人员统计大量数据后发现:对于任意的*N k ∈,存活日数为(1)+k 的样本在存活日数超过k 的样本里的数量占比与存活日数为1的样本在全体样本中的数量占比相同,均等于0.1,这种现象被称为“几何分布的无记忆性”.试推导()*()N P X k k =∈的表达式,并求该植物感染病毒γ后存活日数的期望()E X 的值.附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++;当n 足够大时,0.90n n ⨯≈.α0.0100.0050.001x α6.6357.87910.8281.A【分析】根据百分位数的概念即可求解.【详解】由这组数据共7个,则7725%4i =⨯=,所以这组数据的下四分位数为第2个数据50.故选:A .2.B【分析】根据复数的除法法则及共轭复数的定义即可求解.【详解】22i(1i)i(1i)2i 2i 2i 2i 12i 1i (1i)(1i)2z ++=-=-=-=----+,所以12i z =-+.故选:B .3.B【分析】由抛物线焦点弦长公式结合中点坐标公式即可求解.【详解】设()()1122,,,A x y B x y ,由题设有1242x x +=,由抛物线的焦半径公式有:而()()12122224244122x x AB x x +=+++=⋅+=⨯+=.故选:B.4.D【分析】先将圆的方程化为标准形式,求出圆心坐标与圆的半径,再求出圆心到直线的距离,最终利用勾股定理即可求解.【详解】圆C 的标准方程为()()22114x y -+-=,由此可知圆C 的半径为2r =,圆心坐标为()1,1C ,所以圆心()1,1C 到直线:1l x y +=的距离为d ==,所以直线被圆截得的弦长为=故选:D.5.B【分析】根据2abc 各未知数的次数以及二项式定理,即可得出答案.【详解】根据二项式定理可得,()423a b c --的展开式中,含2abc 的项为()()211122432C C 2C 3216a b c abc ⋅⋅⋅-⋅⋅-=-.所以,()423a b c --的展开式中2abc 的系数为216-.故选:B.6.A【分析】首先由条件可得201xy x =>-,再变形2x y +,最后利用基本不等式,即可求解.【详解】由0,0x y >>,2x y xy +=,可得201xy x =>-,则1x >则()()22214122222111x x x x x y x x x x -+-++=+==---()2214481x x =-++≥=-,当()2211x x -=-,得2x =时,等号成立,所以2x y +的最小值为8.故选:A 7.B【分析】利用诱导公式求出cos BAD ∠,再利用余弦定理求出BD 及cos ADB ∠即可得解.【详解】由1cos ,3BAC AD AC ∠=-⊥,得π1sin sin()cos 23BAD BAC BAC ∠=∠-=-∠=,而BAD ∠为锐角,则cos 3BAD ∠=,在ABD △中,由余弦定理得BD ==所以sin cos cos C ADC ADB =∠=-∠=故选:B8.C【分析】根据给定条件,利用向量数量积的运算律、余弦定理,结合椭圆的定义求解即得.【详解】令12(,0),(,0)F c F c -,显然点P 不在x 轴上,121()2PO PF PF =+,则22212121242||||cos PO PF PF PF PF F PF =++∠ ,由余弦定理得22212121212||||||2||||cos F F PF PF PF PF F PF =+-∠,因此2221212124||||2(||||)4||||PO F F PF PF PF PF +=+-,而12||||2PF PF a +=,于是2222342(2)3a c a a +=-,整理得222c a =,则22212c e a ==,所以C 的离心率为2e =.故选:C9.AC【分析】利用已知求得213a =,可判断A ;1133(2)n n n n S S a a n -+-=-≥,可得14(2)3n n a a n +=≥,判断BC ,进而求得1n S -,判断D.【详解】由13(2)n n S a n -=≥,当1122,31n S a a ====,解得213a =,故A 正确;当1n ≥,可得13n n S a +=,所以1133(2)n n n n S S a a n -+-=-≥,所以133(2)n n n a a a n +=-≥,即14(2)3n n a a n +=≥,而2113=a a ,故C 正确,B 不正确;因22112311413341,24313n n n n Sa a a a n ----⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=++++=+=> ⎪⎝⎭- ,故D 错误.故选:AC.10.AD【分析】求出函数解析式,进而求得函数值判断A ,举反例判断BC ,利用整体代换法判断D 即可.【详解】由图像得2A =,311π3ππ41264T =-=,解得πT =,故2π2π2πT ω===,故此时有()()2sin 2x x f ϕ=+,将π(,2)6代入函数解析式,得π22sin 26ϕ⎛⎫=⨯+ ⎪⎝⎭,故ππ22π,Z 62k k ϕ⨯+=+∈,解得πZ π2,6k k ϕ=+∈,而π02ϕ<<,故π6ϕ=,此时()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,显然()01f =成立,故A 正确,易知5π23f ⎛⎫=- ⎪⎝⎭,7π4f ⎛⎫= ⎪⎝⎭,而57ππ34<,57ππ34f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,又,517π1π344ππ36,∈⎛⎫ ⎪⎝⎭,故()f x 在区间4π11π,36⎛⎫⎪⎝⎭上并非单调递减,故B 错误,易知2π23f ⎛⎫=- ⎪⎝⎭,2π5ππ,336⎡⎤∈⎢⎣⎦,故()f x 在区间π5π,36⎡⎤⎢⎥⎣⎦的值域不可能为⎡-⎣,故C 错误,当π,2π2x ⎛⎫∈ ⎪⎝⎭时,()2π,4πx ∈,π7252(π,π)666x +∈,当π3572π,π,π6222x +=时,()f x 取得极值,可得()f x 在区间π,2π2⎛⎫⎪⎝⎭有3个极值点,故D 正确.故选:AD 11.BCD【分析】设过1,,A B E 三点的平面与11C D 交点为F ,连接1,EF FB ,可得正方体被平面1AEB 所截得的截面形状为梯形,判断A ;若点1A 和点C 到平面1AEB 的距离相等,可得BC 平面1AEB ,可得AD 平面1AEB ,判断B ;求得外接球的表面积判断C ;在11D C 上取点H ,使得1EH DC ∥,连接1HB ,设1D E a =,由题意可得()11111211,66E AA B E A B HD V V a a --==+,可得210a a +-=,可判断D.【详解】选项A :设过1,,A B E 三点的平面与11C D 交点为F ,连接1,EF FB ,因为平面11ABB A 平面11DCC D ,且平面1AEB 平面111ABB A AB =,平面1AEB 平面11DCC D EF =,所以EF 1AB ,由正方体性质可知,AD 1111,B C AD B C =,所以四边形11AB C D 为平行四边形,所以1DC 1AB ,所以EF 11,DC EF DC ≠,即1EF AB ≠,所以正方体被平面1AEB 所截得的截面形状为梯形,故A 正确.选项B :由点1A 和点B 到平面1AEB 的距离相等,若点1A 和点C 到平面1AEB 的距离相等,必有BC 平面1AEB ,又由BC AD ,可得AD 平面1AEB ,与AD ⋂平面1AEB A =矛盾,故B 错误;选项C :取11,AB DC 的中点,由正方体的性质,可知三棱锥11A AEB -的外接球的球心在MN 上,设为O ,设外接球的半径为R ,则可得R ==,解得38ON =,418R =,所以三棱锥11A AB E -外接球的表面积是41π16,故C 错误;选项D :如图:在11D C 上取点H ,使得1EH DC ∥,连接1HB ,设1D E a =,因为()()1111121111111111,326326E AA B E A B HD a V V a a a --⨯+=⨯⨯⨯⨯==⨯⨯=+,正方体被平面1AEB 所截得的上部分的几何体的体积为:()2211110663a a a a ++=⇒+-=,解得a =D 错误.故选:BCD.【点睛】关键点点睛:本题D 选项解决的关键是设1D E a =,求得两几何体的体积,进而得关于a 的表达式210a a +-=,进而求解可得结论.12.()1,2--【分析】根据投影向量的定义求解即可.【详解】因为()3,4a =- ,()1,2b =,所以a 在b 的方向上的投影向量是()1,2||||a bb b b b b ⋅==-=-⋅-,故答案为:()1,2--.13.(],1-∞【解析】根据B A ⊆,分B =∅和B ≠∅两种情况讨论求解.【详解】已知集合{}{}-11,121A x x B x m x m =≤≤=-≤≤-,且B A ⊆,当B =∅时,121m m ->-,解得0m <,符合题意;当B ≠∅时,则011211m m m ≥⎧⎪-≥-⎨⎪-≤⎩,解得01m ≤≤,综上:实数m 的取值范围为(],1-∞.故答案为:(],1-∞14.1-【分析】通过赋值法解出()()2202f f ⎡⎤⎡⎤=⎣⎦⎣⎦,由()()02f f ≠解出()1f ;进而求出()()0,2f f ,再证明函数为偶函数,进而证出()()11f y f y -=-+,结合偶函数得出函数周期,求出()()3,4f f 最后求解即可.【详解】令0x y ==,得()()()22001f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦,再令1x y ==,得()()()22012f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦,所以()()2202f f ⎡⎤⎡⎤=⎣⎦⎣⎦,因为()()02f f ≠,所以()()02f f =-,令1,0x y ==,得()()()()()110210f f f f f =+=,所以()()200f f ⎡⎤=⎣⎦,即()001f =或,若()00f =,则代入()()()22012f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦中,()20f =,由()()02f f ≠,所以()00f ≠,即()01f =,且()21f =-,令0x =,得()()()()()011f y f f y f f y -=++,由()01f =,()10f =,所以()()f y f y -=,所以()f x 为偶函数,所以()()110f f -==,()()221f f -==-,令1x =,得()()()()()1121f y f f y f f y -=++,所以()()11f y f y -=-+,即()()20f y f y +-=,因为()()()2f y f y f y -==-+,所以()()4f y f y +=,所以()f x 为周期函数,周期为4,所以()()()()()()()10,21,3110,401f f f f f f f ==-=-====,()()()()12340f f f f +++=,所以()1021=n f n =∑()()()()()()251234121f f f f f f ⎡⎤+++++=-⎣⎦故答案为:1-.【点睛】关键点点睛:该题刚开始的关键是通过赋值法求得()()()0,1,2f f f 的值,这也是抽象函数求函数值的常用方法,另一个关键点是从所求出发:求多个函数值和,联想到这种类型的求和大概两种:一种转化成某个数列求和,另一种利用周期性求和,所以接下来的关键就是借助奇偶性求函数的周期.15.(1)3A π=(2)8【分析】(1sin cos B b A b -=cos 1A A -=求解;(2)由余弦定理得到22422b b c c ⎛⎫=+-⋅ ⎪⎝⎭,再利用基本不等式求解.【详解】(1sin sin cos sin A B B A B -=,又sin 0B ≠,cos 1A A -=,11cos 22A A -=,即1sin 62A π⎛⎫-= ⎪⎝⎭.因为()0,A π∈,5,666A πππ⎛⎫-∈- ⎪⎝⎭,所以66A ππ-=,即3A π=.(2)由余弦定理得2222cos BD AD AB AD AB A =+-⋅,即22422b b c c ⎛⎫=+-⋅ ⎪⎝⎭,所以22422232b b c c b c ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⋅=≤ ⎪ ⎪⎝⎭,即2216b c ⎛⎫ ⎪⎭≤+⎝.所以242b c <+≤,所以428b c <+≤当且仅当2b c =时,等号成立.所以b+2c 的最大值为816.(1)()f x 在()0,e 递增,在()e,∞+递减(2)21,2e ∞⎛⎤-- ⎥⎝⎦【分析】(1)利用导数的几何意义求出2a =,直接利用导数求单调区间;(2)根据式子结构构造()()2g x f x mx =-,由()g x 在()0,∞+为增函数,得到1ln 2x m x-≤在0x >恒成立,令()1ln x h x x-=,利用导数求出()h x 的最小值,即可求解.【详解】(1)()1ln f x ax x x =+-的导数为()1ln f x a x '=--,可得()f x 的图象在()()1,1A f 处的切线斜率为1a -,由切线与直线0x y -=平行,可得11a -=,即2a =,()21ln f x x x x =+-,()1ln f x x '=-,由()0f x ¢>,可得0e x <<,由()0f x '<,可得e x >,则()f x 在()0,e 递增,在()e,∞+递减.(2)因为12x x >,若()12,0,x x ∀∈+∞,由()()221212f x f x mx mx ->-,即有()()221122 f x mx f x mx ->-恒成立,设()()2g x f x mx =-,所以()()2g x f x mx =-在()0,∞+为增函数,即有()1ln 20g x x mx '=--≥对0x >恒成立,可得1ln 2x m x -≤在0x >恒成立,由()1ln x h x x -=的导数为()2ln 2x h x x -'=,当()0h x '=,可得2e x =,()h x 在()20,e 递减,在()2e ,+∞递增,即有()h x 在2e x =处取得极小值,且为最小值21e -可得212e m ≤-,解得212e m ≤-则实数m 的取值范围是21,2e ⎛⎤-∞- ⎥⎝⎦.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围.17.(1)22143x y +=(2)详见解析【分析】(1)根据题意,列出关于,,a b c 的方程组,解之即得椭圆C 的标准方程;(2)依题意设出直线l 的横截距式方程,与椭圆方程联立,写出韦达定理,根据11AD AF λ= ,21BD BF λ= 代入坐标,求得1121my λ=+,2221my λ=+,计算12λλ+并将韦达定理代入化简即得【详解】(1)由题意得:2222226142a b a c a b c ⎧+=⎪⎪=⎨⎪=+⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程是22143x y +=.(2)由(1)知()11,0F -,由条件可知l 的斜率存在且不为0,设l 的方程为1x my =-,则0m ≠,令3x =-可得23,D m ⎛⎫-- ⎪⎝⎭.联立方程221,34120,x my x y =-⎧⎨+-=⎩得()2234690,Δ0m y my +--=>,设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m +==-++,由11AD AF λ= 可得()1111123,1,x y x y m λ⎛⎫----=--- ⎪⎝⎭,则有1112y y m λ--=-,解得1121my λ=+,同理2221my λ=+.212122121221122634222349y y m m m y y m y y m m λλ⎛⎫⎛⎫⎛⎫++∴+=++=+=+⨯ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭262293m m ⎛⎫=+⨯-= ⎪⎝⎭,故12λλ+为定值23.18.(1)证明见解析;(2)证明见解析;(3)2π3.【分析】(1)连接DE 、OF ,设AF tAC =,根据BF AO ⊥,则0BF AO ⋅= 即可求出t ,从而证明四边形ODEF 为平行四边形,即可得到//EF DO ,从而得证;(2)利用勾股定理逆定理得到OD AO ⊥,再由BF AO ⊥,即可得到AO ⊥平面BEF ,即可得证;(3)过点B 作z 轴⊥平面BAC ,建立如图所示的空间直角坐标系,设(),,P x y z,所以由PA PB PC ⎧=⎪⎪=⎨⎪=⎪⎩求出P 点坐标,利用空间向量法计算可得.【详解】(1)连接DE 、OF ,设AF tAC =,则()1BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+ ,因为BF AO ⊥,AB BC ⊥,则0BA BC ⋅= ,()112BF AO t BA tBC BA BC ⎛⎫⎡⎤⋅=-+⋅-+ ⎪⎣⎦⎝⎭()()221141402t BA t BC t t =-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,所以//DE AB 且12DE AB =,//OF AB 且12OF AB =,即//DE OF 且DE OF =,所以四边形ODEF 为平行四边形,所以//EF DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以//EF 平面ADO .(2)由(1)可知//EF OD ,则AO ==62DO =,所以2AD ==,因此222152OD AO AD +==,则OD AO ⊥,有EF AO ⊥,又,,,AO BF BF EF F BF EF ⊥⋂=⊂平面BEF ,所以AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)因为AB BC ⊥,过点B作z 轴⊥平面BAC ,建立如图所示的空间直角坐标系,则()()()2,0,0,,0,0,0,0,A B C ,在BDA △中,222315422cos 2DB AB DA PBA DB AB +-+-∠==-⋅,在PBA△中,2222cos 642214PA PB AB PB AB PBA ⎛=+-⋅∠=+-⨯-= ⎝,即PA =设(),,P x yz,所以由PA PB PC ⎧=⎪⎪=⎨⎪=⎪⎩,可得()(22222222221466x y z x y z x y z ⎧-++=⎪⎪++=⎨⎪+-+=⎪⎩,解得1,x y z =-==(P -,则(BP =-,()0,BC = ,设平面PBC 的法向量为()1111,,n x y z = ,则1100n BPn BC ⎧⋅=⎪⎨⋅=⎪⎩,得11110x ⎧=⎪⎨-+=⎪⎩,令1x =110,1y z ==,所以)1n = ,又平面BCA 的一个法向量为()20,0,1n = ,设二面角P BC A --为θ,显然θ为钝角,所以22111cos 2n n n n θ⋅=-=-⋅ ,所以二面角P BC A --的大小为2π3.19.(1)表格见解析,无关(2)1()0.10.9k P X k -==⨯,()10E X =【分析】(1)由题意补全联表,代入公式求出观测值,将其与临界值进行对比,进而即可求解;(2)先得到(1)0.9(2)()P X k k P X k =+=≥=,推出(1)0.9()P X k P X k =+==对任意*N k ∈都成立,根据等比数列的定义可得1()0.10.9k P X k -==⨯,由()(1)2(2)3(3)()E X P X P X P X kP X k ==+=+=++=+ ,利用错位相减求出111()0.10.9100.9100.9k ki k k i i iP X i i k -====⨯=-⨯-⨯∑∑,从而得到()E X 的值.【详解】(1)填写列联表如下:吸收足量吸收不足量合计植株存活12113植株死亡347合计15520零假设为0H :“植株的存活”与“制剂吸收足量”无关联.根据列联表中的数据,经计算得到:2220(12431) 5.934 6.635137155χ⨯⨯-⨯=≈<⨯⨯⨯,依据0.01α=的独立性检验,没有充分证据推断0H 不成立,因此可以认为0H 成立,即认为“植株的存活”与“制剂吸收足量”无关.(2)由题意得(1)(1|)0.1P X P X k X k ===+>=.又(1)(1|)()P X k P X k X k P X k =+=+>=>,故(1)0.1()P X k P X k =+=>.把k 换成1k -,则()0.1(1)P X k P X k ==>-.两式相减,得()(1)0.1()P X k P X k P X k =-=+==,即(1)0.9()P X k P X k =+==(2)k ≥.又(2)0.1(1)0.1(1(1))0.9(1)P X P X P X P X ==>=⨯-===,故(1)0.9()P X k P X k =+==对任意*N k ∈都成立,从而{()}P X k =是首项为0.1,公比为0.9的等比数列,因此1()0.10.9k P X k -==⨯.由定义可知()(1)2(2)3(3)()E X P X P X P X kP X k ==+=+=++=+ ,而111()0.10.9k k i i i iP X i i -====⨯∑∑,下面先求110.9ki i i -=⨯∑.1012110.910.920.9(1)0.90.9k i k k i i k k ---=⨯=⨯+⨯++-⨯+⨯∑ ,112110.90.910.920.9(1)0.90.9ki k k i i k k --=⨯=⨯+⨯++-⨯+⨯∑ ,作差得112110.10.910.90.90.90.9k i k ki i k --=⨯=++++-⨯∑ ()110.90.910(10)0.910.9k k k k k ⨯-=-⨯=-+⨯-.所以111()0.10.9100.9100.9k k i k k i i iP X i i k -====⨯=-⨯-⨯∑∑,当k 足够大时,0.90k k ⨯≈,100.90k ⨯≈,故1()10ki iP X i ==≈∑,可认为()10E X =.【点睛】关键点点睛:本题第二问的关键是推出{()}P X k =是首项为0.1,公比为0.9的等比数列,通项为1()0.10.9k P X k -==⨯,再利用错位相减法求出111()0.10.9k ki i i iP X i i -====⨯∑∑,从而得到期望.。
2023年数学高考复习真题演练(全国卷)05 一元二次不等式与其他常见不等式解法(含详解)
专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,n m 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}x x >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m <例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x ⎫<⎬D .1|x x ⎧⎫<⎨⎬ 8002222A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m > C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<例9.(2022·全国·高三专题练习)在关于x 的不等式2(1)0x a x a -++<的解集中至多包含2个整数,则a 的取值范围是 A .(3,5)-B .(2,4)-C .[3,5]-D .[2,4]-例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围【方法技巧与总结】 1.数形结合处理. 2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2-B .1C .2D .8例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD. (多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >0|6 0201132例16.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【方法技巧与总结】1.一定要牢记二次函数的基本性质.2.含参的注意利用根与系数的关系找关系进行代换. 题型四:其他不等式解法例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________.例21.(2022·上海·高三专题练习)关于x 230≥的解集为_________.例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理. 题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围24321131上为减函数,则实数a 的取值范围为( ) A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫-- ⎪⎝⎭例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( )A .196B .3C .103 D .92例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅰ)方程()0f x =在(0,1)内有两个实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤D .{}34x x -<≤2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3234|0{}2| 1114.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1-B .(-C .()0,1D .(5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的取值范围为( )A .[1,3]-B .75,22⎡⎤-⎢⎥⎣⎦C .[1,-D .[1,7.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞8.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)二、多选题9.(2022·全国·高三专题练习)若不等式2sin sin 20x a x -+≥对任意的0,2x π⎛⎤∈ ⎥⎝⎦恒成立,则实数a 可能是A .1B .2C .3D .410.(2022·江苏·高三专题练习)已知不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,则以下选项正确的有( ) A .0a <B .0c >2011201111222A .当0m ≠时,()0f x <的解集为2mx x m ⎧⎫-<<⎨⎬⎩⎭B .当1m =时,[)12,1,x x ∀∈+∞时,()()()12120x x f x f x -->⎡⎤⎣⎦C .121,,4x x m ⎛⎤∀∈-∞ ⎥⎝⎦且12x x ≠时,()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭D .当0m <时,若120x x <<,则()()2112>x f x x f x12.(2022·重庆巴蜀中学高三阶段练习)已知两个变量x ,y 的关系式(,)(1)f x y x y =-,则以下说法正确的是( )A .(1,3)(3,1)0f f ==B .对任意实数a ,都有1(,)4f a a ≤成立 C .若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立,则实数a 的取值范围是[5,3]- D .若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立,则实数x 的取值范围是(,0)-∞ 三、填空题13.(2022·全国·高三专题练习)不等式210ax x c a++>的解集为{|21}x x -<<,则函数y =递增区间是_______14.(2022·浙江·高三专题练习)若不等式2(3)16x b -<的解集中的整数有且仅有1,2,3,则实数b 的取值范围是___________.15.(2022·全国·高三专题练习)若关于x 的不等式()2220x a x a -++->恰有1个正整数解,则a 的取值范围是___________.16.(2022·全国·高三专题练习)设a ,b ,c R ∈,对任意满足1x 的实数x ,都有21ax bx c ++,则a b c++的最大可能值为__. 四、解答题17.(2022·北京·高三学业考试)已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2). (1)求()f x 的解析式;(2)求不等式()21f x x <+的解集.18.(2022·江西·高三期末(文))已知()|2||1|f x x x =++-. (1)解不等式()8f x x ≤+;(2)若关于x 的不等式2()2f x m m ≥-在R 上恒成立,求实数m 的取值范围.192320010 0 21(3)设1x ,2x 是方程()0f x =123||2x x -<.20.(2022·浙江·高三专题练习)若不等式2(1)460a x x 的解集是{31}x x -<<. (1)解不等式22(2)0x a x a ;(2)b 为何值时,230ax bx ++≥的解集为R .21.(2022·全国·高三专题练习)解关于x 的不等式:()()21100ax a x a +--<<. 22.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++.(1)若()10f -=,试判断函数()f x 零点个数; (2)是否存在,,a b c ∈R ,使()f x 同时满足以下条件: ①对任意,(4)(2)x R f x f x ∈-=-,且()0f x ≥; ②对任意x ∈R ,都有210()(1)2f x x x ≤-≤-.若存在,求出,,a b c 的值,若不存在,请说明理由.专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,n m 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}x x >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 【答案】D 【解析】 【分析】结合一元二次不等式的解法求得正确答案即可. 【详解】由(2)(1)0x x +->解得2x <-,或1x >,所以不等式(2)(1)0x x +->的解集为{2∣<-x x 或1}x >, 故选:D.例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】 【分析】根据指数型函数的定点求解,m n ,代入后再求解一元二次不等式. 【详解】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1) B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C 【解析】 【分析】根据()f x 解析式,可得()f x 的单调性,根据条件,可得x +2<x 2+2x ,根据一元二次不等式的解法,即可得21020 0所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2, 则原不等式的解集为(﹣∞,﹣2)∪(1,+∞). 故选:C例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m <【答案】B 【解析】 【分析】根据该不等式是否为二次不等式,分情况讨论. 【详解】当0m =时,该不等式为210x -+>,解集为12x <,不成立; 当0m ≠时,由不等式的解集为R ,得()()2Δ2410m m m m >⎧⎪⎨=+-+<⎪⎩,解得m >故选:B.例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【答案】D 【解析】 【分析】根据奇偶性定义可知()f x 为偶函数,并根据指数函数和二次函数单调性确定()f x 的单调性,从而将所求不等式转化为124x x +≥-,解不等式可求得结果.【详解】223302332()f x ∴在[)0,∞+上为增函数,则()f x 在(],0-∞上为减函数;由()()124f x f x +≥-可得:124x x +≥-,即()()22124x x +≥-,解得:15x ≤≤,即不等式()()124f x f x +≥-的解集为[]1,5. 故选:D.【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】根据一元二次不等式的解法即可求解. 【详解】解:原不等式可以转化为:()()120x ax --≥,当0a <时,可知2()(1)0x x a --≤,对应的方程的两根为1,2a,根据一元二次不等式的解集的特点,可知不等式的解集为:2[,1]a. 故选:A.例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x a ⎫<⎬⎭D .1|x x a ⎧⎫<⎨⎬⎩⎭【答案】A 【解析】 【分析】111010又因为当1a <-时,1a a >,所以不等式1()0x a x a ⎛⎫--> ⎪⎝⎭的解集为:{|x x a <或1x a ⎫>⎬⎭. 故选:A . 【点睛】本题考查含参一元二次不等式的解法,较简单,解答时,注意根的大小关系比较.例8.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()()f x y f x f y -=-,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m < )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m >C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<【答案】A 【解析】 【分析】先判断函数()f x 单调递减,再利用已知条件和函数的单调性得()()20mx x m --<,解不等式即得解. 【详解】任取12x x <,由已知得()120f x x ->,即()()120f x f x ->,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m ->-,即()22f mx x f ->()22m x m -,所以2222mx x m x m -<-,即()22220mx m x m -++<,即()()20mx x m --<,又因为0m << 所以2m m >,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 【点睛】方法点睛:解抽象函数不等式一般先要判断函数的单调性,再利用单调性化抽象函数不等式为具体的函数不等式解答.9202【解析】 【详解】因为关于x 的不等式2(1)0x a x a -++<可化为(1)()0x x a --<, 当1a >时,不等式的解集为1x a <<, 当1a <时,不等式的解集为1<<a x ,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[2,4]a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围. 【答案】()(),22,∞∞--⋃+ 【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==由此可知120,0x x <>, 当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x<,即12a ,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a>,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得2321012(1)对k 进行分类讨论,结合一元二次不等式的解法求得不等式的解集A . (2)结合(1)的结论进行分类讨论,结合基本不等式求得和正确答案. (1)当k =0时,A ={x |x <4};当k >0且k ≠2时,A ={x |x <4或4x k k>+}; 当k =2时,A ={x |x ≠4};当k <0时,A ={x |4k k+<x <4}. (2)由(1)知:当k ≥0时,集合B 中的元素的个数有无限个;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集. 因为4k k+=-[(-k )+()4k -]≤-4,当且仅当k =-2时取等号, 所以当k =-2时,集合B 中的元素个数最少,此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围 【答案】12ln2(,]43-【解析】 【分析】将不等式转化为22ln 2(1)x x m x ->+,构造函数22ln ()=2(1)x xf x x -+,利用导数判断单调性,结合题意即可求解.【详解】关于x 的不等式21ln 02x mx x m ---<化为:22ln 2(1)x x m x ->+,令22ln ()=2(1)x xf x x -+,0x >,则3222222ln ()2(1)x x x x xf x x x +--+'=+.令32()2222ln u x x x x x x =+--+,2()342ln u x x x x '=++在(0,)+∞上单调递增,因此存在0(0,1)x ∈,使得20000()342ln 0u x x x x '=++=,20002ln 34x x x =--, 3232232200000000000000000()2222ln 222(34)22222(1)(1)0u x x x x x x x x x x x x x x x x x =+--+=+--+--=----=-++<,110210011011f (1)14=,f (2)2ln23-=.关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >, 该不等式在(,)a b 中有且只有一个整数解,∴实数m 的取值范围是12ln2(,]43-.【方法技巧与总结】 1.数形结合处理.2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2- B .1 C .2 D .8【答案】C 【解析】 【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值. 【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥,44244b b a b b +=+≥,当且仅当4b =时取“=”, 故选:C.例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD. 【答案】D 【解析】124212322430(0)x ax a a -+<<的解集为()12x x ,,则12x x ,是方程22430-+=x ax a 的两个根,故124x x a +=,2123x x a =,故1212143a x x a x x a++=+ 因为0a <,所以有基本不等式得:114433a a a a ⎡⎤⎛⎫+=--+-≤-= ⎪⎢⎥⎝⎭⎣⎦,当且仅当143a a -=-即a =1212a x x x x ++的最大值为 故选:D(多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞【答案】ABD 【解析】 【分析】根据不等式20ax bx c ++>的解集判断出0a >,结合根与系数关系、一元二次不等式的解法判断BCD 选项的正确性.【详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确; 且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误; 不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确. 故选:ABD .1625101123⎧⎫303 23【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可. 【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,,故6a =,则不等式303x ax -<-即3603x x -<-等价于3(2)(3)0x x --<, 不等式3(2)(3)0x x --<的解集为{}23x x <<, 则不等式303x ax -<-的解集为{}23x x <<, 故答案为:{}23x x <<.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x << 【解析】【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答. 【详解】依题意,12-,13-是方程210ax bx --=的两个根,且0a <,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<12例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 【答案】10,2⎛⎫ ⎪⎝⎭【解析】 【分析】 由12x>可得120x ->,结合分式不等式的解法即可求解.【详解】 由12x >可得120x ->,整理可得:120xx ->,则()210x x -<,解可得:102x <<. 所以不等式是12x >的解集为: 10,2⎛⎫ ⎪⎝⎭. 故答案为:10,2⎛⎫⎪⎝⎭.例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 【答案】()1,0- 【解析】【分析】根据分式不等式的解法进行求解. 【详解】1111000101111x x x x x x x ->⇒->⇒>⇒<⇒-<<++++, 故答案为:()1,0-.例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________. 【答案】02xx <- 【解析】 【分析】由题意根据分式不等式的解法,得出结论. 【详解】一个解集为()0,2的分式不等式可以是02xx <-, 022123【答案】[4,5) 【解析】 【分析】通过2330x x -+>0≥恒成立,将不等式最终转化为405010x x x -≥⎧⎪->⎨⎪+≠⎩,解出即可.【详解】解:对于233x x -+,有23340∆=-⨯<,则2330x x -+>恒成立,0≥恒成立,2323(34)00150x x x x ⎧--≥⎪≥⇔+⎨⎪->⎩又2333(34)(4)(1)11x x x x x x ---+=++, 23(34)0150x x x x ⎧--≥⎪∴+⎨⎪->⎩, 2333(34)(4)(1)x x x x --=-+405010x x x -≥⎧⎪∴->⎨⎪+≠⎩解得不等式的解集为[4,5).故答案为:[4,5). 【点睛】本题考查分式不等式的求解,发现部分因式恒大于零,以及分母不为零是解题的关键,是中档题. 例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【答案】()()3,11,2--.101111011【详解】 若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭则关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得,则1111,,132x ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,则()()3,11,2x ∈--⋃. 故解集为:()()3,11,2--.【点睛】本题考查不等式的解法,考查方法的类比,正确理解题意是关键.【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理. 题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是( ) A .()0,1 B .()0,∞+C .()1,+∞D .(),0-∞【答案】C 【解析】 【分析】由0a ≠,判别式0∆>及根与系数关系列出不等式组,即可求出实数a 的取值范围. 【详解】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C例24.(2022·全国·高三专题练习)已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) 55345135534求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解. 【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】A 【解析】化简函数f (x ),根据f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,f ′(x )≤0恒成立,由此解不等式求出a 的取值范围.【详解】1232122∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A . 【点睛】本题考查三角函数的公式及导数的应用,解题的关键是利用换元将不等式恒成立问题转化为一元二次不等式恒成立问题,属于较难题.例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103 D .92【答案】AC 【解析】 【分析】本题先求导函数并根据题意建立关于m 的方程,再根据根的分布求a 的取值范围,最后判断得到答案即可. 【详解】 解:∵ 322()13f x x x ax =-+-, 22222232223022230且可知1210m m +=>,则1200m m ∆>⎧⎨⋅>⎩,即2242(3)0302a a ⎧-⨯⨯->⎪⎨->⎪⎩, 解得:732a <<,所以a 的取值可能为196,103. 故选:AC. 【点睛】本题考查求导函数,导数的几何意义,根的分布,是中档题.例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+ 【解析】根据一元二次方程根的分布建立不等式组,解之可得答案. 【详解】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅰ)方程()0f x =在(0,1)内有两个实根. 【答案】(Ⅰ)见解析;(Ⅰ)见解析. 【解析】 【分析】(Ⅰ)先由条件求得,a c 的符号,结合条件可得; (Ⅰ)根据(0),(1)()3bf f f a-的符号可得. 【详解】020 000020故21ba-<<-. (Ⅰ)函数2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--,在21b a -<<-的两边乘以13-,得12333b a <-<.又因为(0)0,(1)0,f f >>而22()0,33b a c acf a a+--=-<又因为2()32f x ax bx c =++在(0,)3ba -上单调递减,在(,1)3b a-上单调递增, 所以方程()0f x =在区间(0,)3ba -与(,1)3b a-内分别各有一实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤ D .{}34x x -<≤【答案】D 【解析】 【分析】由一元二次不等式的解法和简单分式不等式的解法求出集合,A B ,然后根据并集的定义即可求解. 【详解】解:因为集合{}{}228024A x x x x x =--≤=-≤≤,()(){}2302032330x x x B x x x x x x ⎧⎫⎧-+≤⎧⎫-⎪⎪=≤==-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎩⎪⎪⎩⎭,所以{}34A B x x ⋃=-<≤, 故选:D.2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件22012,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件. 故选:B3.(2022·陕西·模拟预测(理))已知集合234|0A x x x ,{}2|B x a x a =<<,若A B =∅,则实数a 的取值范围是( ) A .(],1-∞- B .[)4,+∞ C .()(),12,4-∞-⋃ D .[][)1,24,-⋃+∞【答案】D 【解析】 【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可. 【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅, 所以,当{}2|B x a x a=<<=∅时,2a a≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞,综上,实数a 的取值范围是[][)1,24,-⋃+∞. 故选:D4.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1- B.(-C .()0,1D.(【答案】C 【解析】 【分析】根据函数解析式判断函数关于点(1,0)成中心对称,再由基本初等函数判断函数单调性,转化原不等式后求 22022又()()ln ln 2cos2f x x x x π=---的定义域为(0,2),由πln ,ln(2),cos 2y x y x y x ==--=-在(0,2)上单调递增知, ()()ln ln 2cos2f x x x x π=---在(0,2)上递增,()()20f t f t +<,()20(2)f f t t ∴+-<-,即()2(2)f t f t <-,22t t ∴<-,解得21t -<<,又20202t t <<⎧⎨<<⎩,解得0t << 所以01t <<. 故选:C5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的7522。
2023年数学高考复习真题演练(2021-2022年高考真题)16 极值与最值(含详解)
专题16极值与最值【考点预测】 知识点一:极值与最值 1.函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值.如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值.极大值与极小值统称为极值,称0x 为极值点.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x '; (3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点.2.函数的最值函数()y f x =最大值为极大值与靠近极小值的端点之间的最大者;函数()f x 最小值为极小值与靠近极大值的端点之间的最小者.导函数为21212()()()()f x ax bx c a x x x x m x x n =++=--<<<(1)当0a >时,最大值是1()f x 与()f n 中的最大者;最小值是2()f x 与()f m 中的最小者. (2)当0a <时,最大值是2()f x 与()f m 中的最大者;最小值是1()f x 与()f n 中的最小者.一般地,设()y f x =是定义在[]m n ,上的函数,()y f x =在()m n ,内有导数,求函数()y f x =在[]m n ,上的最大值与最小值可分为两步进行:(1)求()y f x =在()m n ,内的极值(极大值或极小值); (2)将()y f x =的各极值与()f m 和()f n 比较,其中最大的一个为最大值,最小的一个为最小值. 注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点;③函数的最值必在极值点或区间端点处取得. 【方法技巧与总结】(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.(3)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>; 不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(4)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔<不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>(5)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤; (6)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥; (7)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤; (8)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥; (9)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;(10)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;(11)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(12)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥. 【题型归纳目录】题型一:求函数的极值与极值点 题型二:根据极值、极值点求参数 题型三:求函数的最值(不含参) 题型四:求函数的最值(含参) 题型五:根据最值求参数题型六:函数单调性、极值、最值得综合应用 题型七:不等式恒成立与存在性问题 【典例例题】题型一:求函数的极值与极值点例1.(2022·江西·上饶市第一中学模拟预测(文))已知函数()()()1xf x a x a =--∈e R .当1a =时,求函数()y f x =的极值;例2.(2022·湖北·襄阳四中模拟预测)设()e sin x f x x =.(1)求()f x 在[],ππ-上的极值; (2)若对[]12,0,x x π∀∈,12x x ≠,都有()()1222120f x f x a x x -+>-成立,求实数a 的取值范围. 例3.(2022·天津市咸水沽第一中学模拟预测)已知函数ln()()eln (e 2.71828ax f x x x=-=……自然对数底数). (1)当e a =时,求函数f (x )的单调区间; (2)当e a >时,(i )证明:()f x 存在唯一的极值点:(ii )证明:()(1)e f x a <- 例4.(2022·江西师大附中三模(理))已知函数()sin ,()e xxf x xg x =-为()f x 的导函数. (1)判断函数()g x 在区间π0,2⎛⎫ ⎪⎝⎭上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;(2)求证:函数()f x 在区间(,π)-∞上只有两个零点.例5.(2022·江苏苏州·模拟预测)函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;(2)证明:()()ln F x f x x =-有两个零点.【方法技巧与总结】1.因此,在求函数极值问题中,一定要检验方程()0f x '=根左右的符号,更要注意变号后极大值与极小值是否与已知有矛盾.2.原函数出现极值时,导函数正处于零点,归纳起来一句话:原极导零.这个零点必须穿越x 轴,否则不是极值点.判断口诀:从左往右找穿越(导函数与x 轴的交点);上坡低头找极小,下坡抬头找极大.题型二:根据极值、极值点求参数例6.(2022·四川·绵阳中学实验学校模拟预测(文))若函数()322f x x ax bx a =--+在1x =处有极值10,则a b -=( ) A .6B .15-C .6-或15D .6或15-例7.(2022·江苏南通·模拟预测)已知函数()()()e x f x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =( ) A .-1B .2C .-3D .4例8.(2022·四川绵阳·二模(文))若2x =是函数()()2224ln f x x a x a x =+--的极大值点,则实数a 的取值范围是( ) A .(),2-∞-B .()2,-+∞C .()2,+∞D .()2,2-例9.(2022·河南·模拟预测(文))已知函数()2ln f x x ax =-的极值为12-,则=a ( )A .eB .1e 2C .12D .14例10.(2022·河南·高三阶段练习(文))若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围( )A .()2,2-B .(-C .⎡-⎣D .[]22-,例11.(2022·四川省南充高级中学高三阶段练习(理))已知函数322()3f x x mx nx m =-++在1x =-处取得极值0,则m n +=( ) A .2B .7C .2或7D .3或9例12.(2022·全国·高三专题练习)函数()(ln )xe f x a x x x =--在(0,1)内有极值,则实数a 的取值范围是( )A .(,)e -∞B .(0,)eC .(,)e +∞D .[),e +∞例13.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦,若2x =是()f x 的极小值点,则实数a 的取值范围是( )A .2,3⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .(),0-∞D . ()1,-+∞例14.(2022·全国·高三专题练习)已知函数()321132f x x ax x =-+在区间1,32⎛⎫⎪⎝⎭上既有极大值又有极小值,则实数a 的取值范围是( ) A .()2,+∞B .[)2,+∞C .52,2⎛⎫ ⎪⎝⎭D .102,3⎛⎫ ⎪⎝⎭例15.(2022·全国·高三专题练习)函数()()()321112132f x x m x m x =-++-在()0,4上无极值,则m =______.例16.(2022·吉林长春·模拟预测(文))已知函数()sin f x ax x =+,()0,πx ∈.(1)当1a =时,过()0,1做函数()f x 的切线,求切线方程;(2)若函数()f x 存在极值,求极值的取值范围.例17.(2022·北京市第十二中学三模)已知函数()ln ,af x x a x=+∈R .(1)当1a =时,求函数()f x 的单调递增区间; (2)设函数()1()f x g x x-=,若()g x 在21,e ⎡⎤⎣⎦上存在极值,求a 的取值范围. 例18.(2022·天津·耀华中学二模)已知函数()ln (0)xae f x x x a x =+->.(1)若1a =,求函数()f x 的单调区间;(2)若()f x 存在两个极小值点12,x x ,求实数a 的取值范围.例19.(2022·河北·石家庄二中模拟预测)已知函数()32f x x ax bx =-++.(1)当0,1a b ==时,证明:当()1,x ∈+∞时,()ln f x x <;(2)若2b a =,函数()f x 在区间()1,2上存在极大值,求a 的取值范围.题型三:求函数的最值(不含参)例20.(2022·江苏徐州·模拟预测)函数12()||cos f x x x =-的最小值为_____________.例21.(2022·全国·高三专题练习)函数()e ln 1x x f x x x -=+的最小值为______.例22.(2022·四川·模拟预测(文))对任意a ∈R ,存在(0,)b ∈+∞,使得1eln a b +=,则b a -的最小值为_________.例23.(2022·河南郑州·三模(文))()x f x e x =-在区间[]1,1-上的最小值是( )A .11e+B .1C .1e +D .1e -例24.(2022·全国·高三专题练习)函数1(1),[3,4]x y x e x +=+∈-的最大值为( ) A .22e -B .55eC .54eD .1e --例25.(2022·全国·高三专题练习)已知函数()()1cos 0f x ax x a =-≠. (1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)求函数()f x 在0,4π⎡⎤⎢⎥⎣⎦的最小值.例26.(2022·山东·临沭县教育和体育局高二期中)已知函数32(),1f x x bx x a x =+-+=是()f x 的一个极值点.(1)求b 的值;(2)当[2,2]x ∈-时,求函数()f x 的最大值.题型四:求函数的最值(含参)例27.(2022·北京通州·高二期中)已知函数()32392f x x x x =--+.(1)求函数()f x 的单调区间;(2)求函数()f x 在区间[]0,a 上的最小值.例28.(2022·河南·高二阶段练习(理))已知函数f (x )=x -m ln x -m . (1)讨论函数f (x )的单调性;(2)若函数f (x )有最小值g (m ),证明:g (m ) 1e≤在(0)+∞,上恒成立. 例29.(2021·江苏·高二单元测试)已知函数()2ln f x x ax =-.(1)讨论()f x 的单调性;(2)当0a >时,求()f x 在区间[]1,2上的最大值.题型五:根据最值求参数例30.(2022·河北·模拟预测)已知0a >,函数()12ag x x x+=+-在[)2,+∞上的最小值为1,则=a __________. 例31.(2022·山西运城·模拟预测(理))已知函数()32112132x x f x x =+-+,若函数()f x 在()22,23a a -+上存在最小值.则实数a 的取值范围是________.例32.(2022·浙江湖州·高三期末)若函数()()2221e x f x x x a +=+++存在最小值,则实数a 的取值范围是___________.例33.(2022·陕西·模拟预测(理))若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是_________.题型六:函数单调性、极值、最值得综合应用例34.(2022·全国·高三专题练习(理))已知函数f (x )=e x +ax ·sin x . (1)求y =f (x )在x =0处的切线方程; (2)当a =-2时,设函数g (x )=()f x x,若x 0是g (x )在(0,π)上的一个极值点,求证:x 0是函数g (x )在(0,π)上的唯一极小值点,且e -2<g (x 0)<e .例35.(2022·四川泸州·三模(文))已知函数()313f x x ax =-+,R a ∈.(1)讨论函数()f x 的单调性;(2)若()()xg x f x e =⋅有且只有一个极值点,求a 的取值范围.例36.(2022·广东·深圳市光明区高级中学模拟预测)已知函数()e sin 1xf x ax x =-+-.(1)当2a =时,求函数()f x 的极值点; (2)当12a ≤<时,试讨论函数()f x 的零点个数.例37.(2022·北京市十一学校高三阶段练习)已知函数()()()211e 12ax f x x ax a x =--+-(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)判断函数()f x 的极值点的个数,并说明理由.例38.(2022·重庆巴蜀中学高三阶段练习)已知函数2()e (3)ln xf x x x x=---. (1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:()f x 存在唯一极大值点0x ,且()072e 22f x --<<-.例39.(2022·全国·模拟预测(文))已知函数()()2ln 1f x x x x =---. (1)证明:()f x 存在唯一的极值点; (2)m 为整数,()f x m >,求m 的最大值.题型七:不等式恒成立与存在性问题例40.(2022·辽宁·二模)若关于x 的不等式ln 1e x x x ax ++≤恒成立,则实数a 的取值范围为___________. 例41.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.例42.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间; (2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围. 例43.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()()122211ln 2x f x x x x -+=+-++-.(1)求函数()f x 的单调区间;(2)若对1x ∀、[]20,2x ∈,使()()1212f x f x a-≤-恒成立,求a 的取值范围.例44.(2022·内蒙古赤峰·三模(文))已知函数()()ln 1f x x x =+. (1)求()f x 的最小值;(2)若()()212f x x m x -++-恒成立,求实数m 的取值范围.【方法技巧与总结】在不等式恒成立或不等式有解条件下求参数的取值范围,一般利用等价转化的思想其转化为函数的最值或值域问题加以求解,可采用分离参数或不分离参数法直接移项构造辅助函数.【过关测试】 一、单选题1.(2022·全国·哈师大附中模拟预测(文))已知0x 是函数()12sin cos 3f x x x x =-的一个极值点,则20tan x 的值是( ) A .1B .12C .37D .572.(2022·宁夏·吴忠中学三模(理))下列函数中,既是奇函数又存在极值的是( ) A .y x =B .()ln y x =-C .e x y x =+D .4y x x=+3.(2022·河南新乡·二模(文))已知0a >,函数()2313f x a x x =-的极小值为43-,则=a ( )AB .1C D4.(2022·内蒙古包头·一模(理))设0m ≠ ,若x m =为函数()()()2f x m x m x n =--的极小值点,则( ) A .m n >B .m n <C .1nm< D .1n m> 5.(2022·河南·模拟预测(文))当x m =时,函数()3232ln f x x x x x =-+-取得最小值,则m =( )A .23B .1C .32D .26.(2022·四川凉山·三模(理))函数()2sin 2a f x x x =-,若()f x 在(0,)2π上有最小值,则实数a 的取值范围是( ) A .()0,∞+B .()0,1C .(),0∞-D .()1,0-7.(2016·天津市红桥区教师发展中心高三学业考试)已知函数2()(4)()f x x x a =--,a 为实数,(1)0f '-=,则()f x 在[]22-,上的最大值是( ) A .92B .1C .35D .5027-8.(2022·宁夏·高三阶段练习(文))若函数()22e xx x af x +-=在区间(,1)a a +上存在最小值,则实数a 的取值范围为( ) A .(),1-∞-B .()2,1--C .⎛-∞ ⎝⎭D .1⎫-⎪⎪⎝⎭二、多选题9.(2022·重庆·三模)已知函数()21e xx x f x ++=(e 为自然对数的底数,e 2.72≈),则关于函数()f x ,下列结论正确的是( ) A .有2个零点B .有2个极值点C .在()0,1单调递增D .最小值为110.(2022·湖北·宜城市第一中学高三阶段练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭11.(2022·福建省德化第一中学模拟预测)设函数()f x 的定义域为R ,()000x x ≠是()f x 的极大值点,以下结论一定正确的是( ) A .x R ∀∈,()()0f x f x ≥ B .0x -是()f x -的极大值点 C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点12.(2022·全国·模拟预测)已知函数()()e e e x xf x a x x -=-+的图象关于直线12x =对称,则下列说法正确的是( ) A .e a = B .()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增C .12x =为()f x 的极小值点 D .()f x 仅有两个零点三、填空题13.(2022·全国·高三专题练习)函数()()()321112132f x x m x m x =-++-在()0,4上无极值,则m =______.14.(2022·天津河西·二模)若函数32()9f x x ax x =+--在1x =-处取得极值,则()2f =____________. 15.(2022·湖南·长郡中学高三阶段练习)函数()1ln f x x x=+的极值点为___________. 16.(2022·全国·高三专题练习)已知函数()3,,43,,x x a f x x x x a ≥⎧=⎨-<⎩则下列命题正确的有:___________.①若()f x 有两个极值点,则0a =或112a <<②若()f x 有极小值点,则12a >③若()f x 有极大值点,则12a >-④使()f x 连续的a 有3个取值四、解答题17.(2021·四川省叙永第一中学校高三阶段练习(文))已知函数32()f x x ax bx c =+++在1x =与23x =-时,都取得极值.(1)求a ,b 的值;(2)若3(1)2f -=,求()f x 的单调增区间和极值. 18.(2022·河南郑州·高三阶段练习(文))已知函数()21xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间及其最大值与最小值. 19.(2022·陕西·武功县普集高级中学高三期末(文))已知函数()ln a f x x x=-.(1)若3a =-,求函数()f x 的极值;(2)若函数()f x 在3,e e ⎡⎤⎣⎦上单调递增,求a 的取值范围.20.(2022·全国·高三专题练习)已知函数()32213f x x x ax =+++在()1,0-上有两个极值点,12,x x ,且12x x <. (1)求实数a 的取值范围;(2)证明:当102x -<<时,()1112f x >.21.(2022·北京·人大附中三模)设函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()1,1f 处的切线与x 轴平行,求a ; (2)若()f x 在2x =处取得极大值,求a 的取值范围.22.(2022·浙江嘉兴·模拟预测)已知函数2()e e,x f x ax a =+-∈R .(注:e 2.71828=是自然对数的底数)(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若()f x 只有一个极值点,求实数a 的取值范围;(3)若存在b ∈R ,对与任意的x ∈R ,使得()f x b≥恒成立,求-a b 的最小值.专题16极值与最值【考点预测】 知识点一:极值与最值 1.函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值.如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值.极大值与极小值统称为极值,称0x 为极值点.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x '; (3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点.2.函数的最值函数()y f x =最大值为极大值与靠近极小值的端点之间的最大者;函数()f x 最小值为极小值与靠近极大值的端点之间的最小者.导函数为21212()()()()f x ax bx c a x x x x m x x n =++=--<<<(1)当0a >时,最大值是1()f x 与()f n 中的最大者;最小值是2()f x 与()f m 中的最小者. (2)当0a <时,最大值是2()f x 与()f m 中的最大者;最小值是1()f x 与()f n 中的最小者.一般地,设()y f x =是定义在[]m n ,上的函数,()y f x =在()m n ,内有导数,求函数()y f x =在[]m n ,上的最大值与最小值可分为两步进行:(1)求()y f x =在()m n ,内的极值(极大值或极小值); (2)将()y f x =的各极值与()f m 和()f n 比较,其中最大的一个为最大值,最小的一个为最小值. 注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点;③函数的最值必在极值点或区间端点处取得. 【方法技巧与总结】(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.(3)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>; 不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(4)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔<不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>(5)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤; (6)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥; (7)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤; (8)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥; (9)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;(10)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;(11)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(12)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥. 【题型归纳目录】题型一:求函数的极值与极值点 题型二:根据极值、极值点求参数 题型三:求函数的最值(不含参) 题型四:求函数的最值(含参) 题型五:根据最值求参数题型六:函数单调性、极值、最值得综合应用 题型七:不等式恒成立与存在性问题 【典例例题】题型一:求函数的极值与极值点例1.(2022·江西·上饶市第一中学模拟预测(文))已知函数()()()1xf x a x a =--∈e R .当1a =时,求函数()y f x =的极值; 【解析】由题知,当1a =时,()e (1)x f x x =--,x ∈R∴()e 1xf x '=-,令()0f x '=,0x =. ∴(),0x ∈-∞时,()0f x '<,()f x 单调递减;()0,x ∈+∞时,()0f x '>,()f x 单调递增.∴0x =是()f x 的极小值点,∴()f x 的极小值为()02f =,无极大值.例2.(2022·湖北·襄阳四中模拟预测)设()e sin xf x x =.(1)求()f x 在[],ππ-上的极值; (2)若对[]12,0,x x π∀∈,12x x ≠,都有()()1222120f x f x a x x -+>-成立,求实数a 的取值范围. 【答案】(1)极小值为42eπ34π (2)e ,2ππ⎡⎫+∞⎪⎢⎣⎭ 【解析】 【分析】(1)直接求导计算即可.(2)将问题转化为()()222211f x ax f x ax +>+,构造新函数()()2g x f x ax =+在[]0,π上单调递增即可,然后参变分离或者分类讨论都可以. (1)由()()e sin cos 0xf x x x '=+≤,[],x ππ∈-得()f x 的单调减区间是,4ππ⎡⎤--⎢⎥⎣⎦,3,4ππ⎡⎤⎢⎥⎣⎦,同理,()f x 的单调增区间是3,44ππ⎡⎤-⎢⎥⎣⎦.故()f x 的极小值为442e f ππ⎛⎫-= ⎪⎝⎭343e 42f ππ⎛⎫=⎪⎝⎭. (2)由对称性,不妨设120x x π≤<≤, 则()()1222120f x f x a x x -+>-即为()()222211f x ax f x ax +>+. 设()()2g x f x ax =+,则()g x 在[]0,π上单调递增,故()()e sin cos 20xg x x x ax '=++≥在[]0,π上恒成立. 方法一:(含参讨论)设()()()e sin cos 20xh x g x x x ax '==++≥,则()010h =>,()e 20h a πππ=-+≥,解得e 2a ππ≥. ()()2e cos xh x x a '=+,()()0210h a '=+>,()()2e h a ππ'=-.①当e a π≥时,()()2e cos sin x h x x x ''=-⎡⎤⎣⎦,故,当0,4x π⎡⎤∈⎢⎥⎣⎦时,()()2e cos sin 0x h x x x ''=-≥⎡⎤⎣⎦,()h x '递增; 当,4x ππ⎡⎤∈⎢⎥⎣⎦时,()()2e cos sin 0x h x x x ''=-≤⎡⎤⎣⎦,()h x '递减; 此时,()()(){}()()min 0,20h x h h h a e πππ''''≥==-≥,()()h x g x '=在[]0,π上单调递增,故()()()010h x g x g ''=≥=>,符合条件.②当e e 2a πππ≤<时,同①,当0,4x π⎡⎤∈⎢⎥⎣⎦时,()h x '递增;当,4x ππ⎡⎤∈⎢⎥⎣⎦时,()h x '递减;∵()()02104h h a π⎛⎫''>=+> ⎪⎝⎭,()()2e 0h a ππ'=-<,∴由连续函数零点存在性定理及单调性知,0,4x ππ⎛⎫∃∈ ⎪⎝⎭,()00h x '=.于是,当[)00,x x ∈时,()0h x '>,()()h x g x '=单调递增;当(]0,x x π∈时,()0h x '<,()()h x g x '=单调递减.∵()010h =>,()e 20h a πππ=-+≥,∴()()()(){}min 0,0g x h x h h π'=≥≥,符合条件.综上,实数a 的取值范围是e ,2ππ⎡⎫+∞⎪⎢⎣⎭.方法二:(参变分离)由对称性,不妨设120x x π≤<≤,则()()1222120f x f x a x x -+>-即为()()222211f x ax f x ax +>+. 设()()2g x f x ax =+,则()g x 在[]0,π上单调递增, 故()()e sin cos 20xg x x x ax '=++≥在[]0,π上恒成立.∵()010g '=>,∴()(),e sin cos 20xg x x x ax '=++≥在[]0,π上恒成立()e sin cos 2x x x a x+⇔-≤,(]0,x π∀∈.设()()e sin cos x x x h x x+=,(]0,x π∈,则()()2e 2cos sin cos x x x x x h x x --'=,(]0,x π∈.设()2tan 1x x x ϕ=--,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,则()212cos x x ϕ'=-,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦.由()0x ϕ'>,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,得()x ϕ在0,4π⎛⎫ ⎪⎝⎭,3,4ππ⎛⎤⎥⎝⎦上单调递增;由()0x ϕ'<,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,得()x ϕ在,42ππ⎛⎫ ⎪⎝⎭,3,24ππ⎛⎤⎥⎝⎦上单调递减.故0,2x π⎛⎫∈ ⎪⎝⎭时()2042x ππϕϕ⎛⎫≤=-< ⎪⎝⎭;,2x π⎛⎤∈π ⎥⎝⎦时()33042x ππϕϕ⎛⎫≥=> ⎪⎝⎭. 从而,()cos 2cos sin cos 0x x x x x x ϕ=--<,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,又2x π=时,2cos sin cos 10x x x x --=-<,故()()2e 2cos sin cos 0x x x x x h x x --'=<,(]0,x π∈,()()e sin cos x x x h x x+=,(]0,x π∈单调递减,()()min e h x h πππ==-,(]0,x π∈. 于是,e e 22a a ππππ-≤-⇔≥.综上,实数a 的取值范围是e ,2ππ⎡⎫+∞⎪⎢⎣⎭. 例3.(2022·天津市咸水沽第一中学模拟预测)已知函数ln()()eln (e 2.71828ax f x x x=-=……自然对数底数). (1)当e a =时,求函数f (x )的单调区间;(2)当e a >时,(i )证明:()f x 存在唯一的极值点: (ii )证明:()(1)e f x a <-【答案】(1)函数()f x 的单调递增区间为10,e ⎛⎫ ⎪⎝⎭,单调递减区间为1,e ⎛⎫+∞ ⎪⎝⎭(2)证明见详解 【解析】 【分析】(1)求导,利用导数判断函数单调性;(2)利用导数判断单调性,利用零点存在性定理判断零点,进而确定极值点,利用零点代换结合函数最值处理极值的范围. (1)21ln()e ()ax x f x x--'=,构建()1ln()e x ax x ϕ=-- 当e a =时,则()1ln(e )e x x x ϕ=--在()0,∞+上单调递减,且1()0eϕ=当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0x ϕ>,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0x ϕ<则函数()f x 的单调递增区间为10,e ⎛⎫ ⎪⎝⎭,单调递减区间为1,e ⎛⎫+∞ ⎪⎝⎭(2)(i )由(1)可知:当e a >时,()ϕx 在()0,∞+上单调递减11e ()1ln 0,()10e a a a ϕϕ=-<=->∴()ϕx 在()0,∞+内存在唯一的零点011,e x a ⎛⎫∈ ⎪⎝⎭当()00,x x ∈时,()0x ϕ>,当()0,x x ∈+∞时,()0x ϕ<则函数()f x 的单调递增区间为()00,x ,单调递减区间为()0,x +∞ ∴()f x 存在唯一的极值点0x(ii )由(i )可知:0000ln(())el (n )x f x f x x x a -≤=∵001ln()e 0ax x --=,即001e ln()x ax -=000000ln()e 1)e (ln eln x f x x x x x a ==---,且011,e x a ⎛⎫∈ ⎪⎝⎭∵()el e 1n g x x x --=在11,e a ⎛⎫⎪⎝⎭单调递减则()1eln e g x g a a a ⎛⎫<=+- ⎪⎝⎭构建()()()e 1eln e x h x x x =-->,则()()e 1e 0x xh x -'-=>当e x >时恒成立则()h x 在()e,+∞上单调递增,则()()()e e 20e h x h ≥=->则()()e 1eln e e x x x x ->+->,即()1e eln e a a a ->+- ∴()(1)e f x a <-例4.(2022·江西师大附中三模(理))已知函数()sin ,()ex xf x xg x =-为()f x 的导函数. (1)判断函数()g x 在区间π0,2⎛⎫ ⎪⎝⎭上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;(2)求证:函数()f x 在区间(,π)-∞上只有两个零点. 【答案】(1)存在;极小值 (2)证明见解析 【解析】 【分析】(1)转化为判断导函数是否存在变号零点,对()g x '求导后,判断()g x '的单调性,结合零点存在性定理可得结果;(2)当0x <时,利用单调性得()0f x <恒成立,此时()f x 无零点;当0x =时,()0f x =;当0πx <<时,利用导数得到单调性,结合零点存在性定理可得()f x 在(0,π)上只有一个零点.由此可证结论正确. (1)由()sin e x xf x x =-,可得2e e 1()cos cos (e )e x x x x x xg x x x --=-=-, 则2e (1)e 2π()sin sin ,0,(e )e 2x x x x x x g x x x x ----⎛⎫'=+=+∈ ⎪⎝⎭, 令2()sin e x x h x x -=+,其中π0,2x ⎛⎫∈ ⎪⎝⎭,可得2e (2)e 3()cos cos 0(e )e x x x x x x h x x x ---'=+=+>, 所以()h x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,即()g x '在π0,2⎛⎫ ⎪⎝⎭上单调递增,因为π2π2π2(0)20,102e g g -⎛⎫''=-<=+> ⎪⎝⎭,所以存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()00,x x ∈时,()0,()g x g x '<单调递减;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0,()g x g x '>单调递增,所以当0x x =时,函数()g x 取得极小值. (2)由e ()sin x x f x x =-,当0x <时,11e x x ->,所以()()f x g x '==1cos ex xx --0>,所以()f x 在(,0)-∞上为增函数,所以()(0)0f x f <=,此时函数()f x 在(,0)-∞上没有零点;当0x =时,可得00(0)sin 00e f =-=,所以0x =是函数()f x 的一个零点;当0πx <<时,由()1()sin e sin e exx x x f x x x x =-=- ,令()e sin ,(0,π)xm x x x x =-∈,可得()1e (sin cos )x m x x x '=-+,令()ϕx 1e (sin cos )x x x =-+ 则()e (sin cos )e (cos sin )2e cos x x x x x x x x x ϕ'=-+--=-,当π0,2x ⎛⎫∈ ⎪⎝⎭,可得()2e cos 0x x x ϕ'=-<;当π,π2x ⎛⎫∈ ⎪⎝⎭,可得()2e cos 0x x x ϕ'=->,即()m x '在π0,2⎛⎫⎪⎝⎭上单调递减,在π,π2⎛⎫ ⎪⎝⎭上单调递增,又因为ππ2π1e 0,(π)1e 02m m ⎛⎫''=-<=+> ⎪⎝⎭,所以存在1π,π2⎛⎫∈ ⎪⎝⎭x 使得()10m x '=,当()10,x x ∈时,()0m x '<;当()1,πx x ∈时,()0m x '>,又因为()1(0)0,(π)π0m x m m <==>,所以存在()21,πx x ∈使得()20m x =,即2x 是函数()f x 的一个零点. 综上可得,函数()f x 在(,π)-∞上有且仅有两个零点. 【点睛】关键点点睛:第二问中,分段讨论并利用导数和零点存在性定理求解是解题关键. 例5.(2022·江苏苏州·模拟预测)函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;(2)证明:()()ln F x f x x =-有两个零点.【答案】(1)极大值,12π-;极小值,1-;(2)详见解析. 【解析】 【分析】(1)由题可得()14f x x π⎛⎫'=- ⎪⎝⎭,进而可得;(2)当30,4x π⎛⎫∈ ⎪⎝⎭时,利用导数可得函数的最小值,进而可得函数有两个零点,当37[,)44x ππ∈,7[,)4x π∈+∞时,利用导数可得()0F x >,即得. (1)∵()sin cos f x x x x =--,∴()1cos sin 14f x x x x π⎛⎫=-+=+' ⎪⎝⎭,,2x ππ⎛⎫∈- ⎪⎝⎭,由()0f x '=,可得2x π=-,或0x =,∴,2x ππ⎛⎫∈-- ⎪⎝⎭,()()0,f x f x '>单调递增,,02x π⎛⎫∈- ⎪⎝⎭,()()0,f x f x '<单调递减,0,2x π⎛⎫∈ ⎪⎝⎭,()()0,f x f x '>单调递增,∴2x π=-时,函数()f x 有极大值()122f ππ-=-,0x =时,函数()f x 有极小值(0)1f =-;(2)∵()()ln sin cos ln ,0F x f x x x x x x x =-=--->,∴()1()1cos sin ,0h x F x x x x x'==-+->,∴()2211sin cos 4h x x x x x x π⎛⎫'=++=++ ⎪⎝⎭,当30,4x π⎛⎫∈ ⎪⎝⎭时,()()0,h x h x '>单调递增,即()F x '单调递增,又42()10,()2042F F ππππ''=-<=->,故存在0,42x ππ⎛⎫∈ ⎪⎝⎭,0()0F x '=,所以()()()00,,0,x x F x F x '∈<单调递减,()()()03,,0,4x x F x F xπ'∈<单调递增, ∴30,4x π⎛⎫∈ ⎪⎝⎭时,函数()()()0min 11sin1cos10F x F x F =<=--<,2222(e )e sin e cos e 20F ----=--+>,333()ln 0444F πππ=->, 故30,4x π⎛⎫∈ ⎪⎝⎭时,()()ln F x f x x =-有两个零点,当37[,)44x ππ∈0,()sin cos ln ln ln 44x F x x x x x x x x x x ππ⎛⎫⎛⎫+≤=---=+-≥- ⎪ ⎪⎝⎭⎝⎭,对于函数()ln x x x ϕ=-,则()1110x x x xϕ-'=-=>,又()10ϕ=, ∴37[,)44x ππ∈,()()10x ϕϕ>=,即()0F x >,此时函数()()ln F x f x x =-没有零点,当7[,)4x π∈+∞时,()sin cos ln ln ln 4F x x x x x x x x x x π⎛⎫=---=+-≥ ⎪⎝⎭,由上可知77()ln 044F x ππ≥>,故当7[,)4x π∈+∞时,函数()()ln F x f x x =-没有零点, 综上,函数()()ln F x f x x =-有两个零点. 【点睛】利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图象;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数硏究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数硏究.【方法技巧与总结】1.因此,在求函数极值问题中,一定要检验方程()0f x '=根左右的符号,更要注意变号后极大值与极小值是否与已知有矛盾.2.原函数出现极值时,导函数正处于零点,归纳起来一句话:原极导零.这个零点必须穿越x 轴,否则不是极值点.判断口诀:从左往右找穿越(导函数与x 轴的交点);上坡低头找极小,下坡抬头找极大.题型二:根据极值、极值点求参数例6.(2022·四川·绵阳中学实验学校模拟预测(文))若函数()322f x x ax bx a =--+在1x =处有极值10,则a b -=( ) A .6 B .15- C .6-或15 D .6或15- 【答案】B【解析】 【分析】先求出函数的导函数()'f x ,然后根据在1x = 时()f x 有极值10,得到232010a b a b a --=⎧⎨--+=⎩,求出满足条件的,a b ,然后验证在1x = 时()f x 是否有极值,即可求出-a b 【详解】()322f x x ax bx a =--+,2()32f x x ax b '∴=--又1x = 时()f x 有极值10∴ 232010a b a b a --=⎧⎨--+=⎩,解得411a b =-⎧⎨=⎩ 或33a b =⎧⎨=-⎩当3,3a b ==- 时,22()3633(1)0f x x x x '=-+=-≥ 此时()f x 在1x = 处无极值,不符合题意 经检验,4,11a b =-= 时满足题意 15a b ∴-=-故选:B例7.(2022·江苏南通·模拟预测)已知函数()()()e xf x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =( ) A .-1 B .2 C .-3 D .4 【答案】B 【解析】 【分析】对()f x 求导,由函数()()()e xf x x a x b =--在x a =处取极小值,所以0f a,所以a b =,()()2e xf x x a ∴=-,对()f x 求导,求单调区间及极大值,由()f x 的极大值为4,列方程得解.【详解】解:()()()e xf x x a x b =--()2e x x ax bx ab =--+,所以()()()22e ex x f x x a b x ax bx ab '=--+--+()2e 2x x a b x ab a b ⎡⎤=+--+--⎣⎦因为函数()()()e xf x x a x b =--在x a =处取极小值,所以()()()2e 2e 0a af a a a b a ab a b a b '⎡⎤=+--+--=-=⎣⎦,所以a b =,()()2e xf x x a ∴=-,()()()()22e 222=e 2x xf x x a x a a x a x a '⎡⎤=+-+----⎡⎤⎣⎦⎣⎦, 令()0f x '=,得=x a 或=2x a -,当()2x a ∈-∞-,时,()0f x '>,所以()f x 在()2a -∞-,单调递增,当()2x a a ∈-,时,()0f x '<,所以()f x 在()2a a -,单调递增,当()x a ∈∞,+时,()0f x '>,所以()f x 在()a ∞+,单调递增,所以()f x 在=2x a -处有极大值为()22e ==44a f a --,解得=2a ,所以=2b .故选:B 例8.(2022·四川绵阳·二模(文))若2x =是函数()()2224ln f x x a x a x =+--的极大值点,则实数a 的取值范围是( ) A .(),2-∞-B .()2,-+∞C .()2,+∞D .()2,2-【答案】A 【解析】 【分析】求出()f x ',分0a ≥,2a <-,20a -<<,2a =-分别讨论出函数的单调区间,从而可得其极值情况,从而得出答案. 【详解】()()()()()22224224222x a x a x x a a f x x a x x x+---+'=+--==,()0x > 若0a ≥时,当2x >时,()0f x '>;当02x <<时,()0f x '<; 则()f x 在()0,2上单调递减;在()2,+∞上单调递增.所以当2x =时,()f x 取得极小值,与条件不符合,故满足题意.当2a <-时,由()0f x '>可得02x <<或x a >-;由()0f x '<可得2x a <<- 所以在()0,2上单调递增;在()2,a -上单调递减,在(),a -+∞上单调递增. 所以当2x =时,()f x 取得极大值,满足条件.当20a -<<时,由()0f x '>可得0x a <<-或2x >;由()0f x '<可得2a x -<< 所以在()0,a -上单调递增;在(),2a -上单调递减,在()2,+∞上单调递增. 所以当2x =时,()f x 取得极小值,不满足条件.当2a =-时,()0f x '≥在()0,∞+上恒成立,即()f x 在()0,∞+上单调递增. 此时()f x 无极值.综上所述:2a <-满足条件 故选:A例9.(2022·河南·模拟预测(文))已知函数()2ln f x x ax =-的极值为12-,则=a ( )A .eB .1e 2C .12 D .14【答案】C 【解析】 【分析】求导得到导函数,考虑0a ≤和0a >两种情况,根据函数的单调性得到极值,计算得到答案. 【详解】函数()f x 的定义域为()0,∞+,()21122ax f x ax x x-'=-=,当0a ≤时,()0f x '>,所以()f x 在()0,∞+上单调递增,()f x 无极值,不符合题意;当0a >时,()2122a x a f x x⎛⎫- ⎪⎝⎭'=-,当x ⎛∈ ⎝时,()0f x '>,当x ⎫∈+∞⎪⎪⎭时,()0f x '<, 所以()f x在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,则()()111ln 2222f x f a ==--=-极大值,解得12a =.故选:C.例10.(2022·河南·高三阶段练习(文))若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围( ) A .()2,2-B.(-C.⎡-⎣ D .[]22-, 【答案】D 【解析】 【分析】求()()222e x x a f x x a ⎡⎤++++⋅⎣⎦'=,由分析可得()2220y x a x a =++++≥恒成立,利用0∆≤即可求得实数a 的取值范围. 【详解】由()()22e xx a f x x =++⋅可得。
2023年数学高考复习真题演练(2021-2022年高考真题)23 数列的基本知识与概念 (含详解)
专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67B .68C .134D .167例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( ) A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【方法技巧与总结】解决数列的单调性问题的3种方法题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2D .3例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na n nb S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 例19.数列,1n =,2,,中的最小项的值为__________.【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ). A .35 2331n n +- B .36 2331n n -+ C .37 2331n n -+ D .38 2331n n +-例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12B .()3,10C .()2,11D .()3,9例23.将正整数排列如下: 1 2 34 5 67 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列B .第64行4列C .第65行3列D .第65行4列题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575C .D .12例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( ) A .134B .5C .6D .132例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[]40,25-- B .[]40,0- C .[]25,25- D .[]25,0-【过关测试】一、单选题 1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =( )2.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是( )A .①②B .②③C .①④D .③④3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为( ) A .()9,128 B .()10,128 C .()9,256D .()10,2564.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为( ) A .16-B .23C .6-D .325.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ( )A .13B .1C .2D .526.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n a a n n=+,则“21a a >”是“数列{}n a 单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是( ) A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,48.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是( ) A .第2项 B .第3项 C .第4项D .第5项9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩,则数列{}n a 中的项的值可能为( ) A .13B .2C .23D .4513.(2022·全国·高三专题练习)下列四个选项中,不正确的是( )A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+ B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是( ) A .20212a = B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为( ) A .19B .16C .13D .4316.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .317.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是( )A .第四行的数是17,18,20,24B .()11232-+=⋅n n n aC .()11221n n a n ++=+ D .10016640a =18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是( )A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是( ).A .{}n a 是递增数列B .{}n a 是递减数列C .122n a nD .数列{}n S 的最大项为5S 和6S21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则( )A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2nn ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72 D .数列(){}3nϕ为等比数列三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>=,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________.23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________.24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.25.(2022·江西·临川一中模拟预测(文))已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是_______.26.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8nn a n =+,则数列{}n a 中的最大项的n =________ .27.(2022·山西·模拟预测(理))数列{}n a 中,已知11a =,20a >,()*21n n n a a a n ++=-∈N ,则2022a 的取值范围是___________.28.(2022·四川成都·三模(理))已知数列{}n a 满足13a =,122n n n a a a ++=,则2022a 的值为______.29.(2022·全国·模拟预测)在数列{}n a 中,11a =,1,231,nnn n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,则1232021a a a a ++++=___.专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-【答案】B 【分析】当0x ≥时,分别令1,2,3,x =,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值;当0x <时,分别令1,2,3,x =---,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值. 【详解】 ①当0x ≥时,若0x =,则数列{}n a 的各项为1,0,1,1,0,1,1,0,1,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若1x =,则数列{}n a 的各项为1,1,0,1,1,0,1,1,0,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若2x =,则数列{}n a 的各项为1,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第3项开始为周期数列,周期为3,由202022018236722=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若3x =,则数列{}n a 的各项为1,3,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第4项开始为周期数列,周期为3,由202032017336721=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若4x =,则数列{}n a 的各项为1,4,3,1,2,1,1,0,1,1,0,1,1,0,, 此时数列{}n a 从第6项开始为周期数列,周期为3,由202052015536712=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 依次类推,可知当()26731001146x =-=,或1147x =时, 数列{}n a 的前2020项中有100项是0;②当0x <时,若1x =-,则数列{}n a 的各项为1,1,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第7项开始为周期数列,周期为3,由202062014636711=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 若2x =-,则数列{}n a 的各项为1,2,3,5,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第9项开始为周期数列,周期为3,由202082012836702=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若3x =-,则数列{}n a 的各项为1,3,4,7,3,4,1,3,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第10项开始为周期数列,周期为3,由202092011936701=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若4x =-,则数列{}n a 的各项为1,4,5,9,4,5,1,4,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第12项开始为周期数列,周期为3,由20201120091136692=+=+⨯+,可知数列{}n a 的前2020项中有669项为0; 依次类推,可知当()26711001142x =--=-,或1143x =-时, 数列{}n a 的前2020项中有100项是0.综上所述,若数列{}n a 的前2020项中有100项是0, 则x 可取的值有1146,1147,1142,1143--. 故选:B . 【点睛】本题考查无穷数列,解题的关键是通过条件()21N n n n a a a x *++=-∈探究数列{}n a 的性质,利用赋值法分别令1,2,3,x =和1,2,3,x =---,可分别求出数列{}n a 的前2020项中0的个数,进而得出规律.考查学生的推理能力与计算求解能力,属于难题.例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8【答案】B 【分析】求出1b ,2b ,3b ,4b ,5b ,6b ,判断出{}n b 是一个以周期为6的周期数列,求出即可.【详解】解:2107n n a ⎡⎤=⨯⎢⎥⎣⎦.*111(102)n n n b a b a a n n --∈≥N =,=,,∴112027[]a b ===,2200[287]a ==, 2281028b -⨯==,同理可得:332855a b =,=;4428577a b =,=;55285711a b =,=.662857144a b =,=;72857142a =,72b =,……. ∴6n n b b +=.故{}n b 是一个以周期为6的周期数列, 则20196336335b b b ⨯+===.故选:B . 【点睛】本题考查周期数列的判断和取整函数的应用. 例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-【答案】D 【分析】依次代入1,2,3,4n =可得{}n a 是以4为周期的周期数列,由1231n n n n a a a a +++=可推导得到结果. 【详解】 当1n =时,121131a a a +==--;当2n =时,2321112a a a +==--;当3n =时,3431113a a a +==-;当4n =时,454121a a a +==-;…,∴数列{}n a 是以4为周期的周期数列, ()()1231123123n n n n a a a a n N *+++⎛⎫∴=⨯-⨯-⨯=∈ ⎪⎝⎭,()10891012236T T a a a a ∴=⋅==⨯-=-. 故选:D .例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67 B .68 C .134 D .167【答案】B 【分析】由题意得122,1a a ==,根据21n n n a a a ++=-,列举数列的项,得到数列从第2项起,3项一个循环求解. 【详解】因为1222a a ==, 所以122,1a a ==, 因为21n n n a a a ++=-,所以数列的项依次为2,1,1,0,1,1,0,…, 所以从第2项起,3项一个循环,所以{}n a 的前100项的和为233(110)68+⨯++=, 故选:B .例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45【答案】B 【分析】根据数列定义求出数列的前几项后得出数列是周期数列,从而求值. 【详解】 因为12152a =<,所以23454312,,,5555a a a a ====,所以数列具有周期性,周期为4,所以2021125a a ==.故选:B . 【点睛】本题考查数列的周期性,此类问题的解法是由定义求出数列的前几项,然后归纳出周期性.例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029【答案】C 【分析】根据递推公式可逐个代入计算,得出数列{}n a 的周期为4,再根据2019=m S 与前两项的范围可求得52a =,再分组求和求解2019S 即可. 【详解】设1(23)a a a =<<,由()()11112232n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩,*(,1)n N n ∈>,得22(0,1)a a =-∈,3235(2,3)a a a =-=-∈,435423(0,1),3(2,3)a a a a a a =-=-∈=-=∈.故数列{}n a 的周期为4,即可得41234,6n n a a a a a a +=+++=. 12336632019m m S a a a =+++=⨯+=,又1(23)a a a =<<,22(0,1)a a =-∈.(2)3a a ∴+-=,即52a =. 12311201950443,32a a a a =⨯+++=+=, 2019116059504622S ∴=⨯+=. 故选:C . 【点睛】本题考查数列分组求和、分类讨论方法,考查推理能力与计算能力,考查逻辑推理与数学运算核心素养.属于中档题.例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-【答案】B【解析】由题意得:2341231141115,1,154a a a a a a =-==-==-=-,则数列{}n a 的周期为3,则20226743345a a a ⨯===. 故选:B .例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2【答案】D【解析】解:∵12a =,()1112n n n a a a n --=⋅+≥, ∴()1112n n a n a -=-≥, ∴211122a =-=,3121a =-=-,()4112a =--=,511122a =-=,…, ∴数列{}n a 是以3为周期的周期数列,10331=⨯+,∴101a a =, 故选:D .题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( )A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞【答案】B【解析】{}n a 为单调递增数列,10912109m ma a >⎧⎪⎪∴+>⎨⎪>⎪⎩,即12109219219m m m m ⎧⎪>⎪⎪+>⎨⎪⎪⎛⎫>+⨯-⎪⎪⎝⎭⎩,解得:112m <<, 即实数m 的取值范围为()1,12.故选:B .例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3【答案】C【解析】因为数列{}n a 是单调递增数列,则函数()6x f x a -=在()7,+∞上为增函数,可得1a >,函数()()33f x a x =--在[)1,7上为增函数,可得30a ->,可得3a <,且有78a a <,即()86733187a a a ---=-<,即27180a a +->,解得9a <-或2a >.综上所述,23a <<. 故选:C .例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<【答案】C【解析】当2,n n N *≥∈时,121(1)n n a a n ++=+,因此有2123(2)n n a a n +++=+,(2)(1)-得:22n n a a +-=,说明该数列从第2项起,偶数项和奇数项都成等差数列,且它们的公差都是2,由121n n a a n ++=+可得:345,2a a a a =-=+,因为数列{}n a 单调递增,所以有1234a a a a <<<,即152a a a <<-<+,解得:3522a <<,故选:C例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】解:因为等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),所以1119a S A ==-,221(127)(19)18a S S A A A =-=---=-, 332(181)(127)54a S S A A A =-=---=-,因为等比数列{}n a 中2213a a a ,所以2(18)(19)(54)A A A -=--,解得13A =或0A =(舍去), 所以213n b n Bn =+,因为数列{}n b 是递增的,所以22111(1)(1)033n n b b n B n n Bn +-=+++-->,所以2133B n >--,因为*n N ∈,所以1B >-, 故选:C例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭【答案】C【解析】由条件可得011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解出即可.【详解】因为对于任意n *∈N 都有1n n a a +>, 所以011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解得112a <<故选:C例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞ B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【答案】C由数列{}n a 是单调递增数列,可得10n n a a +->,从而有21b n >--恒成立,由n ∈+N ,可求得b 的取值范围. 【详解】由数列{}n a 是单调递增数列,所以10n n a a +->,即22(1)(1)210n b n n bn n b +++--=++>,即21b n >--(n ∈+N )恒成立,又数列{}(21)n -+是单调递减数列,所以当1n =时,(21)n -+取得最大值3-,所以3b >-. 故选:C .【方法技巧与总结】解决数列的单调性问题的3种方法例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2 D .3【答案】B 【分析】 根据()111n n n a a n ++=+得出()11n n n a n a n ++-=,然后通过累加法求出1122n n a n =+-,根据均值不等式及n N +∈,即可求出结果. 【详解】 由()111n n n a a n ++=+得()11n n n a n a n ++-=所以()()()1122111122n n n n n n a n a n a a a na n a a ---=--+---++-+则()()()()()111112111122n n n n n n na n +---=-+-+++=+=+所以()111112222n n n na n-=+=+-≥ 当且仅当n =n N +∈,故取1a 或2a 最小,又121a a ==,所以n a 的最小值为1【点睛】思路点睛:本题通过累加法求数列通项公式,根据均值不等式及n N +∈,求得最值. 例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4【答案】C 【分析】先根据累加法得210n a n n =-+,进而得101n a n n n =+-,再结合函数()101f x x x=+-的单调性即可得当3n =时,na n 的最小值为163. 【详解】 解:由12n na a n+-=得12n n a a n +-=, 所以()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-, ,3222a a -=⨯,2121a a -=⨯,累加上述式子得:()()()()12123211n a a n n n n n -=-+-+-+++=-⎡⎤⎣⎦,所以210n a n n =-+,()2n ≥,检验已知1n =时,210n a n n =-+满足.故210n a n n =-+,101n a n n n=+-,由于函数()101f x x x=+-在区间(上单调递减,在)+∞上单调递增,又因为*x ∈N ,当3n =时,10163133n a n =+-=,当4n =时,10114142n a n =+-=, 所以na n 的最小值为163. 故选:C .例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项【答案】A 【分析】由n S 与n a 的关系1(1)n n n a S S n -=->化简即可求出n S 及n a ,可得n b ,分析单调性即可求解. 【详解】∵1(1)n n n a S S n -=->,∴1n n n S a S --=,则21(1)n S n -=-,即2*(N )n S n n =∈,∴22(1)21n a n n n =--=-.易知0n b >,∵212+1+14422+1n n n n b b n n -==,(),244142(1)n n b n b n +∴==+当11n >+时,1n >, ∴当13n ≤<时, 1n n b b +>, 当3n ≥时,1n n b b +<, 又23132,281b b ==,∴当3n =时, n b 有最小值.故选:A 例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 【答案】5 【分析】由n S 和1n S -的关系求出数列{}n a 的通项公式,再根据正负表示出数列{||}n a 的通项公式为144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,求出n T ,并表示出n T n ,再分别求出13n ≤≤和4n ≥时的最小值,即可判断n T n 的最小值. 【详解】由题意,数列{}n a 的前n 项和2212n S n n =-()n N *∈,所以1121210a S ==-=-,当2n ≥时,()()12221221121414n n n n n n n S n a S -⎡⎤-----=-⎣⎦=-=, 当1n =时,1411410a ⨯-=-=, 所以414n a n =-,当13n ≤≤时,0n a <,当4n ≥时,0n a >,所以144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,数列{||}n a 的前n 项和n T ,所以22212,1321236,4n n n n T n n n ⎧-+≤≤=⎨-+≥⎩,当13n ≤≤时,212n T n n=-+,当3n =时,n Tn 的最小值为6;当4n ≥时,36212n n T n n=+-, 由对勾函数的性质,当4n =时,nT n有最小值5; 综上所述,nT n的最小值为5 故答案为:5 【点睛】本题主要考查由n S 求数列通项公式的求法、等差数列前n 项和公式、对勾函数的应用,是一道综合性很强的题目,考查学生分析转化能力和计算能力,属于难题. 例19.数列,1n =,2,,中的最小项的值为__________.【分析】构造函数()ln xf x x=,利用函数单调性分析最大值,得出数列的最大项,即可得解. 【详解】 考虑函数()ln x f x x=,()21ln xf x x -'=,当0x e <<时,()21ln 0x f x x -'=>,当x e >时,()21ln 0x f x x -'=<, 所以()ln xf x x=在()0,e 单调递增,在(),e +∞单调递减, 即()1ln x f x x ==()0,e 单调递增,在(),e +∞单调递减,所以y e ==()0,e 单调递增,在(),e +∞单调递减,116689,89<<.【点睛】此题考查求数列中的最小项,利用函数单调性讨论数列的最大项和最小项,涉及导函数处理单调性问题. 【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ).A .35 2331n n +-B .36 2331n n -+C .37 2331n n -+D .38 2331n n +- 【答案】C 【分析】结合图形中的规律直接求出(4)f 和(5)f ,进而总结出递推公式2n ≥时,()()(1)61f n f n n --=-,利用累加法即可求出结果. 【详解】由图中规律可知:(4)37f =, 所以(2)(1)716f f -=-=,(3)(2)19726f f -=-=⨯,(4)(3)371936f f -=-=⨯, (5)(4)613746f f -=-=⨯,因此当2n ≥时,()()(1)61f n f n n --=-, 所以[][][]()()(1)(1)(2)(2)(1)(1)f n f n f n f n f n f f f =--+---++-+()()612211n n ⎡⎤=⨯-+-++++⎣⎦()1612n n -=⨯+2331n n =-+,经检验当1n =时,符合()2331f n n n =-+,所以()2331f n n n =-+,故选:C .例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位【答案】D 【分析】 先求出,m n 的值,再根据数对的特点推出数对(),m n 的位置 【详解】解:按规律把正整数组成的数对分组:第1组为(1,1),数对中两数的和为2,共1个数对;第2组为(1,2),(2,1),数对中两数和为3,共2个数对;第3组为(1,3),(2,2),(3,1),数对中两数的和为4,共3个数;……,第n 组为(1,),(2,1),,(,1)n n n -⋅⋅⋅,数对中两数的和为1n +,共n 个数,由()22222021m n -⋅-=,得()2222023m n -⋅=,因为20237289=⨯,所以2227289m n ⎧-=⎪⎨=⎪⎩,解得317m n =⎧⎨=⎩,所以20m n +=,在所有数对中,两数之和不超过19的有1918123181712⨯+++⋅⋅⋅+==个, 所以在两数和为20的第1个数(1,19),第2个为(2,18),第3个为(3,17), 所以数对(3,17)排在第174位, 故选:D 【点睛】关键点点睛:此题考查简单的合情推理,考查等差数求和,解题的关键是由()22222021m n -⋅-=,得()2222023mn -⋅=,解出,m n 的值,考查计算能力,属于中档题例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12 B .()3,10C .()2,11D .()3,9【答案】C 【分析】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大,可依次求得总对数,从而可得选项. 【详解】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大.当2m n +=时只有1个()11,;当3m n +=时有2个()()1221,,,; 当4m n +=时有3个()()()132231,,,,,; …;当12m n +=时有11个()()()111210111⋯,,,,,,;其上面共有11(111)12311662⨯+++++==个数对. 所以第67个“整数对”为()112,,第68个“整数对”为()211,, 故选:C . 【点睛】本题考查知识迁移运用:点列整数对,关键在于理解和探索其规律,属于中档题. 例23.将正整数排列如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列 B .第64行4列 C .第65行3列 D .第65行4列【答案】B 【分析】计算每行首个数字的通项公式,再判断2020出现在第几列,得到答案. 【详解】每行的首个数字为:1,2,4,7,11… 111,1n n a a a n -=-=-利用累加法:112211(1)()()...()121112n n n n n n n a a a a a a a a n n ----=-+-++-+=-+-++=+计算知:642017a = 数2020出现在第64行4列 故答案选B 【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键. 题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575 C .D .12【答案】A【解析】()32f x x x=+在(0,上单调递减,在()+∞上单调递增, ∴当()x n n N *=∈时,()()(){}min min 5,6f n f f =,又()32575555f =+=,()32346663f =+=,()min 343f n ∴=,即32n a n n =+的最小值为343. 故选:A .例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a【答案】B【解析】令10t n =-≥,则1n t =+,22,641411tty tt t t 当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B .例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32【答案】C【解析】由题意可得()()()()()211221121122n n n n n n n n na a a a a a a a ---+-+=-+-+⋅⋅⋅+-+=+=,当1n =时,11a =满足上式,则()()212121112121n a n n n n n n +++⎡⎤==++-⎢⎥+++⎣⎦. 因为n ∈+N , 所以12n +≥, 所以()2131n n ++≥+,则()21121n n ++-≥+,故112112n a n +≥⨯=+,当且仅当1n =时,等号成立. 故选:C例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-【答案】B【解析】因为2420,nnn a -=>所以221222log log log log n n T a a a =++⋯+.设22log 4n n b a n n ==-.若n T 有最小值,则2log n T 有最小值, 令0n b ≤,则04,n ≤≤所以当3n =或4n =时﹐n T 的最小值为102-. 故选:B例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13【答案】A【解析】由题意可知,()()121111312(1)13(1)2n n n a a a a a a n n n -=+-++-=++++-=+-,则113122n a n n n =+-,又113122y x x =+-在( 上递减,在)+∞上递增,且56<<,5n =时,11311131235222525n n +-=⨯+-=;6n =时,11311131142362226235n n +-=⨯+-=>,故选:A .例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( )A .134B .5C .6D .132。
2023年数学高考复习真题演练(2021-2022年高考真题)10 对数与对数函数 (含详解)
专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212ab c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100B .b -a =ea 增大a 增大C .28ln 2ab <D .ln6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <- C .01b a << D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x x f x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( )A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a <<B.b a <Ca b <D.a b <<例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1C .2D .a 例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0,∞+的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为( )A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( ).A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则( )A.sin sin a b > B .11a b> C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则( ) A .a c <B .b a <C .c a <D .a b <例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则a b的取值可以是( ) A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2x f x x x -=+-的零点,则020e ln xx -+=_______.【过关测试】一、单选题 1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)( ) A .1393.1610s ⨯ B .1391.5810s ⨯ C .1401.5810s ⨯D .1403.1610s ⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为( ) A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则( ) A .111x y z+=B .111y z x+= C .112x y z += D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ( )A .是奇函数,且在0,1上单调递增B .是奇函数,且在0,1上单调递减C .是偶函数,且在0,1上单调递增D .是偶函数,且在0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点 A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为( ) A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是( ) A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( )A b a <<B .b a <C a b <D .a b <<二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是( ) A .11a b+的最小值是4 B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是( ) A .2ab bc ac +=B .ab bc ac +=C .4949b b a c ⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是( )A .()(lg f x x =B .()2f x x ax =+C .()21xaf x e =-- D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为( )AB C D三、填空题13.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论: ①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--; ④函数()y f x =在()(),1k k k +∈Z 上单调递减. 其中所有正确结论的序号为______. 四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1axf x x -=-在其定义域上是奇函数,a 为常数. (1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M . (1)当t e =时,求切线l 的方程;(2)O为坐标原点,记AMO的面积为S,求面积S以t为自变量的函数解析式,写出其定义域,并求单调增区间.专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 【答案】(1)7;(2)109;(3)2a bb+-. 【解析】(1)利用对数恒等式和对数的运算法则计算即可; (2)利用指对互化可得实数x 的值;(3)先求出a ,再利用换底公式结合对数的运算法则求得结果.【详解】(1)原式=()23lg 510lg25lg51lg26lg5lg26lg107++⨯+=+++=++=+=;(2)因为()23log log lg 1x ⎡⎤=⎣⎦,所以()3log lg 2x =,所以2lg 39x ==,所以x =109;a 增大a 增大(3)因为185a =,所以18log 5a =,所以()()()181818183618181818log 59log 45log 5log 9log 45log 36log 182log 18log 189⨯+====⨯+÷1818181818log 5log 9log 18log 18log 92a bb++=+--.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35 【答案】(1)18;(2)21a bb ++. 【解析】 【分析】(1)首先根据题意得到原式()()()2352log 53log 23log 3=-⋅⋅-,再利用换底公式化简即可得到答案.(2)首先根据题意得到3log 7b =,3log 52=a ,再利用换底公式化简即可得到答案. 【详解】(1)原式()()()1233232355log 5log 2log 32log 53log 23log 3--=⋅⋅=-⋅⋅-lg5lg 2lg31818lg 2lg3lg5=⋅⋅⋅=(2)由37b =得到3log 7b =, 由9log 5=a ,得到31log 52=a ,即3log 52=a . 33321333log 35log 5log 72log 35log 21log 7log 31a bb ++===++.【点睛】本题主要考查对数的换底公式,同时考查指数、对数的互化公式,属于中档题.例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值. 【答案】(1)详见解析;(2)2. 【解析】【分析】(1)设3461a b c k ===>,应用指对数的互化有346log ,log ,log a k b k c k ===,进而应用换底公式及对数的运算性质分别求21a b +、2c,即可证结论;(2)应用指对数互化有6060log 3,log 5a b ==,应用对数的运算性质求12(1)a bb ---,进而可求12(1)12a b b ---的值.【详解】(1)设346a b c k ===,则1k >. ∴346log ,log ,log a k b k c k ===,∴3421212log 3log 4log 9log 4log 362log 6log log k k k k k k a b k k+=+=+=+==, 而6222log 6log k c k==, ∴212a b c+=. (2)由题设知:6060log 3,log 5a b ==,得606011log 5log 12b -=-=,60606011log 3log 5log 4a b --=--=, ∴60121260log 42log 21log 22(1)2log 122a b b --===-, 则121log 22(1)12122a b b ---==.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100 B .b -a =e C .28ln 2ab < D .ln6b a ->【答案】D 【解析】 【分析】利用指数和对数互化,得到a ,b 后逐项判断. 【详解】对于A ,由e 4a =,e 25b =,得ln 4a =,ln 25b =,所以ln 4ln 25ln100a b +=+=,故A 错误;对于B ,25ln 25ln 4ln4b a -=-=,故B 错误; 对于C ,2ln 4ln 252ln 2ln168ln 2ab =⨯>⨯=,故C 错误;对于D ,25ln 25ln 4lnln 64b a -=-=>,故D 正确. 故选:D .例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8【答案】C 【解析】 【分析】 根据y x x y =得到lg lg x xy y =,再利用换底公式得到2x y=,利用lg 2lg x y =,即2x y =,求出4x =,2y =,所以6x y +=.【详解】由y x x y =,得lg lg y x x y =,lg lg x xy y=. 由log 4y x x y +=,lg log lg y x x y =,所以lg 4lg x x y y+=, 所以4x xy y +=,解得:2x y=,则lg 2lg x y =,即2x y =, 所以4x =,2y =,所以6x y +=, 故选:C.例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞【答案】C 【解析】 【分析】由二次函数的性质判断()f x 区间单调性,根据解析式知()f x 恒过(4,2)且(0)2f =,进而确定区间值域,再由对数函数性质求2log y x =的对应区间值域,即可得不等式解集. 【详解】由题设,()f x 对称轴为2x =且图象开口向下,则()f x 在(0,2)上递增,(2,)+∞上递减, 由2()42(4)2f x ax ax ax x =-+=-+,即()f x 恒过(4,2)且(0)2f =, 所以(0,4)上()2f x >,(4,)+∞上()2f x ,而2log y x =在(0,)+∞上递增,且(0,4)上2y <,(4,)+∞上2y >,所以2()log f x x >的解集为(0,4). 故选:C例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.【答案】12x x ⎧⎫>⎨⎬⎩⎭【解析】 【分析】 分1x ≤、12x <≤和2x >,依次解不等式,再取并集即可.【详解】当1x ≤时,不等式()(1)f x f x <-为2211(1)x x -<--,解得112x <≤; 当12x <≤时,不等式()(1)f x f x <-为212log 1(1)x x <--,易知21122log log 10,1(1)0x x <=--≥,解得12x <≤;当2x >时,不等式()(1)f x f x <-为1122log log (1)x x <-,解得2x >;综上,解集为:12x x ⎧⎫>⎨⎬⎩⎭.故答案为:12x x ⎧⎫>⎨⎬⎩⎭.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可) 【答案】12log x,(log a x ,(0<a <1)都对)【解析】 【分析】满足第一个条件,表示函数是单调递减函数,第二个条件正好是符合对数的运算性质; 【详解】对于条件①,不妨设12x x <,则210x x ->,∵()()21210f x f x x x -<-,∴()()210f x f x -<∴12()()f x f x >,∴()f x 为()0,+∞上的单调递增函数,对于条件②,刚好符合对数的运算性质,故这样的函数可以是一个单调递减的对数函数. 故答案为:12log x.(log ax ,(0<a <1)都对)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值. 【答案】(1)9x =或181x =;(2)2a =. 【解析】 【分析】(1)根据给定条件求出m 值,并代入方程,再解方程即得.(2)由给定解集借助对数函数单调性求出()f x 范围,换元借助一元二次不等式即可得解. 【详解】(1)由已知得()31f =,即log 31m =,则3m =,于是得()3log f x x =, 方程222()(1)()10()2()80f x m f x m f x f x +-+-=⇔+-=, 从而得()2f x =或()4f x =-,即3log 2x =或3log 4x =-,9x =或181x =, 所以原方程的根为9x =或181x =; (2)依题意,函数()3log f x x =中,1,93x ⎛⎫∈ ⎪⎝⎭,从而得()3log 1,2x ∈-.又()()()()3310log 1log 0f x a f x x x a +⋅->⇔+⋅-<⎡⎤⎡⎤⎣⎦⎣⎦,令3log x t =, 即一元二次不等式()()10t t a +⋅-<的解集为()1,2-,因此有-1,2是关于t 的方程()()10t t a +⋅-=的两根,则2a =, 所以实数a 的值为2.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <-C .01b a <<D .log 0a b >【答案】C 【解析】 【分析】结合函数()f x 的图象可得1a >和10b -<<,然后逐项分析即可求出结果. 【详解】由图象可知()f x 在定义域内单调递增,所以1a >,令()()log 0a f x x b =-=,即1x b =+,所以函数()f x 的零点为1b +,结合函数图象可知011b <+<,所以10b -<<,因此0a b +>,故A 错误;0-<<a ab ,又因为1a >,所以1a -<-,因此1ab <-不一定成立,故B 错误;因为10b a a a -<<,即11b a a <<,且101a<<,所以01b a <<,故C 正确; 因为01b <<,所以log log 1a a b <,即log 0a b <,故D 错误, 故选:C.例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A.3-B .1C . 3+D .2+【答案】C 【解析】 【分析】由对数函数的性质,可得()2,1A --,可得21m n +=,再根据基本不等式“1”的用法,即可求出结果.【详解】解:因为函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点()2,1A --,所以210m n --+=,即21m n +=, 所以()1111223n m m n m n m n m n⎛⎫+=++=++ ⎪⎝⎭, 又0mn >,所以0,0n mm n>>所以2333n m m n ++≥=,当且仅当2n m m n =,即1n =时取等号.故选:C.(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤【答案】BCD 【解析】 【分析】对于A 结合对数型函数图像相关知识求解;对于B 运用定义法判断()f x 是否在R 上是奇函数;对于C 运用定义法判断函数单调性;对于D 通过作差法并对式子变形即可判断. 【详解】对于A ,由图像可知,函数()()log a g x x k =+(0a >且1a ≠)在()2,-+∞上单调递增,所以1a >,因为()g x 经过()1,0-,所以()()1log 10a g k -=-+=,所以01a k =-+,2k =,故A 错误.对于B ,()x x f x a a -=-,定义域R 关于原点对称,()()x xf x a a f x --=-=-,所以()f x 在R 上是奇函数,故B 正确.对于C ,对于()x xf x a a -=-,由题意不妨令1212,,x x x R x R >∈∈,则()()()()()121212121212121212111x x x x x x x x x x x x x x x x a a a a a f x f x a a a a a a a a ++++--⎛⎫⎛⎫-=---=-+=⎪ ⎪⎝⎭⎝⎭,因为1212,,x x x R x R >∈∈,1a >,所以12121210,0,0x x x x x x a a a a +++>>->,即()()12f x f x >,所以()f x 在R 上是单调递增函数,故C 正确.对于D ,()()()()()()()()()2222222x x x x x x x x x x x x x x a a a a a a a a a a a a a x f a f x --------=---=---+--=-()()()()22322221111112x x x x x x xx xxxa a a a a a a a a aa----+-⎛⎫⎛⎫--=⎪-==⎪⎝⎭⎝⎭,因为1a >,0x ≥,所以()3210,010,xxxa a a +≥>->,所以()()23101x x xa a a-+-≤,当且仅当0x =时等号成立,即当0x ≥时,()()22f x f x ≤成立,故D 正确.故选:BCD例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______. 【答案】ln 31[,)3e【解析】 【分析】由分段函数解析式,结合导数研究|()|f x 的性质,再将问题转化为|()|f x 与(1)y a x =+有3个不同交点,应用数形结合的思想有(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点,最后由导数求它们相切或(1)y a x =+过(2,ln 3)时参数a 的值,即可知a 的取值范围. 【详解】由题设,20x -≤<上239()2()48f x x =--+,故值域为[14,0]-且单调递增;02x ≤≤上()f x '=101x -<+,故()f x 值域为[ln 3,0]-且单调递减; ∴|()|f x 在20x -≤<上值域为[0,14]且单调递减;在02x ≤≤上值域为[0,ln 3]且单调递增; 要使()g x 与x 轴有3个不同的交点,即|()|f x 与(1)y a x =+有3个不同交点,它们的图象如下:∴由图知:要使函数图象有3个交点,则(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点, 由02x ≤≤,1()|()|ln1g x f x x ==-+,则1()|()|1g x f x x '==+,此时,若|()|f x 与(1)y a x =+相切时,切点为(,(1))m a m +, ∴111ln (1)1a m a m m ⎧=⎪⎪+⎨⎪-=+⎪+⎩,可得1e a =,当(1)y a x =+过(2,ln 3)时,有3ln3a =,得ln 33a =, ∴ln 313ea ≤<. 故答案为:ln 31[,)3e【点睛】关键点点睛:根据已知研究|()|f x 的性质,并将问题转化为|()|f x 与(1)y a x =+的交点问题,应用导数的几何意义、数形结合的思想求参数范围.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】先求出函数的定义域,再利用复合函数单调性法则“同增异减”即可求解.【详解】函数()22log 43y x x=+-的定义域为()1,4-.要求函数()22log 43y x x =+-的一个单调增区间,只需求243y x x =+-的增区间,只需32x <. 所以312x -<<. 所以函数()22log 43y x x =+-的一个单调增区间是31,2⎛⎫- ⎪⎝⎭. 故选:C例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】分函数()f x 在R 上的单调递减和单调递增求解. 【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数,综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a << B.b a < Ca b < D.a b <<【答案】A 【解析】 【分析】对33log log 4log log 3a b a b -=-利用换底公式等价变形,得333311log log log log -<-b a b a,结合1y x x=-的单调性判断b a <,同理利用换底公式得343411log log log log b a b a ->-,即34log log b a >,再根据对数运算性质得4log log log a =>3log y x =单调性,b >解. 【详解】由33log log 4log log 3a b a b -=-可得333343111log log log log log log b a a b a a-=-<-, 因为1y x x=-在(,0),(0,)-∞+∞上单调递增,且3log a ,3log (0,)b ∈+∞,所以33log log b a <,即b a <, 其次,343411log log log log b a b a->-,所以34log log b a >,又因为4log log log a =>3log y x =单调递增,所以由3log log b >b >b a <. 故选:A例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1 C .2 D .a【答案】C 【解析】【分析】根据对数函数的单调性可求出结果. 【详解】∵0<a <1,∴f (x )=log ax 在[a 2,a ]上是减函数, ∴f (x )max =f (a 2)=log aa 2=2. 故选:C例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A .⎫⎪⎪⎝⎭B .C .⎛ ⎝⎭D .)+∞【答案】A 【解析】 【分析】根据对数函数的性质可得()()0,11,a ∈+∞且23410x ax -+->,则0∆>,即可求出a 的大致范围,再令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,对a 分两种情况讨论,结合二次函数、对数函数的单调性判断即可; 【详解】解:依题意()()0,11,a ∈+∞且23410x ax -+->,所以216120a ∆=->,解得a >a <()1,a ⎫∈+∞⎪⎪⎝⎭,令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,若()1,a ∈+∞,则log a y u =在定义域上单调递增,()2341u x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,函数不存在最小值,故舍去;若a ⎫∈⎪⎪⎝⎭,则log a y u =在定义域上单调递减,()2341u x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递减,在22,3a x ⎛⎫ ⎪⎝⎭上单调递增,所以函数在23a x =取得最小值,所以a ⎫∈⎪⎪⎝⎭; 故选:A【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,分1a >和01a <<两种情况分类讨论,结合函数的单调性,列出不等式,即可求解. 【详解】当1a >时,由1(0,)2x ∈,可得log 0a x <,则log 0a x ->,又由20x >,此时不等式2log 0a x x -<不成立,不合题意;当01a <<时,函数log a y x =在1(0,)2上单调递减,此时函数log a y x =-在1(0,)2上单调递增,又由2yx 在1(0,)2上单调递增,要使得不等式2log 0a x x -<在1(0,)2内恒成立,可得211()log 022a -≤,解得1116a ≤<.故选:A.例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A 【解析】根据题意,先求得12a =,把不等式()()1122log 4log 2x x t t ⋅<-在[]1,2x ∈上恒成立,转化为402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立,结合指数幂的运算性质,即可求解. 【详解】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,可得函数y 的最大值为116,当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫= ⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <; 由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A. 例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦【解析】 【分析】将问题转化为在对应区间上max max ()()f x g x ≥,结合对勾函数、对数函数的性质求()f x 、()g x 的区间最值,即可求a 的范围. 【详解】若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可.在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =. 在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 【答案】12ea ≥. 【解析】 【分析】把不等式作等价变形,构造函数()ln g x x x =+,借助其单调性可得2e x a x ≥,分离参数构造函数并求出最大值作答. 【详解】函数()ln f x x x =-定义域为(0,)+∞,则(0,)∀∈+∞x :222()e ln 0e ln l 2n e ln ln x x x f x a a a a x a a x x x x++≥⇔+≥⇔+≥+++22e e )n ln(l x x a a x x ⇔≥++,令()ln g x x x =+,函数()g x 在(0,)+∞上单调递增,则有原不等式等价于()()2e xg a g x ≥22e e x xx a x a ⇔≥⇔≥, 令2()e x x h x =,0x >,求导得:212()exx h x -'=,当102x <<时,()0h x '>,当12x >时,()0h x '<, 因此,函数()h x 在1(0,)2上单调递增,在1(,)2+∞上单调递减,当12x =时,max 11()()22eh x h ==,则12ea ≥, 所以实数a 的取值范围是12ea ≥. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.例23.(2022·全国·高三专题练习)已知函数()log (0,1)xa f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围. 【答案】(1)2;(2)1,5⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)根据指对数函数的单调性得函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,进而得260+-=a a ,解方程得2a =;(2)根据题意,将问题转化为对于任意的[2,)x ∈+∞,1()k f x ≥恒成立,进而求函数的最值即可. 【详解】解:(1)因为函数,log (0,1)xa y a y x a a ==>≠在[1,2]上的单调性相同, 所以函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,所以函数()f x 在[1,2]上的最大值与最小值之和为2log 26log 2a a a a ++=+,所以260+-=a a ,解得2a =和3a =-(舍) 所以实数a 的值为2.(2)由(1)得2()2log x f x x =+,因为对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,所以对于任意的[2,)x ∈+∞,1()k f x ≥恒成立, 当[2,)x ∈+∞时,2()2log x f x x =+为单调递增函数, 所以()()25f x f ≥=,所以11()5f x ≤,即15k ≥ 所以实数k 的取值范围1,5⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的[2,)x ∈+∞,1()k f x ≥恒成立求解.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.【答案】(1)13a =;(2)()1,11,82⎛⎫⋃ ⎪⎝⎭. 【解析】 【分析】(1)由()32f =可求得log 3a 的值,进而可求得实数a 的值;(2)由()6f x >可得出log 3a x <-或log 1>a x ,分01a <<、1a >两种情况讨论,可得出关于实数a 的不等式,由此可解得实数a 的取值范围. (1)解:因为()32f =,所以()2log 32log 332a a ++=,所以()2log 310a +=,所以log 31a =-,解得13a =.(2)解:由()6f x >,得()2log 2log 30a a x x +->,即()()log 3log 10a a x x +->,即log 3a x <-或log 1>a x .当01a <<时,log 12log log 8a a a x ≤≤,则log 83a <-或log 121a >,因为log 12log 10a a <=,则log 121a >不成立,由log 83a <-可得318a ⎛⎫< ⎪⎝⎭,得112a <<;当1a >时,log 8log log 12a a a x ≤≤,则log 123a <-或log 81a >,因为log 12log 10a a >=,则log 123a <-不成立,所以log 81a >,解得18a <<. 综上,a 的取值范围是()1,11,82⎛⎫⋃ ⎪⎝⎭.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;。
高考数学(理)三年真题专题演练—集合与常用逻辑用语(含解析)
1.【2021·浙江高考真题】设集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】由交集的定义结合Байду номын сангаас意可得: .
故选:D.
2.【2021·全国高考真题】设集合 , ,则 ()
A. B. C. D.
【答案】B
【解析】由题设有 ,故选:B.
3.【2021·全国高考真题(理)】设集合 ,则 ()
A. B.
C. D.
【答案】B
【解析】因为 ,所以 ,
故选:B.
4.【2021·全国高考真题(理)】已知集合 , ,则 ()
A. B. C. D.
【答案】C
【解析】任取 ,则 ,其中 ,所以, ,故 ,
因此, .
故选:C.
5.【2021·浙江高考真题】已知非零向量 ,则“ ”是“ ”的()
A.充分不必要条件B.必要不充分条件
故选B.
【点睛】本小题主要考查充分、必要条件的判断,考查公理 和公理 的运用,属于中档题.
17.【2020年高考北京】已知 ,则“存在 使得 ”是“ ”的
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】
【分析】
根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.
但是 不是递增数列,所以甲不是乙的充分条件.
若 是递增数列,则必有 成立,若 不成立,则会出现一正一负的情况,是矛盾的,则 成立,所以甲是乙的必要条件.
故选:B.
8.【2020年高考全国Ⅰ卷理数】设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=
高考数学(理)三年真题专题演练—导数及其应用(解答题)
高考数学三年真题专题演练—导数及其应用(解答题)1.【2021·天津高考真题】已知0a >,函数()x f x ax xe =-. (I )求曲线()y f x =在点(0,(0))f 处的切线方程: (II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围. 【答案】(I )(1),(0)y a x a =->;(II )证明见解析;(III )[),e -+∞ 【分析】(I )求出()f x 在0x =处的导数,即切线斜率,求出()0f ,即可求出切线方程;(II )令()0f x '=,可得(1)xa x e =+,则可化为证明y a =与()y g x =仅有一个交点,利用导数求出()g x 的变化情况,数形结合即可求解;(III )令()2()1,(1)xh x x x e x =-->-,题目等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,利用导数即可求出()h x 的最小值. 【详解】(I )()(1)xf x a x e =-+',则(0)1f a '=-,又(0)0f =,则切线方程为(1),(0)y a x a =->;(II )令()(1)0x f x a x e =-+=',则(1)xa x e =+,令()(1)x g x x e =+,则()(2)xg x x e =+',当(,2)x ∈-∞-时,()0g x '<,()g x 单调递减;当(2,)x ∈-+∞时,()0g x '>,()g x 单调递增,当x →-∞时,()0g x <,()10g -=,当x →+∞时,()0g x >,画出()g x 大致图像如下:所以当0a >时,y a =与()y g x =仅有一个交点,令()g m a =,则1m >-,且()()0f m a g m '=-=,当(,)x m ∈-∞时,()a g x >,则()0f x '>,()f x 单调递增, 当(),x m ∈+∞时,()a g x <,则()0f x '<,()f x 单调递减,x m =为()f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m =,此时)1(1,ma m e m +>-=,所以()2max {()}()1(1),mf x a f m a m m e m -=-=-->-, 令()2()1,(1)xh x x x e x =-->-,若存在a ,使得()f x a b ≤+对任意x ∈R 成立,等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,()2()2(1)(2)x x h x x x e x x e =+-=+'-,1x >-,当(1,1)x ∈-时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,所以min ()(1)h x h e ==-,故b e ≥-, 所以实数b 的取值范围[),e -+∞. 【点睛】关键点睛:第二问解题的关键是转化为证明y a =与()y g x =仅有一个交点;第三问解题的关键是转化为存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥.2.【2021·全国高考真题】已知函数2()(1)x f x x e ax b =--+.(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a <≤>; ②10,22a b a <<≤. 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可; (2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增,若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而()()210b f b b e ab b --=----<,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点. 综上可得,题中的结论成立. 若选择条件②: 由于102a <<,故21a <,则()01210f b a =-≤-<,当0b ≥时,24,42ea ><,()2240f e ab =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. 当0b <时,构造函数()1xH x e x =--,则()1xH x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减,当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x =,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于102a <<,021a <<,故()()ln 22ln 20a a a -<⎡⎤⎣⎦, 结合函数的单调性可知函数在区间(),0-∞上没有零点. 综上可得,题中的结论成立. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 3.【2021·北京高考真题】已知函数()232xf x x a-=+. (1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值. 【答案】(1)450x y +-=;(2)函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-,最大值为1,最小值为14-. 【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)由()10f '-=可求得实数a 的值,然后利用导数分析函数()f x 的单调性与极值,由此可得出结果. 【详解】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=; (2)因为()232xf x x a-=+,则()()()()()()222222223223x a x x x x a f x xa xa -+----'==++,由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下:所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <. 所以,()()max 11f x f =-=,()()min 144f x f ==-. 4.【2021·全国高考真题】已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【分析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立. 【详解】(1)函数的定义域为()0,∞+, 又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<, 故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=, 故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 设1211,x x a b==,由(1)可知不妨设1201,1x x <<>. 因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<. 先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<, 故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<. 设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦, 因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=, 故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立, 综上,122x x +>成立.设21x tx =,则1t >, 结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<, 即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->, 则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭, 先证明一个不等式:()ln 1x x ≤+. 设()()ln 1u x x x =+-,则()1111xu x x x -'=-=++, 当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==, 故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立, 故()S t 在()1,+∞上为减函数,故()()10S t S <=, 故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立. 综上所述,112e a b<+<. 【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.5.【2021·浙江高考真题】设a ,b 为实数,且1a >,函数()2R ()xf x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围; (3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)【答案】(1)0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭;(2)(21,e ⎤⎦;(3)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【解析】(1)2(),()ln x xf x b f a x e a x a b '==+--,①若0b ≤,则()ln 0xf x a a b '=-≥,所以()f x 在R 上单调递增;②若0b >, 当,log ln ab x a ⎛⎫∈-∞ ⎪⎝⎭时,()()'0,f x f x <单调递减, 当log ,ln ab x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0,f x f x >单调递增. 综上可得,0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln ab a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭.(2)()f x 有2个不同零点20x a bx e ⇔-+=有2个不同解ln 20x a e bx e ⇔-+=有2个不同的解,令ln t x a =,则220,0ln ln t tb b e e e e t a a tt +-+=⇒=>,记()22222(1)(),()t t t t e t e e e e e t e g t g t t t t'⋅-++--===, 记2()(1),()(1)10t t tt h t e t e h t e t e e t '=--=-+⋅=⋅>, 又(2)0h =,所以(0,2)t ∈时,()0,(2,)h t t <∈+∞时,()0h t >,则()g t 在(0,2)单调递减,(2,)+∞单调递增,22(2),ln ln b bg e a a e∴>=∴<, 22222,ln ,21bb e a a e e>∴>∴≤⇒<≤. 即实数a 的取值范围是(21,e ⎤⎦.(3)2,()x a e f x e bx e ==-+有2个不同零点,则2x e e bx +=,故函数的零点一定为正数. 由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ++==>,注意到函数2x e e y x +=在区间()0,2上单调递减,在区间()2,+∞上单调递增,故122x x <<,又由5245e e e +<知25x >,122211122x e e e e b x x x b+=<⇒<,要证2212ln 2b b e x x e b >+,只需22ln e x b b>+, 222222x x e e e b x x +=<且关于b 的函数()2ln e g b b b =+在4b e >上单调递增,所以只需证()22222222ln 52x x e x e x x x e >+>, 只需证2222222ln ln 02x x x e x e e x e-->,只需证2ln ln 202x e xx e-->,242e <,只需证4()ln ln 2x x h x x e =--在5x >时为正,由于()11()44410x x x h x xe e e x x x '---+-+-==>,故函数()h x 单调递增, 又54520(5)ln 5l 20n 2ln 02h e e =--=->,故4()ln ln 2x xh x x e=--在5x >时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.6.【2021·全国高考真题(理)】已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤ ⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,e e ⋃+∞. 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x a x a =有两个不同的实数根,即曲线()y g x =与直线ln ay a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【解析】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x '--===,令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤ ⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x-'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增; 在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,e e ⋃+∞.【点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.7.【2021·全国高考真题(理)】设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见详解【分析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解 【解析】(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠, 当()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-<,()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <->,()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞,1x t =-,令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=;当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=;综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞恒成立【点睛】本题为难题,根据极值点处导数为0可求参数a ,第二问解法并不唯一,分类讨论对函数进行等价转化的过程,一定要注意转化前后的等价性问题,构造函数和换元法也常常用于解决复杂函数的最值与恒成立问题.8.【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f (x )=e x +x 2–x ,则()f x '=e x +2x –1.故当x ∈(–∞,0)时,()f x '<0;当x ∈(0,+∞)时,()f x '>0.所以f (x )在(–∞,0)单调递减,在(0,+∞)单调递增. (2)31()12f x x ≥+等价于321(1)e 12x x ax x --++≤. 设函数321()(1)e (0)2xg x x ax x x -=-++≥,则32213()(121)e 22x g x x ax x x ax -'=--++-+-21[(23)42]e 2x x x a x a -=--+++1(21)(2)e 2x x x a x -=----.(i )若2a +1≤0,即12a ≤-,则当x ∈(0,2)时,()g x '>0.所以g (x )在(0,2)单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii )若0<2a +1<2,即1122a -<<,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7−4a )e −2≤1,即a ≥27e 4-. 所以当27e 142a -≤<时,g (x )≤1. (iii )若2a +1≥2,即12a ≥,则g (x )≤31(1)e 2xx x -++.由于27e 10[,)42-∈,故由(ii )可得31(1)e 2x x x -++≤1. 故当12a ≥时,g (x )≤1.综上,a 的取值范围是27e [,)4-+∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.【2020年高考全国Ⅱ卷理数】已知函数2() sin sin2f x x x =.(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤;(3)设*n ∈N ,证明:2222sin sin 2sin 4sin 234nn nx x xx ≤.【解析】(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+ 22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()3f π=,最小值为()3f 2π=.而()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx x x333|sin sin 2sin 2|n x x x =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以222233sin sin 2sin 2)4n nnn x xx ≤=.10.【2020年高考全国Ⅲ卷理数】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求B .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【解析】(1)2()3f x x b '=+. 依题意得1()02f '=,即304b +=.故34b =-.(2)由(1)知3(3)4f x x x c -=+,2()334f x x '=-. 令)0(f x '=,解得12x =-或12x =.()f x '与()f x 的情况为:x 1()2-∞-,12- 11()22-, 12 1()2∞,+ ()f x ' + 0 – 0 + ()f x14c +14c -因为11(1)()24f f c =-=+,所以当14c <-时,()f x 只有大于1的零点.因为11(1)()24f f c -==-,所以当14c >时,f (x )只有小于–1的零点.由题设可知1144c -≤≤,当1=4c -时,()f x 只有两个零点12-和1.当1=4c 时,()f x 只有两个零点–1和12.当1144c -<<时,()f x 有三个等点x 1,x 2,x 3,且11(1,)2x ∈--,211(,)22x ∈-,31(,1)2x ∈.综上,若()f x 有一个绝对值不大于1的零点,则()f x 所有零点的绝对值都不大于1.11.【2020年高考天津】已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【解析】(Ⅰ)(i )当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-.(ii )依题意,323()36ln ,(0,)g x x x x x x=-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x -+'=.令()0g x '=,解得1x =.当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0tt t -->.因为21x ≥,323331(1)0,3t t t t k -+-=->≥-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2336ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>, 故23336ln 10t t t t-++->. ③ 由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 12.【2020年高考北京】已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【解析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.13.【2020年高考浙江】已知12a <≤,函数()e xf x x a =--,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0,)+∞上的零点,证明:(ⅰ0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.【解析】(Ⅰ)因为(0)10f a =-<,22(2)e 2e 40f a =--≥->,所以()y f x =在(0,)+∞上存在零点.因为()e 1x f x '=-,所以当0x >时,()0f x '>,故函数()f x 在[0,)+∞上单调递增, 所以函数以()y f x =在(0,)+∞上有唯一零点.(Ⅱ)(ⅰ)令21()e 1(0)2xg x x x x =---≥,()e 1()1x g'x x f x a =--=+-,由(Ⅰ)知函数()g'x 在[0,)+∞上单调递增,故当0x >时,()(0)0g'x g'>=, 所以函数()g x 在[0,)+∞单调递增,故()(0)0g x g ≥=.由0g ≥得00()f a f x =≥=,因为()f x 在[0,)+∞0x .令2()e 1(01)x h x x x x =---≤≤,()e 21x h'x x =--,令1()e 21(01)x h x x x =--≤≤,1()e 2xh'x =-,所以故当01x <<时,1()0h x <,即()0h'x <,所以()h x 在[0,1]单调递减, 因此当01x ≤≤时,()(0)0h x h ≤=.由0h ≤得00()f a f x =≤=,因为()f x 在[0,)+∞0x .0x ≤≤(ⅱ)令()e (e 1)1x u x x =---,()e (e 1)x u'x =--,所以当1x >时,()0u'x >, 故函数()u x 在区间[1,)+∞上单调递增,因此()(1)0u x u ≥=.由00e x x a =+可得022000000(e )()(e 1)(e 2)(e 1)x a a x f x f x a x a x ax =+=-+-≥-,由0x ≥得00(e )(e 1)(1)xx f a a ≥--.14.【2020年高考江苏】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E'为多少米时,桥墩CD 与EF 的总造价最低?【解析】(1)设1111,,,AA BB CD EF 都与MN 垂直,1111,,,A B D F 是相应垂足. 由条件知,当40O'B =时, 31140640160,800BB =-⨯+⨯= 则1160AA =. 由21160,40O'A =得80.O'A = 所以8040120AB O'A O'B =+=+=(米).(2)以O 为原点,OO'为y 轴建立平面直角坐标系xOy (如图所示). 设2(,),(0,40),F x y x ∈则3216,800y x x =-+ 3211601606800EF y x x =-=+-. 因为80,CE =所以80O'C x =-.设1(80,),D x y -则211(80),40y x =- 所以22111160160(80)4.4040CD y x x x =-=--=-+ 记桥墩CD 和EF 的总造价为()f x ,则3232131()=(1606)(4)80024013(160)(040).80080f x k x x k x x k x x x +-+-+=-+<<2333()=(160)(20)80040800k f x k x x x x '-+=-, 令()=0f x ', 得20.x =所以当20x =时,()f x 取得最小值.答:(1)桥AB 的长度为120米;(2)当O'E 为20米时,桥墩CD 和EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题. 15.【2020年高考江苏】已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422342() 2() (48 () 4 3 0)2 2f x x x g x x h x t t x t t t =-=-=--+<≤,,,[] , 2,2D m n =⊆-⎡⎤⎣⎦,求证:7n m -≤.【解析】(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =.由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =.(2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞.令() 1ln u x x x =--,则1()1,u'x x=-令()=0u'x ,得1x =.所以min () 0(1)u x u ==.则1ln x x -≥恒成立,所以当且仅当0k ≥时,()()f x g x ≥恒成立.另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立, 也即2()1 1 +0x k x k -++≥恒成立. 因为0k ≥,对称轴为102kx +=>, 所以2141)0(()k k +-+≤,解得13k -≤≤. 因此,k 的取值范围是0 3.k ≤≤(3)①当1t ≤≤由()()g x h x ≤,得2342484()32x t t x t t -≤--+,整理得4223328()0.()4t t x t t x ----+≤*令3242=()(328),t t t t ∆---- 则642=538t t t ∆-++.记64253()18(t t t t t ϕ-++=≤≤则53222062(31)(3())06t t t t t t 't ϕ-+=--<=恒成立,所以()t ϕ在[1,上是减函数,则()(1)t ϕϕϕ≤≤,即2()7t ϕ≤≤. 所以不等式()*有解,设解为12x x x ≤≤,因此21n m x x -≤-=≤ ②当01t <<时,432()()11 34241f h t t t t ---=+---.设432 = 342(41)t t t t v t +---,322 ()=1212444(1)(31),v't t t t t t +--=+-令()0v t '=,得t .当(0t ∈时,()0v t '<,()v t 是减函数;当1)t ∈时,()0v t '>,()v t 是增函数. (0)1v =-,(1)0v =,则当01t <<时,()0v t <.(或证:2()(1)(31)(1)0v t t t t =++-<.) 则(1)(1)0f h ---<,因此1()m n -∉,.因为m n ⊆[][,,所以1n m -≤<③当0t <时,因为()f x ,()g x 均为偶函数,因此n m -≤综上所述,n m -≤【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.16.【2020年新高考全国Ⅰ卷】已知函数1()e ln ln x f x a x a -=-+.(1)当e a =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.【解析】()f x 的定义域为(0,)+∞,11()e x f x a x-'=-. (1)当e a =时,()e ln 1x f x x =-+,(1)e 1f '=-,曲线()y f x =在点(1,(1))f 处的切线方程为(e 1)(e 1)(1)y x -+=--,即(e 1)2y x =-+. 直线(e 1)2y x =-+在x 轴,y 轴上的截距分别为2e 1--,2. 因此所求三角形的面积为2e 1-. (2)当01a <<时,(1)ln 1f a a =+<.当1a =时,1()e ln x f x x -=-,11()e x f x x-'=-. 当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>.所以当1x =时,()f x 取得最小值,最小值为(1)1f =,从而()1f x ≥. 当1a >时,11()e ln ln e ln 1x x f x a x a x --=-+≥-≥. 综上,a 的取值范围是[1,)+∞.【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,属较难试题.17.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫<⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+>⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤ ⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可. 18.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线.【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x . 综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是1x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力.19.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1. 【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 20.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =, 所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-. (Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x 2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 21.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-.【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin xg'x x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,0()g'x <,故 ()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则。
广西南宁市第二中学2023届高三高考考前模拟大演练数学(理)试题
一、单选题二、多选题1. 若,则( )A .2B.C.D .42. 在等差数列中,已知,且,则当取最大值时,( )A .10B .11C .12或13D .133. 已知数列和首项均为1,且,,数列的前n项和为,且满足,则( )A .2019B.C .4037D.4.已知函数,若,则实数的取值范围是( )A.B.C.D.5.曲线:,下列两个命题:命题甲:当时,曲线与坐标轴围成的面积小于128;命题乙:当k =2n ,时,曲线围成的面积总大于4;下面说法正确的是( )A .甲是真命题,乙是真命题B .甲是真命题,乙是假命题C .甲是假命题,乙是真命题D .甲是假命题,乙是假命题6.在平行四边形中,,点M 在AB 边上,且,则等于( )A.B.C.D.7.在中,角的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是A.B.C.D.8. 若,,则( )A.B.C .2D .19. 在棱长为2的正方体中,,点M 为棱上一动点(可与端点重合),则( )A .当点M 与点A 重合时,四点共面且B .当点M 与点B重合时,C .当点M为棱的中点时,平面D .直线与平面所成角的正弦值存在最小值10. 学校为了了解本校学生上学的交通方式,在全校范围内进行了随机调查,将学生上学的交通方式归为四类方式:A —结伴步行,B —自行乘车,C —家人接送,D —其他方式.并把收集的数据整理分别绘制成柱形图和扇形图,下面的柱形图和扇形图只给出了部分统计信息,则根据图中信息,下列说法正确的是( )广西南宁市第二中学2023届高三高考考前模拟大演练数学(理)试题三、填空题四、解答题A .扇形图中D 的占比最小B .柱形图中A 和C 一样高C .无法计算扇形图中A 的占比D .估计该校学生上学交通方式为A 或C 的人数占学生总人数的一半11. 已知函数的图象关于点中心对称,则下列结论正确的是( )A.的最小正周期B.C.的图象关于直线对称D.的图象向左平移个单位长度后关于轴对称12. 在正方体中,M ,N ,P分别是面,面,面的中心,则下列结论正确的是()A.B.平面C.平面D .与所成的角是13. 将初始温度为的物体放在室温恒定为的实验室里,现等时间间隔测量物体温度,将第次测量得到的物体温度记为,已知.已知物体温度的变化与实验室和物体温度差成正比(比例系数为).给出以下几个模型,那么能够描述这些测量数据的一个合理模型为__________:(填写模型对应的序号)①;②;③.在上述模型下,设物体温度从升到所需时间为,从上升到所需时间为,从上升到所需时间为,那么与的大小关系是________(用“”,“”或“”号填空)14. 在平面直角坐标系中,以双曲线,的右焦点为圆心,以实半轴为半径的圆与其渐近线相交,则双曲线的离心率的取值范围是___________.15. 已知分别为双曲线的左、右焦点,过点作x 轴的垂线交双曲线C 于P ,Q 两点,则双曲线C 的渐近线方程为____________;的面积为________.16.已知函数.(1)求的单调区间;(2)若对于任意的,恒成立,求证:.17. 已知函数.(1)若,求的单调区间;(2)当时,记的最小值为,求证:.18. 椭圆的左、右焦点分别为是椭圆C上一点,且(1)求椭圆C的方程;(2)M,N是y轴上的两个动点(点M与点E位于x轴的两侧),,直线EM交x轴于点P,求的值.19. 如图,在平面直角坐标系中,已知曲线C由圆弧和圆弧相接而成,两相接点均在直线上,圆弧的圆心是坐标原点O,半径为5,圆弧过点.(1)求圆弧的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由.20. 已知函数是自然对数的底数).(1)求函数的单调区间;(2)若,当时,求函数的最大值;(3)若且,求证:.21. 人类从未停下对自然界探索的脚步,位于美洲大草原点处正上空的点处,一架无人机正在对猎豹捕食羚羊的自然现象进行航拍.已知位于点西南方向的草从处潜伏着一只饥饿的猎豹,猎豹正盯着其东偏北15°方向上点处的一只羚羊,且无人机拍摄猎豹的俯角为45°,拍摄羚羊的俯角为60°,假设A,B,C三点在同一水平面上.(1)求此时猎豹与羚羊之间的距离的长度;(2)若此时猎豹到点处比到点处的距离更近,且开始以的速度出击,与此同时机警的羚羊以的速度沿北偏东15°方向逃跑,已知猎豹受耐力限制,最多能持续奔跑,试问猎豹这次捕猎是否有成功的可能?请说明原因.。
2023年数学高考复习真题演练(全国卷)18 最全归纳平面向量中的范围与最值问题(含详解)
专题18 最全归纳平面向量中的范围与最值问题【考点预测】一.平面向量范围与最值问题常用方法: (1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系 第二步:运用基木不等式求其最值问题 第三步:得出结论 (2)坐标法第一步 : 根据题意建立适当的直角坐标系并写出相应点的坐标 第二步: 将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解 (3)基底法第一步:利用其底转化向量 第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论 (4)几何意义法第一步: 先确定向量所表达的点的轨迹 第二步: 根据直线与曲线位置关系列式 第三步:解得结果 二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:2222||||2(||||)a b a b a b ++-=+证明:不妨设,AB a AD b == ,则C A a b =+,DB a b =-()22222C 2AC A a b a a b b ==+=+⋅+ ① ()222222DB DB a ba ab b ==-=-⋅+ ②①②两式相加得: ()()22222222AC DB a bAB AD+=+=+(2)极化恒等式:上面两式相减,得:()()2214a b a b ⎡⎤+--⎢⎥⎣⎦————极化恒等式①平行四边形模式:2214a b AC DB ⎡⎤⋅=-⎣⎦几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14. ②三角形模式:2214a b AM DB ⋅=-(M 为BD 的中点) 三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:2222OA OC OB OD +=+。
【证明】(坐标法)设,AB a AD b ==,以AB 所在直线为轴建立平面直角坐标系xoy , 则(,0),(0,),(,)B a D b C a b ,设(,)O x y ,则222222()[()()]OA OC x y x a y b +=++-+-222222[()][()]OB OD x a y x y b +=-+++-2222OA OC OB OD ∴+=+四.等和线(1)平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(二模)含解析
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(二模)一、单选题1.已知集合{}220M x x x =--<,{N x y =,则M N ⋃=()A .(],e -∞B .()0,2C .(]1,e -D .()1,2-【正确答案】C【分析】分别求出集合,M N ,再根据交集的定义即可得解.【详解】{}()2201,2M x x x =--<=-,由1ln 0x -≥,得0e x <≤,则{(]0,e N x y ==,则(]1,e M N ⋃=-.故选:C.2.已知复数z 满足(12i)34i z -=-,则z 的共轭复数z =()A .12i --B .12i -+C .12i-D .12i+【正确答案】C【分析】根据复数模的计算公式,转化为512iz =-,利用复数的运算法则和共轭复数的概念,即可求解.【详解】因为(12i)34i 5z -=-=,可得()()()512i 512i 12i 12i 12i z +===+--+,所以12i z -=-.故选:C.3.2023年3月24日是第28个“世界防治结核病日”,我国的宣传主题是“你我共同努力,终结结核流行”,呼吁社会各界广泛参与,共同终结结核流行,维护人民群众的身体健康.已知某种传染疾病的患病率为5%通过验血诊断该病的误诊率为2%,即非患者中有2%的人诊断为阳性,患者中有2%的人诊断为阴性.随机抽取一人进行验血,则其诊断结果为阳性的概率为()A .0.46B .0.046C .0.68D .0.068【正确答案】D【分析】应用全概率公式()()()()()P A P A B P B P A B P B =+求解即可.【详解】设随机抽取一人进行验血,则其诊断结果为阳性为事件A,设随机抽取一人实际患病为事件B ,随机抽取一人非患为事件B ,则()()()()()0.050.980.950.020.068P A P A B P B P A B P B =+=⨯+⨯=.故选:D.4.过抛物线C :24y x =的焦点F 的直线交抛物线C 于11(,)A x y 、22(,)B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r .点1O 到C 的准线l 的距离与r 之积为25,则12()r x x +=()A .40B .30C .25D .20【正确答案】A【详解】由抛物线的性质知,点1O 到C 的准线l 的距离为12AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为121(2)52x x r ++==,则有128x x +=,故12()40r x x +=,故选:A .5.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度30.1mg /m ≤为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,竣工1周后室内甲醛浓度为36.25mg /m ,3周后室内甲醛浓度为31mg /m ,且室内甲醛浓度()t ρ(单位:3mg /m )与竣工后保持良好通风的时间()*t t ∈N (单位:周)近似满足函数关系式()e at b t ρ+=,则该文化娱乐场所竣工后的甲醛浓度若要达到安全开放标准,至少需要放置的时间为()A .5周B .6周C .7周D .8周【正确答案】B【分析】由(3),(1)ρρ相除可得a e ,然后解不等式0()0.1t ρ<,由指数函数性质估计出455562.522⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,从而可得0t 的范围,由此可得结论.【详解】由题意可知,(1)e 6.25a b ρ+==,3(3)e 1a b ρ+==,(3)e (1)254a ρρ==,解得2e 5a=.设该文化娱乐场所竣工后放置0t 周后甲醛浓度达到安企开放标准,则()()0001102ee6.250.15t a t at ba bt eρ--++⎛⎫==⋅=⨯≤ ⎪⎝⎭,整理得012 62. 55t -⎛⎫≤ ⎪⎝⎭,设1562. 52m -⎛⎫= ⎪⎝⎭,因为455562.522⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,所以415m <-<,即56m <<,则011t m -≥-,即0t m ≥.故至少需要放置的时间为6周.故选:B.6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为()A .14B .4C .12D .2【正确答案】D【分析】设圆柱和圆锥底面半径分别为r ,R ,由圆柱表面积等于圆锥侧面积建立方程,求半径比.【详解】设圆柱和圆锥底面半径分别为r ,R ,因为圆锥轴截面顶角为直角,所以圆锥母线,设圆柱高为h ,则h R r R R-=,=-h R r ,由题,()2π2π2πR r r R r ⨯=+⨯-,得2r R =.故选:D.7.已知双曲线C :22221x y a b-=0a >0b >的左、右焦点分别为F 1、F 2,点M 是双曲线右支上一点,且12MF MF ⊥,延长2MF 交双曲线C 于点P ,若12MF PF =,则双曲线C 的离心率为()AB .2C D .2【正确答案】D【分析】设1MF t =,则由双曲线的定义可得22MF t a =-,2PF t =,12PF t a =+,然后在1Rt PMF 利用勾股定理可求出3t a =,再在12Rt MF F △中利用勾股定理可表示,a c 的关系,从而可求出离心率.【详解】设1MF t =(2t a >),由双曲线的定义可得22MF t a =-,2PF t =,12PF t a =+,由12MF MF ⊥,可得22211MF MP PF +=,即222222t t a t a +-=+()(),解得3t a =,又2221221MF MF F F +=,即为22234a a c +=(),即为c =,则c e a ==,故选:D.8.在ABC 中,90A =︒,4AB =,AC =P ,Q 是平面上的动点,2AP AQ PQ ===,M 是边BC 上的一点,则MP MQ ⋅的最小值为()A .1B .2C .3D .4【正确答案】B【分析】根据向量运算可得21MP MQ MN ⋅=-uuu r uuu r uuu r ,结合图形分析MN 的最小值即可得结果.【详解】取PQ 的中点N ,则,MP MN NP MQ MN NQ MN NP =+=+=-uuu r uuu r uu u r uuu r uuu r uuu r uuu r uu u r,可得()()2221MP MQ MN NP MN NP MN NP MN ⋅=+⋅-=-=-uuu r uuu r uuu r uu u r uuu r uu u r uuu r uu u r uuu r ,∵MN MA AN MA AN =+≥-uuu r uuu r uuu r uuu r uuu r,当且仅当N 在线段AM 上时,等号成立,故MN MA AN MA ≥-=uuu r uuu r uuu r uuu r,显然当AM BC ⊥时,MA取到最小值∴MN MA ≥≥uuu r uuu r 故21312MP MQ MN ⋅=-≥-=uuu r uuu r uuu r .故选:B.二、多选题9.下列结论正确的有()A .若随机变量ξ,η满足21ηξ=+,则()2()1=+D D ηξB .若随机变量()23,N ξσ-,且(6)0.84<=P ξ,则(36)0.34<<=P ξC .若线性相关系数||r 越接近1,则两个变量的线性相关性越强D .按从小到大顺序排列的两组数据:甲组:27,30,37,m ,40,50;乙组:24,n ,33,44.48,52,若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=【正确答案】BC【分析】由方差的性质判断A ;由正态分布的对称性判断B ;由相关系数的定义判断C ;根据百分位数的定义判断D.【详解】对于A ,由方差的性质可得2()2()4()D D D ηξξ==,故A 错误;对于B ,由正态分布的图象的对称性可得(36)(6)0.50.34P P ξξ<<=<-=,故B 正确;对于C ,由相关系数知识可得:线性相关系数||r 越接近1,则两个变量的线性相关性越强,故C 正确;对于D ,甲组:第30百分位数为30,第50百分位数为372+m,乙组:第30百分位数为n ,第50百分位数为33447722+=,则30377722n m =⎧⎪⎨+=⎪⎩,解得3040n m =⎧⎨=⎩,故70m n +=,故D 错误;故选:BC10.2022年4月,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆(都包含M ,N 点)组成的“曲圆”半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,3F ,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中,下半圆与y 轴交于点.G 若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则()A .椭圆的离心率为12B .AFG的周长为6+C .ABF △面积的最大值是92D .线段AB长度的取值范围是6,3⎡+⎣【正确答案】BD【分析】根据给定的条件,求出椭圆的短半轴长,半焦距判断选项A ;利用椭圆的定义求出焦点三角形周长判断选项B ;求出OA 长度范围判断选项D ;ABF 根据运动的观点可得最大值判断C.【详解】由题知,椭圆中的几何量3==b c,所以a ==则c e a =A 不正确;因为3AB OB OA OA =+=+,由椭圆性质可知3OA ≤≤63AB ≤≤+D 正确;设A ,B 到y 轴的距离为1d ,2d ,则()1212113222ABFAOFOBFSSSd OF d OF d d =+=⋅+⋅=+,当A 在短轴的端点处时,1d ,2d 同时取得最大值3,故ABF △面积的最大值是9,故C 不正确;由椭圆定义知,2AF AG a +==所以AFG 的周长6AFGCFG =++B 正确.故选:BD .11.如图,四棱柱1111ABCD A B C D -的底面是边长为的正方形,侧棱1AA ⊥底面ABCD ,三棱锥1A BCD -ABCD 和111A B C D 的中心分别是O 和1O ,E 是11O C 的中点,过点E 的平面α分别交1BB ,11B C ,11C D 于F ,N ,M 点,且BD ∥平面α,G 是线段MN 任意一点(含端点),P 是线段1AC 上任意一点(含端点),则下列说法正确的是()A .侧棱1AAB .四棱柱1111ABCD A BCD -的外接球的表面积是40πC .当1125B F BB =时,平面α截四棱柱的截面是六边形D .当G 和P 变化时,PO PG +的最小值是5【正确答案】BCD【分析】选项A ,可直接利用三棱锥1A BCD -的体积公式,求出侧棱长,从而判断选项A 错误;选项B ,利用长方体外接球心是体对角线的中心,体对角线长即球的直径,从而求出半径,从而判断选项B 正确;选项C ,利用性质找出平面α截四棱柱的截面,再利用平行关系找出比例,从而判断出结果的正误;选项D ,先求证出MN ⊥平面11AAC C ,从而得到故对任意的G 都有PG PE ≥,进而判断出结果的正误.【详解】对于选项A ,因为三棱锥1A BCD -的体积是11323V h =⨯⨯=,解得h =A 错误;对于选项B ,外接球的半径满足2222440R AB AC h =++=,故外接球的表面积2440S R ππ==,故选项B 正确;对于选项C ,如图,延长MN 交11A B 的延长线于点Q ,连接AQ 交1BB 于点F ,在平面11CC D D 内作MH AF ∥交1DD 于H ,连接AH ,则平面α截四棱柱的截面是五边形AFNMH ,因为1112B Q B N AB ==,所以此时1113B F BB =,故1113B F BB >时截面α是六边形,1113B F BB ≤时截面α是五边形,故选项C 正确;对于选项D ,因为BD ∥平面α,11//BD B D ,11B D ⊄平面α,所以11//B D 平面α,又面1111A B C D 面MN α=,11B D ⊂面1111D C B A ,所以11//B D MN ,又因为四边形1111D C B A 是正方形,1111AC B D ⊥,所以11AC MN ⊥,因为侧棱1AA ⊥底面1111D C B A ,MN ⊂底面1111D C B A ,所以1AA MN ⊥,又1111A C AA A ⊥=,所以MN ⊥平面11AAC C ,垂足是E ,故对任意的G 都有PG PE ≥,又因为1OO =111114O E A C ==,故5PO PG PO PE OE +≥+≥==,故选项D 正确,故选:BCD.12.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则()A .0a b +>B .0c d +>C .0a d +>D .0b c +>【正确答案】AD【分析】A.先构造函数()f x ,通过函数的单调性确定,a b 的大致范围,再构造()()()ln ln h x f x f x =--,通过函数()h x 的单调性确定d 与c -的大小关系,进而得到A 选项.B.先构造函数()g x ,通过函数的单调性确定,c d 的大致范围,再构造()()()ln ln h x g x g x =--,通过函数()h x 的单调性确定d 与c -的大小关系,进而可知B 选项错误.C.通过()()1f xg x =-,得到()()g a g d ->,进而可得a -与d 的大小关系,进而可知C 选项错误.D.与C 选项同样的方法即可判断.【详解】A.e e 1.01011a ba b ==>++ 1,1a b ∴>->-令()()11xe f x x x=>-+则()()21xxe f x x '=+,所以()f x 在()1,0-单调递减,在()0,∞+上单调递增,且()00f =,故0,10a b >-<<.令()()()()()()ln ln 2ln 1ln 1,1,1h x f x f x x x x x =--=-++-+∈-则()21122+20111h x x x x -'=-=-<+-+-,所以()h x 在()1,1-上单调递减,且()00h =()1,0b ∈- ()()ln ln 0f b f b ∴-->()()f b f b ∴>-()()f a f b ∴>-a b∴>-即0a b +>故选项A 正确B.()()0.991e 1e 0c dc d =-=-> 1,1c d ∴<<令()()()11x g x x e x =-<则()xg x xe '=-,所以()g x 在(),0∞-单调递增,在()0,1上单调递减,且()01g =,故01,0c d <<<.令()()()()()()()ln ln 2ln 1ln 1,1,1m x g x g x x x x h x x =--=-++-+=∈-所以()m x 在()1,1-上单调递减,且()00m =()0,1c ∈ ()()ln ln 0g c g c ∴-->()()g c g c ∴>-()()g d g c ∴>-d c∴<-即0c d +<故选项B 错误C.()()1f xg x =- ()()()11000.99,1,0101g a a f a ∴-==>∈-()()g a g d ∴->又()g x 在(),0∞-单调递增a d∴->0a d ∴+<故选项C 错误D.由C 可知,()()(),0,1g b g c b ->-∈又()g x 在()0,1单调递减b c∴->故选项D 正确故选:AD三、填空题13.在平面直角坐标系xOy 中,角α的顶点为O ,始边与x 轴的非负半轴重合,终边与圆229x y +=相交于点t ⎫⎪⎪⎝⎭,则πsin 22α⎛⎫+= ⎪⎝⎭___________.【正确答案】35-/0.6-【分析】根据三角函数定义可求得cos α,再利用诱导公式、倍角公式运算求解.【详解】因为角α的终边与圆229x y +=相交于点t ⎫⎪⎪⎝⎭,则5cos 3α=所以22π3sin 2cos22cos 121255ααα⎛⎫⎛⎫+==-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭.故答案为.35-14.已知多项式5625601256(2)(1)x x a a x a x a x a x -+-=+++++ ,则1a =___________.【正确答案】74【分析】利用二项展开式的通项分别求得()52x -和()61x -的展开式的x 项,进而求得1a 的值.【详解】对于5(2)x -,其二项展开式的通项为515C (2)r rr r T x -+=-,令51r -=,得4r =,故4455C (2)80T x x =-=,对于6(1)x -,其二项展开式的通项为616C (1)kkk k T x-+=-,令61k -=,得5k =,故5566C (1)6T x x =-=-,所以()180674a =+-=.故74.15.已知函数2()(2ln )xe f x k x x x=+-和2()x e g x x =,若()g x 的极小值点是()f x 的唯一极值点,则k 的最大值为____.【正确答案】24e /214e【分析】利用导数求出()g x 的单调性和极小值点,然后()3()2x e k f x x x x ⎛⎫'=-- ⎪⎝⎭,然后可得30x e k x x -≥或30x e kx x-≤恒成立,然后可求出答案.【详解】由2()x e g x x =可得()224422()x x x x x e e x e x g x x x -⋅-⋅'==所以当0x <或2x >时,()0g x '>,当02x <<时,()0g x '<所以()g x 的极小值点是2由2()(2ln )xe f x k x x x =+-可得()()4322()12x x x x e e k f x k x x x x x -⎛⎫⎛⎫'=+-=-- ⎪ ⎪⎝⎭⎝⎭因为()f x 的唯一极值点为2,所以30x e k x x -≥或30x e kx x-≤恒成立所以2x e k x ≤或2xe k x≥在()0,+∞上恒成立因为2()xe g x x=在()02,上单调递减,在()2,+∞上单调递增,当x →+∞时()g x →+∞所以k ≤()2min()24e g x g ==故24e 16.“0,1数列”是每一项均为0或1的数列,在通信技术中应用广泛.设A 是一个“0,1数列”,定义数列()f A :数列A 中每个0都变为“1,0,1”,A 中每个1都变为“0,1,0”,所得到的新数列.例如数列:1,0A ,则数列():0,1,0,1,0,1f A .已知数列1:1,0,1,0,1A ,且数列()1k k A f A +=,1,2,3,k =⋅⋅⋅,记数列k A 的所有项之和为k S ,则1k k S S ++=__________.【正确答案】1103k -⨯【分析】设数列k A 中,0的个数为k a ,1的个数为k b ,可利用,k k a b 表示出11,k k a b ++,两式分别作和、作差,结合等比数列通项公式可推导求得,k k a b ,从而得到k S ,整理可得最终结果.【详解】设数列k A 中,0的个数为k a ,1的个数为k b ,则12k k k a a b +=+,12k k k b a b +=+,两式相加得:()113k k k k a b a b +++=+,又115a b +=,∴数列{}k k a b +是以5为首项,3为公比的等比数列,153k k k a b -∴+=⨯;两式相减得:()11k k k k a b a b ++-=--,又111a b -=-,∴数列{}k k a b -是以1-为首项,1-为公比的等比数列,()1kk k a b ∴-=-;()15312k k k a -⨯+-∴=,()15312kk k b -⨯--=,01k k k k S a b b ∴=⨯+⨯=,()()111115315315353103222kk k k k kk k k S S +---+⨯--⨯--⨯+⨯∴+=+==⨯.故答案为.1103k -⨯关键点点睛:本题求解的关键是能够根据所定义的变化规律,得到,k k a b 与11,k k a b ++所满足的递推关系,利用递推关系式证得数列{}k k a b +和{}k k a b -均为等比数列,从而推导得到,k k a b 的通项公式.四、解答题17.如图在平面四边形ABCD 中,AC =,3AB =,DAC BAC ∠=∠,sin 14BAC ∠=.(1)求边BC ;(2)若2π3CDA ∠=,求四边形ABCD 的面积.【正确答案】(1)1;.【分析】(1)利用余弦定理即可求得边BC 的长;(2)分别利用三角形面积公式求得,ABC ACD S S △△的面积,进而求得四边形ABCD 的面积.【详解】(1)因为sin 14BAC ∠=,BAC ∠为锐角,所以cos 14BAC ∠==.因为AC =3AB =,在ABC 中,由余弦定理得2222cos BC AC AB AC AB BAC =+-⋅⋅∠,即279231BC =+-=,得1BC =.(2)在ADC △中,由正弦定理得sin sin CD ACDAC ADC=∠∠,=,所以1CD =.在ADC △中,由余弦定理得222cos 2AD CD AC ADC AD CD +-∠=⋅,即211722AD AD+--=,解得2AD =.因为132144ABC S =⨯=△,12π12sin 23ACD S =⨯⨯⨯△所以ABCD ABC ACD S S S =+==△△18.在各项均为正数的数列{}n a 中,12a =,()2112n n n n a a a a ++=+.(1)求{}n a 的通项公式;(2)若n b =,{}n b 的前n 项和为n S ,1n S ≤<.【正确答案】(1)*2(N )n n a n =∈(2)证明见解析【分析】(1)由()2112n n n n a a a a ++=+得出11(2)()0n n n n a a a a ++-+=,再根据0n a >得出12n n a a +=,则数列{}n a 为等比数列,即可得出通项公式;(2)由(1)得2n n a =,112n n a ++=,*N n ∈,代入n b,化简得n b =1n S =-,则1n S <,再证明{}n S 为增数列,则1n S S ≤,即可证明结论.【详解】(1)()2112n n n n a a a a ++=+ ,11(2)()0n n n n a a a a ++∴-+=,则120n n a a +-=或10n n a a ++=,又0n a > ,12n n a a +∴=,∴数列{}n a 为等比数列,公比为2,12a =,*2(N )n n a n ∴=∈.(2)证明:由(1)得2n n a =,112n n a ++=,*N n ∈,则n b ======{}n b ∴的前n项和为1n S +==则1n S <,又 当*N n ∈时,10n n S S +->∴当*N n ∈时,{}n S 为增数列,∴1n S S ≤,即22n S ≤,∴212n S ≤<.19.2023年3月华中师大一附中举行了普通高中体育与健康学业水平合格性考试.考试分为体能测试和技能测试,其中技能测试要求每个学生在篮球运球上篮、羽毛球对拉高远球和游泳3个项目中任意选择一个参加.某男生为了在此次体育学业考试中取得优秀成绩,决定每天训练一个技能项目.第一天在3个项目中任意选一项开始训练,从第二天起,每天都是从前一天没有训练的2个项目中任意选一项训练.(1)若该男生进行了3天的训练,求第三天训练的是“篮球运球上篮”的概率;(2)设该男生在考前最后6天训练中选择“羽毛球对拉高远球”的天数为X ,求X 的分布列及数学期望.【正确答案】(1)13(2)分布列见解析;()2E X =【分析】(1)根据乘法原理,结合古典概型计算求解即可;(2)由题知X 的可能取值为0,1,2,3,再依次求对应的概率,列分布列,求期望即可.【详解】(1)解:当第一天训练的是“篮球运球上篮”且第三天也是训练“篮球运球上篮”为事件A ;当第一天训练的不是“篮球运球上篮”且第三天是训练“篮球运球上篮”为事件B ;由题知,三天的训练过程中,总共的可能情况为32212⨯⨯=种,所以,()1211126P A ⨯⨯==,()2111126P B ⨯⨯==,所以,第三天训练的是“篮球运球上篮”的概率()()13P P A P B =+=.(2)解:由题知,X 的可能取值为0,1,2,3,所以,考前最后6天训练中,所有可能的结果有53296⨯=种,所以,当X 0=时,第一天有两种选择,之后每天都有1种选择,故552121(0)329648P X ⨯====⨯;当1X =时,第一天选择“羽毛球对拉高远球”,则第二天有2种选择,之后每天只有1种选择,共2种选择;第二天选择“羽毛球对拉高远球”,则第一天有2种选择,第三天2种,后每天只有1种选择,共4种选择;第三天选择“羽毛球对拉高远球”,则第一天有2种选择,第二天有1种选择,第三天1种,第四天有2种选择,之后每天只有1种选择,共4种选择;第四天选择“羽毛球对拉高远球”,则第一天有2种选择,第二天,第三天,第四天,第六天有1种,第五天有2种选择,共4种选择;第五天选择“羽毛球对拉高远球”,则第一天有2种选择,第二天,第三天,第四天,第五天有1种,第六天有2种选择,共4种选择;第六天选择“羽毛球对拉高远球”,则第一天有2种选择,第二天,第三天,第四天,第五天,第六天都有1种选择,共2种选择;综上,当1X =时,共有24444220+++++=种选择,所以,205(1)9624P X ===;当3X =时,第一天,第三天,第五天,选择“羽毛球对拉高远球”,有328=种选择;第一天,第三天,第六天,选择“羽毛球对拉高远球”,有224=种选择第一天,第四天,第六天,选择“羽毛球对拉高远球”,有224=种选择;第二天,第四天,第六天,选择“羽毛球对拉高远球”,有328=种选择;所以,当3X =时,共有844824+++=种选择,所以,24(3)9641P X ===;所以,当)5025(2)1(0)(1(3)9648P X P X P X P X ==-=-=-===,所以,X 的分布列为:X123P148524254814所以,15251()012324824484E X =⨯+⨯+⨯+⨯=.20.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是12,F F ,P 是椭圆上一动点(与左右顶点不重合),已知12PF F △椭圆的离心率是12.(1)求椭圆C 的方程;(2)过()4,0H 作斜率不为0的直线l 交椭圆于,A B 两点,过B 作垂直于x 轴的直线交椭圆于另一点Q ,连接AQ ,设ABQ 的外心为G ,求证:2AQ GF 为定值.【正确答案】(1)22143x y +=;(2)证明见解析.【分析】(1)根据12PF F △面积最大时,r 最大可得出等量关系求解;(2)设出直线方程,与椭圆联立,设()()1122,,,A x y B x y ,得出韦达定理,表示出AB 的中点坐标,求得AB 的垂直平分线方程,得出点G 坐标,即可表示出2,AQ GF ,即可得出定值.【详解】(1)由题意知∶12c a =,∴a =2c ,222b a c =-,b =设△12PF F 的内切圆半径为r ,则12121211(||||||)(22)()22PF F SPF PF F F r a c r a c r =++⋅=+⋅=+⋅.故当12PF F △面积最大时,r 最大,即P 点位于椭圆短轴顶点时r=所以)3a c bc +=,把a =2c ,b =代入,解得∶a =2,b ,所以椭圆方程为22143x y +=(2)由题意知,直线AB 的斜率存在且不为0,设直线AB 为4x ty =+,代入椭圆方程得()223424360t y ty +++=.()()222Δ(24)1443414440t t t =-+=->,设()()1122,,,A x y B x y ,则1222434t y y t -+=+,1223634y y t =+,因此可得1223234x x t +=+所以AB 的中点坐标为(21634t +,21234t t -+)因为G 是△ABQ 的外心,所以G 是线段AB 的垂直平分线与线段BQ 的垂直平分线的交点,由题意可知B ,Q 关于y 轴对称,故()22,Q x y -,AB 的垂直平分线方程为221612(3434tt x y t t --=+++令y =0,得2434x t =+,即G (2434t +,0),所以222243|||1|3434t GF t t =-=++又||AQ221234t t =+故2||4||AQ GF =,所以2||||AB GF 为定值,定值为4.方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.21.在三棱台111A B C ABC -中,1AA ⊥平面ABC ,1111112,1,AB AC AA A B AB A C ====⊥,,E F 分别是1,BC BB 的中点,D 是棱11AC 上的动点.(1)求证:1AB DE ⊥;(2)若D 是线段11A C 的中点,平面DEF 与11A B 的交点记为M ,求平面AMC 与平面AME 夹角的余弦值.【正确答案】(1)证明见解析28622【分析】(1)取AB 的中点G ,连接1,A G EG ,证得1,,,E G A D 四点共面,根据1AA ⊥平面ABC ,证得1AA AG ⊥,结合11AB AG ⊥,证得1AB ⊥平面1A DEG ,即可证得1AB DE ⊥;(2)延长EF 与11C B 交于点Q ,连接DQ ,根题意证得1,,AC AB AA 两两垂直,以A 为原点,建立空间直角坐标系,分别求得平面AMC 和平面AME 的一个法向量()10,3,2n =-和()23,3,2n =-,结合向量的夹角公式,即可求解.【详解】(1)证明:取线段AB 的中点G ,连接1,A G EG ,如图所示,因为,E G 分别为,BC AB 的中点,所以//EG AC ,在三棱台111A B C ABC -中,11//AC AC ,所以11//EG A C ,且11D A C ∈,故1,,,E G A D 四点共面,因为1AA ⊥平面ABC ,AG ⊂平面ABC ,所以1AA AG ⊥,因为1111111,,//AA A B AG AG A B AA AG ===⊥,所以四边形11AA B G 是正方形,所以11AB AG ⊥,又因为111AB A C ⊥,且1111111,,A C A G A A C A G ⋂=⊂平面1A DEG ,所以1AB ⊥平面1A DEG ,因为DE ⊂平面1A DEG ,所以1AB DE ⊥.(2)解:延长EF 与11C B 相交于点Q ,连接DQ ,则11DQ A B M = ,因为,F E 分别为1BB 和BC 的中点,1//B Q BE ,所以111B Q B FBE BF==,则11112B Q BE BC B C ===,所以,1B 为1C Q 的中点,又因为D 为11AC 的中点,且11A B DQ M = ,则M 为11AC Q △的重心,所以1112233A M AB ==,因为1AA ⊥平面,ABC AC ⊂平面ABC ,所以1AA AC ⊥.因为11111,//AB AC AC AC ⊥,所以1AB AC ⊥,又因为1111,,AA AB A AA AB ⋂=⊂平面11AA B B ,所以AC ⊥平面11AA B B ,所以1,,AC AB AA 两两垂直,以A 为原点,1,,AC AB AA 所在直线分别为x 轴、y 轴和z 轴建立如图所示空间直角坐标系,则()()()()20,0,0,0,2,0,2,0,0,1,1,0,0,,13A B C E M ⎛⎫⎪⎝⎭,可得()()22,0,0,0,,1,1,1,03AC AM AE ⎛⎫=== ⎪⎝⎭.设平面AMC 的法向量为()1,,n a b c = ,则1120203n AC a n AM b c ⎧⋅==⎪⎨⋅=+=⎪⎩,取3b =-,可得0,2a z ==,所以()10,3,2n =-,设平面AME 的法向量为()2,,n x y z =u u r ,则22203n AE x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取=3y -,可得3,2x z ==,所以()23,3,2n =-,所以121212cos ,22n n n n n n ⋅=,故平面AMC 与平面AME22.已知函数()ln 1f x x ax =-+有两个零点1x ,2x ,且122x x >,(1)求a 的取值范围;(2)证明:222112e x x x x ⎛⎫⋅+> ⎪⎝⎭【正确答案】(1)20,2e ln a ⎛⎫∈ ⎪⎝⎭(2)证明见解析【分析】(1)易得()1ax f x x='-,分0a ≤和0a >讨论,对0a >时,根据存在两零点得()max 0f x >,求出a 的范围,再结合1202x x >>,放缩得2122x x x <<,确定()220f x >,则220e x <<,再构造函数()ln 1x h x x +=,20,e x ⎛⎫∈ ⎪⎝⎭,求出其单调性即可得到a 的范围;(2)利用基本不等式得222112e e x x x x ⎛⎫+>⋅ ⎪⎝⎭222112e x x x x ⎛⎫+> ⎪⎝⎭法设12x t x =,构造函数()2ln ln 21t g t t t =+--,2t >,求导证明其单调性,得到其范围即可.【详解】(1)因为()ln 1f x x ax =-+的定义域为()0,∞+,所以()11ax f x a x x -'=-=当0a ≤时,()0f x ¢>恒成立,所以()f x 在()0,∞+上单调递增,故()f x 不可能有两个零点,故舍去;当0a >时,令()0f x ¢>,解得10x a<<令()0f x '<,解得1x a>,所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()max 11ln f x f a a ⎛⎫== ⎪⎝⎭,要使()f x 有两个零点,则()max 11ln 0f x f a a ⎛⎫==> ⎪⎝⎭,解得01a <<,又111ln 10e e e e a f a ⎛⎫=-⋅+=-< ⎪⎝⎭,22444242111ln 0f a a a a a a -+<-+ ⎪=-⎛⎫⎝⎭<=,所以当01a <<时,()f x 在11,e a ⎛⎫ ⎪⎝⎭和214,a a ⎛⎫ ⎪⎝⎭上各有一个零点2x ,1x ,且122x x >,所以1122ln 10ln 10x ax x ax -+=⎧⎨-+=⎩,由()f x 单调性知,当()21,x x x ∈时,()0f x >,当()1,x x ∈+∞时,()0f x <,因为2122x x x <<,所以()220f x >,即()2222ln 221ln 1x ax x ax -+>-+所以2ln 2ax <,而22ln 1x ax +=,即2ln 1ln 2x +<,所以220e x <<,而22ln 1x a x +=,令()ln 1x h x x +=,20,e x ⎛⎫∈ ⎪⎝⎭则()2211n 11n x x x h x x -'--==,20,e x ⎛⎫∈ ⎪⎝⎭,2ln ln 0e x ∴->->,所以()0h x '>,所以()h x 在20,e ⎛⎫ ⎪⎝⎭上单调递增,所以()l e 2e e2n 2ln 22h h x ⎛⎫<== ⎪⎝⎭,所以20,2e ln a ⎛⎫∈ ⎪⎝⎭(2)1220x x >>222112e e x x x x ⎛⎫∴+≥⋅ ⎪⎝⎭12x x =取等号,而1202x x >>,故222112e e x x x x ⎛⎫+>⋅ ⎪⎝⎭要证222112e x x x x ⎛⎫+> ⎪⎝⎭e ⋅≥,即证1228e x x ≥即证1228ln ln e x x ≥,即证12ln ln 3ln 22x x +≥-,1122ln 1ln 1x ax x ax +=⎧⎨+=⎩.设12x t x =,1220x x >> ,2t ∴>,2ln ln 11t x t =--,1ln ln 1ln 1t x t t =-+-,122ln ln ln ln 21t x x t t +=+--令()2ln ln 21t g t t t =+--,2t >,()()2212ln 1t t g t t t -'-=-令()212ln t t t ϕ=--,()22t t t ϕ=-',易知()22t t tϕ=-'在()2,+∞上单调递增,故()()230t ϕϕ'>=>',∴()t ϕ在(1,)+∞单调递增,∴()()10t ϕϕ>=,∴()g t 在()2,+∞上单调递增,∴()()23ln 22g t g >=-得证.关键点睛:本题第2问首先采用了基本不等式进行放缩得222112e e x x x x ⎛⎫+>⋅ ⎝⎭目的证明转化为证明12ln ln 3ln 22x x +≥-,然后得到1122ln 1ln 1x ax x ax +=⎧⎨+=⎩,利用经典的比值换元法,设12x t x =,2t >,则122ln ln ln ln 21t x x t t +=+--,从而设()2ln ln 21t g t t t =+--,2t >,通过多次求导研究其单调性和值域即可.。
2022届普通高等学校招生全国统一考试模拟演练数学试试题
一、单选题二、多选题1. 的共轭复数为( )A.B.C.D.2. 函数的单调递减区间为A.B.C.D.3. 记函数的最小正周期为,且,若在上恰有3个零点,则的取值范围为( )A.B.C.D.4. 已知函数f (x )是偶函数且满足f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-2,-1)∪(0,1)5. 圆心在轴上,半径为1,且过点的圆的方程是( )A.B.C.D.6.函数,则方程的实根个数不可能为( )A .1个B .2个C .3个D .4个7. 已知集合,集合,则( )A.B.C.D.8. 三棱柱中,棱两两垂直,,底面是面积为2的等腰直角三角形,若该三棱柱的顶点都在同一个球O 的表面上,则球O 的表面积为( )A .8B.C.D .9. 斐波那契数列又称黄金分割数列,因数学家列昂纳多•斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用表示斐波那契数列的第项,则数列满足:,记,则下列结论正确的是( )A.B.C.D.10. 如图,在多面体中,四边形,,均是边长为1的正方形,点在棱上,则()A.该几何体的体积为B .点在平面内的射影为的垂心C.的最小值为D .存在点,使得2022届普通高等学校招生全国统一考试模拟演练数学试试题2022届普通高等学校招生全国统一考试模拟演练数学试试题三、填空题四、解答题11.如图所示,三棱锥中,,,为线段上的动点(不与重合),且,则()A.B.C .存在点,使得D .三棱锥的体积有最大值12.如图,在直三棱柱中,,,,点M 在线段上,且,N 为线段上的动点,则下列结论正确的是()A .当N为的中点时,直线与平面所成角的正切值为B.当时,平面C.的周长的最小值为D .存在点N ,使得三棱锥的体积为13. 若圆过双曲线的实轴顶点,且圆与直线相切,则该双曲线的渐近线方程为______.14. 某次视力检测中,甲班12个人视力检测数据的平均数是1,方差为1;乙班8个人的视力检测数据的平均数是1.5,方差为0.25,则这20个人的视力的方差为___________.15. 已知双曲线的右焦点为,过原点的直线与双曲线交于两点(点在第一象限),为线段的中点,若,,则双曲线的离心率为________.16.如图,在三棱柱中,侧面底面,,,点,分别是,的中点.(1)证明:平面;(2)若,,求直线与平面所成角的正弦值.17. 已知向量,函数(1)求函数f (x )的单调递增区间;(2)如果△ABC 的三边满足,且边b 所对的角为x ,试求x 的范围及此时函数的值域.18. 如图所示,在三棱锥中,,,为的中点,垂直平分,且分别交于点.(1)证明:;(2)证明:.19. 如图,在长方体中,、分别是棱、上的点,,,.(1)证明:平面;(2)求二面角的余弦值.20. 如图,在三棱锥中,,,,,为线段的中点,将折叠至,使得平面平面,且交平面于F .(1)求证:平面平面.(2)求三棱锥的体积.21. 已知的内角,,的对边分别为,,,且满足.(1)求角;(2)若,的中线,求面积的值.。
2022届普通高等学校招生全国统一考试模拟演练数学试试题
一、单选题二、多选题1. 已知,,则( )A.B.C.D.2. 函数,先把函数的图像向左平移个单位,再把图像上各点的横坐标缩短到原来的,得到函数的图像,则下列说法错误的是( )A .函数是奇函数,最大值是2B .函数在区间上单调递增C .函数的图像关于直线对称D .π是函数的周期3.已知向量,,则( )A.B.C.D .14. 已知集合,,则( ).A.B.C.D.5.已知集合,则( )A.B.C.D.6. 某班共有50名同学,班主任李老师将大家分成了5个学习小组,每组10人,在某次数学测试中,甲、乙两小组的测试成绩的茎叶图如图所示,则对该次测试的成绩,下列说法错误的是()A .甲组学生成绩的众数是78B .乙组学生成绩的中位数是79C .甲组学生的成绩更稳定D .乙组学生的平均成绩更高7.若则( )A.B.C.D.8. 函数是定义在上的奇函数,且在区间上单调递增,若关于实数的不等式恒成立,则的取值范围是( )A.B.C.D.9. 达·芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达·芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为,双曲余弦函数则以下正确的是( )2022届普通高等学校招生全国统一考试模拟演练数学试试题2022届普通高等学校招生全国统一考试模拟演练数学试试题三、填空题四、解答题A .是奇函数B .在上单调递减C .,D .,10.已知函数的图象与直线有三个交点,记三个交点的横坐标分别为,且,则下列说法正确的是( )A .存在实数,使得B.C.D.为定值11. 已知i 为虚数单位,下列说法正确的是( )A .若复数,则B.若,则C .若,则D .复数在复平面内对应的点为,若,则点的轨迹是一个椭圆12.已知数列的前n 项和为,数列的前项和为,则下列选项正确的为( )A.数列是等差数列B .数列是等比数列C .数列的通项公式为D .13. 已知椭圆C :的左焦点为,为椭圆C 上任意一点,则的最小值为______.14.已知函数为偶函数,为奇函数,,若不等式恒成立,则实数的最大值为______.15. 已知,则_________.(用数字作答)16.已知函数(1)求的单调区间;(2)若存在实数,使得方程有两个不相等的实数根,求证:17.如图,在三棱柱中,侧面为正方形,点、分别是、的中点,平面.(Ⅰ)求证:平面;(Ⅱ)若是边长为的菱形,求直线与平面所成角的正弦值.18. 已知等差数列满足,.(1)求的通项公式;(2)等比数列的前项和为,且,再从下面①②③中选取两个作为条件,求满足的的最大值.①;②;③.(注:若选择不同的组合分别解答,则按第一个解答计分.)19. 如图,在四棱锥中,为等边三角形,为的中点,,平面平面.(1)证明:平面平面;(2)若,,,直线与平面所成角的正弦值为,求三棱锥的体积.20.行列式按第一列展开得,记函数,且的最大值是4.(1)求;(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数的图像,求在上的值域.21. 对任意一个非零复数z,定义集合.(1)设a是方程的一个根,试用列举法表示集合.若在中任取两个数,求其和为零的概率P;(2)设复数,求证:.。
2022届普通高等学校招生全国统一考试模拟演练数学试试题(高频考点版)
一、单选题二、多选题三、填空题1. 若=(a 1,a 2,a 3),=(b 1,b 2,b 3),则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 在平面直角坐标系中,当,变化时,点到直线的距离最大值为( )A .3B .4C .5D .63. 若,,则( )A.B.C.D.4. 函数的图像简图可能是( )A.B.C.D.5. 在平面直角坐标系中,若角的终边经过点,则( )A.B.C.D.6. 已知,,,则a ,b ,c 的大小关系为( )A.B.C.D.7. 袋子里有4个大小、质地完全相同的球,其中有2个红球、2个白球,从中不放回地依次随机摸出2个球,事件“两个球颜色相同”,事件“两个球颜色不同”,事件“第二次摸到红球”,事件“两个球都是红球”.下列说法正确的是( )A.B .C 与D 互斥C.D.8. 定义在上的偶函数满足,且在上是减函数,,是钝角三角形的两个锐角,且,则下列不等关系正确的是( )A.B.C.D.9.若集合,,若,则实数的取值范围为______.10. 已知函数,则的值域为__________.2022届普通高等学校招生全国统一考试模拟演练数学试试题(高频考点版)2022届普通高等学校招生全国统一考试模拟演练数学试试题(高频考点版)四、解答题11. 已知向量,,且与方向相同,则______.12. 已知圆,若过定点有且仅有一条直线被圆截得弦长为2,则可以是__________.(只需要写出其中一个值,若写出多个答案,则按第一个答案计分.)13. 已知函数.(1)讨论的单调性;(2)当时,,求m 的取值范围.14. 已知椭圆:的左、右焦点分别为,,上顶点为,到直线的距离为,且.(1)求椭圆的标准方程;(2)若过且斜率为的直线与椭圆交于,两点,椭圆的左、右顶点分别为,,证明:直线与的交点在定直线上.15. 在一个盒子中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从盒子中随机取出一个球,该球的编号记为,将球放回盒子中,然后再从盒子中随机取出一个球,该球的编号记为.(1)写出试验的样本空间;(2)求“”的概率.16. 已知函数是定义在区间上的奇函数,对于任意的都有.(1)判断函数的单调性.(2)解不等式.。
湖南省长沙市2024届高三下学期高考适应性演练(一)数学试题含答案
长沙市2024届高考适应性演练(一)数学试卷(答案在最后)注意事项:1.答卷前,考生勿将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}12A x x =->,{}4|log 1B x x =<,则A B = ()A.(3,4)B.(,1)(3,4)-∞- C.(1,4)D.(,4)-∞2.若复数z 满足(34i)|43i |z -=+,则在复平面内z 对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设等差数列{}n a 的前n 项和n S ,若39S =,636S =,则789a a a ++=()A.18B.27C.45D.634.若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式12nx ⎫+⎪⎭的展开式的常数项是()A.7B.8C.9D.105.折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且120ABC ∠=︒,则该圆台的体积为()图1图2A.3B.9πC.7πD.36.已知函数2()(0,0)f x x bx c b c =-+>>的两个零点分别为1x ,2x ,若1x ,2x ,1-三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式0x bx c-≤-的解集为()A.51,2⎛⎤ ⎥⎝⎦ B.51,2⎡⎫⎪⎢⎣⎭C.5(,1),2⎡⎫-∞+∞⎪⎢⎣⎭D.5(,1],2⎛⎫-∞+∞ ⎪⎝⎭7.已知ln(1.2e)a =,0.2e b =,0.21.2e c =,则有()A.a b c<< B.a c b << C.c a b<< D.c b a<<8.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,过2F 向双曲线的一条渐近线引垂线,垂足为点P ,113PQ PF =,且1OQ PF ⊥(O 为坐标原点),则双曲线C 的渐近线方程为()A.y =±B.y =C.y =D.y =二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知直线l ,m ,平面α,β,则下列说法错误的是()A.//m l ,//l α,则//m αB.//l β,//m β,l α⊂,m α⊂,则//αβC.//l m ,l α⊂,m β⊂,则//αβD.//l β,//m β,l α⊂,m α⊂,l m M = ,则//αβ10.如图,已知抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 的准线与x 轴交于点D ,过点F 的直线l (直线l 的倾斜角为锐角)与抛物线C 相交于A ,B 两点(A 在x 轴的上方,B 在x 轴的下方),过点A 作抛物线C 的准线的垂线,垂足为M ,直线l 与抛物线C 的准线相交于点N ,则()A.当直线l 的斜率为1时,||4AB p =B.若||||NF FM =,则直线l 的斜率为2C.存在直线l 使得90AOB ∠=︒D.若3AF FB =,则直线l 的倾斜角为60︒11.已知定义在R 上的函数()f x 满足(2)()(2026)f x f x f ++=,且(1)1f x +-是奇函数.则()A.(1)(3)2f f +=B.(2023)(2025)(2024)f f f +=C.(2023)f 是(2022)f 与(2024)f 的等差中项D.20241()2024i f i ==∑三、填空题(本题共3小题,每小题5分,共15分)12.已知平面向量a ,b 满足||1a = ,(1,2)b = ,(2)a a b ⊥- ,则向量a ,b夹角的余弦值为______.13.在四面体P ABC -中,BP PC ⊥,60BAC ∠=︒,若2BC =,则四面体P ABC -体积的最大值是______,它的外接球表面积的最小值为______.14.已知反比例函数图象上三点A ,B ,P 的坐标分别3,3a ⎛⎫ ⎪⎝⎭,11,333a a ⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭与1(,)33x y x ⎛⎫<< ⎪⎝⎭,过B作直线AP 的垂线,垂足为Q .若5||||3AP PQ a ⋅≤+恒成立,则a 的取值范围为______.四、解答题(本题共5小题,共77分。
2023年普通高等学校招生全国统一考试数学模拟演练(一)(1)
一、单选题二、多选题1.若对于函数图象上任意一点处的切线,在函数的图象上总存在一条切线,使得,则实数的取值范围为( )A.B.C.D.2. “二进制”来源于我国古代的《易经》,二进制数由数字和组成,比如:二进制数化为十进制的计算公式如下:.若从二进制数、、、中任选一个数字,则二进制数所对应的十进制数大于的概率为( )A.B.C.D.3. 已知函数,,,则A.B.C.D.4. 为了贯彻落实中央新疆工作座谈会和全国对口支援新疆工作会议精神,促进边疆少数民族地区教育事业发展,从A 市20名教师、B 市15名教师和C 市10名教师中,采取分层抽样的方法,抽取一个容量为n 的样本,若A 市抽取4人,则( )A .9B .10C .12D .155. 函数的大致图象是( )A.B.C.D.6.已知数列的前项和为,且满足,则( )A.B.C.D.7. 已知直线被圆截得的弦长为,则的最大值是( )A.B.C.D.8. 在等比数列中,若,,成等差数列,则数列的公比为A .0或1或-2B .1或2C .1或-2D .-29.如图,在直三棱柱中,底面是边长为2的正三角形,,点M 在上,且,P为线段上的点,则( )2023年普通高等学校招生全国统一考试数学模拟演练(一)(1)2023年普通高等学校招生全国统一考试数学模拟演练(一)(1)三、填空题四、解答题A .平面B .当P为的中点时,直线AP 与平面ABC所成角的正切值为C .存在点P,使得D .存在点P ,使得三棱锥的体积为10. 已知双曲线:的左、右焦点分别为,,过原点的直线与双曲线交于两点,若四边形为矩形且,则下列正确的是( )A.B.的渐近线方程为C .矩形的面积为D .的斜率为11.已知向量,则( )A .若,则B .若,则C .若,则D .若,则12.已知函数,则下列结论正确的是( )A.的最小值为e B .在区间上单调递增C .函数有且只有一个零点D .不等式存在唯一整数解13.若函数没有最小值,则的取值范围是____________.14. 已知椭圆和双曲线有公共的焦点、,曲线和在第一象限相交于点P .且,若椭圆的离心率的取值范围是,则双曲线的离心率的取值范围是___________.15. 已知圆C 的方程为,则圆心C 的坐标为___________,圆C 与圆D :的公共弦所在直线方程为___________.16.如图,在直角梯形中,,,,是中点,将沿折起,使得面.(1)求证:平面⊥平面;(2)若是的中点.求三棱锥的体积.17. 已知数列各项均不为零,前项和为,满足,.(1)求;(2)求.18. 第24届冬季奥林匹克运动会将于2022年2月在中国北京举行.为迎接此次冬奥会,北京市组织大学生开展冬奥会志愿者的培训活动,并在培训结束后统一进行了一次考核.为了了解本次培训活动的效果,从A、B两所大学随机各抽取10名学生的考核成绩,并作出如图所示的茎叶图.考核成绩考核等级合格优秀(1)计算A、B两所大学学生的考核成绩的平均值;(2)由茎叶图判断A、B两所大学学生考核成绩的稳定性;(不用计算)(3)将学生的考核成绩分为两个等级,如下表所示.现从样本考核等级为优秀的学生中任取2人,求2人来自同一所大学的概率.19. 已知钝角中,三个内角所对边为,其中,且.(1)若,求;(2)求取值范围.20. 一批大学生和公务员为了响应我党提出的“精准扶贫”政策,申请报名参加新疆某贫困地区开展脱贫工作的“进村工作”活动,帮助当地农民脱贫致富.该区有四个村,政府组织了四个扶贫小组分别进驻各村,开展“进村工作”,签约期两年.约期完后,统计出该区四村的贫富情况条形图如下:(1)若该区脱贫率为80%,根据条形图,求出村的总户数;(2)约期完后,政府打算从四个小组中选出两个小组颁发金星级奖与银星级奖,每个小组被选中的可能性相同.求进驻村的工作小组被选中的概率.21. 如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,(1)求证:平面ACF⊥平面BDF;(2)若∠CBA=60°,求三棱锥的体积,。
湖南省名校2023届普通高等学校招生全国统一考试考前演练二数学试题(1)
一、单选题1. 某地教育局为了解“双减”政策的落实情况,在辖区内高三年级在校学生中抽取100名学生,调查他们课后完成作业的时间,根据调查结果绘制如下频率直方图.根据此频率直方图,下列结论中不正确的是()A .所抽取的学生中有25人在2小时至小时之间完成作业B .该地高三年级学生完成作业的时间超过3小时的概率估计为C .估计该地高三年级学生的平均做作业的时间超过小时D .估计该地高三年级有一半以上的学生做作业的时间在2小时至3小时之间2. 已知为虚数单位,,则( )A.B .C.D.3. 2021年3月全国两会上,“碳达峰”碳中和”备受关注.为应对气候变化,我国提出“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”等庄严的目标承诺.在今年的政府工作报告中,“做好碳达峰、碳中和工作”被列为2021年重点任务之一;“十四五”规划也将加快推动绿色低碳发展列入其中.我国自1981年开展全民义务植树以来,全国森林面积呈线性增长,第三次全国森林资源清查的时间为1984﹣1988年,每5年清查一次,历次清查数据如表:第次3456789森林面积(亿平方米)1.251.341.591.751.952.082.20经计算得到线性回归直线为(参考数据:),据此估算我国森林面积在第几次森林资源清查时首次超过3亿平方米( )A .12B .13C .14D .154.等差数列的前n 项和为,满足,则( )A.B.C.D .35. 设函数在上的值域为,则的取值范围为( )A.B.C.D.6. 函数在区间上是增函数,且,,则函数在区间上( )A .是增函数B .是减函数C .可以取到最大值A D.可以取到最小值7. 将函数f (x )的图象向左平移个单位长度,再将所得函数图象上的所有点的横坐标变为原来的倍,得到函数g (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的图象.已知函数g (x )的部分图象如图所示,则下列关于函数f (x )的说法正确的是( )湖南省名校2023届普通高等学校招生全国统一考试考前演练二数学试题(1)湖南省名校2023届普通高等学校招生全国统一考试考前演练二数学试题(1)二、多选题A .f (x )的最小正周期为B .f (x )在区间上单调递减C .f (x )的图象关于直线x=对称D .f (x )的图象关于点成中心对称8.在正四棱柱中,,,点,分别为棱,上两点,且,,则( )A.,且直线,异面B .,且直线,相交C.,且直线,异面D .,且直线,相交9. 设,且,则( )A.B.C.D.10.已知抛物线的焦点为为坐标原点,其准线与轴交于点,经过点的直线与抛物线交于不同两点,则下列说法正确的是( )A.B.存在C.不存在以为直径且经过焦点的圆D .当的面积为时,直线的倾斜角为或11. 在南方不少地区,经常看到一种用木片、竹篾或苇蒿等材料制作的斗笠,用来遮阳或避雨,有一种外形为圆锥形的斗笠,称为“灯罩斗笠”,不同型号的斗笠大小经常用帽坡长(母线长)和帽底宽(底面圆直径长)两个指标进行衡量,现有一个“灯罩斗笠”,帽坡长20厘米,帽底宽厘米,关于此斗笠,下列说法正确的是()A.斗笠轴截面(过顶点和底面中心的截面图形)的顶角为B .过斗笠顶点和斗笠侧面上任意两母线的截面三角形的最大面积为平方厘米C .若此斗笠顶点和底面圆上所有点都在同一个球上,则该球的表面积为平方厘米D .此斗笠放在平面上,可以盖住的球(保持斗笠不变形)的最大半径为厘米12.已知椭圆的左,右焦点分别为,长轴长为4,点在椭圆外,点在椭圆上,则( )三、填空题四、解答题A .椭圆的离心率的取值范围是B.当椭圆的离心率为时,的取值范围是C .存在点使得D .的最小值为213. 在中,角所对的边分别为.若,,则________.________.14.设是定义在上的奇函数,且,设,若函数有且只有一个零点,则实数的取值范围是________.15.设为数列的前项之积,即,若,,当时,的值为______16. 已知椭圆的离心率为,三点中恰有两个点在椭圆上.(1)求椭圆C 的方程;(2)若C 的上顶点为E ,右焦点为F ,过点F 的直线交C 于A ,B 两点(与椭圆顶点不重合),直线EA ,EB 分别交直线于P ,Q 两点,求面积的最小值.17. 在中,角的对边分别是,且满足(1)求的值(2)若,且的面积,(i )求边的值;(ii)求的值.18. 如图,椭圆的中心为原点O ,长轴在x 轴上,离心率,过左焦点F 1作x 轴的垂线交椭圆于A 、A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P′,过P 、P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP'Q 的面积S 的最大值,并写出对应的圆Q的标准方程.19. 如图,三棱柱中,侧面,已知,,,点是棱的中点.(1)求证:平面;(2)求二面角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.20.已知向量,,,其中A是的内角.(1)求角A的大小;(2)若角A,B,C所对的边分别为a,b,c,且,,求的取值范围.21. 定义:已知数列满足.(1)若,,求,的值;(2)若,,使得恒成立.探究:是否存在正整数p,使得,若存在,求出p的可能取值构成的集合;若不存在,请说明理由;(3)若数列为正项数列,证明:不存在实数A,使得.。
四川省绵阳南山2024届高三下学期高考仿真演练(二)数学(文)试题含答案
绵阳南山高2021级高三下期高考仿真演练(二)数学(文科)试题(答案在最后)命题:高三文科数学组将试卷放在屁股下坐一坐——一定过!将试卷亲一下——稳过!祝你考试成功!注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.本试卷满分150分,考试时间120分钟.考试结束后,请将答题卡交回.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}13,5A =,,2{Z |3}B x x =∈≤,则A B ⋃=()A.{}1,0,1,3,5- B.{}1 C.{}3,1,3,5- D.{}1,3,5【答案】A 【解析】【分析】根据并集的定义即可求解.【详解】因为{}1,0,1B =-,所以{}1,0,1,3,5A B =- .故选:A.2.欧拉公式cos sin i e i θθθ=+把自然对数的底数e ,虚数单位i ,cos θ和sin θ联系在一起,充分体现了数学的和谐美,被誉为“数学中的天桥”.则iπe 1+=()A.1-B.0C.1D.i【答案】B 【解析】【分析】把πθ=代入欧拉公式即可。
【详解】iπe 1cos πisin π1110+=++=-+=.故选:B3.下图是某地区2016~2023年旅游收入(单位:亿元)的条形图,则下列说法正确的是()A.该地区2020~2023年旅游收入逐年递增B.该地区2016~2023年旅游收入的中位数是3.50亿元C.经历了疫情之后,该地区2023年旅游收入恢复到接近2018年水平D.该地区2016~2019年旅游的平均收入约为4.11亿元【答案】C 【解析】【分析】根据中位数、平均数的定义即可判断BD ;结合图形,分析数据即可判断AC.【详解】A :由图可知2020-2023年旅游收入不是逐年递增,故A 错误;B :由图可知,2016-2023年旅游收入的中位数为4.255亿元,故B 错误;C :从图表可知2023年旅游收入为4.91亿元,接近2018年的5.13亿元,故C 正确;D :2016-2019年旅游收入的平均数为3.944.575.13 5.73 2.23 2.92 2.04 4.913.933758+++++++=亿元,故D 错误.故选:C.4.已知m ,n 是空间两条不同的直线,α,β是两个不重合的平面,有下列命题:p :若//m α,n ⊂α,则//m n ;q :若m α⊥,n β⊥,m n ⊥,则αβ⊥.则下列命题是真命题的是()A.p q ∧B.q p ⌝∨C.q p ⌝∧D.()p q ⌝∨⌝【答案】D 【解析】【分析】由空间中直线与直线、直线与平面、平面与平面位置关系可以判断出命题p 和命题q 的真假性.【详解】如果一条直线与平面平行,则它与平面内的任意直线平行或异面,所以命题p 是假命题.若m α⊥,m n ⊥,则//n α或n α⊂,又因为n β⊥,则αβ⊥,所以命题q 是真命题.因为p 是假命题,q 是真命题,所以p ⌝是真命题,q ⌝是假命题,因此p q ∧是假命题,A 错误;q p ⌝∨是假命题,B 错误;q p ⌝∧是假命题,C 错误;p q ⌝∨⌝是真命题,D 正确.故选D.5.一般地,任意给定一个角α∈R ,它的终边OP 与单位圆的交点P 的坐标,无论是横坐标x 还是纵坐标y ,都是唯一确定的,所以点P 的横坐标x 、纵坐标y 都是关于角α的函数.下面给出这些函数的定义:①把点P 的纵坐标y 叫作α的正弦函数,记作sin α,即sin y α=;②把点P 的横坐标x 叫作α的余弦函数,记作cos α,即cos x α=;③把点P 的纵坐标y 的倒数叫作α的余割函数,记作csc α,即1csc y α=;④把点P 的横坐标x 的倒数叫作α的正割函数,记作sec α,即1sec xα=.下列结论错误的是()A.sin csc 1⋅=ααB.2πsec23=-C.函数()sec f x x =的定义域为{}π,x x k k ≠∈Z D.2222sec sin csc cos 5αααα+++≥【答案】C 【解析】【分析】根据定义可判断A ;利用定义转化为余弦求解可判断B ;转化为余弦表示,根据分母不为0求解可判断C ;转化为正弦和余弦,利用平方关系和二倍角公式化简,由正弦函数性质可判断D .【详解】由题知,11csc ,sec sin cos αααα==,对于A ,1sin csc 1y yαα⋅=⋅=,A 正确;对于B ,2π1111sec22πππ3cos cos cos π333x =====-⎛⎫-- ⎪⎝⎭,B 正确;对于C ,函数()1sec cos f x x x ==,由cos 0x ≠得ππ,2x k k ≠+∈Z 所以()f x 的定义域为ππ,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z ,C 错误;对于D ,22222211sec sin csc cos 1cos sin αααααα+++=++22214115sin cos sin 2ααα=+=+≥,当sin 21α=±时,等号成立,D 正确.故选:C.6.函数()2cos sin 1x x xf x x+=+的部分图象为()A.B.C. D.【答案】B 【解析】【分析】利用排除法,根据函数奇偶性排除A ;分别取π0,2x ⎛⎫∈ ⎪⎝⎭,3ππ,2x ∈⎛⎫⎪⎝⎭,结合函数符号排除CD.【详解】由题意可知:()f x 的定义域为R ,关于原点对称,且()()()()()22cos sin cos sin 11x x x x x xf x f x xx --+----===-++-,所以()f x 为奇函数,其图象关于原点对称,排除A ;当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos sin 0x x x +>,所以()0f x >,排除D ;当3ππ,2x ∈⎛⎫⎪⎝⎭时,cos sin 0x x x +<,所以()0f x <,排除C .故选:B .7.已知直线2y x m =+与圆22:4O x y +=交于A ,B 两点,则“m >是“AOB 为锐角三角形”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D 【解析】【分析】首先分析出AOB ∠为锐角,再根据点到直线的距离公式和余弦函数的单调性得到不等式,解出m 的范围即可.【详解】由题意知AOB 是等腰三角形,因为顶角是AOB ∠,所以当且仅当AOB ∠为锐角时,该三角形是锐角三角形.所以只需π24AOB ∠<,所以O 到AB 的距离d 满足:πcoscos224AOB d ∠=>,即22d >,解得d >,又因为直线与圆有两交点,则2d <,2d <<2<<,所以m <<,所以m >是三角形为锐角三角形的既不充分也不必要条件,故选:D.8.一个几何体的三视图如图所示,S 为该几何体的外接球表面上一点,则点S 到该几何体每个面距离的最大值是()A.24132+ B.4142C.4142D.24132-【答案】C 【解析】【分析】先给出直观图,求出外接球的半径R ,由于球心到各个面距离的最大值等于2,于是外接球表面上的点S 到各个面的最大距离等于2+R 求解.【详解】直观图如图所示,外接球的球心为PB 的中点,于是2R PB ===,球心到平面ABCD 的距离等于32,到平面PAD 与平面PCD 的距离都是2,所以球心到各个面距离的最大值等于2,于是外接球表面上的点S 到各个面的最大距离等于422R +=.故选:C.9.已知抛物线24y x =的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足AF BF ⊥,线段AB的上一点M 满足AM MB =,M 在l 上的投影为N ,则MN AB的最大值是()A.2B.12C.1D.2【答案】A【解析】【分析】如图,设AF a =,BF b =,则MN AB=,进而22221214MN ab a b AB⎡⎤=+⎢+⎣⎦,结合基本不等式计算即可求解.【详解】令A ,B 在准线上的投影分别为A ',B ',设AF a =,BF b =,则AA a '=,BB b '=.所以AB =,因为AM MB =,所以2a bMN +=.所以MN AB=,则()()()222222212111114424a b MN ab a b a b AB+⎡⎤==+≤+=⎢⎥++⎣⎦,当且仅当a b =时等号成立.故选:A.10.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)的部分图象如图所示,()5,0D ,()2,B A ,BC CD ⊥,则()4f =()A.4B.C.D.【答案】B 【解析】【分析】首先根据,B D 的坐标求出周期,进而求出ω,然后把D 点坐标代入求出ϕ,最后根据BC CD ⊥,利用向量的数量积等于0求出A 。
2023年普通高等学校招生统一考试模拟演练数学试题
2023年普通高等学校招生全国统一考试模拟演练数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合1{|21}x A x -=<,2{|,}B y y x x A ==∈,则A .AB ⊆B .B A ⊆C .A B =∅D .A B =R2.已知直线2100x y ++=经过双曲线2222:1x y C a b-=(0,0)a b >>的一个焦点,且平行于C 的一条渐近线,则C 的实轴长为A B C .D .3.若虚数z 的模长为1,则11z z +=+A .zB .zC .z -D .z-4.某俱乐部有三位男性和三位女性,其中有两对夫妻,还有两人单身.这个俱乐部有个特别的规定:已婚人士讲假话,而未婚人士讲真话,且会用“噢”和“嗳”代替是或否的回答.一位新加入的成员向他们打听,了解到下面的事实:①他问A 先生:“B 先生和D 女士是一对夫妻吗?”A 先生回答:“噢”.②他问E 女士:“你是否嫁给了A 先生?”E 女士回答:“噢”.③他问C 先生:“你与F 女士是一对夫妻吗?”C 先生回答:“嗳”.已知该问题有唯一的答案,则单身的两人是A .B 先生和D 女士B .B 先生和E 女士C .A 先生和E 女士D .A 先生和D 女士5.已知随机变量111~(,4X N μ,221~(,)9X N μ,则A .1122(||1)(||1)P X P X μμ-<<-<B .1122(||1)(||1)P X P X μμ-<>-<C .112211(||(||)23P X P X μμ-<<-<D .112211(||)(||)23P X P X μμ-<>-<6.已知函数)6sin()(x x f -π=,)3cos()(π-=x x g ,则使得))((x g f 和))((x f g 都单调递增的一个区间是A .)3,6(ππB .)2,3(ππC .32,2(ππD .)65,32(ππ7.在三棱锥P ABC -中,O 为ABC △的内心,P 在底面ABC 的射影Q 在OAB △内,且存在正数x ,y ,使得CQ xCA yCO =+.记二面角P AB C --,P BC A --,P CA B --的大小分别为1θ,2θ,3θ,则A .123θθθ>>B .132θθθ>>C .213θθθ>>D .231θθθ>>8.设函数||e )(a x x f x --=,R ∈a ,则A .若)(x f 在区间)1,2(--和)0,1(-都有零点,则在区间)1,0(也有零点B .若)(x f 在区间)1,2(--和)0,1(-都有零点,则在区间)1,0(没有零点C .若)(x f 在区间)1,2(--和)0,1(-都没有零点,则在区间)1,0(有零点D .若)(x f 在区间)1,2(--和)0,1(-都没有零点,则在区间)1,0(也没有零点二、选择题:本题共4小题,每小题5分,共20分。
L16联盟2024年普通高等学校招生全国统一考试模拟演练数学试题(含答案及解析)
绝密★启用前L16联盟2024年普通高等学校招生全国统一考试模拟演练数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一组数据4,4,2,6,4,1,9,8的极差是A. 8−B. 5−C. 5D. 82.已知点A ,B ,C 是直线l 上相异的三点,O 为直线l 外一点,且23OA OB OC λ=+,则λ的值是A. 1−B. 1C. 12−D.123.某圆环的内外半径分别为2和4,将其绕对称轴旋转一周后得到的几何体体积为A.32π3B.124π3C.224π3D.256π34.已知函数2ln(32)y x x =−+的定义域为集合A ,值域为集合B ,则B A =A. (,1)(2,)−∞∪+∞B. (,1][2,)−∞∪+∞C. (1,2)D. [1,2]5.已知点P 为平面内一动点,设甲:P 的运动轨迹为抛物线,乙:P 到平面内一定点的距离与到平面内一定直线的距离相等,则A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件6.设函数()()sin f x x a ax =−,若存在0x 使得0x 既是()f x 的零点,也是()f x 的极值点,则a 的可能取值为A. 0B.C. πD. 2π7.过原点且倾斜角为π(0)2αα<<的直线l 与圆222()()(0)22a b a b x y a b +−−+=>>相切,则a b= A. πtan()42α+ B. 2πtan ()42α+ C. πtan()42α− D. 2πtan ()42α−8.双曲线Γ:22221(0,0)y x a b a b−=>>的两焦点分别为1F ,2F ,过2F 的直线与其一支交于A ,B 两两点,点B 两在第象限 . 以1F 两为圆,,Γ两的轴轴为为半径的圆与线段1AF ,1BF 两分别交于M ,N 两点,且3AM BN =,12F B F B ⊥,则Γ的渐近线方程是A. y =B. 2y x =±C.3y x =±D. 4y x =±二、选择题:本题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真题演练1阅读下面材料,按要求作文。
(60分)近几年,广场舞已成为中国社会一道独特的风景,中国大妈甚至“舞出”了世界影响。
一位外国大妈说:“很佩服中国大妈的自信和勇气,敢在大庭广众之下跳舞。
不过伴奏声音太大,会影响别人。
在我们国家,建筑工地都要测量噪音,违规是要受处罚的。
”上面的材料引起了你的哪些联想与思考?请自选角度,自定立意,自选文体,自拟标题,写一篇不少于800字的文章。
不要脱离材料内容及含意的范围,不要套作,不得抄袭。
这股民族风中国者,大国也。
大妈者,年岁辈分类于妈妈者也。
广场舞者,公共场地民间集体舞蹈也。
中国大妈广场舞,因莫斯科红场、法兰西卢浮宫“被占领”而具有了世界影响,世人褒贬不一、毁誉参半。
我以为政府引导、舞者自律,方能消除其负面影响,使这股“民族风”成为新时代中国资深女性最炫的形象之风。
(开篇选用长短句整散句结合,有气势有力度,观点鲜明,高屋建瓴,让人眼前一亮)中国的大妈们,心灵中有千百年妇女隐忍奉献的精神皈依;身体上有操劳家务、相夫教子甚至抚养孙辈的劳苦印迹;现实里有儿女奔波前程老来孤独无人陪伴的人生缺憾。
她们体形要么肥胖要么瘦弱且绝不婀娜;她们步态要么生硬要么僵直且绝不轻捷;她们动作要么迟缓要么笨拙且难以准确。
如果你要以专业的眼光、挑剔的心态来看待她们的话,那她们中的相当多一部分人表演的是无任何美感的走样错位的舞蹈。
但是,她们冲破了心灵的禁锢和身体的限制,凭着年轻时的激情和夕阳红的梦想,以无比的自信和勇气,舞出了火的热情,风的张扬,水的淡定,太阳的开朗。
这是新时代中国资深女性掀起的民族广场舞之风。
然而,广场舞的音响实在太具有穿透力了。
它单调,它冗长,它反反复复,它喋喋不休绵绵不绝。
它撩起了夜班族难以补眠的怒火;它打破了莘莘学子闭门苦读急需的宁静;它让身体抱恙需要静养的那类人发狂;它让年纪尚小需要安眠的婴儿啼哭不止;它让不需要单调乏味声音打扰的人忍无可忍。
它,太坏了。
但是,坏的也只是那音响,而非我们中国的大妈。
要解决这个“太坏了”的音响影响,首先需要政府引导和规范。
譬如避开居民区、学校、医院等公众聚集之地,另择场所;譬如规范跳舞时间,避开人们休息高峰时段;譬如规定限制音响分贝,使其达不到噪音的标准;譬如鼓励发明同频同步同听一首歌的范围式无线耳麦,给中国大妈们增加一个广场舞必备的装备,这装备又炫又亮不扰人,又轻又巧真方便。
总之,政府应该有所作为,政府有义务“护航”广场舞,不能只限制、只通融而不加以引导。
政府的引导会使这股“民族风”更和谐。
其次,为了不使音响“太坏了”被非理性地理解为中国大妈“太坏了”,“舞者”,我们中国的大妈们应该要严格自律。
起舞之时那伴奏的声音不可旁若无人,要顾及他人。
老话所谓“己所不欲勿施于人”就是这个道理。
大妈们,广场舞的直接目的是舒活筋骨、锻炼身体,最终目的是陶冶性情。
如若我们自律地控制伴音,既跳舞锻炼了自己,又不扰民方便了他人,那才是既修了身,又养了性,实现了跳广场舞的最终目的。
政府引导、舞者自律,彻底解决广场舞伴音扰民问题,就能使中国大妈广场舞这股“民族风”越跳越炫,成为堂堂正正大大方方热情开朗能歌善舞的中国公民新名片。
顾念说成都七中万达学校卢捷但凡天下之大成者,必然顾己身,念他人。
古人云:穷则独善其身,达则兼济天下。
每个生命之成长,皆由少及长,由小而大;每段事件之升华,皆由浅入深,自粗而精;每项功绩之落定,莫不既顾己之长成,亦念其繁荫!顾念自身,成长自己的生命,丰润自己的德行,完美自己的情操。
人生的终极目标在于回馈社会,而若然本身之力量穷乏,仁德疲累,顾己尚且无暇,谈何念及他人?太白少年磨砺,羲之墨染鹅池,树人刻“早”自省,润之勤学书楼,嘉诚板车拖煤,马云深宵击键,是皆顾一己成长成熟而为后之念及他人之典范,己不长,无以念人也。
而项籍自大,不书不剑,妄言万人敌,致其翼不丰,根不厚,垓下欲念及他人,已无能为也已。
纵然,顾己之所成,绝非一时一日可成,甚或需毕其一生而为之,若东坡之树己,自京都而黄州,自惠州而儋州,一路风尘,一世艰辛,可见顾己成长之不易。
然而万般艰难,其可止顾己成长之步履乎?己已立,更需念及他人,方可彰显生命之美感,是为爱与责任。
古仁人有“老吾老,以及人之老;幼吾幼,以及人之幼”之美志,今人有“先富带动后富”之宏图,于家,于国,于天下,无乃吾辈之警语乎!斯若盖茨之伦,于半百之年,往返奔走而创裸捐之壮举,为福利事业邀天下同道中人,共谋善举。
亦若屠呦呦之属,头顶花发依旧沉浸古籍今器,钻研深究,解千人于苦痛之际,除万民于病症之中。
能力有多大,责任就有多大,若只单纯顾及自己贪图,无休止享乐,追逐于穷奢极欲而无视他人利害,则又在庸碌凡人下矣。
身居高位而无所作为,手持万金而横行霸道,满腹诗书而浮夸虚谈,身怀绝技而束之高阁,如此之徒,貌似君子闲雅,实则祸国殃民!或言:观吾今世今生,已无大立大达之可能,便无念及他人之责任,故而随吾性情,为吾欲为,旁人休言也。
此言差矣!为长者爱幼,为幼者岂不互爱而尊长者乎?位有高下之分,心无宏隘之别,爱与责任,更关乎每个公民。
况天地万物,实为一体,牵一发而动全身,若人人皆惟己是顾,不念及旁人之心,终将危及自身,而使顾己之万一而不得。
简单如候绿灯、排长队,诸多日常所为,切不可顾一己之私,而不念旁人之权,一言一行,不可大意苟且。
亦如当下风行于国的广场舞,大妈于喑哑节奏间翩然蹈足舞手,欢娱顾己于强筋悦情之时,亦可调低音量,念及他人之闲雅身心。
如此大国自有风范,民生和谐而可善可亲。
由是观之,人皆需顾己,人亦皆需念人,无顾己则无以为立,无念人则无所谓真,无所谓善,无所谓美。
顾念之间,垂拱而治,民生福泽。
拓展阅读】为什么外国大妈不跳广场舞狂欢是一群人的孤单。
广场舞近些年来在中国,无疑已经成为一个极具影响力的群众运动了,每块有限的广场空地上,都充斥着大妈大爷———当然,主要是大妈———矫健的身姿和魔鬼的步伐。
而且可喜的是,广场舞大有走出国门扬我国威的态势,早已成功地占领过莫斯科红场、巴黎卢浮宫广场,美国自然也不在话下。
广场舞某种程度上已经成为中国向世界输出的最成功的文化项目了。
在这种强势发展态势下,官方也日益重视起来,近日,文化部、国家体育总局、民政部、住房和城乡建设部联合印发了《关于引导广场舞活动健康开展的通知》,要求大力宣传广场舞工作的好做法、好经验,树立一批优秀广场舞工作者典型、广场舞领头人典型、广场舞团体典型。
如此看来,表面和谐欢乐的广场舞,在这些年为各种争地盘、抢舞伴、拼音响等而产生恩怨情仇之后,又要迎来新一轮血雨腥风的江湖争斗了。
事实上,我个人一直认为广场舞是中国一道独特的风景线,是继武术之后,又一个能够为中国代言的形象,这从每一个第一次看到广场舞的歪果仁(外国人)都会兴致勃勃地参与其中而可见,他们通常直到学个一招半式后,才会恋恋不舍、一步三回头地离去,我知道,从此以后,他们就将沉沦于深奥复杂的中国舞术体系而不能自拔。
奇怪,怎么说起了歪果仁。
哦,既然说到这,问题就来了:为什么广场舞在中国能够火遍每个角落,而且就算走向世界了,也只有中国大妈独舞呢?歪果的大妈大爷就这么内力不济不能领会掌握吗?这个问题的回答,还需容我装个渊博。
其实在欧美这些老龄化程度深的国家,上了年纪退休,相当于是人生第二春的开始,除了继续干点活的之外,有点积蓄的就到处游山玩水,或者写写回忆录、学点感兴趣的新玩意,恋个黄昏恋,等玩不动了就把自己送去养老院。
所以看起来这些大妈活得比较自在,她们才不帮子女带孩子,把自己锁在家里。
可能有人认为他们家庭观念不一样,那就看看和我们文化接近的韩国和日本。
首尔街头,满街跑的出租车司机,绝大部分是五六十岁以上的大爷,日本也同样如此。
在日本,很多地方都可能看到,比如东京大学校门对面的一个小餐馆,就是一对大爷大妈,一个后厨做饭,一个前台服务,当走路都颤颤悠悠的大妈端着一盘子饭菜给你的时候,你都会怀疑自己是不是在虐待老人。
反观中国的老年人,人生极大的常态“事业”就是抚养第三代,而由此产生的系列反应就是,子女没有结婚的就不断催婚逼婚,结婚了的就催早点生孩子,直到你顺利完成任务,二老就乐呵呵地开始他们不见天日的忙碌和操心了。
所以中国大妈很伟大,可赞可爱的同时,却又可叹可怜,她们没有了自己的生活追求和精神追求,自己的兴趣爱好、事业梦想似乎就只剩伺候后代了。
所以,在每一个广场之上,当大妈们无数次踏着欢快的神曲节拍,我们看懂了节拍之下深埋着的忧伤了吗?我们知道她们每一次激情迸发背后的无奈吗?其实她们才是用生命在深刻地阐释一个年轻人天天为赋新词强说愁的道理———狂欢是一群人的孤单(观点有深度,引人深思)真题演练22014年11月28日,北京地铁国贸站E口,一名三十岁左右男子身穿白T恤,上面写着“人肉沙包,10元一拳”。
他面前还有一个募捐箱,贴出了多家医院的诊断证明。
箱上的文字称,他叫夏军,愿做“人肉沙包”,为两岁患白血病的儿子筹钱,希望得到帮助。
此举引发很多路人驻足,有人捐钱,也有人一笑了之,质疑其真实性。
截至目前,夏军已连续数日,身穿“人肉沙包”T恤为两岁的患病儿子筹钱。
夏军说,只要能筹到钱,大家去医院核实,或许就能帮到孩子。
(2014年11月29日01:20 京华时报)上面的材料引起了你的哪些联想与思考?请自选角度,自定立意,自选文体,自拟标题,写一篇不少于800字的文章。
不要脱离材料内容及含意的范围,不要套作,不得抄袭。
请别用冷漠质疑“人肉沙包”在人流量大的车站、广场等地方,乞讨者是一道独特的“风景线”,在常人看来,沿街乞讨似乎已形成了一条商业链,链条的背后是巨大的利益集团,曾有报道称“乞讨者月汇万元回老家”。
显然,乞讨者是受普通民众诟病的。
更何况,不论是“确有所需”还是“骗取路人的同情”,只要与钱包挂钩就会受到质疑。
因此,“人肉沙包”父亲一经网络传播发酵便引来质疑声一片也算是“正常现象”。
可是,世界上没有绝对的坏,也没有极端的好,凡事都可能会有例外,一刀切的做法是不可取的。
请随笔者揣测,这位父亲一天能“赚到”多少钱?一天会遭遇多少白眼?又要挨多少拳?我们每个人都有自己的尊严,若不是为“医疗费”所迫,出于生存的现实需要,谁愿意用“挨打”来换取救命钱呢?稍有常识的人都知道,“身体是革命的本钱”,以“伤害身体”为手段的谋财方式是最不划算的。
笔者以为,这位父亲是有苦衷的,他的肩上承载了本人无法承担的重量,需要旁人施以援手。
较之对他持怀疑和冷漠的态度,用一种更人性化的方式对待更有意义,路人不应用冷漠的眼光对他嗤之以鼻。
夏军是可怜的,与之形成鲜明对比的便是那些挥金如土的富豪们。
有报道,某豪华婚礼车队价值2亿元。
同样的社会里,有人最基本的物质生活都难以满足,有人却追求最奢华的享受。
在社会的底层,夏军只是千万弱势群体的代表,这个群体,亟需得到来自各方的帮助。