第1课时-实数的有关概念
第1课时 实数的有关概念优秀课件
考点 4 乘方、开方
1.正数的任何次幂是__正__数_;负数的偶次幂是__正_数_,负数的奇次幂是_负__数_;0的任何 正数次幂是_0___。 2. 实数a(a≥0)的平方根是_____ ,算数平方根是_____;实数a的立方根是_____。
第8页
第9页
第10页
第11页
第12页
第13页
(1)实数 0 (既不是正数,也不是负数)
返回思维导图
负数(<0)
(2)正负数的意义
正负数可以用于表示相反意义的量.如:规定“盈(+)”则“亏(-)”,“胜(+)”则“负 (-)”,“收入(+)”则“支出(-)”,“零上(+)”则“零下(-)”,“上升(+)”则“下降(- )”等.
考点 2
1. 数轴 (1)三要素:
3.绝对值 a(a>0)
(1)|a|= 0(a=0) -a (a<0)
返回思维导图
(2)几何意义:数轴上表示这个数的点到原点的距离, 离原点越远的数的绝对值越
____大____.
4((12. ))倒实非数数零实a、数b互a的为倒倒数数是⇔__a_b_=1_______._1_特_.别注意:0没有倒数,倒数是它本身的数是
数轴、相反数、绝对值、倒数
返回思维导图
(2)实数与数轴上的点是一 一对应的. 2. 相反数 (1)非零实数a的相反数为___-__a___,特别地,0的相反数为0; (2)实数a,b互为相反数⇔a+b=____0____; (3)几何意义:互为相反数的两个数分别位于数轴上原点的两侧,且到原点的距离 ___相__等___;
第1课时 实 数的有关概念
按定义分 实数的分类
按大小分
科学记数法
数轴 相反数 绝对值
第一课时实数的有关概念
)
3 ) , -8
的相反数是 ( )
) ;
-л 的绝对值是( ) ,0 的绝对值是( ) , 2 - 3 的倒数是( (2) .数轴上表示-3.2 的点它离开原点的距离是 。 1 1 A 表示的数是- ,且 AB= ,则点 B 表示的数是 2 3 。
(3) .实数在数轴上的对应点的位置如图,比较下列每组数的大小: c-b 和 d-a bc 和 ad 4、计算
5 [4 (1 0.2 ) ( 2)] (1)
2
1 5
(5) (3 ) (7) (3 ) 12 (3 ) (2)
6 7
6 7
6 7
(3) ( ) (4) 0.25 (5) (4)
2
5 8
3
பைடு நூலகம்
(4)
1 2 2 (3)2 (1 )3 6 2 9 3
6
②-81÷
4 9 × ÷(-16) 9 4
(3)实数的运算律 (1)加法交换律 a+b=b+a (2)加法结合律 (a+b)+c=a+(b+c) (3)乘法交换律 ab=ba. (4)乘法结合律 (ab)c=a(bc) 三、实数的比较 (1)正数大于 0,负数小于 0,正数大于负数 (2)两个负数比较,绝对值大的反而小
考查题型:以填空和选择题为主。 一、典型例题
1.把下列各数分别填入相应的集合里 3 -1 22 Л -|-3|,21.3,-1.234,- ,0,sin60°,- 9 ,- , - , 8 , 7 8 2 ( 2 - 3 ),3-2,ctg45°,1.2121121112. . . . . .中 无理数集合{ } 负分数集合{ 整数集合 { } 非负数集合{ 2、已知|a+3|+ b+1 =0,则实数(a+b)的相反数( 3、-[-(-9)]的相反数是( ) 4、数-3.14 与-Л 的大小关系是( ) 5、已知(1-a)²+(b-2)²=0,则 a+b=( ) 6、已知 1<x<2,则|x-3|+ (1-x)2 等于( ) 7、在数轴上与原点距离是 3 的点表示的数是( ) 8、已知 a=-10,|a|=|b|,则 b 的值是( ) ) } }
第1课时 实数的有关概念
课件目录
首页
末页
类型之二 相反数、倒数和绝对值
(1)[2019·遂宁]-|- 2的值为( B )
A. 2
B.- 2
C.± 2
D.2
(2)[2019·滨州]下列各数中,负数是( B )
A.-(-2)
B.-|-2
C.(-2)2
D.(-2)0
【解析】 ∵-(-2)=2,-|-2=-2,(-2)2=4,(-2)0=1,∴负数是-|-2.
课件目录
首页
末页
2.数轴 定义:规定了 原点 、 正方向 和 单位长度 的直线叫做数轴. 大小比较:(1)在数轴上表示的两个数, 右边 的数总比 左边 的数大; (2)正数大于 0;负数 小于 0;正数 大于 一切负数;两个负数比较大小,绝对 值大的反而 小 .
注意:实数与数轴上的点一一对应.
课件目录
首页
末页
2.[2019·泰安]在实数|-3.14|,-3,- 3,π中,最小的数是( B )
类型之三 实数的大小比较 [2019·嘉兴]数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,
b,-a,-b的大小关系为 b<-a<a<-b (用“<”号连接).
【解析】 ∵a>0,b<0,故有a>b,又∵a+b<0,说明a的绝对值小于b的绝对值, 故可得到b<-a<a<-b.
课件目录
A.-5
B.-1
C.0
D.1
【解析】 -5<-3<-1<0<1,∴比-3小的数是-5.故选A.
课件目录
首页
末页
4.[2019·邵阳]下列各数中,属于无理数的是( C )
课时1 实数的有关概念
1 1 【例5】(2013•泉州) 的立方根是______. 2 8
·数学
考点4
实数与数轴
【例6】(2013•包头)若|a|=-a,则实数a在数轴上的对应
点一定在 ( B)
A.
C.
B.原点或原点左侧
D.
思路点拨:根据|a|=-a,求出a的取值范围,再根据数轴的 特点即可得出答案. 解析:∵|a|=-a,∴a一定是非正数.∴实数a在数轴上的对应 点一定在原点或原点左侧,故选B.
·数学
三、相反数、倒数 符号 不同的两个数称互为相反数.a的相反数是______. -a 1.只有______ 若a,b互为相反数,则a+b=______ ,|a|______|b|. 0 = 1 乘积为1 的两个数互为倒数.a的倒数通常表示为______ 2. ________ a (a≠0).若a,b互为倒数,则ab=______. 1
2
A. B.-
2
2 2
2 2
C.
D. -
·数学
【例3】(2013•南京)-3的相反数是______ ;-3的倒数是 3 1 ______. 3 考点3 平方根与立方根
【例4】(2013•黔西南州) 81的平方根是______. 3 解析:∵ 81=9,9的平方根是±3,∴81 的平方根是 ±3.
·数学
考点5
近似数和科学记数法
【例7】(2013•湛江)国家提倡“低碳减排”,湛江某公司
计划在海边建风能发电站,电站年均发电量约为213 000 000 度,将数据213 000 000用科学记数法表示为 ( ) A.213×106 C.2.13×108 B.21.3×107 D.2.13×109
9.
3
(中考复习)第1讲 实数的有关概念 公开课获奖课件
对接点一:有理数与无理数
常考角度:1.实数的分类,无理数的定义; 2.算术平方根、零指数、负整数指数的直接计算; 3.特殊角的三角函数值.
【例题 1】 (2013·湖州)实数π ,15,0,-1 中,无理数
是
()
A.π
1 B.5
Hale Waihona Puke C.0D.-1解析 根据常见的无理数的三种形式判断,只有π
是无理数.
-1,∴a2 013=(-1)2 013=-1.
答案 B
对接点三:科学记数法、近似数与有效数字
常考角度:1.用科学记数法表示一个数及单位换算;
2.根据要求取近似数和保留有效数字;
3.近似数精确到的位数.
【例题3】 (2013·嘉兴)据统计,1959年南湖革命纪念馆成
立以来,约有2 500万人次参观了南湖红船(中共一大会
-1 在 3 和 4 之间.
答案 C
【名师课堂】
1.两边逼近法:用能开的尽方的两个正数的算术平方根逼 近:如(1) 9< 13< 16,即 3< 13<4;(2) 2.42< 6<
2.52,2.4< 6<2.5. 2.要特别注意算术平方根和平方根的区别和联系.
【预测4】 实数-27的立方根是____________. 解析 ∵(-3)3=-27,∴-27的立方根是-3. 答案 -3
第一板块 基础知识梳理
第一部分 数与式 第一讲 实数的有关概念
考纲要求
1.理解有理数的意义,能用数轴上的点表示有理数; b 2.理解相反数和绝对值的意义,会求有理数的相反数、 b
倒数和绝对值(绝对值符号内不含字母); 3.了解无理数和实数的概念,知道实数与数轴上的点的 a
一一对应关系; 4.了解平方根、算术平方根、立方根的概念;知道开方 a
第1课时 实数的有关概念
第1课时 实数的有关概念【知识梳理】1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限 环循小数)都是有理数. 有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的相反数是-a ,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字. 6. 科学记数法:把一个数写成a×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂. 9. 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a的算术平方根,0的算术平方根是0.12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13. 开立方:求一个数a 的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C 3=±D 3=-例 )A . B C . D 例3.2的平方根是( )A .4BC .D .例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元 例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )1 0 b 例5图A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3 现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18- 2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( ) A .1 B .1-C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则―‖内应填的实数是( )A .32B .23C .23-D .32-【课后作业】 一、选择题1.计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 122.下列计算错误的是( )A .-(-2)=2 B= C .2+32x =52x D .235()a a =3.2008年5月27日,北京奥运会火炬接力传递活动在古城南京境内举行,火炬传递路线全程约12900m ,将12900用科学记数法表示应为( )A .0.129×105B .41.2910⨯ C .312.910⨯ D .212910⨯ 4.下列各式正确的是( )第4题图A .33--=B .326-=-C .(3)3--=D .0(π2)0-= 5.若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .46.计算2(3)-的结果是( )A .6-B .6C .9-D .9 7.方程063=+x 的解的相反数是( )A .2B .-2C .3D .-3 8.下列实数中,无理数是( )B.2π C.13D.129.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过5410-⨯秒到达另一座山峰,已知光速为8310⨯米/秒,则两座山峰之间的距离用科学记数法......表示为( ) A .31.210⨯米B .31210⨯米C .41.210⨯米D .51.210⨯米11.纳米是非常小的长度单位,已知1纳米=10-6毫米,某种病毒的直径为100纳米,如将这种病毒排成1毫米长,则病毒的个数是( )A.102个 B 104个 C 106个 D 108个12.巳知某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为( ) A .1.3×107km B .1.3×103km C .1.3×102km D .1.3×10km 二、填空题: 13.若n m ,互为相反数,=-+555n m .14.唐家山堰塞湖是―5.12汶川地震‖形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为 立方米. 15.如果2180a -=,那么a 的算术平方根是 .16.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 . 17.如果□+2=0,那么―□‖内应填的实数是______________. 18.―五一‖期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为280元的运动服,打折后他比按标价购买节省 元.19. 某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学有_________名.20.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.21.一组有规律排列的式子:―ab 2,25a b ,―38a b ,411a b …,(ab≠0),其中第7个式子是 , 第n 个式子是 .(n 为正整数)22.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只 环保购物袋至少..应付给超市元.23.将正整数按如图所示的规律排列下去,若有序实数对 (n ,m )表示第n 排,从左到右 第m 个数,如(4,2)表示实数9, 则表示实数17的有序实数对是 . 24.如图所示, ①中多边形(边数为12)是由 正三角形―扩展‖而来的, ②中多边形是由正方形―扩展‖ 而来的, ,依此类推,则由正n 边形―扩展‖而来的多边形的边数为 . 25.探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】第25题图① ② ③ ④ 第24题图例1.某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.例4.下列运算正确的是( ) A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-+【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元 B .9101.4⨯元 C .9102.4⨯元 D .8107.41⨯元北京 汉城伦敦多伦多纽约-5 例2图……例3图3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB.C . 3.2- D.5.计算: (1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫- ⎪⎝⎭【课后作业】一、选择题1.某市今年1月份某一天的最高气温是3℃,最低气温是﹣4℃,那么这一天的最高气温比最低气温高( )A .﹣7℃B .7℃C .﹣1℃D .1℃ 2.在2008年德国世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是 ( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负3.扬州市旅游经济发展迅速,据扬州市统计局统计,2008年全年接待境内外游客约11370000人次,11370000用科学记数法表示为( ) A .1.137×107 B .1.137×108 C .0.1137×108 D .1137×1044.在下列实数中,无理数是( ) A .13B .CD .2275.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号 B .16号 C .17号 D .18号6.()23-运算的结果是( )A .-6B .6C .-9D .97.(2009年武汉)) A .3-B .3或3-C .9D .38.估计30的值 ( ) A .在3到4之间 B .在4到5之间 C .在5到6之间D .在6到7之间9.若―!‖是一种数学运算符号,并且1!=1,2!=2×1=2, 3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( )-第4题图A.5049B. 99!C. 9900D. 2!二、填空题:10.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.11.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:12.如图,在数轴上表示到原点的距离为3个单位的点有13. 2008(1)-+_______420=-.14.2008年5月26日下午,奥运圣火扬州站的传递在一路―中国加油‖声中胜利结束,全程11.8千米,11.8千米用科学记数法表示是________米.15.计算:23-+= ;(2)(3)-⨯-= . 16.若()2240a c -+-=,则=+-c b a . 17.在函数y =x 的取值范围是____________.三、计算:(1)0(1)π-⋅sin 60°+321(2)()4-⋅(2)0113(()3---(3)9212)1(103+⎪⎭⎫ ⎝⎛-+--(4)1301()(2)39-+-+--第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nn n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:nna a 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.第12题图(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项― 1‖易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6 D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行―广‖字,按照这种规律,第5个―广‖字中的棋子个数是________,第n 个―广‖字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算―⊗‖:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =-=.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.【课后作业】一、选择题1.下列运算正确的是( )A.a 2·a=3aB.a 6÷a 2=a 4C.a+a=a 2D.(a 2)3=a 5 2.计算:()23ab=( )A .22a b B .23a b C .26a b D .6ab 3.下列计算正确的是( )A .623a a a ÷= B .()122--=C .()236326x x x -=-· D .()0π31-=4.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+5.若的值为则2y -x 2,54,32==y x ( )A.53 B. -2 C. 553 D. 56 6.下列命题是假.命题的是( ) A. 若x y <,则x +2008<y +2008 B. 单项式2347x y -的系数是-4C. 若21(3)0,x y -+-=则1,3x y ==D. 平移不改变图形的形状和大小 7.一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么( )A .a=1,b=5B .a=5,b=1C .a=11,b=5D .a=5,b=118. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+B .2222)(b ab ab a +-=-C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+二.填空题.9.分解因式:328m m -= .33416m n mn -=3214x x x +-= ____.33222ax y axy ax y +-= _______. =++22363b ab a . 2232ab a b a -+= ___.10.计算:31(2)(1)4a a -⋅- = .11.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________;()=÷523y y ________. 12.用正三角形和正六边形按如图所示的规律 拼图案,即从第二个图案开始,每个图案都比 上一个图案多一个正六边形和两个正三角形, 则第n 个图案中正三角形的个数为 (用含n 的代数式表示).三.解答题:13.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.14.已知2514x x -=,求()()()212111x x x ---++的值第一个图案第二个图案第三个图案…第12题图 ab图甲第8题第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =+3.先化简11112-÷-+x x x )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x 有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xx k x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2) x 2)3(x 22x x -=--;(3)11322xx x -=--- (4)11-x 1x 1x 22=+--【课后作业】 一、选择题 1.化简分式2bab b +的结果为( ) A .1a b+ B .11a b + C .21a b +D .1ab b+ 2.要使22969m m m --+的值为0,则m 的值为( )A .m=3B .m=-3C .m=±3D .不存在 3.若解方程333-=-x mx x 出现增根,则m 的值为( ) A . 0 B .-1 C .3 D .14.如果04422=+-y xy x ,那么yx y x +-的值等于( )A .31- B . y31- C . 31 D .y31二、填空题.5.当x = 时,分式6422---x x x 的值为0.6.若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 .(写出一个..即可) 7.已知432z y x ==,求分式yx zy x 32534++-= 8.若分式方程12552=-+-x ax x 的解为x =0,则a 的值为 . 9.已知分式方程k x k=++131无解,则k 的值是 . 三、解答题 10.化简: (1)211()(1)11x x x ---+ (2)24142x x +-+11.先化简,再求值:224242x x x +---,其中2x =.12.当a=2时,求1121422-÷+--a a a a 的值.13.先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程2310x x ++=的根.三、解分式方程.(1)01221=---x x (2) 123514-+=--+x x x x (3)163104245--+=--x x x x (4)4)25.01(11=++x x (5)52742316--=+-x x x x (6) 141112-=--+-x x x x x四、当m 为何值时,分式方程xxx m --=+-2142无解?第5课时 二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1a 0b 0≥≥,)(2a 0b 0≥ ,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,2(0y =,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有52π7-,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)11(1)52-⎛⎫π-+-+- ⎪⎝⎭【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1032tan 60(1--+- . (2)cos45°·(-21)-2 -(22-3)0+|-32|+121- (3)023cos 304sin 60++-.2.如图,实数a 、b在数轴上的位置,化简【课后作业】 一、选择题: 1. 2的值()A .在1到2之间B .在2到3之间C .在3到4之间 D.在4到5之间2.的倒数是()A .BC .2-D .23. 下列运算正确的是()A 3=B .0(π 3.14)1-=C .1122-⎛⎫=- ⎪⎝⎭D 3=±4. 若b a y b a x +=-=,,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a - 5.下列计算正确的是( )A . 22-=-= C. 325a a a ⋅= D.22x x x-=6. )A .点PB .点QC .点MD .点N7.下列根式中属最简二次根式的是( )8. +y)2,则x -y 的值为( )A.-1B.1C.2D.39. 一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间二、填空题:1.=_________.2.的结果是.3. 若|1|0a +=,则a b -=.4= .5.函数y =x 的取值范围是________.6. 对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+, 如3※2=52323=-+.那么12※4= . 7.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是________8.计算:tan60°-2-2 + 20080_________ 三、解答题 : 1.计算:(1) 103130tan 3)14.3(27-+︒---)(π (2)101(1)52-⎛⎫π-+-+- ⎪⎝⎭(3)0112sin 602-⎛⎫+- ⎪⎝⎭(4)01)41.12(45tan 32)31(-++---2.先化简,再求值:33)225(423-=---÷--a a a a a ,其中第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到―等量关系‖,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________.例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135;⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?【课后作业】一、选择题1.在解方程()()032312=---x x 中,去括号正确的是 ( ) A .09612=+--x x B.03622=---x xC.09622=---x x .D.09622=+--x x2.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是( )A. 28B. 33C. 45D. 573.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人,如果设乙队的人数为x 人,则所列的方程为( )A. 1004=+x xB. 100104=-+x xC.()100104=-+x xD. 1001041=+-x x4.若2(341)3250x y y x +-+--=则x =( )A .-1B .1C .2D .-25.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为( )A.43-B.43C.34D.34-6.已知 与 是同类项,则 与 的值分别是 ( ) A.4、1 B.1、4 C.0、8 D.8、0 二、填空题7.在349x y +=中,如果26y =,那么x = .8.在方程组 中,m 与n 互为相反数,则 9.娃哈哈矿泉水有大箱和小箱两种包装,3大箱、2小箱共92瓶;5大箱、3小箱共150瓶,那么一大箱有___________瓶,一小箱有__________瓶.10.当m=______,n=______时, 是二元一次方程. 11.如果 那么 12.写出一个二元一次方程组,使这个方程组的解为x 2y 2=⎧⎨=-⎩,你所写的方程组是 .⎩⎨⎧=+=+032ny x my x .__________=x 821=+-n m y x ,53=-y x .________38=+-y x mn my x 344-yx n5m n13.一个三位数的数字和为11,十位数字是x ,个位数字是十位数字的3倍,百位数字比十位数字的2倍少1,则这个三位数是______________ . 三、解方程(组)14.35122--=+x x 15. 16. 17.四.解答题 18.已知方程 的两个解为 和 ,求 的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为 4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0()()x x x x --=--320379⎩⎨⎧=+-=8372y x x y ⎩⎨⎧=-=-74143y x y x ⎩⎨⎧==333y x b kx y +=⎩⎨⎧-==271y x b k ,aacb b x 242-±-=例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根; (2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 . 二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( ) A.3 B.3或-2 C.2或-3 D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=0 三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0【课后作业】 一、选择题1.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x =1C .x 2+1=0D . 2.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=3.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对4.方程2x =x 的解是 ( )A .x =1B .x =0C . x 1=1 x 2=0D . x 1=﹣1 x 2=0 5.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D .1k <且0k ≠6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、填空题7.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______. 8.某种品牌的手机经过四.五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .9.两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 .10.若方程022=+-cx x 有两个相等的实数根,则c = .11.已知:m 是方程0322=--x x 的一个根,则代数式=-22m m . 三、解方程:12.(1)(2) (3)11=+x x 2410x x +-=0132=--x x )1(332+=+x x 第6题图13.如图,利用一面墙(墙长度不超过45m ),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?14.试说明:不论m 为何值,关于x 的方程2)2)(3(m x x =--总有两个不相等的实数根.第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要. 【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( )A .4场B .5场C .6场D .13场 例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1) B .⎩⎨⎧x+y= 49y=2(x+1) C .⎩⎨⎧x –y= 49y=2(x –1) D .⎩⎨⎧x+y= 49y=2(x –1)例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为第21题图第13题图y 个,则可列方程组 .今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm ,则可得方程 .2. ―鸡兔同笼‖是我国民间流传的诗歌形式的数学题,•―鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?‖解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( ) ⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km 远的郊区进行抢修.维修工骑摩托车先走,15min 后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体。
2015年北京中考数学总复习课件(第1课时_实数的有关概念)
考点聚焦 京考探究
第1课时┃ 实数的有关概念
考点3 非负数
考点聚焦
京考探究
第1课时┃ 实数的有关概念
京 考 探 究
考 情 分 析
考点聚焦
京考探究
第1课时┃ 实数的有关概念
热 考 京 讲
热考一 实数的有关概念及分类
例 1 [2014· 北京] 2 的相反数是( B ) 1 1 A.2 B.-2 C.- D. 2 2
考点2 实数的有关概念
正方向 和________ 单位长度 原点 、________ (1)数轴:数轴的三要素包括________ ;数轴上的 点与________ 实数 一一对应. (2)相反数:a的相反数是________ 0 -a ;即a,b互为相反数⇔a+b=________ . 1 0 没有倒数, (3)倒数:a的倒数为________ ;即a,b互为倒数⇔ab=_1(__ a 故ab≠________)0 .
方法点析
用科学记数法把数 m 一般写成“a×10n” 的形式, 当|m|≥10 时,n 为正整数,n 的值等于该数整数部分的位数减 1;当|m|<0 时, n 为负整数, n 的值等于该数左数第一个非零数字前所有 0(包 括小数点前面的 0)的个数.特别需注意以下两点:
考点聚焦 京考探究
第1课时┃ 实数的有关概念
1.注意在 a×10n 中,|a|必须是大于或等于 1 且 小于 10 的数,小数点向左移动的位数等于所记数的 整数位数减去 1. 2.注意在 a×10n 中,|n|是一个正整数,且比原 数的整数位数小 1.
考点聚焦
京考探究
第1课时┃ 实数的有关概念
热考三
非负数和为0
例 4 若(x+2)2+ y-3=0,则 xy 的值为( B ) A.-8 B.-6 C.5 D. 6
第1课时实数的有关概念
22 7
14、把下列各数填到相应的集合里: 1 3 1 8 ; 3 27; ;3.14 ; 0.32 ; 0.101001… 整数集合:{ 分数集合:{ 无理数集合:{ 有理数集合:{
3.2
sin30° 30% ; ;0 ; …} …} …} …}
分清实数的分类标准,尤其要弄懂无理
3.下列说法正确的有(B 有根号的数都是无理数,
)个
①和数轴上的点一一对应的数是有理数,②带 ③无限小数都是无理数,④无理数与无理数的 积还是无理数, ⑤所有的实数都可以用数轴上的点表示. 是分数 ⑥无理数是无限小数 .⑦
3
A. 1
B. 2
C. 3
D. 4 5
3 3 , 4 , 11、在实数π,2,3.1 , 0 , 7 2
1、实数的分类
P2 课堂练习 1.在下列各数中无理数的有( A
)
, 3.1415, -0.333…, 4, 5 , 2.010101…(相邻两个1之间有1个0),
76.0123456…(小数部分由相继的正整数组成).
A.3个 B .4 个 C .5 个 D. 6个 B ) 2.(2011佛山)下列说法正确的是( 2011 A.a一定是正数 B. 是有理数 3 C.2 2是有理数 D.平方等于自身的数只有 41
第一轮
单元复习
1
第一单元 《数与式》第一课时:
实数的有关概念
实数的分类
数轴
相反数与倒数的概念
绝对值 科学记数法、有效数字
正整 0 数 整数 有限小数 负整数 有理数 或无限循 正分数 分数 实数 负分数 环小数 正无理数 无理数 无限不循环小数 负无理数
0是有理数,既不是正数也不是负数
实数的有关概念及实数的分类
例9:[02潍坊]若 与 互为相反数, 则 的值为 。
课堂练习:
《全解》P5
小结:
⑴要注意绝对值概念的正确应用。因为互为相反数的绝对值相等,因此绝对值等于一个正数的数有两个,它们是一对互为相反数,不可漏掉其中任何一个。
⑵解涉及有理数的绝对值、大小比较等问题时,数轴是一个十分有效的工具。可由已知条件确定对应于数轴上的点,按“表示在数轴上的点的数,左边的数总比左边的大”进行比较大小;有时也可采用特殊值法进行判断。
总复习
代数第一课时 实数的有关概念及实数的分类
教学目的:通过概念的复习和典型例题评析,使学生掌握实数的有关概念和实数的分类,并通过适当的练习得到提高。
教学重点:典型例型评析。
教学难点:学生综合能力的提高。
02
01
03
一、实数的分类:
. 二、数轴: ⑴数轴:规定了原点、正方向和单位长度的直线。 ⑵实数与数轴上的点是一一对应的。
例4:已知:| a |=3,| b |=2,且 ab < 0,求 a-b 的值。 a =3, b =-2时, a-b=5 a =-3, b =2时, a-b=-5
平方根: 如果 ( ),那么 x 叫做 a 的平方根(二次方根),记作 ,其中 叫做 a 的算术平方根。
正数有两个平方根,它们互为相反数;零的平方根是零(一个)。负数没有平方根。
⑶注意平方根与算术平方根的区别与关系。要求一个的平方根或算术平方根,须将这个数先进行化简或计算。
⑷相反数和倒数是两个重要的概念,要注意两者的区别。
⑸已知条件是含有字母的二次根式,要注意隐含的条件,因为 中 ,一般遇到 可转化为 去处理。
绝对值:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。 一个数的绝对值就是表示这个数的点离开原点的距离。
第1课时 实数的有关概念(含答案)
c a 第1课时《 实数的有关概念》◆知识讲解 1.实数的分类实数⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数整数零负整数有理数正分数分数有限小数或无限循环小数负分数正无理数无理数无限不循环小数负无理数 实数还可分为⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数零负整数负有理数负实数负分数负无理数 2.数轴(1)数轴的三要素:原点、正方向和单位长度. (2)数轴上的点与实数一一对应.3.相反数 实数a 的相反数是-a ,零的相反数是零. (1)a 、b 互为相反数⇔a+b=0.(2)在数轴上表示相交数的两点关于原点对称.4.倒数 乘积是1的两个数互为倒数,零没有倒数. a 、b 互为倒数⇔ab=1.5.绝对值 │a│=(1)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩6.非负数像│a│、a 2a≥0)形式的数都表示非负数.7.科学记数法 把一个数写成a×10n的形式(其中1≤│a│<10,n 为整数),•这种记数法叫做科学记数法.(1)当原数大于或等于1时,n 等于原数的整数位数减1.(2)当原数小于1时,n 是负整数,•它的绝对值等于原数中左起第一个非零数字前零的个数(含小数点前的零). 8.近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字. ◆经典例题 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D .4个 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74◆强化训练一、选择题 1..0.31,3π,17,0.80108中,无理数的个数为( ) A .1个 B .2个 D .3个 D .4个2.据2005年6月9日中央电视台东方时空栏目报道:•由于人类对自然资源的不合理开发与利用,严重破坏了大自然的生态平衡,目前地球上大约每45min •就有一个物种灭绝.照此 速度,请你预测,再过10年(每年以365天计算)将有大约多少个物种灭绝( ) A .5.256×106 B .1.168×105 C .5.256×105 D .1.168×1043.近似数0.03020的有效数字的个数和精确度分别是( )A .四个,精确到万分位 B .三个,精确到十万分位 C .四个,精确到十万分位 D .三个,精确到万分位4.(2006,哈尔滨)下列命题正确的是( )A .4的平方根是2B .a 的相反数是-aC .任何数都有倒数D .若│x│=2,则x=2 5.若│a│=-a ,则a 的取值范围是( )A .a>0 B .a<0 C .a≥0 D .a ≤06.(2007,乐山)如下左图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若C 表示的数为1,则点A 表示的数为( ) A .7 B .3 C .-3 D .-27.已知实数a ,b 在数轴上的对应点的位置如上右图所示,且│a│>│b│,则│a│-│a+b│-│b -a│化简后得( ) A .2b+a B .2b -a C .a D .b8.如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A .112B .1.4 CD二、填空题9.已知实数a ,b 在数轴上对应的点在原点两旁,且│a│=│b│,那么a a+b =_____. 10.已知│x│=3,│y│=2,且xy<0,则x+y 的值等于______.11.(2008,山东)在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿Pa 的钢材.4.581亿Pa 用科学记数法表示为______Pa (保留两位有效数字)12.(2007,烟台)如图所示,在数轴上点A 和点B 之间表示整数的点有_____个. 13.若│a -b+1│a -b )2008=_______. 14.(2006,四川乐山)若2x -3与-13互为倒数,则x=______. 15.(2007,陕西)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的顺序排列为:1,1,2,3,5,8,…,•则这列数的第8个数是_______.16.如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余正方形内分别填上-1,-2,按虚线折成正方形,相对而上的两数互为相反数,则A 处应填_________. 17.有若干个数,第一个数记为a 1,第2个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-12,从第2个数起,每个数都等于“1与前面的那个数的差的倒数”. (1)试计算:a 2=_______,a 3=________,a 4=______.(2)根据以上计算结果,请你写出:a 2008=_______,a 2010=________. 三、解答题18.已知a ,b 互为相反数,c ,d互为倒数,求2222a b a b-+19和│8b -3│互为相反数,求(ab )-2-27的值.20.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2.试求:x 2-(a+b+cd )x+(a+b )2003+(-cd )2003的值.c a第1课时《 实数的有关概念》(答案)◆例题解析 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D.4个【分析】 2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数.【解答】C【点拨】 对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.一般来说,用根号表示的是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π是无理数,而不是分数. 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│. 【解答】(1)依题意,有a+b=0,cd=1,e≠0a+b )+12cd -2e 0=0+12-2=-32.(2)由图知a>0,b<c<0,且│b│>│a│,∴a+b<0,b -c<0,∴a+│a+b││b -c│=a -a -b -│c│-(c -b )=a -a -b+c -c+b=0.【点评】 相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第(2)•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,达到化简的目的.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).【分析】 本题既考查有理数的除法运算,又考查近似数和科学记数法以及分析问题的能力. 【解答】 296÷6000≈4.9×10-2例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74【分析】 y -3)2均为非负数,它们的和为零,只有3x+4=0,且y -3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值.【解答】(y -3)2=0∴3x+4=0,y -3=0 ∴x=-43,y=3. ∵axy -3x=y , ∴-43×3a -3×(-43)=3 ∴a=14∴选A 【点拨】 若几个非负数之和等于零,则每个非负数均等于零.这是非负数具有的一个重要性质. ◆◆强化训练答案:1.B 2.B 3.C 4.B 5.D 6.D 7.C 8.C 9.1 10.1或-1 11.4.6•×108 •12.4 13.1 14.0 15.21 16.-2 17.(1)23 3 -12 (2)-123 18.-1 19.•由已知得a=13,b=38,原式的值为37 20.1或5。
1实数的有关概念及运算
一、学习目标:1、了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,会比较实数的大小,能用数轴上的点表示实数。
2、理解乘方、幂的有关概念、掌握有理数运算法则、熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
二、重难点:有理数、无理数、实数、非负数概念;相反数、倒数、绝对值概念;实数的分类,绝对值的意义。
实数的混合运算,绝对值、非负数的有关应用。
学习过程:(一):【知识梳理】1、实数的有关概念(1)有理数: 和 统称为有理数。
(2)有理数分类①按定义分: ②按符号分:有理数()()0()()()()⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩;有理数()()()0()()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩(3)相反数:只有 不同的两个数互为相反数。
若a 、b 互为相反数,则 。
(4)数轴:规定了 、 和 的直线叫做数轴。
(5)倒数:乘积 的两个数互为倒数。
若a (a ≠0)的倒数为a1.则 。
(6)绝对值:a = 其几何意义是:(7)无理数: 小数叫做无理数。
和 统称为实数。
实数和 的点一一对应。
2、实数的分类:(请你仿照有理数分类把它列出来)3、科学记数法、近似数和有效数字(1)科学记数法:把一个数记成 的形式(其中1≤a<10,n 是整数)(2)近似数是指根据精确度取其接近准确数的值。
取近似数的原则是“四舍五入”。
(3)有效数字:从 起,到精确到的数位止, ,都叫做这个数字的有效数字。
4、实数加、减、乘、除、幂及其混合运算的运算法则:(1)加法法则:同号两数相加,取________的符号,并把__________;绝对值不相等的异号两数相加,取________________的符号,并用___________。
互为相反数的两个数相加得____。
一个数同0相加,__________________。
(2)减法法则:减去一个数,等于加上____________。
(3)乘法法则:两数相乘,同号_____,异号_____,并把______。
实数的有关概念(含答案)
⎧⎨⎩第1章 数与式第1课 实数的有关概念目的:复习实数有关概念,相反数、绝对值、倒数、数轴、非负数性质、•科学记数法、近似数与有效数字.中考基础知识1.实数的分类2.相反数:只有_______不同的两个数,叫做互为相反数,a 的相反数为______,a-b 的相反数是_______,x+y 的相反数是________,0的相反数为_______,若a ,b 互为相反数,则a+b=________.3.绝对值:几何意义:数a 的绝对值是数a 在数轴上表示的点到_______的距离. 正数的绝对值等于它________. 代数意义 零的绝对值等于________.负数的绝对值等于它的________.│a │=(0)(0)a a a a ≥⎧⎨-<⎩ 4.数轴:0________与数轴上的点是一一对应的,•数轴上的点表示的数左边的总比右边的_________,数轴是沟通几何与代数的桥梁.5.倒数:a (a ≠0)的倒数为________,0_______•倒数,•若a ,•b •互为倒数,•则ab=_____,若a ,b 互为负倒数,则ab=________.6.非负数:│a│≥0,a2≥00.若│a+1│+(c+3)2=0,则a=_______,b=_______,c=________.7.科学记数法:把一个数记作a×10n形式(其中a是具有一位整数的小数,n为自然数).8.近似数与有效数字:一个经过________而得到的近似数,最后一个数在哪一位,就说这个近似数是精确到哪一位的近似数,对于一个近似数,•从左边第一个______数字开始,到最末一位数字止,都是这个近似数的有效数字.备考例题指导例1.填空题(1的倒数为_______,绝对值为________,相反数为_______.(2)若│x-1│=1-x,则x的取值范围是_______,若3x+1有倒数,则x的取值范围是_________.(3)在实数18,π,3,0+1,0.303003……中,无理数有________个.(4)绝对值不大于3的非负整数有________.(5=0,则3x-2y=________.(6)用科学记数法表示-168000=_______,0.000=_________.(7)0.0304精确到千分位等于_______,有_______个有效数字,它们是_______.(8)000保留两个有效数字得到的近似数为________.答案:(1).-2,,(2)x≤1,x≠-13.(3)5.(4)0,1,2,3.(5)7.(6)-1.68×105,2.004×10-4.(7)0.030;2;3,0 (8)2.1×106.例2.已知1<x<4,化简│x-4│解:∵1<x<4,∴x-4<0,1-x<0.原式=│x-4│-│1-x│=4-x+1-x=5-2x.例3.化简│x-2│+│x+3│.解:令x-2=0得x=2,令x+3=0得x=-3.(1)当x<-3时,原式=2-x-x-3=-2x-1;(2)当-3≤x<2时,原式=2-x+x+3=5;(3)当x≥2时,原式=x-2x+x+3=2x+1.分类讨论思想,零点分段法,一般等号取在大于符号中.备考巩固练习1.(,北京)一个数的相反数是3,则这个数是________.2.气温比a℃低3℃记作________.3-a)2与│b-1│互为相反数,则2a b-的值为_______.4.若a2│c-│=0,则a b+c=________.5.计算|47-25|+|35-79|-|29-37|=______________.(注意方法)6.计算│1-a│+│2a+1│+│a│,其中a<-2.7.如果表示a、b两个实数的点在数轴上的位置如图,那么化简│a+b│+果是多少?b a8.按要求取下列各数的近似数:(1)6.286(精确到0.1);(2)1764000(保留三个有效数字);(3)278160(•精确到万位).9.近似数7.60×105精确到_______位,有______个有效数字,近似数7.6×105精确到_______位,有________个有效数字.10.已知a、b、c为实数,且a2+b2+c2=ab+bc+ac,求证a=b=c.答案:1.-3 2.(a-3)℃ 3+1 4.5.原式=47-25+79-35+29-37=17-1+1=17(先去绝对值符号)6.∵a<-2,∴1-a>0,2a+1<0,a<0∴原式=1-a-2a-1-a=-4a7.-2a8.(1)6.286≈6.3 (2)1764000≈1.76×106(3)278160≈28万9.∵7.60×105=760000 ∴近似数7.60×105精确到千位,有三个有效数字7,6,•0;7.6×105精确到万位,有两个有效数字7,610.用配方法和非负数性质,将一个方程转化为三个方程,a2+b2+c2-ab-bc+ac=0 2a2+2b2+2c2-2ab-2bc-2ac=0 (a-b)2+(b-c)2+(a-c)2=0∴a-b=0,b-c=0,a-c=0 ∴a=b=c。
第1课时 实数有关概念
第1课时 实数有关概念考点1 实数的概念及分类【注意】(1)任何分数都是有理数,如227,311-(2)0既不是正数,也不是负数,但0是自然数(3)常见的几种无理数:①根号型:型:sin600,tan300等;③构造性:1.323223……;④与π有关的:如3π,π-1等。
考点2 实数的有关概念1、数轴:规定了 、 、 的直线交数轴。
[注意]数轴上的点与实数一一对应。
2、相反数:只有 不同的两个数互为相反数。
[注意](1)若a 、b 互为相反数,则a+b=0,a 2n =b 2n (n 为正整数),|a|=|b|(2)相反数等于它本身的数是零,即a=-a,则a=03、倒数: 是1的两个数互为倒数。
[注意]零是唯一没有倒数的数,倒数等于本身的数是1或-14、绝对值:数轴上表示数a 的点与原点的 。
记作|a|.注意 a =0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩5、科学记数法:把一个数写成 的形式(其中110,a n ≤<为整数),这种记数法叫做科学记数法。
(1)当原数大于或等于1时,n 等于原数的整数位数减1.(2)当原数小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数(含小数点前的0)6.近似数与有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫这个数的有效数字。
[辨析] 2.05与2.0500的区别2.05精确到0.01,有效数字是2.0.5;2.0500精确到0.0001,有效数字是2.0.5.0.0。
两者的精确度和有效数字不同,所以小数点后的“0”不能随意舍去。
考点 3 非负数叫做非负数。
【注意】(1)常见的非负数的形式:2,0).a a a ≥(2)非负数性质:几个非负数之和为0,则每一个非负数都为0.归类示例类型之一 实数的概念及分类命题角度:1、 有理数与无理数的概念2、 实数的分类例1:下列各数:022,0.23,cos 60,,0.303003,127π- ,无理数个数为 ( )A.2个 B. 3个 C . 4个 D.5个类型之二 实数的有关概念例2:如果a 与1互为相反数,则a 等于 ( )A .2 B.-2 C.1 D.-1 变式题:5-的倒数( ) A.-5 B.15-C.5D. 15类型之三 科学记数法和近似数与有效数字命题角度:1、用科学记数法表示数2、 近似数与有效数字的概念例3. 我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为27500亿m 3,人均占有淡水量居全世界第110位,因此我们要节约用水27500亿m 3这个用科学记数法表示并保留两个有效数字为( )A 、2.75×1012m 3B 、2.7×1010m 3C 、2.8×1010m 3D 、2.8×1012m 3类型之四 创新应用题命题角度:1、探究数字规律 2、探究图形与数字的变化关系例4:观察数表根据表中数的排列规律,则字母A 所表示的数是 。
实数的有关概念课件
VS
详细描述
实数的乘法运算具有结合律和分配律,即 (ab)c=a(bc),a(b+c)=ab+ac。乘法运 算在实数轴上表示为标量积,即结果向量 的长度为两个向量长度乘积的绝对值。
除法运算
总结词
实数的除法运算是将一个实数除以另一个非 零实数,得到商的操作。
详细描述
除法运算可以理解为乘上倒数,即 a/b=a*1/b。除法运算在实数轴上表示为向 量缩放,即结果向量的长度为被除数向量长 度除以除数向量的长度。
03
实数的运算
加法运算
要点一
总结词
实数的加法运算是指将两个实数相加,得到另一个实数的 操作。
要点二
详细描述
实数的加法运算具有交换律和结合律,即a+b=b+a, (a+b)+c=a+(b+c)。加法运算在实数轴上表示为向量相加 ,即求得两个向量终点坐标的和作为结果向量的终点坐标 。
减法运算
总结词
整数与小数
整数
整数包括正整数、零和负整数,如1、0、-1、200等。整数是数学中基本的计数 系统,具有封闭性,即任意两个整数的四则运算结果仍为整数。
小数
小数是一种特殊的实数,可以表示为有限小数或无限循环小数,如0.5、0.333... 等。小数可以用来表示精确度或比例,如测量时的精确数值或价格的比例关系。
02
数轴上的点与实数一一对应,可以用实数表示点的 位置,也可以用点表示实数的值。
03
数轴上的点可以按照大小关系进行排列,从而将实 数也按照大小关系进行排列。
02
实数的分类
有理数与无理数
有理数
有理数是可以表示为两个整数之比的数,包括整数、有限小数和无限循环小数。有理数在数轴上表示为两点之间 的线段。
1.第1课时 实数的有关概念
A. 3
B. 4
C. 5
D. 6
11. (2019贵港14题3分)将实数3.18×10-5用小数表示为___0_.0_0_0_0_3_1_8__.
第1课时 实数的有关概念
命题点 4 平方根、算术平方根、立方根
12. (2017桂林2题3分)4的算术平方根是( B )
A. 4
B. 2 C. -2
D. ±2
A. 1
B. 2 C. -3
1
D.
3
2. (2020河池1题3分)如果收入10元记作+10元,那么支出10元记作( C )
A. +20元 B. +10元 C. -10元 D. -20元
3. (2018河池1题3分)在-2,0,1,2这四个数中,为负数的是( A )
A. -2
B. 0
C. 1
D. 2
第1课时 实数的有关概念
返回 目录
【对接教材】人教:七上第一章P1-P11,P44-P46,七下第六章P39-P62, 八上第十五章P145-P146
湘教:七上第1章P1-P14,八上第1章P18,第3章P104-P118 沪科:七上第1章P1-P13,七下第6章P1-P21
第1课时 实数的有关概念
返回思 维导图
返回 目录
第1课时 实数的有关概念
返回思 维导图
返回 目录
4. 把下列数用科学记数法表示出来.
(1)670000=_6_.7_×___1_0_5 ;
(2)0.00067=_6_.7_×__1_0_-_4 ;
(3)-0.001=__-__1_×__1_0_-_3_;
(4)423万=4_._2_3_×__1_0_6;
(5)1027亿=_1_.0_2_7_×__1_0_1_1_;
实数的相关概念
第一讲 实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小.考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a |、错误!(a ≥0)之和为零作为条件,解决有关问题。
实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数实数a (a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数.第二讲 实数的运算【回顾与思考】知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。
大纲要求:1. 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算.2. 了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
第1课时-实数的有关概念-师案
课时1 实数的有关概念 师案九 年级 数学 学科 课型 复习课 主备人 二郎中心校王海梅 课标(考纲)要求:知识目标类别了解 理解 掌握运用备注1、有理数的意义√ 2、平方根、立方根的概念,无理数和实数的概念√ 3、求有理数得相反数与绝对值的方法√ 4、用有理数估算一个无理数的大致范围√ 5、用运算律简化运算√ 6、用计算器进行近似计算,按问题的要求对结果取近似值。
√ 7、用科学记数法表示数√ 复 习 过 程学习笔记一、基础知识的整理:A 、认真复习,把本章节所学内容进行整理,形成知识网络。
B 、中考考点清单:(独立回顾,你说我听,相互纠错,收获颇丰)1、实数及其分类(1)有理数: (2)无理数: (3)实数: (4)实数的分类按定义分类:按正负分类:实数 概念有理数、无理数 分类按定义和 正负分类 相反数、绝对值、平方根、立方根、科学记数法2、实数的相关概念(高频考点)(1)数轴:规定了 、 、 的直线叫数轴。
实数和数轴上的点是 的。
(2)相反数:只有 不同的两个数互为相反数。
实数a 的相反数为 ,0的相反数是 。
实数b a 和互为相反数⇔=+b a 。
(3)倒数: 的两个数互为倒数。
实数a 、b 互为倒数⇔=ab 。
非零实数的倒数为 。
(4)绝对值:在数轴上,表示数a 的点 叫a 的绝对值。
正数的绝对值是 ,负数的绝对值是 ,0的绝对值是 ,即:()()()⎪⎪⎩⎪⎪⎨⎧<=>=000a a a a 3、科学记数法(高频考点)(1)科学记数法:一个大于10的数可以表示成 的形式,其中 101<≤a ,n 是正整数。
(2)近似数:一个与实际数很 的数。
一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪 一位。
如:1.5467精确到0.01为 ,精确到千分位为 。
4、平方根,算术平方根,立方根(1)平方根:如果一个数的平方等于a ,那么这个数叫做a 的平方根,记 为 ;正数有 平方根,负数 平方根,0的平方 根为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.5.37× 10
6
5
C.5.37× 10
7 10 D.0.537×
变式:
1、(2015安徽第3题 4分)移动互联网已经全面进入人们 的日常生活。截至2015年3月,全国4G用户总数达到1.62亿, 其中1.62亿用科学记数法为( ) A、 1.62 104 B、 162106 9 8 0 . 162 10 C、 1.62 10 D、 2、(2013齐齐哈尔)某种病毒近似与球体,它的半径约 为0.00000000495米,用科学记数法表示为 米。
课时1
实数的概念
二郎中心学校 :王海梅
考 情 分 析
考点
考纲要求
年份
题型
分值
预测热度
2014 科学记数法 掌握 2015 立方根 掌握 2015 2014 2015
填空题 选择题 填空题 选择题 选择题
5分 4分 5分 4分 4分
★★★★
★★★★
近似值
掌握
★★★★
考 点 清 单 1、实数及其分类
8
B、 60.8× 10 D、 6.08× 10
9
C、6.08× 1010
11
9、(2013黔南州)
3 的相反数是( )
C、 3 D、
A、3
B、-3
1 3
10、(2011安徽2题4分)安徽省2010年末森林面积为3804.2 千公顷,用科学记数法表示3804.2千正确的是( )
.2 10 A、3804
B.3 105
C. 3 10 6
D. 30 10
4
7、(2014河南)据统计,2013年河南省旅游业总收入达到 n 10 3875.5亿元.若将3875.5亿用科学计数法表示为3.8755× , 则n等于( ) A、10 B、 11 C、12 D、13
8、(2014上海)据统计,2013年上海市全社会用于环境保护 的资金约为60 800 000 000元,这个数用科学记数法表示为 ( ). A、608× 10
(1)有理数的概念
(2)无理数的概念 (3)实数的概念
(4)实数的分类
按定义分类
正整数 整数 零 负整数 有理数 实数 正分数 分数 有限小数或无限循环小 数 负分数 正无理数 无理数 无限不循环小数 负无理数
(2)相反数 (3)倒数 (4)绝对值
3、科学记数法(高频考点)
(1)科学记数法:一个大于10的数可以表示成 a 10n 的 形式,其中 1 a 10 ,n是正整数。 (2)近似数: 一般地,一个近似数四舍五入到哪一位,就 说这个近似数精确到哪一位。
4、平方根、算术平方根、立方根
考 点 类 型
)
1 B、 17
B、 4
C、-17 )
1 D、 17
5、(2012怀化)64的立方根是( A、4 C、8
D、 8
6、(2014北京)据报道,某小区居民李先生改进用水设备, 在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为( )
0.3 10 A.
6
考点一 :实数的相关概念
1、(2013安徽1题4分)-2的倒数是(
1 A、 2
)
1 B、 2
C、2
D、-2
3 变式:(2013北京)- 的倒数是( ) 4
4 A、 3
3 B、 4
3 C、4
4 D、3
考点二 :科学记数法 2、(2013安徽第2题 4分)用科学记数法表示537万 正确的是( )
4 10 A.537×
按正负分类
正整数 整数零 负整数 有理数 实数 正分数 分数 数 有限小数或无限循环小 负分数 正无理数 无理数 无限不循环小数 负无理数
2、实数的相关概念
(1)数轴
备 战 训 练
1 1、(2013哈尔滨) - 的倒数是(D、 3
)
2、(2014北京)2的相反数是( A.2 B.-2
1 C. 2
1 C. 2
1 D. 2
)
3、(2014陕西)4的算术平方根是( A.-2 B.2
1 D. 2
4、(2014重庆)实数-17的相反数是( A、17
3 6
B、380.42104
C、3.804210
3.804210 D、
7
课 堂 小 结
1、在达成过程中还存在哪些些困惑? 2、本节课的收获有哪些?(整理知识结构)