专题十一 概率与统计 第三十五讲离散型随机变量的分布列、期望与方差
离散型随机变量的期望值和方差
12.2 离散型随机变量的期望值和方差一、知识梳理1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i (i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差. D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b 为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,D ξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.二、例题剖析【例1】设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、Dξ.拓展提高 既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列.解:依题意ξ只取2个值x 1与x 2,于是有E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256. 从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x【例2】 人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利?【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.【例4】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值;(2)求ξξE D 12-的最大值. 【例5】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.【例6】(湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
离散型随机变量的期望及方差课件
02
离散型随机变量的期望
期望的定义与性质
定义
离散型随机变量的期望定义为所 有可能取值的概率加权和,即 $E(X) = sum x_i times P(X=x_i)$。
性质
期望具有线性性质,即$E(aX+b) = aE(X)+b$,其中$a$和$b$为 常数。
期望的运算性质
01
交换律
$E(X+Y) = E(X) + E(Y)$
离散型随机变量具有可数性、确定性和随机性等性质,其取值范围称 为样本空间,记为Ω。
离散型随机变量的分类
03
伯努利试验
在n次独立重复的伯努利试验中,每次试 验成功的概率为p,失败的概率为q=1-p 。例如,抛硬币、摸彩等。
二项分布
泊松分布
在n次独立重复的伯努利试验中,成功的 次数X服从参数为n和p的二项分布,记为 B(n,p)。例如,抛n次硬币,出现正面的 次数。
方差的定义与性质
方差的定义
方差是用来度量随机变量取值分散程 度的量,计算公式为$D(X) = E[(X E(X))^2]$,其中$E(X)$表示随机变 量$X$的期望值。
方差的基本性质
方差具有非负性,即对于任意随机变 量$X$,有$D(X) geq 0$;当随机变 量$X$取常数$c$时,方差$D(X) = 0$ 。
益。
投资决策
在保险公司的投资决策中,离散 型随机变量的期望和方差可以用 来评估不同投资组合的风险和回 报,帮助保险公司做出更明智的
投资决策。
在决策理论中的应用
风险偏好
离散型随机变量的期望和方差可以用来描述个人的风险偏好,通过比较不同决策方案的期望和方差, 个人可以做出更明智的决策。
离散型随机变量的分布列及均值、方差
离散型随机变量的分布列及均值、方差1.离散型随机变量的分布列(1)将随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个随机变量.(2)离散型随机变量:随机变量的取值能够一一列举出来,这样的随机变量称为离散型随机变量.(3)设离散型随机变量X 的取值为a 1,a 2,…随机变量X 取a i 的概率为p i (i =1,2,…),记作:P (X =a i )=p i (i =1,2,…), 或把上式列表:称为离散型随机变量X 的分布列. (4)性质:①p i >0,i =1,2,...; ②p 1+p 2+ (1)2.离散型随机变量的均值与方差若离散型随机变量X 的分布列为P (X =a i )=p i (i =1,2,…r ). (1)均值EX =a 1p 1+a 2p 2+…+a r p r ,均值EX 刻画的是X 取值的“中心位置”. (2)方差DX =E (X -EX )2为随机变量X 的方差,它刻画了随机变量X 与其均值EX 的平均偏离程度. 3.均值与方差的性质 (1)E (aX +b )=aEX +b .(2)D (aX +b )=a 2DX .(a ,b 为常数) 4.超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -k N -MC nN(其中k 为非负整数). 如果一个随机变量的分布列由上式确定,则称X 服从参数为N ,M ,n 的超几何分布.概念方法微思考1.随机变量和函数有何联系和区别?提示 区别:随机变量和函数都是一种映射,随机变量是随机试验结果到实数的映射,函数是实数到实数的映射;联系:随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域. 2.离散型随机变量X 的每一个可能取值为实数,其实质代表的是什么? 提示 代表的是“事件”,即事件是用一个反映结果的实数表示的. 3.如何判断所求离散型随机变量的分布列是否正确? 提示 可用p i >0,i =1,2,…,n 及p 1+p 2+…+p n =1检验. 4.随机变量的均值、方差与样本均值、方差的关系是怎样的?提示 随机变量的均值、方差是一个常数,样本均值、方差是一个随机变量,随观测次数的增加或样本容量的增加,样本的均值、方差趋于随机变量的均值与方差.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)抛掷均匀硬币一次,出现正面的次数是随机变量.( √ )(2)离散型随机变量的分布列描述了由这个随机变量所刻画的随机现象.( √ )(3)从4名男演员和3名女演员中选出4名,其中女演员的人数X 服从超几何分布.( √ ) (4)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (5)随机变量的均值是常数,样本的平均数是随机变量,它不确定.( √ )(6)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( √ ) 题组二 教材改编2.设随机变量X 的分布列如下:则p 为( ) A.16 B.13 C.14 D.112 答案 C解析 由分布列的性质知,112+16+13+16+p =1,∴p =1-34=14.3.已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B.4 C.-1 D.1 答案 A解析 EX =-12+16=-13,EY =E (2X +3)=2EX +3=-23+3=73.4.有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是____________. 答案 0,1,2,3解析 因为次品共有3件,所以在取到合格品之前取出的次品数X 的可能取值为0,1,2,3. 题组三 易错自纠5.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是( ) A.至少取到1个白球 B.至多取到1个白球 C.取到白球的个数 D.取到的球的个数 答案 C解析 选项A ,B 表述的都是随机事件;选项D 是确定的值2,并不随机;选项C 是随机变量,可能取值为0,1,2.6.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 答案27220解析 由题意知取出的3个球必为2个旧球、1个新球,故P (X =4)=C 23C 19C 312=27220.题型一 分布列的求法例1 设某人有5发子弹,当他向某一目标射击时,每发子弹命中目标的概率为23.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完. (1)求他前两发子弹只命中一发的概率; (2)求他所耗用的子弹数X 的分布列.解 记“第k 发子弹命中目标”为事件A k ,则A 1,A 2,A 3,A 4,A 5相互独立,且P (A k )=23,P (A k )=13,k =1,2,3,4,5.(1)方法一 他前两发子弹只命中一发的概率为 P (A 1A 2)+P (A 1A 2)=P (A 1)P (A 2)+P (A 1)P (A 2) =23×13+13×23=49. 方法二 由独立重复试验的概率计算公式知,他前两发子弹只命中一发的概率为P =C 12×23×13=49. (2)X 的所有可能值为2,3,4,5. P (X =2)=P (A 1A 2)+P (A 1 A 2) =23×23+13×13=59, P (X =3)=P (A 1A 2 A 3)+P (A 1A 2A 3) =23×⎝⎛⎭⎫132+13×⎝⎛⎭⎫232=29, P (X =4)=P (A 1A 2A 3A 4)+P (A 1A 2A 3 A 4) =⎝⎛⎭⎫233×13+⎝⎛⎭⎫133×23=1081,P (X =5)=P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4) =⎝⎛⎭⎫232×⎝⎛⎭⎫132+⎝⎛⎭⎫132×⎝⎛⎭⎫232=881. 故X 的分布列为思维升华 求离散型随机变量X 的分布列的步骤 (1)理解X 的意义,写出X 可能取的全部值;(2)求X 取每个值的概率; (3)写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.跟踪训练1 已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300) =1-110-310=35.故X 的分布列为题型二 均值与方差例2 某投资公司在2019年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由. 解 若按“项目一”投资,设获利为X 1万元,则X 1的分布列为∴EX 1=300×79+(-150)×29=200.若按“项目二”投资,设获利为X 2万元,则X 2的分布列为∴EX 2=500×35+(-300)×13+0×115=200.DX 1=(300-200)2×79+(-150-200)2×29=35 000,DX 2=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000.∴EX 1=EX 2,DX 1<DX 2,这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.思维升华 离散型随机变量的均值与方差的常见类型及解题策略(1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布列,然后利用均值、方差公式直接求解.(2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的方程(组),解方程(组)即可求出参数值.(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断. 跟踪训练2 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值Eξ,方差Dξ. 解 (1)两人所付费用相同,相同的费用可能为0,40,80元,甲、乙两人2小时以上且不超过3小时离开的概率分别为⎝⎛⎭⎫1-14-12=14,⎝⎛⎭⎫1-16-23=16.两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=14×16=124,则两人所付费用相同的概率为 P =P 1+P 2+P 3=124+13+124=512.(2)设甲、乙所付费用之和为ξ,ξ的可能取值为0,40,80,120,160,则 P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以ξ的分布列为Eξ=0×124+40×14+80×512+120×14+160×124=80.Dξ=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=4 0003.题型三 超几何分布例3 (2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与均值EX .解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为所以X 的均值EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2.思维升华 (1)超几何分布的两个特点 ①超几何分布是不放回抽样问题; ②随机变量为抽到的某类个体的个数. (2)超几何分布的应用条件 ①两类不同的物品(或人、事); ②已知各类对象的个数; ③从中抽取若干个个体.跟踪训练3 PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2018年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列.解 (1)记“从这10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A ,则P (A )=C 13C 27C 310=2140.(2)由条件知,ξ服从超几何分布,其中N =10,M =3,n =3,且随机变量ξ的可能取值为0,1,2,3.P (ξ=k )=C k 3·C 3-k7C 310(k =0,1,2,3).∴P (ξ=0)=C 03C 37C 310=724,P (ξ=1)=C 13C 27C 310=2140,P (ξ=2)=C 23C 17C 310=740,P (ξ=3)=C 33C 07C 310=1120.故ξ的分布列为离散型随机变量的均值与方差问题例 (12分)为回馈顾客,某商场拟通过模拟兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及均值;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.规范解答解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.[2分]②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,故X 的分布列为[4分]所以顾客所获的奖励额的均值为 EX =20×12+60×12=40.[5分](2)根据商场的预算,每个顾客的平均奖励额为60元, 所以,先寻找均值为60的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案, 因为60元是面值之和的最大值,所以均值不可能为60元; 如果选择(50,50,50,10)的方案, 因为60元是面值之和的最小值, 所以均值也不可能为60元;因此可能的方案是(10,10,50,50),记为方案1. 对于面值由20元和40元组成的情况, 同理可排除(20,20,20,40)和(40,40,40,20)的方案, 所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析. 对于方案1,即方案(10,10,50,50), 设顾客所获的奖励额为X 1, 则X 1的分布列为[7分]X 1的均值为EX 1=20×16+60×23+100×16=60,X 1的方差为DX 1=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.[9分]对于方案2,即方案(20,20,40,40), 设顾客所获的奖励额为X 2, 则X 2的分布列为[10分]X 2的均值为EX 2=40×16+60×23+80×16=60,X 2的方差为DX 2=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的均值都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.[12分]求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能取值; 第二步:求每一个可能取值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:根据均值、方差进行判断,并得出结论(适用于均值、方差的应用问题); 第六步:反思回顾.查看关键点、易错点和答题规范性.1.若离散型随机变量X 的分布列为则X 的均值EX 等于( ) A.2 B.2或12 C.12D.1答案 C解析 由题意知,a 2+a 22=1,a >0,所以a =1,所以EX =0×12+1×12=12.故选C.2.设随机变量X 的分布列如下,则P (|X -2|=1)等于( )A.712B.12C.512D.16 答案 C解析 由16+14+m +13=1,得m =14,所以P (|X -2|=1)=P (X =1)+P (X =3)=16+14=512.故选C.3.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字和为X ,则X ≥8的概率是( ) A.415 B.715 C.815 D.35 答案 C解析 由题意知,X 的取值为6,9,12,又P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115,所以X ≥8的概率为715+115=815,故选C.4.设随机变量ξ的分布列为P ⎝⎛⎭⎫ξ=k 5=ak (k =1,2,3,4,5),则P ⎝⎛⎭⎫110<ξ<710等于( ) A.35 B.45 C.25 D.15 答案 C解析 由题意知,分布列为由分布列的性质可得,a +2a +3a +4a +5a =1, 解得a =115.所以P ⎝⎛⎭⎫110<ξ<710=P ⎝⎛⎭⎫ξ=15+P ⎝⎛⎭⎫ξ=25+ P ⎝⎛⎭⎫ξ=35=115+215+315=25.故选C. 5.一个袋中有4个红球,3个黑球,小明从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球,则小明得分大于6分的概率是( ) A.1335 B.1435 C.1835 D.2235 答案 A解析 记得分为X ,则X 的可能取值为5,6,7,8,P (X =7)=C 34C 13C 47=1235;P (X =8)=C 44C 03C 47=135,所以P (X >6)=P (X =7)+P (X =8)=1235+135=1335.6.设X 是一个离散型随机变量,其分布列为则q 等于( ) A.1 B.32±336 C.32-336 D.32+336答案 C解析 ∵13+2-3q +q 2=1,∴q 2-3q +43=0,解得q =32±336.又由题意知0<q 2<23,∴q =32-336. 7.口袋中有5只球,编号为1,2,3,4,5,从中任取3只球,以X 表示取出的球的最大号码,则X 的分布列为______________________. 答案解析 X 的取值为3,4,5.又P (X =3)=1C 35=0.1,P (X =4)=C 23C 35=0.3,P (X =5)=C 24C 35=0.6.所以X 的分布列为8.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 答案 23 ⎝⎛⎭⎫-13,13 解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0<13-d <23,0<13+d <23,∴-13<d <13.9.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数η的分布列为____________________. 答案解析 ∵η的所有可能值为0,1,2.P (η=0)=C 11C 11C 12C 12=14,P (η=1)=C 11C 11×2C 12C 12=12,P (η=2)=C 11C 11C 12C 12=14.∴η的分布列为10.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:则估计该公司一年后可获收益的均值是________元. 答案 4 760解析 由题意知,一年后获利6 000元的概率为0.96,获利-25 000元的概率为0.04,故一年后收益的均值是6 000×0.96+(-25 000)×0.04=4 760(元).11.(2018·河南豫南九校联考)为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列及均值.解 (1)由统计图得200名司机中送考1次的有20人, 送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D , 由题意知X 的所有可能取值为0,1,2,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199,P (X =2)=P (C )=C 120C 180C 2200=16199,P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199, ∴X 的分布列为EX =0×83199+1×100199+2×16199=132199.12.某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关,如果最高气温不低于25 ℃,需求量为600桶,如果最高气温(单位:℃)位于区间[20,25),需求量为400桶,如果最高气温低于20 ℃,需求量为200桶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种冰激凌一天的需求量X (单位:桶)的分布列;(2)设六月份一天销售这种冰激凌的利润为Y (单位:元),当六月份这种冰激凌一天的进货量n (单位:桶)为多少时,Y 的均值取得最大值?解 (1)由已知得,X 的所有可能取值为200,400,600,记六月份最高气温低于20 ℃为事件A 1,最高气温(单位:℃)位于区间[20,25)为事件A 2,最高气温不低于25 ℃为事件A 3, 根据题意,结合频数分布表,用频率估计概率,可知P (X =200)=P (A 1)=1890=15,P (X =400)=P (A 2)=3690=25,P (X =600)=P (A 3)=3690=25,故六月份这种冰激凌一天的需求量X (单位:桶)的分布列为(2)由题意得,当n ≤200时,E (Y )=2n ≤400;当200<n ≤400时,E (Y )=15×[200×2+(n -200)×(-2)]+45×n ×2=65n +160∈(400,640];当400<n ≤600时,EY =15×[200×2+(n -200)×(-2)]+25×[400×2+(n -400)×(-2)]+25×n ×2=-25n +800∈[560,640); 当n >600时,EY =15×[200×2+(n -200)×(-2)]+25×[400×2+(n -400)×(-2)]+25×[600×2+(n -600)×(-2)]=1 760-2n <560,所以当n =400时,Y 的均值取得最大值640.13.已知6只小白鼠中有1只感染了病毒,需要对6只小白鼠进行病毒DNA 化验来确定哪一只受到了感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为止.方案乙:将6只小白鼠分为两组,每组三只,将其中一组的三只小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒DNA ,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到确定感染病毒的小白鼠为止;若化验结果显示不含病毒DNA ,则在另外一组中逐个进行化验.(1)求执行方案乙化验次数恰好为2次的概率;(2)若首次化验的化验费为10元,第二次化验的化验费为8元,第三次及以后每次化验的化验费都是6元,求方案甲所需化验费的分布列和均值. 解 (1)执行方案乙化验次数恰好为2次的情况分两种:第一种,先化验一组,结果显示不含病毒DNA ,再从另一组中任取一只进行化验,其恰好含有病毒DNA ,此种情况的概率为C 35C 36×1C 13=16;第二种,先化验一组,结果显示含病毒DNA ,再从中逐个化验,恰好第一只含有病毒,此种情况的概率为C 25C 36×1C 13=16.所以执行方案乙化验次数恰好为2次的概率为16+16=13.(2)设用方案甲化验需要的化验费为η(单位:元),则η的可能取值为10,18,24,30,36. P (η=10)=16,P (η=18)=56×15=16,P (η=24)=56×45×14=16,P (η=30)=56×45×34×13=16,P (η=36)=56×45×34×23=13,则化验费η的分布列为所以Eη=10×16+18×16+24×16+30×16+36×13=773(元).14.为了研究学生的数学核心素养与抽象(能力指标x )、推理(能力指标y )、建模(能力指标z )的相关性,并将它们各自量化为1,2,3三个等级,再用综合指标w =x +y +z 的值评定学生的数学核心素养:若w ≥7,则数学核心素养为一级;若5≤w ≤6,则数学核心素养为二级;若3≤w ≤4,则数学核心素养为三级.为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下结果:(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为a ,从数学核心素养等级不是一级的学生中任取一人,其综合指标为b ,记随机变量X =a -b ,求随机变量X 的分布列及均值.解 (1)由题意可知,建模能力指标为1的学生是A 9;建模能力指标为2的学生是A 2,A 4,A 5,A 7,A 10;建模能力指标为3的学生是A 1,A 3,A 6,A 8. 记“所取的两人的建模能力指标相同”为事件A ,则P (A )=C 25+C 24C 210=1645.(2)由题意可知,数学核心素养等级是一级的有A 1,A 2,A 3,A 5,A 6,A 8,数学核心素养等级不是一级的有A 4,A 7,A 9,A 10. X 的所有可能取值为1,2,3,4,5.P (X =1)=C 13C 12C 16C 14=14;P (X =2)=C 13C 11+C 12C 12C 16C 14=724; P (X =3)=C 13C 11+C 12C 11+C 11C 12C 16C 14=724; P (X =4)=C 12C 11+C 11C 11C 16C 14=18; P (X =5)=C 11C 11C 16C 14=124.∴随机变量X 的分布列为∴EX =1×14+2×724+3×724+4×18+5×124=2912.15.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( ) A.D (ξ)减小 B.D (ξ)增大C.D (ξ)先减小后增大D.D (ξ)先增大后减小 答案 D解析 由题意知E (ξ)=0×1-p 2+1×12+2×p 2=p +12,D (ξ)=⎣⎡⎦⎤0-⎝⎛⎭⎫p +122×1-p 2+⎣⎡⎦⎤1-⎝⎛⎭⎫p +122×12+⎣⎡⎦⎤2-⎝⎛⎭⎫p +122×p 2 =⎝⎛⎭⎫p +122×1-p 2+⎝⎛⎭⎫p -122×12+⎝⎛⎭⎫32-p 2×p2 =12⎝⎛⎭⎫p +122+12⎝⎛⎭⎫p -122-p 2⎝⎛⎭⎫p +122+p 2⎝⎛⎭⎫32-p 2 =12⎝⎛⎭⎫2p 2+12-p 2⎣⎡⎦⎤⎝⎛⎭⎫p +122-⎝⎛⎭⎫p -322 =p 2+14-p (2p -1)=-p 2+p +14=-⎝⎛⎭⎫p -122+12, ∴D (ξ)在⎝⎛⎭⎫0,12上是增加的,在⎝⎛⎭⎫12,1上是减少的,即当p 在(0,1)内增大时,D (ξ)先增大后减小. 故选D.16.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=2,求随机变量ξ的均值.解 ξ的可能取值为0,2,1,2,则P (ξ=0)=8C 23C 212=411,P (ξ=2)=6C 212=111,P (ξ=1)=12C 212=211, P (ξ=2)=24C 212=411. ∴ξ的分布列为∴Eξ=0×411+2×111+1×211+2×411=10+211.。
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的期望与方差课件
方差是正数或零,无负值;方差越大, 随机变量的取值越分散;两个随机变 量的方差相等,则它们是同方差。
方差的计算
方差的计算公式
方差=E[(X-E[X])^2],其中E[X]表示随机变量X的期望。
方差的简化计算
对于离散型随机变量,方差可以简化为方差=1/n Σ(xi-μ)^2,其中xi表示随机 变量X的取值,μ表示随机变量X的期望,n表示随机变量X的取值个数。
离散型随机量的期望与方 件
目录
• 离散型随机变量的期望 • 离散型随机变量的方差 • 离散型随机变量的期望与方差的关系 • 离散型随机变量的期望与方差的计算
实例 • 离散型随机变量的期望与方差在概率
论中的应用
01
离散型随机量的期望
定义与性质
期望的性质 2. 期望是一个可计算的数值,与概率分布中的权值
01
02
03
04
方差是用来度量随机变量取值 分散程度的数学概念。
方差越大,说明随机变量的取 值越分散;方差越小,说明随
机变量的取值越集中。
方差与标准差是两个紧密相关 的概念,标准差是方差的平方
根。
方差在概率论中有很多重要的 应用,例如在金融、统计学、
机器学习等领域。
期望与方差在金融风险控制中的应用
期望的性质与用途
3. 期望的计算公式是一个加权平均值。 期望的用途
1. 期望是评估一个随机变量取值水平的指标。
期望的性质与用途
01
2. 期望可以用于预测随机变量的 未来取值。
02
3.期望可以用于计算其他统计量, 如方差、协方差等。
02
离散型随机量的方差
方差的定义与性质
方差的定 义
离散型随机变量的分布列与期望和方差
离散型随机变量的分布列与期望和方差考点一:离散型随机变量的分布列 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 (2)方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根()X D 为随机变量X 的标准差.(3)均值与方差的性质 1.E(aX +b)=aE(X)+b. 2.D(aX +b)=a2D(X)(a ,b 为常数). 考点二:超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k=0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,如果随机变量X 的分布列具有下表形式,考点三:二项分布二项分布;在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 基础练习1.在某公司的两次投标工作中,每次中标可以获利14万元,没有中标损失成本费8000元.若每次中标的概率为0.7,每次投标相互独立,设公司这两次投标盈利为X 万元,则EX =( ) A .18.12B .18.22C .19.12D .19.222.设服从二项分布B (n ,p )的随机变量X 的期望与方差分别是10和8,则n ,p 的值分别是( ) A .B .C .D .3.已知X 的分布列为X ﹣1 0 1 P且Y =aX +3,E (Y )=,则a 为( ) A .1B .2C .3D .44.设随机变量X ∼N(1,δ2),且P(X>2)=51,则P(0<X<1)=___.5.已知离散型随机变量x 的取值为0,1,2,且()()(),2,1,410b x p a x p x p ======若()1=X E ,则 ()=X D .6.若随机变量,且,,则当 .(用数字作答)7.已知随机变量X 满足(23)7E X +=,(23)16D X +=,则下列选项正确的是( ) A .7()2E X =,13()2D X = B .()2E X =,()4D X = C .()2E X =,()8D X = D .7()4E X =,()8D X = 超几何分布VS 二项分布1.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望;(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.2.某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50~(,)X B n p 52EX =54DX =(1)P X ==条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(1)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(2)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求x 的分布列和数学期望.3.假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为0.9,随机抽取4个投保人,设其中活过65岁的人数为X ,保险公司支出给这4人的总金额为Y 万元(参考数据:40.90.6561=) (1)指出X 服从的分布并写出Y 与X 的关系; (2)求(22)≥P Y .(结果保留3位小数)考点四:正太分布1.已知随机变量ξ服从正态分布)9,5(N ,若)2()2(-<=+>c p c p ξξ,则c 的值为( )A .4B .5C .6D .72.已知随机变量服从正态分布即,且,若随机变量,则( )A .0.3413B .0.3174C .0.1587D .0.15863.已知随机变量X ∼N (2,1),其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( )A .0.1359B .0.7282C .0.8641D .0.932054.某市高三年级第二次质量检测的数学成绩X 近似服从正态分布N (82,σ2),且P (74<X <82)=0.42.已知我市某校有800人参加此次考试,据此估计该校数学成绩不低于90分的人数为( ) A .64B .81C .100D .1215.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .X 2~(,)X N μσ()0.6826P X μσμσ-<≤+=~(5,1)X N (6)P X ≥=①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.。
离散型随机变量的分布列、期望、方差-复习指导
离散型随机变量的分布列、期望、方差复习指导学习要求:了解随机变量,离散型随机变量的意义,会求简单的离散型随机变量,掌握离散型随机变量的分布列,会求出期望、方差。
知识总结:一、离散型随机变量的分布列1.随机变量:如果一个随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,可以按一定次序列出的随机变量叫做离散型随机变量,常用ξ,等希腊字母表示2.离散型随机变量的分布列:若离散型随机变量ξ的一切可能取值为:a1, a2, ……, a n, ……, 相应取这些值的概率为:p1,P2,……, P n, ……,则称下表:为离散型随机变量ξ的概率分布列,简称ξ的分布列。
离散型随机变量的分布列具有的两个性质:①P i0(i=1,2,……,n,……) ②P1+P2+……+P n+……=1 一种典型的离散型随机变量的分布列:二项分布:设重复独立地进行n次随机试验A,在每一次试验中,P(A)=P(0<P<1),ξ为n次试验中A 发生的次数,则ξ的分布列为:称ξ服从二项分布,记作ξ~B(n,P)注:是二项展开式[P+(1-P)]n=++……++……+中的第k+1项。
P1+P2+……+P n=++……+=[P+(1-P)]n=1。
二、离散型随机变量的期望与方差1.期望:设离散型随机变量ξ的分布列是:ξa1a2……a n……p p1p2……p n……称a1p1+a2p2+……+a n p n+……为ξ的数学期望,简称期望,记作Eξ。
期望的性质:①若=aξ+b (a,b均为常数), 则E=aEξ+b。
②E(ξ1+ξ2)=Eξ1+Eξ2。
③若ξ~B(n, p), 则Eξ=np注:期望Eξ是反映随机变量ξ集中趋势的指标,也反映了ξ取值的平均水平。
2.方差:设离散型随机变量ξ的分布列是ξa1a2……a n……p p1p2……p n……称(a1-Eξ)2p1+(a2-Eξ)2p2+……+(a n-Eξ)2p n+……为随机变量ξ的均方差,简称方差,记作Dξ。
专题十一 概率与统计 第三十五讲离散型随机变量的分布列、期望与方差
专题十一 概率与统计第三十五讲离散型随机变量的分布列、期望与方差2019年1.(2019天津理16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.2.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.3.(2019北京理17)改革开放以来,人们的支付方式发生了巨大转变。
离散型随机变量的期望和方差
离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。
期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。
在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。
期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。
离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。
方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。
运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。
可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。
总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。
以上就是关于离散型随机变量期望和方差的主要内容。
离散型随机变量的期望值和方差讲义
离散型随机变量的期望值和方差一、基本知识概要:1、期望的定义:一般地,若离散型随机变量ξ的分布列为则称Eξ=x1P1+x2P2+x3P3+…+x n P n+…为ξ的数学期望或平均数、均值,简称期望。
它反映了:离散型随机变量取值的平均水平。
若η=aξ+b(a、b为常数),则η也是随机变量,且Eη=aEξ+b。
E(c)= c特别地,若ξ~B(n,P),则Eξ=n P2、方差、标准差定义:Dξ=(x1-Eξ)2·P1+(x2-Eξ)2·P2+…+(x n-Eξ)2·P n+…称为随机变量ξ的方差。
D=δξ叫做随机变量的标准差。
Dξ的算术平方根ξ随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。
且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2- (Eξ)2。
若ξ~B(n,p),则Dξ=npq,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。
二、例题:例1、(1)下面说法中正确的是()A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值。
B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平。
C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平。
D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值。
(2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是。
例2、设ξ是一个离散型随机变量,其分布列如下表,试求Eξ、Dξ练习:已知ξ的分布列为(1)求E ξ, D ξ, δξ,(2) 若η=2ξ+3,求E η,D η例3、人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保险费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元,经统计此年龄段一年内意外死亡的概率是1p ,非意外死亡的概率为2p ,则a 需满足什么条件,保险公司才可能盈利例4:把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ例5、已知两家工厂,一年四个季度上缴利税如下:(单位:万元)试分析两厂上缴利税状况,并予以说明。
高三数学离散型随机变量的分布列、期望与方差知识精讲
高三数学离散型随机变量的分布列、期望与方差【本讲主要内容】离散型随机变量的分布列、期望与方差求解某些简单的离散型随机变量的分布列、期望与方差.【知识掌握】【知识点精析】1. 离散型随机变量的分布列(1)随机变量的概念:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.随机变量常用希腊字母ξ、η表示.例如课本上的两个例子:①某人射击一次可能出现的命中环数ξ是一个随机变量,ξ可取值为:0,1,2, (10)②某次产品检验所取4件产品中含有的次品数η是一个随机变量,η可取值为:0,1,2,3,4.③一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球, 被取出的球的最大数ξ是一个随机变量,ξ可取值为3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或 2,4,5或3,4,5.随机变量最常见的两种类型:①离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.②连续型随机变量:如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量.(2)离散型随机变量的分布列:设离散型随机变量ξ的可能取值为x 1,x 2,…,x i ,…,ξ取每一个值x i (i =1,2,…)的概率P (=x i )=p i ,则表例如抛掷一个色骰子得到的点数ξ可能取值为1,2,3,4,5,6.ξ取各值的概率都等于61.此表从概率的角度指出了随机变量在随机试验中取值的分布状况. 离散型随机变量的分布列具有下列性质: ①,2,1(0=≥i p i ...);②p 1+p 2+ (1)一般地,离散型随机变量在某一取值X 围内取值的概率等于它取值这个X 围内各值的概率之和.(3)常见的离散型随机变量的分布①0—1例如,任意抛掷一枚硬币的实验结果:ξ=0表示正面向上;ξ=1表示正面向下.②二项分布:如果在一次试验中某事件A发生的概率是p ,那么在n 次独立重复试验中事件A恰好发生k 次的概率是P (ξ=k ).kn k k n qp C )k (P -==ξ,其中k =1,2,3,…,n ,q =1-p ,于是得到随机变量ξ的概率分布如下:kn k k n qp C -=b(k ;n ,p). 例如,抛掷一个骰子,得到任一确定的点数(比如2点)的概率是61.重复抛掷骰子n 次,得到此确定点数的次数ξ服从二项分布,ξ~B(n ,61) 显然,当n =1时,二项分布即为0—1分布. ③几何分布:在独立重复试验中,某次事件第一次发生时所做试验的次数ξ也是一个取值为正整数的离散型随机变量.“ξ=k ”表示在第k 次独立试验时事件第一次发生.如果把第k 次试验时事件A 发生记为A k ,事件A 不发生记为k A ,p A P k =)(,q A P k =)(,那么p q A P A P A P A P A P A A A A A P k P k k k k k 113211321)()()()()()()(---==== ξ.(k =1,2,3,…)于是得到随机变量ξ的概率分布如下:,…,分布列的表达式可有如下几种:(1)表格形式;(2)一组等式;(3)压缩为一个带“i ”的等式.2. 离散型随机变量期望和方差(1则称E ξ=∑=1i x i p i, ++++=n n p x p x px 2211.为ξ的数学期望或平均数、均值,数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.则其n 次射击的环数ξ的期望为E ξ=4×0.02+5×0.04+…+10×0.28=8.32若b a +=ξη其中a ,b 是常数,则η也是随机变量.因为P (b ax i +=η)=P (ξ=x i )i =1,2,3, …所以η于是E η=(a x 1+b )p 1+(a x 2+b )p 2+…+(a x n +b )p n +…=a (1p 1+2p 2+…+x n p n +…)+b (p 1+p 2+…+p n +…)aE ξ+b即(2那么,把 D ξ=∑∞=1(i x i -E ξ)2p i =(x 1-E ξ)2·p 1+(x 2-E ξ)2·p 2+…+(x n - E ξ)2·pn+…叫做随机变量ξ的均方差,简称方差.其中E ξ是随机变量ξ的期望.D ξ的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.其中标准差与随机变量本身有相同的单位.两个计算方差的简单公式(不要求证明):①D(a ξ+b)=a 2D ξ.②如果ξ~B(n ,p),那么D ξ=npq ,这里q =1-p说明:在实际问题中,人们常关心随机变量的特征,而不是随机变量的具体值.离散型随机变量的期望和方差都是随机变量的特征数,期望反映了随机变量的平均取值,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.其中标准差与随机变量本身有相同的单位,在实际中应用更广泛.【解题方法指导】例1.盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.(I )求随机变量ξ的分布列; (II )求随机变量ξ的期望ξE .解:(I )由题意可得,随机变量ξ的取值是2、3、4、6、7、10. 随机变量ξ的概率分布列如下:ξE =2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.例2.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.解:(Ⅰ)依题意,ξ可能取的值为0,1,2,3.3,2,1,0,)(310346=⋅==-k C C C k P k k ξ.甲答对试题数ξ的数学期望 E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32,P(B)=310381228C C C C +=1205656+=1514. 方法一:因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P =1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:因为事件A 、B 相互独立,∴甲、乙两人至少有一个考试合格的概率为P =P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 说明:本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.【考点突破】【考点指要】离散型随机变量是高考的重点内容,它是随机事件的概率的深化,它的本质是某些随机试验结果的数量化.离散型随机变量的分布列整体地反映了随机变量所有可能的取值及其相应值的概率P (ξ=x i )=P i .期望反映了离散型随机变量取值的平均水平,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.离散型随机变量的期望与方差都建立在分布列的基础之上.方差又与期望紧密相连,求期望与方差的关键是求ξ的分布列.期望与方差是随机变量的最重要的两个特征数,它们所表示的意义具有很大的实用价值,所以成为高考的热点之一.历年高考中所占的分值为5~13分,多以填空题和解答题的形式出现.【典型例题分析】例1. (2005卷17题)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (I )记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (II )求乙至多击中目标2次的概率;(III )求甲恰好比乙多击中目标2次的概率.分析:本题主要考查概率的内容,考查点有随机事件的分布列、互斥事件的概率及相互独立事件的概率等.解:(I )P (ξ=0)=03311()28C =,P (ξ=1)=13313()28C =, P (ξ=2)=23313()28C =,P (ξ=3)=33311()28C =.ξE ξ=130123 1.58888⋅+⋅+⋅+⋅=, (或E ξ=3·2=1.5); (II )乙至多击中目标2次的概率为1-3332()3C =1927;(III )设甲恰比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标 3次且乙恰击中目标 1次为事件B 2,则A =B 1+B 2,B 1,B 2为互斥事件.1231121()()()8278924P A P B P B =+=⋅+⋅=所以,甲恰好比乙多击中目标2次的概率为124.例2. (2004某某卷理18题)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率分布列及期望E ξ;(Ⅱ)停车时最多已通过3个路口的概率. 解:(I )ξ的所有可能值为0,1,2,3,4用A K 表示“汽车通过第k 个路口时不停(遇绿灯)”,则P (A K )=4321,,,),4,3,2,1(43A A A A k 且=独立.从而ξ有分布列:ξ 01234P41 16364925627256812562564256364216140=⨯+⨯+⨯+⨯+⨯=ξE (II )256175256811)4(1)3(=-==-=≤ξξP P 答:停车时最多已通过3个路口的概率为256175.【综合测试】一. 选择题1.随机变量ξ的分布列如下,则m = ( )ξ1 2 3 4P41 M31 61 A.31 B. 2 C. 6 D. 42.某射手射击时击中目标的概率为0.7,设4次射击击中目标的次数为随机变量ξ,则P (ξ≥1)等于()A. 0.9163B. 0.0081C. 0.0756D. 0.99193. 某一计算机网络,有n 个终端,每个终端在一天中使用的概率p ,则这个网络中一天平均使用的终端个数为 ()A. np(1-p)B. npC. nD. p(1- p) 4.设随机变量ξ~B(n ,p),且E ξ=1,D ξ=1.8,则( )A. n =8,p =0.2B. n =4,p =0.4C. n =5,p =0.32D. n =7,p =0.45二. 填空题5.重复抛掷一枚筛子5次得到点数为6的次数记为ε,则P(ε>3)=______________.6. 某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示) 7. 有一批数量很大的商品的次品率为100,从中任意地连续取出200件商品,设其中次品数为ξ,则E ξ=__________, D ξ=_____________.8. 在有奖摸彩中,一期(发行10000X 彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一X 彩票的合理价格是_______________元.三. 解答题9.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?10. A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床B 机床问:哪一台机床加工质量较好?11. 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(Ⅰ)求ξ的分布列;(Ⅱ)求ξ的数学期望;(Ⅲ)求“所选3人中女生人数1≤ξ”的概率.12.(2004年高考全国卷Ⅳ(19))某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;(Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率.参考答案一. 选择题1. D 解析:∵41+m +31+61=1 ∴m =.∴选D 2. D 解析:∵P (ξ≥1)=1-P(ξ=0)=1-(1-0.7)4=1-0.0081=0.9919. ∴选D3. B 解析:设这个网络中一天使用的终端个数为ξ,则ξ~B(n ,p),∴E ξ=np .∴选B .4. A 解析:由E ξ= np ,D ξ=np(1-p) 可知⎩⎨⎧-==)1(28.16.1p np np ∴⎩⎨⎧==2.08p n ∴选A二. 填空题 5.388813解:依题意,随机变量ε~B⎪⎭⎫ ⎝⎛61,5.∴P(ε=4)=6561C 445⨯⎪⎭⎫ ⎝⎛=777625,P(ε=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P(ε>3)=P(ε=4)+P(ε=5)=388813. 6. 190119解:属于同一个国家的概率为190712202524211=++C C C C , 所求概率为 190119190711=-,或:所求概率为 19011954511411220=⨯+⨯+⨯C 7. 2,1.98解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ~B(200,1%). 因为E ξ=n ξ,D ξ=npq ,这里n =200,p =1%,q =99%, 所以,E ξ=200⨯1%=2,D ξ=200%99%1⨯⨯=1.98.8. 0.2解:设一X 彩票中奖额为随机变量ξ,显然ξ所有可能取得的值为0,5,25,100.依题意,可得ξ的分布列为∴E ξ=0400⨯2.0200010050025505=⨯+⨯+⨯+ 答:一X 彩票的合理价格是0.2元.三. 解答题9. 答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示第一枚为6点,第二枚为1点,10.解:E ξ1 =0×0.7+1×0.2+2×0.06+3×0.04=0.44 E ξ2 =0×0.8+1×0.06+2×0.04+3×0.10=0.44 它们的期望相同,再比较它们的方差.D ξ1 =(0-0.44)2×0.7+(1-0.44) 2×0.2+(2-0.44) 2×0.06+(3-0.44) 2×0.04=0.6064,D ξ2 =(0-0.44)2×0.8+(1-0.44) 2×0.06+(2-0.44) 2×0.04+(3-0.44) 2×0.10 = 0.9264,∴D ξ1<D ξ2,故A 机床加工较稳定、质量较好11. (Ⅰ)解:ξ可能取的值为0,1,2.2,1,0,)(36342=⋅==-k C C C k P k k ξ. 所以,ξ的分布列为(Ⅱ)解:由(1),ξ的数学期望为1525150=⨯+⨯+⨯=ξE(Ⅲ)解:由(1),“所选3人中女生人数1≤ξ”的概率为54)1()0()1(==+==≤ξξξP P P12. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008,P (ξ=-100)=3×0.22×0.8=0.096,P (ξ=100)=3×0.2×0.82=0.384,P (ξ=300)=0.83=0.512, 所以ξ的概率分布为E ξ=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180. (Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.。
11.5 离散型随机变量的概率分布、期望、方差
分布,其中N=50,M=5,n=2.于是出现次品的
CC 概率为P(X≥1)=P(X=1)+P(X=2) C 2 2 2
C 5 C 505 9 2 47 , 即出现次品的概率 2 C 50 49 245 245 为 47 . 245
3.已知随机变量X的概率分布为 X P -1 1 2 0 1 3 1 1 6
2 1 C1 C C 1 5 2 8 因为P( B) , 3 C10 3
1 2 所以P( A) 1 P( B) 1 . 3 3
(2)由意得,X有可能的取值为2,3,4,5.
1 1 2 C2 C C C 1 P ( X 2) 2 2 3 2 2 ; C10 30 1 1 2 C2 C C C 2 4 2 4 2 P ( X 3) ; 3 C10 15 2 2 C6 C12 C1 C 3 6 2 P ( X 4) ; 3 C10 10 2 2 C8 C12 C1 C 8 8 2 P ( X 5) . 3 C10 10
分布列中相应取值的概率累加得到.
解
(1)方法一
“一次取出的3个小球上的数字
3 1 1 1 C C C C 互不相同”的事件记为A,则 P ( A) 5 2 2 2 2 . 3 C10 3 方法二 “一次取出的3个小球上的数字互不相同”的
事件记为A,“一次取出的3个小球上有两个数字相 同”的事件记为B,则事件A和事件B是互斥事件,
[2分]
X P
20 0.12
22 0.18
24 0.20
26 0.20
28 0.18
30 0.12
[6分]
∴E(X)=20×0.12+22×0.18+24×0.20+26×0.20 +28×0.18+30×0.12=25(km). 32×0.18+52×0.12=9.64. (2)由已知Y=3X-3(X>3,X∈Z), ∴E(Y)=E(3X-3)=3E(X)-3 =3×25-3=72(元), [12分] [8分] [10分]
离散型随机变量期望与方差
离散型随机变量期望与方差引言离散型随机变量是概率论与统计学中的重要概念之一。
在处理离散型随机变量时,我们经常需要计算其期望与方差,以帮助我们了解变量的分布特征。
本文将详细介绍离散型随机变量的期望与方差的定义及其计算方法。
期望的定义与计算离散型随机变量的期望表示了该随机变量可能取值的加权平均。
如果离散型随机变量X的取值为x1, x2, …, xn,对应的概率为p1, p2, …, pn,那么随机变量X的期望可以通过以下公式计算:E(X) = x1 * p1 + x2 * p2 + … + xn * pn其中E(X)表示变量X的期望。
下面以一个简单的例子来说明期望的计算过程。
假设某班级有10个学生,他们的考试成绩(以百分制计)分别为60、70、80、90、90、80、70、80、90、60,对应的概率分别为0.1、0.2、0.1、0.2、0.1、0.05、0.1、0.1、0.05、0.1。
现在我们来计算这些考试成绩的期望。
60 * 0.1 + 70 * 0.2 + 80 * 0.1 + 90 * 0.2 + 90 * 0.1 + 80 * 0.05 + 70 * 0.1 + 80 * 0.1 + 90 * 0.05 + 60 * 0.1 = 79所以,这些考试成绩的期望为79。
方差的定义与计算离散型随机变量的方差反映了该变量的取值相对于其期望的离散程度。
方差的计算公式如下所示:Var(X) = E((X - E(X))²) = (x1 - E(X))² * p1 + (x2 - E(X))² * p2 + … + (xn - E(X))² * pn其中Var(X)表示变量X的方差。
方差的计算比较繁琐,但仍然是可行的。
我们可以利用先前计算得到的X的期望,将其带入方差计算公式中,即可求得方差的值。
继续以前面的例子进行说明,我们已经计算得到班级考试成绩的期望为79。
离散型随机变量的分布列、期望与方差
=2.752.
学例2 (2008·广东卷)随机抽取某厂的某种
产品200件,经质检,其中有一等品126件、 二等品50件、三等品20件、次品4件.已知生 产1件一、二、三等品获得的利润分别为6万 元、2万元、1万元,而1件次品亏损2万元.设 1件产品的利润为ξ(单位:万元).
(1)求ξ的分布列;
(2)求1件产品的平均利润(即ξ的数学期望);
ξ
0
1
…
M
P
C C 0 n0 M NM
C C 1 n1 M NM
CNn
CNn
…
C C m nm M NM
CNn
为⑦超几何分布列.如果随机变量ξ的分布列为超
几何分布列,则称随机变量ξ服从超几何分布.
3.离散型随机变量的分布列的性质 ⑧ Pi≥0,P1+P2+…+Pi+…=1 (i=1,2,3,…) . 4.离散型随机变量的均值 若离散型随机变量ξ的分布列为:
是随机变量的特征数,期望反映了随 机变量的平均取值,方差与标准差都 反映了随机变量取值的稳定与波动、 集中与离散的程度.在进行决策时,一 般先根据期望值的大小来决定,当期 望值相同或相差不大时,再去利用方 差决策.
备选题
某工厂每月生产某种产品三件,经检测发 现,工厂生产该产品的合格率为45.已知生产 一件合格品能盈利25万元,生产一件次品将 亏损10万元.假设该产品任何两件之间合格与 否相互之间没有影响.
设随机变量ξ表示在取得合格品以前
已取出的不合格品数,则ξ=0,1,2,3,
可得P(ξ=0)=
9 12
,
P(ξ=1)=
3× 9
12 11
=
9 44
,
2023版高考数学一轮总复习11-2离散型随机变量及其分布列均值与方差课件
例 (2020山东泰安三模)某水果批发商经销某种水果(以下简称A水果),购 入价为300元/袋,并以360元/袋的价格售出,若前8小时内所购进的A水果 没有售完,则批发商将没售完的A水果以220元/袋的价格低价处理完毕 (根据经验,2小时内完全能够把A水果低价处理完,且当天不再购进).该水 果批发商根据往年的销量,统计了100天内A水果在每天的前8小时的销售 量,制成如下条形统计图.
+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机
变量X服从超几何分布.
4.离散型随机变量的均值与方差
1)均值的定义:一般地,若离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望,它反映了离散 型随机变量取值的平均水平.
2
3)=P(ξ=-3)= 1 ,P(ξ=1)=P(ξ=-1)= 3,故随机变量|ξ|的分布列为
8
8
|ξ|
1
故E(|ξ|)=1×3 +3× 1= ,3
4
42
D(|ξ|)=1
3 2
2
×
3+
4
3
3 2
2
×
=14
.故3 选B.
4
答案 B
应用 利用均值、方差进行决策 解决均值、方差实际问题的策略 1)把握“1”实质:随机变量的均值反映了随机变量取值的平均水平,方差 反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变 量,是实际生产中用于方案取舍的重要理论依据. 2)运用“2”策略: ①当均值不同时,两个随机变量取值的水平有区别,可直接对问题作出判断. ②若两随机变量的均值相同或相差不大,则可通过方差来研究两随机变 量的离散程度或者稳定程度,进行决策.
离散型随时机变量的期望与方差
2.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一 旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实 施结果:
投资成功 192次
投资失败 8次
则该公司一年后估计可获收益的期望是________元. 答案:4 760
3.已知 ξ服从二项分布,即ξ~B(100, ),则E(2ξ+3)=________. 解析:由已知Eξ=100× =50,∴E(2ξ+3)=2Eξ+3=103. 答案:103
【答题模板】
解答:根据已知条件随机变量x的取值分别是1,2,3.
P(x=1)=
,P(x=2)=
P(x=3)=
则随机变量ξ的分布列为
x
1
2
3
ξ
Eξ= +1+ =
【分析点评】
1. 离散型随机变量的期望和方差是高考考查离散型随机变量分布列的重 点.高考中也考查二项分布和几何分布相关的分布列及期望和方差.
复试验,故ξ~B(5, ),即有P(ξ=k)=
,k=0,1,2,3,4,5.
由此计算ξ的分布列如解法一.
(2)Eξ=
.
解法三:(1)同解法一或解法二. (2)由对称性与等可能性,在三层的任一层下电梯的人数同分布, 故期望值相等.即3Eξ=5,从而Eξ= .
变式2. 2010年广州亚运组委会向民间招募防暴犬,首先进行入围测试,计划考 查三类问题:①体能;②嗅觉;③反应,这三类问题中只要有两类通过测试, 就可以入围.某驯犬基地有4只优质犬参加测试,已知这4只优质犬通过①类问 题的概率都是 ,通过②类问题的概率都是 , 通过③类问题的概率都是 . (1)求每只优质犬能够入围的概率; (2)若每入围1只优质犬给基地计10分,设基地得分为随机变量ξ,求Eξ.
离散型随机变量的分布列,期望与方差
1、随机变量:
如果随机试验的结果可以用一个变量来表示, 那么这样的变量叫做随机变量.随机变量常用 希腊字母 ξ、η 等表示.
随机变量将随机事件的结果数量化.
问题:某人射击一次,可能出现哪些结果?
若设射击命中的环数为ξ, 则ξ是一个随机变量. ξ可取0,1,2,…,10. ξ=0,表示命中0环;
(1). pi 0, i 1,2,3,
(2). p1 p2 p3 1
例1、某一射手射击所得环数的分布列如下:
ξ 4 5 6 7 8 9 10
p 0.02 0.04 0.06 0.09 0.28 0.29 0.22
求此射手“射击一次命中环数≥7”的概 率
一般地,离散型随机变量在某一范围内的概 率等于它取这个范围内各个值的概率之和。
例1.设p是 非 负 实 数, 随 机 变 量的 概 率 分 布为
0
1
2
P
1 p 2
p
1 2
则E的 最 大 值 为______,D的 最 大 值 为______
例2.A、B是 治 疗 同 一 种 疾 病 的 两种 药 , 用 若 干 实 验 组 进 行 对 比 实 验 。每 个 试 验 组 由4个 小 白 鼠 组 成 , 其 中2只 服 用A, 另2只 服 用B, 然 后 观 察 疗 效 。 若 在 一 个 试 验 组中 , 服 用A有 效 的 小 白 鼠 的 只 数 比 服 用B有 效 的 多 , 就 称 该 试 验组 为 甲 类
写出ξ的分布列. 解: 随机变量ξ的可取值为 1,2,3.
当ξ=1时,即取出的三只球中的最小号码为1,则其它
两只球只能在编号为2,3,4,5的四只球中任取两只,故
有P(ξ=1)=
专题十一 概率与统计 第三十五讲离散型随机变量的分布列期望与方差
专题十一 概率与统计第三十五讲离散型随机变量的分布列、期望与方差一、选择题1.(2018全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.32.(2018浙江)设01p <<,随机变量ξ的分布列是0 1 2则当p 在(0,1)内增大时,A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小 3.(2017浙江)已知随机变量i ξ满足(1)i i P p ξ==,(0)1i i P p ξ==-,i =1,2.若12102p p <<<,则 A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ 4.(2014浙江)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2i i ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A .()()1212,p p E E ξξ><B .()()1212,p p E E ξξ<>C .()()1212,p p E E ξξ>>D .()()1212,p pE E ξξ<<二、填空题5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,Χ表示抽到的二等品件数,则DX = .6.(2016年四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .7.(2014浙江)随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=__. 三、解答题8.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型第一类 第二类 第三类 第四类 第五类 第六类 电影部数140 50 300 200 800 510 好评率 0.4 0.2 0.15 0.25 0.2 0.1 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.9.(2018全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?10.(2018天津)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.11.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4以最高气温位于各区间的频率代替最高气温位于该区间的概率。
第十一讲:离散性随机变量的分布列、期望、方差
一、知识点回顾:1.从函数的观点来看,P(ξ=x k )=P k ,k =1, 2, …,n ,…称为离散型随机变量ξ的概率函数或概率分布。
2.离散型随机变量分布列的性质(1) 所有变量对应的概率值(函数值)均为非负数,即i P . (2) 所有这些概率值的总和为 即123P P P +++=.(3) 根据互斥事件的概率公式,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的3.若离散型随机变量ξ的分布列为(),i i P x P ξ==1,2,3,,,i n =.则称E ξ=为ξ的数学期望.它反映了离散型随机变量取值的平均水平.4.对于随机变量ξ,称D ξ= 为ξ的方差.D ξ的算术平方根σξ=叫做ξ的标准差.随机变量ξ的方差与标准差都反映了随机变量取值的 .5.数学期望与方差的性质:若a b ηξ=+(,ξη为随机变量),则()E E a b ηξ=+= ,()D D a b ηξ=+= .6.二项分布:如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率()P k ξ==,有了这个函数,就能写出它的分布列,由于()1n k k k n C P P --是二项式展开式()1nP P ⎡-+⎤⎣⎦的通项,所以称这个分布为二项分布列,记作()~,.B n P ξ则(),1.E nP D nP P ξξ==-6. 几何分布:在独立重复试验中一次随机试验中某事件发生的概率是p ,该事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量. “ξ=k ”表示在第k 次独立重复试验时事件第一次发生.()P k ξ==有了这个函数,就能写出它的分布列,则称这样的随机变量ξ服从几何分布,并记1(,)g p q p -=k k ,其中1q p =-,1,2,3, k =.注:如果随机变量ξ服从几何分布即 ()(,)P g p ξ==k k , 则21,q E D ppξξ==.二、基础练习:1.设集合{2},{3},M x x P x x =>=<""x M x P ∈∈那么或""x M P ∈ 是的 ( B ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2. 设全集∪={x |1≤x <9,x ∈N},则满足{}{}1,3,5,7,81,3,5,7U C B ⋂=的所有集合B 的个数有( D )A .1个 B .4个 C .5个 D .8个 3.已知集合M ={(x ,y )︱y =29x-},N ={(x ,y )︱y =x +b },且M ∩N =∅,则实数b 应满足的条件是( D )A .︱b ︱≥23B .0<b <2C .-3≤b ≤23D .b >23或b <-34.“a=2”是“直线ax+2y=0平行于直线x+y=1”的 ( C ) A.充分而不必要条件B.必要而不充分条C.充分必要条件D.既不充分也不必要条件5.已知集合A={}4,3,2,1,那么A 的真子集的个是 15 .6.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是112k -≤≤.7.设全集U=R ,A=(2){|21},{|ln(1)}x x x B x y x -<==-,则右图中阴影部分表示的集合为 (0,2),(,1)A B ==-∞ . 三、例题解析:例1、袋子中有1个白球和2个红球.⑴ 每次取1个球,不放回,直到取到白球为止.求取球次数ξ的分布列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十一 概率与统计第三十五讲离散型随机变量的分布列、期望与方差一、选择题1.(2018全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.32.(2018浙江)设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小 3.(2017浙江)已知随机变量i ξ满足(1)i i P p ξ==,(0)1i i P p ξ==-,i =1,2.若12102p p <<<,则 A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ 4.(2014浙江)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2i i ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A .()()1212,p p E E ξξ><B .()()1212,p p E E ξξ<>C .()()1212,p p E E ξξ>>D .()()1212,p pE E ξξ<<二、填空题5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX = .6.(2016年四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .7.(2014浙江)随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=__. 三、解答题8.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.9.(2018全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?10.(2018天津)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.11.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?12.(2017江苏)已知一个口袋有m 个白球,n 个黑球(m ,n ∈*N ,2n ≥),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m n +的抽屉内,其中第k 次取球放入编号为k 的抽屉(k =1,2,3,…,m n +).(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明()()(1)n E X m n n <+-. 13.(2017天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.14.(2017山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者1A ,2A ,3A ,4A ,5A ,6A 和4名女志愿者1B ,2B ,3B ,4B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含1A 但不包含1B 的频率。
(Ⅱ)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 15.(2017北京)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(Ⅱ)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(Ⅲ)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)16.(2016年全国I)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?17.(2015福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.18.(2015山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .19.(2015四川)某市,A B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.20.(2014新课标1)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若Z ~2(,)N μσ,则()P Z μσμσ-<<+=0.6826,(22)P Z μσμσ-<<+=0.9544.21.(2014山东)乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.22.(2014辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(Ⅱ)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .23.(2014广东)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36,根据上述数据得到样本的频率分布表如下:分组 频数 频率[25,30 ] 3 0.12(30,35 ] 5 0.20(35,40 ] 8 0.32(40,45 ] 1n 1f(45,50 ] 2n 2f(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.24.(2014安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).25.(2013新课标1)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.26.(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望.(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)27.(2012新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.28.(2012山东)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为43,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率是32,每命中一次得2分,没命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX .29.(2012福建)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:将频率视为概率,解答下列问题:(I )从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(II )若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车,若从经济效益的角度考虑,你认为应该生产哪种品牌的轿车?说明理由.30.(2011北京)以下茎叶图记录了甲、乙两组个四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.1 1 1 09 9 0 X 8 9乙组甲组(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望.(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)31.(2011江西)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别林老师网络编辑整理能力.(1)求X的分布列;(2)求此员工月工资的期望.林老师网络编辑整理。