函数对称性,周期性的应用
函数的对称与周期
函数的对称与周期在数学中,函数的对称和周期是重要的概念。
它们不仅在数学理论中有着广泛的应用,而且在实际问题中也有着重要的意义。
本文将探讨函数的对称性和周期性,并分别对两个概念进行详细说明。
一、函数的对称性函数的对称性是指函数图像关于某个轴、点或面具有对称的性质。
在这里,我将介绍函数的三种常见对称性:关于y轴对称、关于x轴对称和关于原点对称。
1. 关于y轴对称如果函数f(x)满足f(-x)=f(x),那么它具有关于y轴对称的性质。
这意味着函数图像在y轴上的任意一点关于y轴有对称的点。
例如,函数f(x)=x^2就是一个关于y轴对称的函数,因为f(-x)=(-x)^2=x^2。
2. 关于x轴对称如果函数f(x)满足f(x)=-f(x),那么它具有关于x轴对称的性质。
这意味着函数图像在x轴上的任意一点关于x轴有对称的点。
例如,函数f(x)=sin(x)就是一个关于x轴对称的函数,因为sin(-x)=-sin(x)。
3. 关于原点对称如果函数f(x)满足f(-x)=-f(x),那么它具有关于原点对称的性质。
这意味着函数图像在原点上的任意一点关于原点有对称的点。
例如,函数f(x)=x^3就是一个关于原点对称的函数,因为f(-x)=(-x)^3=-x^3。
二、函数的周期性函数的周期性是指函数在某个间隔内具有重复的性质。
在函数图像中,这个间隔被称为函数的周期。
常见的周期函数有正弦函数和余弦函数。
1. 正弦函数正弦函数f(x)=sin(x)是一个以2π为周期的函数。
也就是说,对于任意的实数k,f(x+k*2π)=f(x)。
正弦函数的图像是一个波浪状的曲线,它在每个2π的间隔内重复。
2. 余弦函数余弦函数f(x)=cos(x)也是一个以2π为周期的函数。
也就是说,对于任意的实数k,f(x+k*2π)=f(x)。
余弦函数的图像也是一个波浪状的曲线,它和正弦函数的图像非常相似,只是相位有所不同。
函数的对称性和周期性在数学中有着广泛的应用。
函数性质的八大题型综合应用(解析版)-高中数学
函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。
函数的周期性与对称性
函数的周期性与对称性函数是数学中的重要概念之一,它描述了数值之间的对应关系。
在函数的研究中,周期性与对称性是两个重要的性质。
本文将从理论和实际应用的角度,探讨函数的周期性与对称性。
一、周期性函数的周期性是指在一定的范围内,函数的值以一定的规律重复出现。
如果存在一个正数T,对于函数f(x)的定义域内的任意x,有f(x+T) = f(x),则称函数f(x)具有周期T,T是函数的周期。
周期性在数学中广泛应用于波动现象的研究中,如正弦函数和余弦函数就是典型的周期性函数。
以正弦函数为例,函数f(x) = sin(x)的周期为2π,即在每一个2π的区间内,函数的值重复出现。
这种周期性的特征在物理学中非常重要,可以用于描述电磁波、声波等的传播规律。
在实际应用中,周期性函数经常用于天文学、物理学、电路分析等领域。
例如,利用函数的周期性可以预测天体运动的规律,分析电子元件的交流电路,优化信号处理等。
二、对称性函数的对称性是指在某种变换下,函数的值保持不变。
常见的对称性有奇偶对称性和轴对称性。
1. 奇偶对称性函数f(x)具有奇对称性,如果对于定义域内的任意x,有f(-x) = -f(x)。
奇对称函数在坐标系中以原点为对称中心,左右两侧关于y轴对称。
以奇对称函数f(x) = sin(x)为例,可以观察到f(x)关于原点对称。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在负半轴上取负值。
函数的奇对称性在数学和工程中都具有广泛应用。
例如在电力系统中,交流电流的正弦波形就是一种典型的奇对称函数。
2. 轴对称性函数f(x)具有轴对称性,如果对于定义域内的任意x,有f(-x) = f(x)。
轴对称函数关于y轴对称,即函数图像关于y轴对称。
以轴对称函数f(x) = x^2为例,可以观察到函数图像在y轴上是对称的。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在正半轴上同样取正值。
轴对称函数在几何学和图像处理中有广泛应用。
三角函数的周期性和对称性
三角函数的周期性和对称性三角函数是数学中的重要概念,涉及到周期性和对称性等性质。
本文将介绍三角函数的周期性和对称性,并探讨它们在数学和物理中的应用。
一、周期性周期性是指函数在一定间隔内以相同的形态重复出现的性质。
对于三角函数而言,正弦函数(sin)和余弦函数(cos)是周期函数,其周期为2π。
1. 正弦函数的周期性正弦函数的图像呈现周期性的波动,可以用来描述周期性的现象。
例如,我们可以用正弦函数来描述地球上的日照时间变化,昼夜交替的现象。
2. 余弦函数的周期性余弦函数也是周期函数,其图像与正弦函数呈现相似的周期性波动。
余弦函数常用来描述振动、波动等周期性现象,比如振动的电路和机械系统。
二、对称性对称性是指函数图像在某一特定条件下表现出镜像对称、中心对称等性质。
1. 奇函数的对称性奇函数具有关于原点的对称性,即满足f(-x)=-f(x)。
例如,正弦函数和正切函数都是奇函数,它们在原点处对称。
2. 偶函数的对称性偶函数具有关于y轴的对称性,即满足f(-x)=f(x)。
例如,余弦函数是偶函数,它在y轴上对称。
三、应用场景1. 数学应用三角函数的周期性和对称性在数学分析、几何图形等领域有广泛应用。
例如,对于周期性函数的积分计算、傅里叶级数展开等问题,周期性和对称性的性质能够简化计算,提高效率。
2. 物理应用三角函数的周期性和对称性在物理学中具有重要作用。
例如,在振动和波动的研究中,正弦函数和余弦函数可以描述物体的周期性运动和波动现象。
此外,在电路分析、信号处理等领域,三角函数的周期性和对称性也有广泛的应用。
结语三角函数的周期性和对称性是数学中的重要概念,在数学和物理学中有广泛应用。
正弦函数和余弦函数作为最基本的三角函数,具有明显的周期性和对称性,能够描述周期性现象和对称性图形。
在解决一系列数学和物理问题时,充分利用三角函数的周期性和对称性的性质,能够简化计算过程,提高问题求解的效率和准确性。
函数的对称性和周期性
函数的对称性和周期性一、单个函数的对称性性质1:函数()y f x =满足()()f a x f b x +=-时,函数()y f x =的图象关于直线2a bx +=对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线2a bx +=的对称点11(,)a b x y +-,当1x a b x =+-时 11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==故点11(,)a b x y +-也在函数()y f x =图象上。
由于点11(,)x y 是图象上任意一点,因此,函数的图象关于直线2a bx +=对称。
(注:特别地,a =b =0时,该函数为偶函数。
)性质2:函数()y f x =满足()()f a x f b x c ++-=时,函数()y f x =的图象关于点(2a b +,2c)对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于点(2a b +,2c )的对称点(1a b x +-,c -y 1),当1x a b x =+-时,1111()[()]()f a b x c f b b x c f x c y +-=---=-=-即点(1a b x +-,c -y 1)在函数()y f x =的图象上。
由于点11(,)x y 为函数()y f x =图象上的任意一点可知 函数()y f x =的图象关于点(2a b +,2c)对称。
(注:当a =b =c =0时,函数为奇函数。
)性质3:函数()y f a x =+的图象与()y f b x =-的图象关于直线2b ax -=对称。
证明:在函数()y f a x =+上任取一点11(,)x y ,则11()y f a x =+,点11(,)x y 关于直线2b ax -=对称点(1b a x --,y 1)。
函数与函数的对称性与周期性
函数与函数的对称性与周期性函数是数学中的重要概念,它描述了一种关系,将一个自变量映射到一个因变量。
而函数的对称性和周期性是函数研究中的两个重要性质。
它们不仅在数学中有广泛的应用,而且在日常生活中也有很多实际的例子。
一、函数的对称性函数的对称性是指函数在某个特定的变换下保持不变。
常见的对称性有奇偶性、轴对称性和中心对称性。
首先,奇偶性是指当自变量取相反数时,函数值不变。
如果函数f(x)满足f(-x) = f(x),则该函数是偶函数;如果函数f(x)满足f(-x) = -f(x),则该函数是奇函数。
例如,常见的二次函数y = x²就是一个典型的偶函数,而正弦函数sin(x)则是一个典型的奇函数。
奇偶函数通过其特定的对称性带来了许多在数学和物理领域中的应用。
其次,轴对称性是指函数相对于某一条直线对称。
这条直线称为对称轴。
如果函数f(x)满足f(-x) = f(x),则对称轴为y轴;而如果函数f(x)满足f(x) = f(-x),则对称轴为x轴。
例如,二次函数y = x²是以y轴为对称轴的轴对称函数。
最后,中心对称性是指函数相对于一个点对称。
这个点称为中心。
如果函数f(-x) = -f(x),则中心对称。
例如,正弦函数sin(x)就是以原点为中心的中心对称函数。
二、函数的周期性函数的周期性是指函数在特定距离上具有相同的性质或数值。
一个函数f(x)是周期函数,如果存在一个正数T使得对于任意自变量x,有f(x+T) = f(x)。
这个最小的正周期T被称为函数的周期。
常见的周期函数有三角函数(如正弦函数、余弦函数)和指数函数。
以正弦函数为例,它的周期是2π。
即对于任意自变量x,有sin(x+2π)= sin(x)。
而指数函数f(x) = eˣ的周期是无穷大,即对于任意自变量x,有f(x+T) = f(x),其中T可以是任意实数。
周期函数在自然科学和工程技术中有着广泛的应用。
例如,交流电的电流和电压可以被建模为周期函数,这是交流电工程中的一个重要应用。
函数的周期性与对称性
函数的周期性与对称性函数是数学中的重要概念,它描述了因变量与自变量之间的关系。
而函数的周期性与对称性是函数特性中的两个重要方面。
本文将通过介绍周期性和对称性的概念、性质和应用,探讨函数在周期性和对称性方面的重要性。
一、周期性在数学中,周期性是指函数在一定范围内具有重复的规律。
一个函数被称为周期函数,当且仅当对于某个正数T(常称为周期),对于所有的x,有f(x+T)=f(x)成立。
周期函数的图像在周期T内会重复出现。
周期性的性质有以下几点:1. 周期函数的图像在一个周期内具有相同的形状,只是位置不同。
例如,正弦函数sin(x)是一个周期函数,其周期为2π,在每个周期内,函数的图像呈现出相同的波形。
2. 周期函数的周期可以是任意正数T,且T可以大于函数定义域的长度。
例如,正弦函数的定义域为实数集R,但其周期为2π。
这意味着正弦函数在每个2π的间隔内都重复。
3. 余弦函数cos(x)也是一个周期函数,其周期也为2π。
不同的是,余弦函数与正弦函数的图像关于y轴对称。
周期函数的应用十分广泛,例如在物理学、工程学和信号处理等领域中都有重要的应用。
周期函数可以用来描述周期振动、交流电信号的变化以及周期性运动等现象。
二、对称性对称性是指函数在某种变换下具有不变性。
主要有以下几种对称性:1. 奇函数:如果对于函数的每一个定义域上的x,都满足f(-x)=-f(x)成立,则称该函数为奇函数。
奇函数的图像关于原点对称。
例如,正弦函数sin(x)是一个奇函数。
2. 偶函数:如果对于函数的每一个定义域上的x,都满足f(-x)=f(x)成立,则称该函数为偶函数。
偶函数的图像关于y轴对称。
例如,余弦函数cos(x)是一个偶函数。
3. 周期函数的对称性:周期函数的图像具有一定的对称性。
例如,正弦函数与余弦函数在每个周期内具有对称性。
对称函数具有一些重要的性质和应用。
在数学中,奇函数和偶函数具有一些特殊的性质,可以简化函数的运算和分析。
函数的周期性与对称性
【例2】 f(x)是定义在R上的以3 为周期的奇函数,且 f ( 2 )= 0 , 则方程 f ( x )= 0 在区间( 0 , 6 ) 内解的个数的最小值是 ( ) A.2
C.4
B.3
D. 5
【解析】
∵ f ( x )为奇函数, ∴ f ( 0 )= 0 ,又 函数f(x)以3为周期,且f(2)=0, ∴f(-2)=0,f(1)=0,f(4)= 0,f(3)=0,f(5)=0, ∴在区间(0,6)内的解有1,2,3, 4,5.故选D.
3、关于点(a,0)对称
练习:求函数y=f(x)关于点(a,0)对称的解析 式 答案:y=-f(2a-x) 结论:⑴-f(2a-x)与f(x)的图形关于点(a,0)对称
⑵一个函数y=f(x)本身关于点(a,0)对称,有 f(x)=-f(2a-x)即f(x)+f(2a-x)=0
函数周期性解题的一道经典试题
2、关于直线y=b对称 ⑴函数y=f(x)关于x轴(y=0)对称的函数是y=-f(x)
⑵求函数y=f(x)关于直线y=b对称的函数解析式
解:设(x,y)是所求曲线上任意一点,它关于直 线y=b的对称点为(x,y1),从而y1=f(x)而 y1-b=b-y故y1=2b-y,于是y=2b-f(x) 结论:f(x)与g(x)的图象关于直线y=b对称,则 f(x)+g(x)=2b反之也成立
区间上单调性相反
⑵求函数y=f(x)关于直线x=a对称的函数解析 式 解:用相关点法,设(x,y)是所求曲线上任意 一点,则它关于直线x=a的对称点为(x1,y) 在函数y=f(x)图象上,故y=f(x1),而 x1-a=a-x所以x1=2a-x,于是y=f(2a-x)即为 所求 结论:y=f(x)与y=f(2a-x)的图象关于直线x=a 对称
函数的对称性、周期性以及之间的关系
函数的对称性、周期性以及之间的关系对称性、奇偶性、周期性、单调性函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础.在研究函数图象的对称性时,一定要区分是一个图象自身的对称(称之为“自对称”),还是两个函数图象间的对称(称之为“互对称”)。
函数的对称性指的是函数的图象的对称性,通常包括点对称和直线对称,即中心对称和轴对称。
自对称一、函数的对称性关于函数图象的对称性,我们有这样两个命题。
命题1:如果函数y=f(x)的图像关于点M(m, n)对称,那么f (m +x) + f (m-x)=2n 即f(x)+f(2m-x)=2n命题2:如果函数y=f(x)的图像关于直线x=m对称,那么f (m +x) = f (m-x)即f (x) = f (2m-x)二、函数的奇偶性与对称性的联系命题1:函数y=f(x)的图像关于点M(0, 0)对称的充要条件是函数y= f (x)是奇函数,即f (x) + f (-x) = 0命题2:函数y=f(x)的图像关于点直线x=0对称的充要条件是函数y= f (x)是偶函数,即f (x) = f (-x)三、函数的周期性与对称性的联系包括点点对称、线线对称、点线对称的周期性命题:①若函数y = f (x) 图像同时关于点A (m ,c)和点B (n ,c)成中心对称(m ≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.②若函数y = f (x) 图像同时关于直线x = m 和直线x = n成轴对称(m≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.③若函数y = f (x)图像既关于点A (m ,c) 成中心对称又关于直线x =n成轴对称(m≠n),则y = f (x)是周期函数,且4| m-n|是其一个周期.(同为中心对称或同为轴对称乘2;一中心对称一轴对称乘4)四、函数的奇偶性、周期性和对称性的联系奇偶性只是特殊的点线对称。
第2讲 函数的对称性与周期性(解析版)-2024高考数学常考题型
第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。
专题05 函数的对称性、周期性及其应用-备战2019年高考数学之高三复习大一轮热点聚焦与扩展(解析版)
专题05 函数的对称性、周期性及其应用【热点聚焦与扩展】高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 2、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭中心对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
(完整版)函数的对称性与周期性
函数的对称性与周期性吴江市盛泽中学数学组 徐建东对称性:函数图象存在的一种对称关系,包括点对称和线对称。
周期性:设函数)(x f 的定义域是D ,若存在非零常数T ,使得对任何D x ∈,都有D T x ∈+且)()(x f T x f =+,则函数)(x f 为周期函数,T 为)(x f 的一个周期。
对称性和周期性是函数的两大重要性质,他们之间是否存在着内在的联系呢?本文就来研究一下它们之间的内在联系,有不足之处望大家批评指正。
一、一个函数关于两个点对称。
命题1:如果函数)(x f y =的图象关于点)0,(a 和点)0,(b )(a b ≠对称,那么函数)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
证明:∵函数)(x f y =的图象关于点)0,(a 对称,∴)2()(x a f x f --=对定义域内的所有x 成立。
又∵函数)(x f y =的图象关于点)0,(b 对称,∴)2()(x b f x f --=对定义域内的所有x 成立。
从而)2()2(x b f x a f -=-∴)()]2(2[)]2(2[x f x b b f x b a f =--=-- 即:)()])22[(x f x b a f =+- ∴)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
特例:当0=a 时,)(x f y =为奇函数,即奇函数)(x f y =如果又关于点)0,(b )0(≠b 对称,那么函数)(x f y =是周期函数,b T 2=为函数)(x f y =的一个周期。
命题1':如果函数)(x f y =的图象关于两点),(b a 和),(d c 对称,那么: 当d b =,c a ≠时,)(x f y =是周期函数,)(2c a T -=为函数)(x f y =的一个周期。
当d b ≠,c a ≠时,)(x f y =不是周期函数。
函数图像对称性与周期性的内在联系
函数图像对称性与周期性的内在联系
首先,我们来看函数图像的对称性。
函数图像的对称性是指在其中一
种变换下,函数图像关于一些轴或一些点对称。
常见的对称性有关于x轴
对称、关于y轴对称和关于原点对称。
对称轴可以是x轴、y轴或者斜线。
对称性的存在可以为我们研究和描绘函数图像提供方便。
接下来,我们来看函数图像的周期性。
函数的周期性是指函数图像在
一定的横向位移后可以重复。
函数的周期性是由函数的定义域和函数值域
确定的,可以是有限的或者无限的。
周期函数的图像可以在一个周期内部
推出整个函数的形状,减少了绘制图像的工作量。
其次,周期函数的图像可以通过对称性来简化绘制。
以正弦函数为例,它的一个周期是2π。
我们只需要绘制出函数在一个周期内的图像,然后
通过平移来得到整个函数的图像。
通过对称性,我们可以只需要绘制函数
在0到π/2之间的图像,然后通过对称来得到其他区间的图像。
这样可
以大幅度减少绘制的工作量。
此外,周期函数的对称轴也可以通过对称性来确定。
以正弦函数为例,它的对称轴就是x轴。
正弦函数的一个周期是2π,它在π/2和3π/2
处取得最大值和最小值。
根据对称性,我们可以知道在π/2加上半个周
期后,函数图像又将返回到最大值和最小值的位置。
函数及其应用函数的奇偶性对称性与周期性课件理ppt
函数可以用不同的方式表示,如表格、图形、数学表达式等。
函数的分类与表示
函数的单调性
函数的基本性质
函数的奇偶性
函数的对称性
函数的周期性
奇偶性对称性
02
对于函数f(x),如果对于任意的x∈D,都有f(-x)=-f(x),那么f(x)就是奇函数。
奇函数
对于函数f(x),如果对于任意的x∈D,都有f(-x)=f(x),那么f(x)就是偶函数。
最小正周期
练习题
05
判断函数奇偶性、判断函数对称性、判断函数周期性、区分函数单调性和凹凸性、求函数的渐近线、判断函数有无界性。
总结词
本题要求考生通过分析函数的表达式和图像,判断函数的奇偶性、对称性、周期性,以及区分函数单调性和凹凸性,求函数的渐近线,判断函数有无界性。
详细描述
判断题
总结词
识别函数图像、应用函数性质解题、应用函数图像解题、求函数定义域和值域、求解函数的极值和最值。
常见函数的对称性
常见函数的周期性
如果存在一个非零常数T,使得对于任意x∈D,都有f(x+T)=f(x),则称f(x)为周期函数,T为它的一个周期。如正弦、余弦、正切等三角函数均为周期函数。
周期函数
如果在区间[a,b]上存在非零常数k,使得对于任意x∈[a,b],都有f(x+k)=f(x),则称[a,b]为f(x)的一个周期区间,k为它的一个周期。所有周期区间中最小的那个区间所对应的周期称为最小正周期。如正弦函数的周期区间为[-π,π],最小正周期为2π。
01
02
03
04
05
最小正周期
对于形如y=A sin(wx+ф)或y=A cos(wx+ф)的函数,其最小正周期为2π/w。
函数单调性奇偶性周期性和对称性的综合应用.docx
函数单调性、奇偶性、周期性和对称性的综合应用例1、设金)是定义在R 上的奇函数,Hy = /⑴的图象关于直线"丄对称,则/(i )+ 2/⑵+/⑶+/⑷+/(5)=_() ________________ .【考点分析】本题考查函数的周期性解析:y(-o) = -/(o)得/(0)= 0,假设/(n) = 0 因为点 (-n , 0)和点 J + 1,0〉关于 x = i 对称,所以 f (n +1) = /(-H )== 0 因此,对一切正整数〃都有:f(〃) = 0从而:/(1) + /(2)+ /⑶+ /(4)+ /(5)= 0。
本题答案填写:0例2、(2006福建卷)已知/(x)是周期为2的奇函数,当O< x< 1时,f(x) = lgx. 设 =/(|),c=/(|),则J 厶 乙(A) a <b<c (B) b<a<c (C) c<b< a (D) c<a<b解:已知/(兀)是周期为2的奇函数,当0 vxvl 时,/(x) = lgx 设 = = = & = /(|) =/(-|) = -/(|), c = /(|) = /(|)<0, Ac<a<b 选 D.例3、(安徽卷理〉函数/(对对于任意实数兀满足条件/(兀+ 2)= 命,若/⑴二-5,则/(/(5)) = ____________ 。
【考点分析】本题考查函数的周期性与求函数值,中档题。
/(/(5)) = /(-5) = /(-1) = 7^ = 4°【窥管之见】函数的周期性在高考考查中除了在三角函数中较为直接考查外,一则回原位”则一通尽通也。
例 4、设/(x)是(-oo,-too)上的奇函数,f(x + 2)= -f(x),当 0W 兀W1 时,/(x) = x , 则/(7.5)等于() A.0.5 B.-0.5 C 」.5 D.-1.5解析:由/(x + 2)= —/(兀)=>/(7.5)= —/(5.5)= /(3.5)= -/(1.5)= /(—0.5),又/⑴ 是奇函数,/(-0.5)= -/(0.5)= -0.5 ,故选择 B 。
函数对称性、周期性的应用(含解析)
函数对称性、周期性的应用高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称 在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可.例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分: 若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有② 本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称 在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和()()f a x f a x -=+⇔()f x x a =0a =()()()f a x f b x f x -=+⇔2a b x +=()()f a x f b x -=+f x ,a b 2a b x +=()f x 1x =()()2f x f x ⇒=-()()31f x f x -=-+()f x ()f x a +()()f x a f x a +=-+()f x x a =()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=-+⎡⎤⎣⎦()f x x ()()f x a f x a +=-+⎡⎤⎣⎦()f x a +()f x a +0x =()f x ()f x a +a a ()f x x a =()()f a x f a x -=-+⇔()f x (),0a 0a =()()()f a x f b x f x -=-+⇔,02a b +⎛⎫ ⎪⎝⎭()()f a x f b x -=-+f前面的符号均相反;二是的取值保证为所给对称中心即可.例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称.① 要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分: 若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有② 本结论也可通过图像变换来理解,是奇函数,则关于中心对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称中心)对称(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同(二)函数的周期性1、定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期2、周期性的理解:可理解为间隔为的自变量函数值相等3、若是一个周期函数,则,那么,即也是的一个周期,进而可得:也是的一个周期4、最小正周期:正由第3条所说,也是的一个周期,所以在某些周期函数中,往往寻找x ,a b 2a b x +=()f x ()1,0-()()2f x f x ⇒=---()()35f x f x -=--+()f x ()f x a +()()f x a f x a +=--+()f x (),0a ()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=--+⎡⎤⎣⎦()f x x ()()f x a f x a +=--+⎡⎤⎣⎦()f x a +()f x a +()0,0()f x ()f x a +a a ()f x (),0a ()f x D x D ∀∈T ()()f x T f x +=()f x T ()f x T ()f x ()()f x T f x +=()()()2f x T f x T f x +=+=2T ()f x ()kT k Z ∈()f x ()kT k Z ∈()f x周期中最小的正数,即称为最小正周期.然而并非所有的周期函数都有最小正周期,比如常值函数5、函数周期性的判定:(1):可得为周期函数,其周期(2)的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期(3)的周期 分析: (4)(为常数)的周期分析:,两式相减可得:(5)(为常数)的周期(6)双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设)① 若的图像关于轴对称,则是周期函数,周期分析:关于轴对称关于轴对称的周期为② 若的图像关于中心对称,则是周期函数,周期③ 若的图像关于轴对称,且关于中心对称,则是周期函数,周期()f x C =()()f x a f x b +=+()f x T b a =-()()()f x a f x f x +=-⇒2T a =()()2f x a f x a +=-+()()()()()2f x a f x a f x f x +=-+=--=2T a =()()()1f x a f x f x +=⇒2T a =()()()()1121f x a f x f x a f x +===+()()f x f x a k ++=k ()f x ⇒2T a =()()()(),2f x f x a k f x a f x a k ++=+++=()()2f x a f x +=()()f x f x a k ⋅+=k ()f x ⇒2T a =()f x ()f x b a >()f x ,x a x b ==()f x ()2T b a =-()f x x a =()()2f x f a x ⇒-=+()f x x b =()()2f x f b x ⇒-=+()()22f a x f b x ∴+=+()f x ∴()222T b a b a =-=-()f x ()(),0,,0a b ()f x ()2T b a =-()f x x a =(),0b ()f x ()4T b a =-7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质.(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔的函数图象相同,所以若在上单调增(减),则在上单调增(减)(4)对称性:如果一个周期为的函数存在一条对称轴 (或对称中心),则 存在无数条对称轴,其通式为 证明:关于轴对称函数的周期为关于轴对称 注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法.【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( ) ()kT k Z ∈()f x ()(),a b b a T -≤()f x ()(),a kT b kT k Z ++∈T ()f x x a =()f x ()2kT x a k Z =+∈()f x x a =()()2f x f a x ∴=-()f x T ()()f x kT f x ∴+=()()2f x kT f a x ∴+=-()f x ∴2kT x a =+A .6B .8C .12D .16例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭ D.⎫⎪⎪⎝⎭例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( )A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-= 例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( ) A .0 B .6 C .12 D .18例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >> 例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( )①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点.A .①③B .②④C .①③④D .②③④ 例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( ) A .222e e +B .25050e e +C .2100100e e +D .222e e --例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =()A .2-B .2log 3C .3D .2log 5- 2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .201940963.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( ) A .2 B .3 C .4 D .54.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .05.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( ) A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .78.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( ) A .c a b >> B .c b a >> C .b a c >> D .a c b >>9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x x x x y e e ----=+的曲线有下列说法: ①该曲线关于2x =对称;②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数.其中正确的是( )A .②③B .①④C .②④D .①③11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3B .4C .5D .612.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1m i i i x y =+=∑( ) A .0 B .m C .2m D .4m【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称 【答案】D【思路导引】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C ,D .【解析】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对,故选:D .【专家解读】本题考查了三角函数图象及其性质,考查三角函数周期公式,考查数形结合思想,考查数学运算、直观想象等学科素养.解题关键是熟记三角函数的性质.例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【解析】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( )A .6B .8C .12D .16【答案】D【解析】对任意x ∈R ,()()11f x f x -=+恒成立,故()()2f x f x -=+,又()f x 为偶函数,所以()()2f x f x =+,2T =,且当10x -≤≤时,()()()221122f x x x x =-+=-,设()293log log h x x x ==,则()h x 为偶函数,求方程()29log f x x =根的个数转化为求()f x 与()g x 的交点个数,画出当0x >时()y f x =与()y g x =的图像,如图:可知两图像有8个交点,又()f x 与()g x 都为偶函数,所以()f x 与()g x 有16个交点,即方程()29log f x x =根的个数为16.故选:D.例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.0,6⎛⎫⎪ ⎪⎝⎭B.6⎛⎫⎪ ⎪⎝⎭C.0,5⎛ ⎝⎭D.5⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题可知:cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像 在0x >的交点至少有3对,可知()0,1a ∈, 如图所示,当6x =时,log 62a >-,则0a <<故实数a的取值范围为0,6⎛ ⎝⎭故选:A例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( ) A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-=【答案】D【解析】∵函数(1)f x +的图象关于()1,0对称, ∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+,∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴ 令()(3)G x f x =+,∵其图象关于直线对称,∴()()2G x G x +=-,即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶ ∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=,∴()()f x f x -=;∴A 对; 由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=,由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错.故选:D.例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >>【答案】C 【解析】(1)(1)f x f x +=-,∴()f x 关于1x =对称,又1≥x 时,()f x 是增函数,()()3339log 22log 2log 2f f f ⎛⎫=-= ⎪⎝⎭,33392log 4,log 4log 321-==<<<, ∴b a c <<.故选:C.例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( ) ①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点. A .①③ B .②④ C .①③④ D .②③④【答案】C【解析】由()()2f x f x +=,得()()2f x f x -=-, 结合()f x 为偶函数,得()()2f x f x -=, 则曲线()y f x =关于直线1x =对称,则①正确; 无法推出()()3f x f x -=-,则②不一定正确;由曲线()()12y f x x =≤≤可得曲线()()01y f x x =≤≤, 即得曲线()()02y f x x =≤≤,恰好是在一个周期内的图象; 再根据()f x 是以2为周期的函数,得到曲线()()24y f x x =≤≤,因为在()y f x =在[]1,2上是减函数,()y f x =在[]3,4上是减函数,则③正确; 因为()y f x =在[]1,2上是减函数,()110f =>,()210f =-<,所以()y f x =在[]1,2上有唯一的一个零点,根据对称性,()f x 在区间()4,4-内有8个零点.故选:C.例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( )A .222e e +B .25050e e +C .2100100e e +D .222e e --【答案】A【解析】由()()22f x f x -=+得:()f x 关于2x =对称 又()f x 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+,故选:A例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【答案】B 【解析】()f x 是奇函数且满足()()210f x f x -++=,(1)(2)(2)f x f x f x ,(3)()f x f x ∴+=,()f x ∴是以3为周期的函数,且(0)0f =,()()()()()()()0122020674067416732f f f f f f f ∴+++⋅⋅⋅+=++=故选:B.【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =() A .2- B .2log 3C .3D .2log 5-【答案】D 【解析】已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,()()(3)f x f x f x ∴-=-=-,∴()f x 的周期为3.3,02x ⎛⎫∴∈- ⎪⎝⎭时,2()log (27)f x x =+,22(2020)(36731)(1)(1log (27)lo )5g f f f f =⨯+==-=--+-=-,故选D .2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .20194096【答案】B【解析】由()()4f x f x +=,得函数()f x 的周期是4. 由()()0f x f x -+=,则()f x 在R 上是奇函数, 且当()0,2x ∈时,()2xf x =,210log 201911<<,所以()()()222log 2019log 20191212log 2019f f f =-=--212log 2019409622019-=-=-.故选:B 3.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( )A .2B .3C .4D .5【答案】D【解析】由题意可得,函数()f x 为偶函数,且是周期为2的周期函数. 方程1()()3xf x =在[0x ∈,4]上解的个数,即函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数,再根据当[0x ∈,1]时,()1f x x =-, 设1,(0)11()()()()330x xx g x g f x =--∴-==.因为1211113()1()0223236g -=--=-=<,数形结合可得,函数()y f x =的图象与函数1()3xy =的图象在[0,1)内存在两个交点,画出函数()f x 在[0,4]上的图象,如图,故函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数为5.(在[0,1]内有2个,在[1,2]有1个,在(2,4]有2个),故选:D .4.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .0【答案】D【解析】根据题意,函数()f x 满足()()2f x f x +=-,则()4()f x f x +=,即()f x 是周期为4的周期函数,当2(]0,x ∈时,()sin f x x x π=-,则()11sin 1f π=-=,()22sin 22f π=-=, 又由()()2f x f x +=-,则()()()()311,422f f f f =-=-=-=-, 所以(1)(2)(3)(4)0f f f f +++=,所以20201()505((1)(2)(3)(4))0i f i f f f f ==⨯+++=∑.故选:D .5.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe-=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭【答案】B【解析】当[0,3]x ∈时,2()xf x xe =,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(2,3]x ∈时,()0f x '<,当[0,2)x ∈时,()0f x '>, 所以函数()f x 在(2,3]x ∈单调递减,在2(]0,x ∈单调递增,(0)0f =,32(3)30f e -=>,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-,所以(3)(3)(3)f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322,3t e e --⎡⎫∈⎪⎢⎣⎭.故选:B.6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos xf x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】C【解析】∵f (x )是奇函数;∴f (x+2)=f (-x )=-f (x );∴f (x+4)=-f (x+2)=f (x ); ∴f (x )的周期为4;∴f (2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ ∵x ∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫⎪⎝⎭∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C.7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .7【答案】A【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数.又[1,1]x ∈-时,()||f x x =,所以函数()f x 的图象如图所示.再作出3log y x =的图象,易得两图象有4个交点,所以方程3()log ||f x x =有4个零点.故应选A . 8.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( )A .c a b >>B .c b a >>C .b a c >>D .a c b >>【答案】C【解析】:∵当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立, ∴()()()122121,1,,0x x x x f x f x ∀∈+∞>-<且,有 , ∴f (x )在(1,+∞)上单调递减, 又∵函数f (x )的图象关于直线x =1对称, ∴a=f (12-)=f (52),∵e>52>2>1, ∴f (e)<f (52)<f (2) 即b>a>c,故选:C.9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( ) A .[4,)+∞ B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤.故选:C 10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x xx x y e e ----=+的曲线有下列说法:①该曲线关于2x =对称; ②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是( ) A .②③ B .①④ C .②④ D .①③【答案】D【解析】因为曲线方程为()222(1)(3)x xx x y e e ----=+,而220x x e e --+>恒成立,故等价于()()()22213x xx x y f x ee----==+.①因为()()()()21122xxx x f x f x e e-+-+==-+,故该曲线关于2x =对称;②要该曲线关于()2,1-对称,则需满足()()2212f x f x ++-=-,而由①中所求,显然()()22f x f x ++-不是常数,故该曲线不关于()2,1-对称; ③当0x <时,()()2130x x -->,且220x x e e --+>,则()0f x >恒成立, 故该曲线不经过第三象限;④容易知()()()21,10,30f f f =-==,此外该曲线上没有其它横纵坐标都是整数的点. 事实上,本题可以利用导数和函数对称性可知,函数图像如下所示:,则容易知该曲线的各种性质. 故选:D.11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3 B .4 C .5 D .6【答案】C【解析】由()()f x f x -=,得()f x 的图象关于y 轴对称. 由()()2f x f x =-,得()f x 的图象关于直线1x =对称.当[]01x ∈,时,()3f x x =,所以()f x 在[]1,2-上的图象如图. 令()()0g x cos x f x π-==,得()cos x f x π=,两函数()y f x =与y cos x π=的图象在13,22⎡⎤-⎢⎥⎣⎦上的交点有5个.故选:C.12.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<【答案】B【解析】∵函数()f x 满足()()13f x f x +=-,∴()()163f x f x +=-+=()1f x 1f x -=-(), ∴f (x )在R 上是以6为周期的函数,∴f (12.5)=f (12+0.5)=f (0.5),()()()4.5 4.56 1.5f f f -=-+=又()3y f x =+为偶函数,∴f (x )的对称轴为x =3,∴f (3.5)=f (2.5), 又∵0<0.5<1.5<2.5<3,且()f x 在(0,3)内单调递减,∴f (2.5)<f (1.5)<f (0.5) 即f (3.5)<f (-4.5)<f (12.5),故选B .13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 【答案】D【解析】依题意知()f x 图象关于点(2,0)对称, 作出()f x 图象如图,可知()f x 在R 上为减函数,由图象可得(,2]x ∈-∞时,()(4)(2)(4)f x f x x x =--=--,由(2)(4)x x x x --=⇒=或x 舍去), 由图象可知()f x x >的解为⎛ ⎝-⎭∞,故选:D .14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-,即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+, 所以函数21x y x +=也关于点(0,2)对称,所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422mi i m m i mx y x x x y y y m =+=+++++++=+⨯=∑. 故选:C.。
函数的对称性与奇偶性的应用
函数的对称性与奇偶性的应用函数的对称性和奇偶性是数学中重要的概念,它们在不同领域的数学问题中有广泛的应用。
本文将介绍函数的对称性和奇偶性的概念及其应用,并通过一些例子来进一步说明。
一、函数的对称性函数的对称性是指函数在某个特定的变换下具有不变性。
常见的对称性包括以下几种:1. 奇偶对称性:如果对于函数的每一个实数x,都有f(-x) = -f(x),则称函数具有奇对称性;如果对于函数的每一个实数x,都有f(-x) =f(x),则称函数具有偶对称性。
2. x轴对称:如果对于函数的每一个实数x,都有f(x) = f(-x),则称函数具有x轴对称性。
3. y轴对称:如果对于函数的每一个实数x,都有f(x) = -f(-x),则称函数具有y轴对称性。
二、奇偶性的应用奇偶性在数学中有着广泛的应用,下面将介绍一些常见的应用情况。
1. 确定函数的对称性:通过对函数f(x)进行变换,可以判断函数是否具有对称性。
如果f(x)与-f(x)完全相同,那么函数是偶对称的;如果f(x)与-f(x)相差一个负号,那么函数是奇对称的;如果f(x)与f(-x)完全相同,那么函数具有x轴对称性;如果f(x)与-f(-x)相差一个负号,那么函数具有y轴对称性。
2. 简化函数的求解:奇偶性可用来简化函数的求解过程。
如果函数f(x)是偶对称的,则在求解某些积分和方程时,可以利用对称性简化计算。
同样,如果函数f(x)是奇对称的,也可以利用对称性简化计算。
3. 求解函数的零点:根据函数的奇偶性,可以得到函数的零点的一些性质。
对于偶对称的函数,如果f(x)=0,则-f(x)=0,也是函数的零点;对于奇对称的函数,如果f(x)=0,则-f(x)=0是函数的零点。
4. 确定函数图像的性质:根据函数的对称性,可以推断出函数图像的一些性质。
例如,如果函数是偶对称的,则函数的图像关于y轴对称;如果函数是奇对称的,则函数的图像关于原点对称。
三、例子分析为了更好地理解函数的对称性和奇偶性的应用,下面以一些具体函数为例进行分析。
浅谈函数的对称性及周期性
函数的对称性及周期性函数的对称性及周期性问题是函数内容中的难点之一,往往由于没有具体的解析式作为载体,因此理解分析起来比较困难。
此类函数问题既能全面地考查学生对函数概念及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识,还蕴涵丰富的数学思想如数形结合、化归、换元思想等,同时也是大学高等数学函数部分的一个衔接点,所以备受命题者的青睐,下面就函数的对称性、周期性等方面的性质进行归纳和总结。
一、抽象函数的对称性。
性质1、若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:(1)f(a+x)=f(a-x)。
(2)f(2a-x)=f(x)。
(3)f(2a+x)=f(-x)。
性质2、若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:(1)f(a+x)=-f(a-x)。
(2)f(2a-x)=-f(x)。
(3)f(2a+x)=-f(-x)。
注:y=f(x)为偶函数是性质1当a=0时的特例,f(-x)=f(x)。
y=f(x)为奇函数是性质2当a=0时的特例,f(-x)=-f(x)。
二、复合函数的奇偶性。
性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。
复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。
性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x +a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a +x)。
性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。
复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。
三、函数的周期性。
性质、若a是非零常数,若对于函数y=f(x)定义域内的任一变量x点,有下列条件之一成立,则函数y=f(x)是周期函数,且2|a|是它的一个周期。
①f(x+a)=f(x-a),②f(x+a)=-f(x),③f(x+a)=1/f(x),④f(x+a)=-1/f(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:函数对称性,周期性的应用
一.几个函数方程的周期(约定a>0, 周期T)
二、函数的对称性
定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是: f (x) + f (2a-x) = 2b
定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是
f (a +x) = f (a -x) 即f (x) = f (2a -x)
定理4. 函数y = f (x)与y = 2b -f (2a -x)的图像关于点A (a ,b)成中心对称。
定理5. ①函数y = f (x)与y = f (2a -x)的图像关于直线x = a 成轴对称。
②函数y = f (x)与a -x = f (a -y)的图像关于直线x +y = a 成轴对称。
③函数y = f (x)与x -a = f (y + a)的图像关于直线x -y = a 成轴对称。
一选择题(每题4分)
1. 已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对
称图形一定过点( )
A. (2,-2)
B. (2,2)
C. (-4,2)
D. (4,-2)
2. 若函数()y f x =在R 上的奇函数,若当0x ≥时,3()log (1)f x x =+则(2)f -=
A.-1
B.1
C.0
D.不存在
3. 设()y f x =为偶函数,当0x <时()(1),f x x x =+当0x >时,)(x f 的解析式为
( ) A.(1)x x - B. (1)x x + C. -(1)x x - D. (1)x x -+
4. 已知(1)f x +为偶函数,且当(0,1)x ∈时()2x f x =,则2(log 3)f =
( )
A.0
B.3
C.
43 D. 23
5. x ∈R ,恒有)21()21(x f x f --=+成立,当1(0,)2x ∈时,()4x f x =,则3()4f =
2
D.2- 6. 若函数()()y f x x R =∈满足(2)()f x f x +=, 且(1,1]x ∈-时()||f x x =,则函
数()y f x =的图象与函数lg ||y x =的图象的交点个数为 ( )
A .16
B .18
C .20
D .无数个
7. 定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设
a=f(3),b=f(2),c=f(2),则a ,b ,c 大小关系是
A 、a>b>c
B 、a>c>b
C 、b>c>a
D 、c>b>a
8. 已知函数(1)f x +为奇函数,函数(1)f x -为偶函数,且(0)2f =,则(4)f =
( )
A. 1-
B. 2-
C. 1
D. 2
二. 填空题(每题4分)
9. f(x)是定义在(-∞,+∞)上的函数,对x ∈R 均有f(x)+f(x+2)=0,当-1<x
≤1 时,f(x)=2x-1,当1<x ≤3时,函数f(x)的解析式为
__________________________
10. 设函数()f x 对一切实数x 均有: (3)(3)f x f x +=-,且方程()0f x =恰好有6
个不同的实数根,则6个根的和为___________________________________
11. 设,a b 分别是方程2log 3x x +=和23x x +=的根,则2log 2___________b a +=
12. 定义在(,0)(0,)-∞+∞ 的奇函数f(x)满足(2)()1f x f x +=,且当0<x 1≤时,
f(x)=x ,则)2
15
(f =____ 13. 已知函数f x x
()=⎛⎝ ⎫⎭
⎪12的图像与函数g x ()的图像关于直线y x =对称,()h x g x ()||=-1,
则关于h x ()有下列命题:(1)h x ()的图像关于原点对称;(2)h x ()为偶函数;
(3)h x ()的最小值为0;(4)h x ()在(0,1)上为减函数。
其中正确命题的序号为:____________________。
14. 若函数f(x)的图象与g(x)=2x -1的图象关于直线y=x+1对称,则函数f(x)的解
析式为f(x)=_______________
三解答题
15. (10分)若函数32()f x x ax bx =++的图象关于(1,1)点对称,求a,b 的值
16. (12分))(x f 为定义在R 上的偶函数,且(2)(2)f x f x -=+对R x ∈恒成立
(1) 求证)(x f y =为周期函数
(2) 若当[0,2]x ∈时2()f x x x =-,求)(x f 在[2,6]上的解析式
(3)写出函数的单调区间及值域(不用证明)
17.(10分)设()
x=对
f x是定义在[-1,1]上的偶函数,(),()
f x
g x的图象关于直线1
称,且当[2,3]
f x的表达式
x∈时,3
g x x x
()2(1)4(2)
=---求()
奇偶函数与周期的综合利用
例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是()
(A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数
(C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数
解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x). ∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数,∴x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。
故选(A) 例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,
f (x) = - x,则f (8.6 ) = _________
解:∵f(x)是定义在R上的偶函数∴x = 0是y = f(x)对称轴;又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。
故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3 ∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B)
例5. 设f(x)是定义在R上的奇函数,且f(x+2)= -f(x),当0≤x≤1时,
f (x) = x,则f (7.5 ) = ()
(A) 0.5 (B) -0.5 (C) 1.5 (D) -1.5
解:∵y = f (x)是定义在R上的奇函数,∴点(0,0)是其对称中心;
又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x),∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。