2019届人教A版(文科数学) 简单随机抽样 单元测试

合集下载

人教版高中数学人教A版必修3练习 简单随机抽样

人教版高中数学人教A版必修3练习 简单随机抽样

2.1.1简单随机抽样1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:总体是240名学生的身高,所以A项不正确;个体是每一名学生的身高,所以B项不正确;样本是40名学生的身高,所以C项不正确;很明显样本容量是40.答案:D2.为抽查汽车排放尾气的合格率,某环保局在一路口随机抽查,这种抽查是()A.简单随机抽样B.抽签法抽样C.随机数法抽样D.有放回抽样解析:这是有放回抽样,而不是简单随机抽样.答案:D3.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是()A BC D解析:简单随机抽样中每个个体被抽取的机会均等,都为答案:A4.从某批零件中抽取50个,然后再从这50个中抽出40个进行合格检查,发现合格品有32个,则该批产品的合格率为()A.36%B.64%C.80%D.25%解析:检查了40个零件,有32个合格,所以合格率为100%=80%.答案:C5.某总体容量为M,其中带有标记的有N个,现用简单随机抽样的方法从中抽取一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A B C D.N解析:总体中带有标记的比例是,则抽取的m个个体中带有标记的个数估计为答案:A6.某工厂共有n名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为,则n=.解析:由题意知,所以n=100.答案:1007.某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的可能性均为0.2,向该中学抽取一个容量为n的样本,则n=.解析:=0.2,∴n=200.答案:2008.下列调查的样本不合理的是.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名学生进行调查.解析:①中样本不具有有效性,在班级前画“√”与了解最受欢迎的老师没有关系.③中样本缺乏代表性.而②④是合理的样本.答案:①③9.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个形状、大小相同的号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,则摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何相同点?解:选法一满足抽签法的特征,是抽签法;选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9;第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.B组1.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个进行检验B.从50个零件中有放回地抽取5个进行检验C.从实数集中逐个抽取10个整数分析奇偶性D.运动员从8条跑道中随机选取一条跑道答案:D2.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99;其中最恰当的序号是()A.①B.②C.③D.②③答案:C3.从一群玩游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A B.k+m-nC D.不能估计解析:设参加游戏的小孩有x人,则,x=答案:C4.一个总体共有30个个体,用简单随机抽样的方法从中抽取一个容量为7的样本,则某个特定个体入样的可能性是.答案:5.从个体数为N的总体中抽出一个样本容量是30的样本,每个个体被抽到的可能性是,则N的值是.答案:2106.现有一批零件,其编号为600,601,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检验.若用随机数表法,怎样设计方案?解:第一步,在随机数表中任选一数作为开始,任选一方向作为读数方向,比如,选第7行第6个数7,向右读;第二步,从数7开始,向右读,每次读取三位,凡不在600~999中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到753,724,688,770,721,763,676,630,785,916;第三步,以上号码对应的10个零件就是要抽取的对象.7.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个艺人抽一张,每人抽到的号签上的数字就是这位艺人的演出顺序,再汇总即可.。

9.1.1 简单随机抽样(同步检测)(附答案)—人教A版(2019)数学高一下学期必修第二册

9.1.1 简单随机抽样(同步检测)(附答案)—人教A版(2019)数学高一下学期必修第二册

9.1.1 简单随机抽样(同步检测)一、选择题1.从全校2 000名小学女生中用随机数法抽取300名调查其身高,得到样本量的平均数为148.3 cm ,则可以推测该校女生的身高( )A .一定为148.3 cm B.高于148.3 cmC .低于148.3 cm D.约为148.3 cm2.从一群游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A.kn mB.k +m -nC.km nD.不能估计 3.某学校抽取100位老师的年龄,得到如下数据则估计这100A .42岁 B.41岁C .41.1岁 D.40.1岁4.某校共有1 005名高三学生参加2020年上学期开学考试,为了了解这1 005名学生的数学成绩,决定从中抽取50名学生的数学成绩进行统计分析.下列叙述错误的是( )A.总体是1 005名学生的数学成绩B.样本量是50C.个体是每一名学生D.样本是50名学生的数学成绩5.为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾,这种抽查是( )A .简单随机抽样 B.抽签法C .随机数法 D.以上都不对6.使用简单随机抽样从1 000件产品中抽出50件进行某项检查,合适的抽样方法是( )A.抽签法B.随机数法C.随机抽样法D.以上都不对7.用抽签法抽取的一个容量为5的样本,它们的变量值分别为2,4,5,7,9,则该样本的平均数为( )A.4.5B.4.8C.5.4D.68.抽签法确保样本代表性的关键是( )A .制签 B.搅拌均匀C .逐一抽取 D.抽取不放回9.(多选)下面抽样方法不属于简单随机抽样的是( )A .从平面直角坐标系中抽取5个点作为样本B.某饮料公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10台手机中逐个不放回地随机抽取2台进行质量检验(假设10台手机已编号,对编号进行随机抽取)二、填空题10.某工厂抽取50个机械零件检验其直径大小,得到如下数据:估计这5011.某展览馆在22天中(全年中随机抽取的数据)每天进馆参观的人数如下:180,158,170,185,189,180,184,185,140,179,192,185,190,165,182,170,190,183,175,180,185,147可估计全年该展览馆平均每天参观的人数约为________12.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________13.一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽到的可能性是________;第三次抽取时,剩余小球中的某一特定小球被抽到的可能性是________.三、解答题14.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:适?15.为迎接2022年北京冬奥会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.16.为了节约用水,制定阶梯水价,同时又不加重居民生活负担,某市物价部门在8月份调查了本市某小区300户居民中的50户居民,得到如下数据:(1)计算这50(2)写出水价的函数关系式,并计算用水量为28 m3时的水费;(3)物价部门制定水价合理吗?为什么?参考答案及解析:一、选择题1.D 解析:由抽样调查的意义可以知道该校女生的身高约为148.3 cm .2.C 解析:设参加游戏的小孩有x 人,则k x =n m ,x =km n. 3.C 解析:y =32×2+34×4+38×20+40×20+42×26+43×10+45×8+46×6+48×4100=41.1(岁),即这100位老师的样本的平均年龄约为41.1岁.4.C 解析:个体是每一名学生的数学成绩.5.D 解析:由于不知道总体的情况(包括总体个数),因此不属于简单随机抽样.6.B 解析:由于总体相对较大,样本容量较小,故采用随机数法较为合适.7.C 解析:y =2+4+5+7+95=5.4. 8.B 解析:若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.9.ABC 解析:选项A 中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;选项B 中,一次性抽取不符合简单随机抽样逐个抽取的要求,故错误;选项C 中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误;选项D 符合简单随机抽样的要求.二、填空题10.答案:12.84 解析:y =12×12+13×34+14×450=12.84 cm . 11.答案:177 解析:根据题意,可用样本均值近似估计总体均值y -=122×(180+158+170+185+189+180+184+185+140+179+192+185+190+165+182+170+190+183+175+180+185+147)=177.12.答案:抽签法 解析:三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.13.答案:12,14 解析:因为简单随机抽样时每个个体被抽到的可能性为36=12,所以某一特定小球被抽到的可能性是12.因为此抽样是不放回抽样,所以第一次抽样时,每个小球被抽到的可能性均为16;第二次抽取时,剩余5个小球中每个小球被抽到的可能性均为15;第三次抽取时,剩余4个小球中每个小球被抽到的可能性均为14.三、解答题14.解:y -甲=27+38+30+37+35+316=33. y -乙=35+29+40+34+30+366=34. 因为y -甲<y -乙,故选乙参加比赛较合适.15.解:(1)将30名志愿者编号,号码分别是01,02, (30)(2)将号码分别写在外观、质地等无差别的小纸片上作为号签.(3)将小纸片放入一个不透明的盒里,充分搅匀.(4)从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.16.解:(1)y =18×2+19×4+20×4+21×6+22×12+23×10+24×8+25×2+26×250 =22.12 m 3.(2)设月用水量为x ,则水价为f(x)=⎩⎨⎧3x , 0≤x ≤21,4.5x -31.5,x>21,当x =28时,f(28)=4.5×28-31.5=94.5(元).(3)不合理.从时间上看,物价部门是在8月份调查的居民用水量,而这个月,该市的居民用水量普遍偏高,不能代表居民全年的月用水量,从居民比例上看,仅仅有16户居民,即32%的居民月用水量没有超过21 m 3,加重了大部分居民的负担.。

9.1.1简单随机抽样-【新教材】人教A版(2019)高中数学必修第二册课前检测(含解析)

9.1.1简单随机抽样-【新教材】人教A版(2019)高中数学必修第二册课前检测(含解析)

人教A版9.1.1简单随机抽样课前检测一、单选题1.对于简单随机抽样,每个个体每次被抽到的机会()A.相等B.不相等C.无法确定D.与抽取的次数有关2.天气预报说,在今后的三天中,每天下雨的概率都为60%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:用1,2,3,4,5,6表示下雨,从下列随机数表的第1行第3列的1开始读取,直到读取了10组数据,18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 1055 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24据此估计,这三天中恰有两天下雨的概率近似为()A.35B.25C.12D.7103.用简单随机抽样方法从含有10个个体的总体中, 抽取一个容量为3的样本, 其中个体甲被第三次抽到的可能性为().A.13B.19C.310D.1104.福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()A.23 B.09 C.02 D.175.总体由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行第6列的数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.12 B.07 C.15 D.166.某班有40位同学,座位号记为01,02,,40,用下面的随机数表选取5组数作为参加青年志愿者活动的5位同学的座位号.4954 4454 8217 3793 2378 8735 2096 4384 2634 91645724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086选取方法是从随机数表第一行的第11列和第12列数字开始,由左到右依次选取两个数字,则选出来的第5个志愿者的座位号是( )A.09 B.20 C.37 D.387.下列抽样方法是简单随机抽样的是( )A.坛子中有1个大球,4个小球,搅拌均匀后,从中随机摸出一个球B.在校园里随意选三名同学进行调查C.在剧院里抽取三名观众调查,将所有座号写在同样的纸片上,放入箱子搅匀后逐个抽取,共取三张D.买彩票时随手写几组号8.下列4个抽样中,简单随机抽样的个数是( )①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签. A.0 B.1 C.2 D.39.某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按01,02.03,…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第6个个体是()(注:表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 3815 51 00 13 42 99 66 02 79 54A.00 B.13 C.42 D.4410.下列抽样方法是简单随机抽样的是()A.从100个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中逐个抽取10个做奇偶性分析D.运动员从8个跑道中随机选取一个跑道二、填空题11.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第7~8列的22开始,依次向下,到最后一行后,再从下两列的上边开始,继续向下读,直到取足样本,则抽取样本的号码是______.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 6012.某中学高二年级甲班的学生共有25名女生和35名男生,现以简单随机抽样的方法从甲班全班同学中推选5名学生代表甲班参加全校演讲比赛,则甲班中某女生被抽到的概率是________.13.2020年抗击新冠肺炎疫情期间,为不影响学生的学习生活,学校实行停课不停学.为督促学生按时学习,某校要求所有学生每天打卡,全校学生的总人数为1200人.某日随机抽查200人,发现因各种原因未及时打卡的学生数为12,估计该日这个学校未及时打卡的学生数为______.14.某工厂共有n名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为15,则n ________.三、解答题15.已知总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5个数字开始,由左到右依次选取两个数字,写出选取的5个个体编号.7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 748116.某单位拟从40名员工中选1人赠送电影票,可采用下面两种选法:选法一:将这40名员工按1~40进行编号,并相应地制作号码为1〜40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的员工幸运入选;选法二:将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名员工逐一从中摸取一个球,则摸到红球的员工幸运入选.试问:(1)这两种选法是否都是抽签法,为什么?(2)这两种选法中每名员工被选中的可能性是否相等?参考答案1.A【分析】根据简单随机抽样的概念,直接选出正确选项.【详解】根据简单随机抽样的概念可知,每个个体每次被抽到的机会相等,故选A.【点睛】本小题主要考查简单随机抽要的概念,属于基础题.2.B【分析】由题意知模拟三天恰有两天下雨的结果,观察经随机模拟产生的数据,用列举法找出表示三天中恰有两天下雨的数据,再由古典概型的概率公式即可求解.【详解】由题意知模拟三天恰有两天下雨的结果,观察经随机模拟产生的数据可得,表示三天中恰有两天下雨的数据有:4 17,3 86,19 6,2 06,共4组数据,所以这三天中恰有两天下雨的概率42 P105 ==.【点睛】本题主要考查模拟方法估计概率,属于基础题型.3.D【解析】分析:由随机抽样的特点可得,在抽样过程中每个个体在一次抽取中被抽中的概率是相等的,结合已知中的总体容量可得答案.详解:在抽样过程中,个体甲每一次被抽中的概率是相等的,由于总体容量为10,所以“个体甲被第三次抽到的可能性为110”.故选D.点睛:简单随机抽样的特点是等可能抽样,即在抽样过程中每个个体被抽到的概率是相等的,本题考查学生对抽样特点的理解和应用.4.C从随机数表第1行的第6列数字开始由左到右依次选取两个数字,如果在01和33之间就取出来,如果不在该区间,就不取,以此类推得到选出来的第6个红色球的编号.【详解】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,除去大于33以及重复数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.故答案为C.【点睛】本题主要考查随机数表,意在考查学生对该知识的掌握水平和分析推理能力.5.C【分析】根据随机数表的选数方法进行判断即可.【详解】按照随机数表法的方法取数为03,07,12,16,15,所以第5个个体的编号为15.故选:C【点睛】本题考查了随机数表的方法,属于基础题.6.B【分析】根据随机数表法的方法进行,每次选两个数字,选过的两个数字不要,即可选出正确答案. 【详解】解析:由题意结合随机数表可得由左到右依次选取的两个数字为17,37,23,35,20,故选出来的第5个志愿者的座位号是20.故选:B【点睛】本题考查了随机数表的作用方法,属于基础题.7.C【分析】根据简单随机抽样的定义直接判断即可.解析:A不是,因为球大小不同,造成不公平.B,D不是,因为“随意选”“随手写”并不说明对每个个体机会均等.C符合随机抽样的定义,是简单随机抽样.【点睛】本题考查了简单随机抽样的定义,属于基础题.8.B【分析】根据简单随机抽样的特点逐个判断即可.【详解】①:不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件,它不是“逐个抽取”.②:不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”③:不是简单随机抽样.因为50名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④:是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的、等可能的抽样.综上,只有④是简单随机抽样.故选:B【点睛】本题考查了简单抽样的定义,属于基础题.9.B【分析】根据随机数表抽取原则按序得到所抽取的个体即可得到结果.【详解】第9行第11列开始读取,依次得到的编号为:78(舍)、64(舍)、56(舍)、07、82(舍)、52(舍)、42、07(重复,舍)、44、38、15、51(舍)、00(舍)、13即第6个个体为13故选:B【点睛】本题考查简单随机抽样方法中的随机数表法,关键是明确随机数表抽取时,超出所给编号范围和重复抽取的编号需去除.10.D【分析】根据简单随机抽样的四个特征:①有限性;②逐个抽取;③不放回;④等可能性,进行判断. 【详解】解:选项A错在“一次性”抽取;选项B错在“有放回”抽取;选项C错在总体容量无限;选项D符合,故选:D.【点睛】本题考查简单随机抽样的特征,是基础题.11.22,25,00,32,39,38,18【分析】根据题目中的规则在编号范围内取数即可得解.【详解】先选取22,向下69不符合要求,下面选取25,向下87,79不符合要求,再从下两列的上边开始,继续向下读,00、32、39、38、18,因此,抽取的样本的号码是22,25,00,32,39,38,18.故答案为:22,25,00,32,39,38,18.【点睛】本题考查了随机数表法,属于基础题.12.1 12【分析】根据简单随机抽样的特点可直接选出答案.【详解】全班共有253560+=名学生,抽取5人,以简单随机抽样的方法,甲班中某女生被抽到的概率是51 6012=.故答案为:1 12【点睛】本题考查的是简单随机抽样,较简单. 13.72【分析】根据所占比例可得答案.【详解】由题意得12120072200⨯=,所以该日这个学校未及时打卡的学生数为72.故答案为:72.【点睛】本题考查由部分估计总体,属于基础题.14.100【分析】抽取人数除以总人数,即得每位工人被抽到的概率,结合已知,得到关于n的方程,求解即得.【详解】解:∵该工厂共有n名工人,随机抽取20名,∴每名工人被抽到的概率为20n,∴2015n=,解得100n=,故答案为:100.【点睛】本题考查简单随机抽样中事件的概率,等可能事件的概率问题,属基础题.15.08,02,14,07,01.【分析】根据随机数表,依次进行选择即可得到结论.【详解】解:从随机数表的第一行得第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次选是08,02,14,07,,02,01等,其中02出现两次,所以依次选取的5个个体编号依次是08,02,14,07,01.【点睛】本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,比较基础.16.(1)见解析;(2)这两种选法中每名员工被选中的可能性相等,均为1 40.【分析】(1)根据抽签法的特征判断即可得到结论;(2)每名员工被选中的可能性均为140,可知可能性相同.【详解】(1)选法一:满足抽签法的特征,是抽签法;选法二:不是抽签法抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分(2)这两种选法中每名员工被选中的可能性相等,均为1 40【点睛】本题考查抽签法的判断与等可能事件的判断,属于基础题.。

简单随机抽样(第1课时(人教A版2019必修第二册)

简单随机抽样(第1课时(人教A版2019必修第二册)

可以剔除重复的编号并重新产生随机数,直到产生的不同
编号个数等于样本所需要的人数.
比较随机数法与抽
签法,它们各有什
么优点和缺点?
新知探索
(1)用随机试验生成随机数
准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,
把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,
第二步,将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步,将60个号签放入一个不透明的盒子里,充分搅匀;
第四步,从盒子中逐个抽取10个号签,并记录上面的编号;
第五步,所得号码对应的学生就是志愿小组的成员.
练习
方法技巧:
一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签
3.某工程从1000件产品中抽出40件进行质量合格检查,样本是40.(
)
4.抽签法和随机数法都适用于总体容量和样本容量较小时的抽样.(
)
)
)
5.利用随机数法抽取样本时,若一共有总体容量为100,则给每一个分别个体编号
为1,2,3,…,100.(
)
答案:√,×,×,√,×.
新知探索
辨析2:下列调查方式中,适合用普查的是(
并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个
三位随机数.如果这个三位数在1—712范围内,就代表对应编号的学生被抽中,
否则舍弃编号,这样产生的随机数可能会有重复.
新知探索
(2)用信息技术生成随机数
①用计算器生成随机数
进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机
A.调查春节联欢晚会的收视率
B.了解某渔场中青鱼的平均质量

2019版高中人版A版数学必修3练习:2.1.1简单随机抽样

2019版高中人版A版数学必修3练习:2.1.1简单随机抽样

第一章算法初步(删除)第二章统计2.1 随机抽样2.1.1 简单随机抽样【选题明细表】知识点、方法题号简单随机抽样的定义1,3,7,9,13抽签法8,10,11随机数法2,4,5,6,121.(2017·山东菏泽一中月考)下面的抽样方法是简单随机抽样的是( B )(A)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动(B)从20个零件中逐个抽取3个进行质量检验(C)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿下一件,连续玩了5件(D)从无限多个个体中抽取50个个体作为样本详细分析:A中是指定个子最高的5名,不是简单随机抽样;B对;C是有放回抽样,不是简单随机抽样;D中总体个数是无限的,也不是简单随机抽样,选B.2.用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字.这些步骤的顺序应为( B ) (A)①②③(B)①③②(C)③②①(D)③①②详细分析:由随机数法知,先编号再确定开始读取的数字,然后获取样本号码.故选B.3.某年级文科班4个班级,每班各有40位学生(其中男生8人,女生32人).若从该年级文科生中以简单随机抽样抽出20人,则下列选项中正确的是( D )(A)每班至少会有一人被抽中(B)抽出来的女生人数一定比男生人数多(C)已知小文是男生,小美是女生,则小文被抽中的可能性小于小美被抽中的可能性(D)若学生甲和学生乙在同一个班,学生丙在另外一个班,则甲、乙两人同时被抽中的可能性跟甲、丙两人同时被抽中的可能性一样详细分析:在抽样过程中,每个个体被抽到的可能性都相等,从该年级文科生中以简单随机抽样抽出20人,所有班的学生被抽到的可能性都一样,男生、女生被抽到的可能性都一样,其中任何两人被同时抽到的可能性一样,故选D.4.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3,,,100;②001,002,,,100;③00,01,02,,,99;④。

人教A版高中数学第九章第1节《随机抽样》训练题 (8)(含答案解析)

人教A版高中数学第九章第1节《随机抽样》训练题 (8)(含答案解析)

第九章第1节《随机抽样》训练题 (8)一、单选题1.某中学高一、高二和高三各年级人数见表,采用分层抽样的方法调查学生的视力状况,在抽取的样本中,高二年级有20人,那么该样本中高三年级的人数为()A.16B.18C.22D.402.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列开始,由左至右依次读取,则选出来的第5个零件编号是()0347 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 14109577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179A.36B.16C.11D.143.某单位有老年人28人,中年人36人,青年人81人,为了调查他们的身体状况,需从他们中抽取一个容量为16的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样4.下列抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库的1000瓶可乐中一次性抽取20瓶进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士参加抢险救灾D.从10个手机中不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)5.为了调查全国人口的寿命,抽查了11个省(市)的2500 名城镇居民,这2500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量6.高一年级有男生510人,女生490人,小明按男女比例进行分层随机抽样,总样本量为100.则在男生中抽取的样本量为()A.48B.51C.50D.497.某校高二年级有男生600人,女生500人,为了解该年级学生的体育达标情况,从男生中任意抽取30人,从女生中任意抽取25人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法8.某学校有小学生126人,初中生280人,高中生95人,为了调查学生的近视情况,从他们当中抽取一个容量为100的样本,采用何种方法较为恰当()A.简单随机抽样B.系统抽样C.分层抽样D.先从小学生中剔除1人然后再分层抽样9.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002, ,599,600,从中抽取60个样本,如下提供随机数表的第5行到第7行:若从表中第6行第6列开始向右依次读取3个数据,则得到的第8个样本编号为()A.324B.345C.577D.57810.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为()件.A.1800B.1600C.1900D.100011.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则B组应抽取的人数为()A.2B.4C.8D.1012.某校选修乒乓球课程的学生中,高一年级有50名,高二年级有30名.现用分层抽样的方法在这80名学生中抽取一个样本,已知在高一年级的学生中抽取了10名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.1213.现有以下两项调查:∶某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其装订质量状况;∶某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成∶∶这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法14.一支田径队有男运动员56人,女运动员42人,按性别进行分层,用分层随机抽样的方法从全体运动员中抽出一个容量为N的样本,如果样本按比例分配,男运动员抽取的人数为16人,则N 为()A.16B.20C.24D.2815.为调查德克士各分店的经营状况,某统计机构用分层随机抽样的方法,从A,B,C三个城市中抽取若干家德克士分店组成样本进行深入研究,有关数据见下表:(单位:个)则样本量为()A.12B.10C.6D.416.从某市参加升学考试的学生中随机抽查1000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.总体指的是该市参加升学考试的全体学生B.样本是指1000名学生的数学成绩C.样本容量指的是1000名学生D.个体指的是1000名学生中的每一名学生17.对于简单随机抽样,每个个体被抽到的机会()A.相等B.不相等C.与抽样次序有关D.不确定18.从一个容量为m(3m≥,m N∈)的总体中抽取一个容量为3的样本,当选取简单随机抽样方法抽取样本时,总体中每个个体被抽中的可能性是13,则选取分层随机抽样方法抽取样本时,总体中每个个体被抽中的可能性是()A.15B.14C.12D.1319.某企业生产甲、乙、丙三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中甲型号产品有12件,则此样本的容量为()A.40B.60C.80D.12020.某奶制品工厂某天甲、乙、丙、丁四类奶制品的产量分别为2000盒、1250盒、1250盒、500盒.若按产量比例用分层随机抽样的方法抽取一个样本容量为60的样本,则样本中甲类奶制品的数量为()A.6盒B.15盒C.20盒D.24盒21.某班有男生20人,女生30人,用分层抽样的方法从该班抽取10 人参加志愿者活动,则应抽取的女生人数为()A.3B.4C.7D.622.2020年一场突如其来的新冠肺炎疫情让全世界生灵涂炭、经济停顿,应对新冠肺炎的有效办法之一就是接种疫苗.目前常见的国产疫苗有3种,生产厂家分别是国药集团武汉生物研究所(国药武汉)国药集团北京生物研究所(国药北京)、科兴控股生物技术有限公司(科兴生物).某地分别从这三家厂家采购了30000支、20000支、50000支疫苗用于接种,每人要接种两支,且需接种同一厂家生产的疫苗,所有疫苗都接种完后,某同学为调查疫苗接种的效果采用分层抽样的方法从所有已接种人员中抽取部分个体进行调查,若已知他调查的人员中,接种科兴生物疫苗的人数比接种国药北京疫苗的人数多150,那么他所抽取的样本容量是()A.250B.500C.750D.100023.某中学高一有男生600人,若按性别比例用分层抽样的方法从高一全体学生中抽取一个容量为120的样本,样本中的女生人数为48,则该中学高一共有学生()A.800人B.900人C.1000人D.1200人24.下列情况中,适合用全面调查的是()A.检查某人血液中的血脂含量B.调查某地区的空气质量状况C.乘客上飞机前的安检D.调查某市市民对垃圾分类处理的意识25.某全日制大学共有学生5600人,其中专科生有1300人,本科生有3000人,研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取()A.65人,150人,65人B.30人,150人,100人C.93人,94人,93人D.80人,120人,80人26.交通管理部门为了解机动车驾驶员(简称驾驶员)对新法规“开车不喝酒,喝酒不开车”的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查,假设四个社区总人数为N,其中甲社区有驾驶员96人,若在甲、乙、丙、丁四个社区抽取人数分别为12,21,25、43,则这四个社区驾驶员的总人数N为()A.101B.808C.1212D.212127.我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除,某单位老年、中年、青年员工分别有80人、100人、120人,现采用分层随机抽样的方法,从该单位上述员工中抽取30人调查专项附加扣除的享受情况,则应该从青年员工中抽取的人数为()A.8人B.10人C.12人D.18人28.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n的值为()A.120B.192C.200D.24029.(1)某小区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了解有关家用轿车购买力的某个指标,从中抽取一个容量为100的样本;(2)从10名学生中抽取3名参加座谈会.问题和抽样方法配对正确的是()A.(1)简单随机抽样法,(2)分层随机抽样法B.(1)分层随机抽样法,(2)简单随机抽样法C.(1)简单随机抽样法,(2)简单随机抽样法D.(1)分层随机抽样法,(2)分层随机抽样法30.总体由编号为00,01,…,28,29的30个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列和第7列开始由左到右依次选取两个数字.则选出来的第5个个体的编号为()0842 2689 5319 6450 9303 2320 9025 6015。

2019-2020年高中数学 随机抽样单元测试 新人教A版必修3

2019-2020年高中数学 随机抽样单元测试 新人教A版必修3

2019-2020年高中数学随机抽样单元测试新人教A版必修3班别姓名学号成绩一、选择题1. 对于简单随机抽样,个体被抽到的机会A.相等B.不相等C.不确定D.与抽取的次数有关2. 抽签法中确保样本代表性的关键是A.制签B.搅拌均匀C.逐一抽取D.抽取不放回3. 用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是A. B. C. D.4. 某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是A.40B.50C.120D.1505. 从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为A.36%B.72%C.90%D.25%6. 为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为A.40B.30C.20D.127. 从N个编号中要抽取n个号码入样,若采用系统抽样方法抽取,则分段间隔应为A. B.n C.[] D.[]+18.下列说法正确的个数是①总体的个体数不多时宜用简单随机抽样法②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样③百货商场的抓奖活动是抽签法④整个抽样过程中,每个个体被抽取的机率相等(有剔除时例外)A.1B.2C.3D.49. 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员A.3人B.4人C.7人D.12人10. 问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ11. 一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是A.分层抽样B.抽签抽样C.随机抽样D.系统抽样12. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取一个容量为45的样本,那么高一、高二、高三各年级抽取人数分别为A.15,5,25B.15,15,15C.10,5,30D.15,10,20二、填空题1. 从50个产品中抽取10个进行检查,则总体个数为_______,样本容量为______.2. 一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是______________.3. 某校高二年级有260名学生,学校打算从中抽取20名进行心理测验.完成上述两项工作,应采用的抽样方法是______________.4. 调查某班学生的平均身高,从50名学生中抽取5名,抽样方法:_____________,如果男女身高有显著不同(男生30人,女生20人),抽样方法:______________.5. 一个工厂有若干车间,今采用分层抽样方法从全厂某天的2048件产品中抽取一个容量为128的样本进行质量检查.若一车间这一天生产256件产品,则从该车间抽取的产品件数为______________.三、解答题1.某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的机率为0.2,向该中学抽取一个容量为n的样本,求n的值.2.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.试用两种简单随机抽样方法分别取样.3. 体育彩票000001~100000编号中,凡彩票号码最后三位数为345的中一等奖,采用的是系统抽样法吗?为什么?4. 采用系统抽样法,从121人中抽取一个容量为12人的样本,求每人被抽取的机率.5. 某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.按照分层抽样方法抽取样本,各种血型的人分别抽多少?写出抽样过程.6. 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示.参考答案一、选择题1. A2.B3.C4.C5.C6.A7. C8. C9. B 10. B 11. D 12. D二、填空题1. 50 102. 3,9,15,21,27,33,39,45,51,573.系统抽样4. 简单随机抽样分层抽样5. 16三、解答题1. 解:∵=0.2,∴n=200.2. 解:抽签法:以姓名制签,在容器中搅拌均匀,每次从中抽取一个,连续抽取5次,从而得到一容量为5的人选样本.随机数表法:以00,01,02,…,42逐个编号,拿出随机数表前先确定起始位置,确定读数方向(可以向上、向下、向右或向左),读数在总体编号内的取出,而读数不在内的和已取出的不算,依次下去,直至得到容量为5的样本.3. 解:是系统抽样,系统抽样的步骤可概括为总体编号,确定间隔总体分段,在第一段内确定起始个体编号,每段内规则取样等几步.该抽样符合系统抽样的特点.4. 解:系统抽样无论有无剔除都是等机率抽样,故机率为.5. 解:用分层抽样方法抽样.∵=,∴200·=8,125·=5,50·=2.故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.各种血型的抽取可用简单随机抽样(如AB型)或系统抽样(如A型),直至取出容量为20的样本.6. 解:首先确定抽取比例,然后再根据各层份数确定各层要抽取的份数.∵=,∴=108,=124,=156,=112.故四种态度应分别抽取108、124、156、112份进行调查.。

简单随机抽样(人教A版2019 必修第二册)

简单随机抽样(人教A版2019 必修第二册)

(1)关于简单随机抽样的特点有以下几种说
)
D.每个个体被抽到的机会不一样,与先后顺序有关
(2)下列问题中最适合用简单随机抽样方法的是(
)
A.某学校有学生1 320人,卫生部门为了了解学生身体发育
情况,准备从中抽取一个容量为300的样本
B.为了准备省政协会议,某政协委员计划从1 135个村庄中
抽取50个进行收入调查
(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.
【解析】
(1)第一步,将500袋牛奶编号为001,002,…,500.
第二步,用随机数工具产生1~500范围内的随机数.
第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.
第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.
A.与第几次抽样无关,第一次抽到的概率要大些
B.与第几次抽样无关,每次抽到的概率都相等
C.与第几次抽样有关,最后一次抽到的概率要大些
D.每个个体被抽到的概率无法确定
(二)简单随机抽样
知识点三 抽签法
先给总体中的N个个体 编号 ,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)
上作为号签,并将这些小纸片放在一个不透明的盒里, 充分搅拌
一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和
“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因
为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”
的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽

高考数学简单随机抽样专题测试(带答案)

高考数学简单随机抽样专题测试(带答案)

2019-2019学年高考数学简单随机抽样专题测试(带答案)简单随机抽样也是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是2019-2019学年高考数学简单随机抽样专题测试,请考生及时练习。

一、选择题1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体的个数有限B.从总体中逐个抽取C.它一般情况是一种不放回的抽取D.每个个体被抽到的可能性与抽取的顺序有关[答案] D[解析] 在简单随机抽样中,每个个体被抽到的可能性相等,它与抽取的顺序无关,故D错误.2.下列抽样中,用抽签法方便的有()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[答案] B[解析] 当样本个数比较小且制号签比较方便时,用抽签法.故选B.3.下列说法正确的是()A.抽签法中可一次抽取两个个体B.随机数法中每次只取一个个体C.简单随机抽样是有放回抽样D.抽签法中将号签放入箱子中,可以不搅拌直接抽取[答案] B[解析] 根据简单随机抽样的特点判断.4.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中随机的抽取10个正整数分析奇偶性D.运动员从8个跑道中随机抽取一个跑道[答案] D[解析] 简单随机抽样每个样本是逐个抽取,并且是无放回的抽取,样本总体的容量为有限个,故A、B、C均错.5.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是()A.0.01B.0.04C.0.2D.0.25[答案] C[解析] 明确是简单随机抽样且每个个体被抽到的概率是相等的,问题的突破口就找到了.因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的概率为=0.2.6.下列问题中,最适合用简单随机抽样方法抽样的是()A.某单位有员工40人,其中男员工30人,女员工10人,要从中抽8人调查吸烟情况B.从20台电视机中抽取5台进行质量检查C.中央电视台要对春节联欢晚会的收视率进行调查,从全国观众中选10000名观众D.某公司在甲、乙、丙三地分别有120个、80个、150个销售点,要从中抽取35个调查收入情况[答案] B[解析] 根据简单随机抽样的概念及其特点可知当总体中的个体数和样本容量都较小时可采用简单随机抽样.抽出的样本必须准确地反映总体特征.二、填空题7.抽签法中确保样本具有代表性的关键是________.[答案] 搅拌均匀[解析] 在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体搅拌均匀,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.8.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽取一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为________.[答案] N[解析] 设m个个体中带有标记的个数为n,根据简单随机抽样的特点知=,解得n=N.三、解答题9.为了了解某校高三期中文、理科数学考试填空题的得分情况,决定从80名文科学生中抽取10名学生,从300名理科学生中抽取50名学生进行分析,请选择合适的抽样方法设计抽样方案.[分析] 应从文、理科学生中分别抽样,由于文科学生总人数较少,抽取的人数也较少,故宜用抽签法,但理科学生人数较多,抽取人数也较多,故抽取理科学生宜用随机数法.[解析] 文科抽样用抽签法,理科抽样用随机数法.抽样过程如下:(1)先抽取10名文科学生:将80名文科学生依次编号为1,2,3,,80;将号码分别写在相同形状、大小的纸片上,制成号签;把80个号签放入同一个容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;与号签上号码相对应的10名学生的填空题得分就构成容量为10的一个样本.(2)再抽取50名理科学生:将300名理科学生依次编号为001,002,,081,082,,300;从随机数表中任选一数字作为读数的起始数字,任选一方向作为读数方向,比如从教材附表的第4行第1列数字1开始向右读,每次读取三位,凡不在001300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

2019版数学(文)教师用书:第十章 第二节 随机抽样 含答案

2019版数学(文)教师用书:第十章 第二节 随机抽样 含答案

第二节随机抽样1.简单随机抽样(1)抽取方式:逐个不放回抽取;(2)特点:每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号;(2)确定分段间隔k,对编号进行分段.当错误!(n是样本容量)是整数时,取k=错误!;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次被抽到的可能性最大.()(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.()(3)系统抽样适用于元素个数很多且均衡的总体.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.() (5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(6)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.()答案:(1)×(2)×(3)√(4)×(5)×(6)√2.(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A.随机抽样B.分层抽样C .系统抽样D .以上都不是解析:选C 因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.3.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个数为N =8,样本容量为M =4,则每一个个体被抽到的概率为P =错误!=错误!=错误!.答案:124.(教材习题改编)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x 名学生,则x 50=错误!, 解得x =15。

高中数学9.1.1《简单随机抽样》基础过关练习题

高中数学9.1.1《简单随机抽样》基础过关练习题

第九章 9.1 9.1.1A 级——基础过关练1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本量D .从总体中抽取的一个样本【答案】A 【解析】根据题意,结合总体、样本、个体、样本容量的定义可知,5 000名居民的阅读时间的全体是总体.2.(2019年哈尔滨第三中学期末)总体由编号为01,02,03,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )78 16 65 72 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81A .08B .07C .02D .01【答案】B 【解析】从随机数表第1行的第3列开始由左到右依次选取两个数字中小于20的编号,依次为16,08,02,14,07,则第5个个体的编号为07.故选B .3.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .从实数集中逐个抽取10个数分析能否被2整除C .福利彩票用摇奖机摇奖D .规定凡买到明信片的最后几位号码是“6637”的人获三等奖【答案】C 【解析】简单随机抽样要求总体个数有限,从总体中逐个进行不放回抽样,每个个体有相同的可能性被抽到,分析可知选C .4.(2019年天津期末)已知m 个数的平均数为a ,n 个数的平均数为b ,用这m +n 个数的平均数为( )A .a +b 2B .a +b m +nC .ma +nb a +bD .ma +nb m +n【答案】D 【解析】m 个数的平均数为a ,n 个数的平均数为b ,则这m +n 个数的平均数为x =ma +nb m +n.故选D . 5.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.下列说法中正确的为( )①2 000名运动员的年龄是总体;②每个运动员的年龄是个体;③所抽取的20名运动员的年龄是一个样本;④样本量为2 000;⑤每个运动员被抽到的机会相等.A .①⑤B .④⑤C .③④⑤D .①②③⑤【答案】D 【解析】样本容量为20,④错误.①②③⑤正确.6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各随机抽取3名学生进行调查.【答案】②④ 【解析】①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.7.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是________.【答案】15 【解析】简单随机抽样是等可能性抽样,每个个体被抽到的概率都是20100=15. 8.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.【答案】抽签法 【解析】三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.9.某校2018级高一年级有50位任课教师,为了调查老师的业余兴趣情况,打算抽取一个样本量为5的样本,问此样本若采用抽签法将如何获得?解:首先,把50位任课教师编上号码:01,02,03,…,50.制作50个形状、大小均相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在一个不透明的箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,不放回,连续抽取5次,就得到一个容量为5的样本.10.某企业调查消费者对某产品的需求量,要从95户居民中抽选10户居民,用随机数法抽选样本时,应如何操作?附部分随机数表:85 38 44 05 2748 98 76 06 0216 08 52 99 7161 27 94 30 2192 98 02 77 6826 91 62 77 83解:第一步:将95户居民编号,每一户一个编号,即01~95.第二步:随机确定抽样的起点和抽样的顺序.如假定从第1行第6列开始读取,读数顺序从左往右,每次读两位.(横的数列称为“行”,纵的数列称为“列”).第三步:将编号范围内的数取出,编号范围外或重复的数去掉.得到的样本号码是:40,52,74,89,87,60,21,85,29,16.由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.B级——能力提升练11.下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个样本量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量【答案】B【解析】A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.12.某总样本量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个样本量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A .mN MB .mM NC .MN mD .N【答案】A 【解析】由随机抽样的意义可得x N =m M ,故x =mN M,即抽取的m 个个体中带有标记的个数估计为mN M. 13.(2020年荆门月考)某学校为了调查学生的学习情况,由每班随机抽取5名学生进行调查,若一班有50名学生,将每一学生编号从01到50,请从随机数表的第1行第5列(如表为随机数表的前2行)开始,依次向右,直到取足样本,则第五个编号为________.78 16 65 14 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81【答案】43 【解析】根据应用随机数表取样本数据的特征知,依次抽取的5个数据分别为14,08,02,07,43.所以第5个编号为43.14.一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽到的可能性是________;第三次抽取时,剩余小球中的某一特定小球被抽到的可能性是________.【答案】12 14 【解析】因为简单随机抽样时每个个体被抽到的可能性为36=12,所以某一特定小球被抽到的可能性是12.因为此抽样是不放回抽样,所以第一次抽样时,每个小球被抽到的可能性均为16;第二次抽取时,剩余5个小球中每个小球被抽到的可能性均为15;第三次抽取时,剩余4个小球中每个小球被抽到的可能性均为14. 15.为制定本市高一、高二、高三年级学生校服的生产计划,有关部门准备对180名高中男生的身高作调查,现有三种调查方案:方案一:测量少年体校中180名男子篮球、排球队员的身高;方案二:查阅有关外地180名高中男生身高的统计资料;方案三:在本市的市区任选两所中学、郊区任选一所中学,在这三所学校有关的年级中,用抽签的方法分别选出20名男生,然后测量他们的身高.为了达到估计本市高中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?解:方案三比较合理,理由如下:方案一中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果.方案二中,用外地学生的身高也不能准确地反映本地学生身高的实际情况.方案三中的抽样方法符合简单随机抽样,因此用方案三比较合理.16.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?(下面抽取了第5行到9行的随机数表)16 22 77 94 3949 54 43 54 8217 37 93 23 7887 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79解:(方法一,抽签法)①将这40件产品编号为01,02, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.(方法二,随机数法)①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第7行第9列的数8开始;③从选定的数8开始向右读下去,得到一个两位数字号码88,由于88>39,将它去掉;继续向右读,得到77,由于77>39,将它去掉;继续向右读,得到04,将它取出;继续下去,又得到21,33,25,12,06,01,16,19,10,至此,10个样本号码已经取满,于是,所要抽取的样本号码是04,21,33,25,12,06,01,16,19,10.C级——探索创新练17.从某批零件中抽取50个,然后再从这50个中抽取40个进行合格检查,发现合格产品有36个,则该产品的合格率为()A.36%B.72%C.90%D.25%【答案】C 【解析】3640×100%=90%. 18.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110【答案】D 【解析】由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是110.。

高考数学简单随机抽样专项练习(带答案)

高考数学简单随机抽样专项练习(带答案)

2019届高考数学简单随机抽样专项练习(带答案)设一个总体含有N个个体, 如果通过逐个抽取的方法从中抽取一个样本, 且每次抽取时各个个体被抽到的概率相等, 则这样的抽样方法叫做简单随机抽样。

以下是2019届高考数学简单随机抽样专项练习, 请考生及时练习。

一、选择题1.对于简单随机抽样, 下列说法中正确的有()它要求被抽取样本的总体的个数有限, 以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取, 以便在抽取实践中进行操作;它是一种不放回抽样;它是一种等概率抽样, 不仅每次从总体中抽取一个个体时, 各个个体被抽取的概率相等, 而且在整个抽样过程中, 各个个体被抽取的概率也相等, 从而保证了这种方法抽样的公平性.A.B.C.D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中, 规定每100万张为一个开奖组, 通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品, 在自动包装的传送带上, 每隔30分钟抽一包产品, 称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A.B不是简单随机抽样, 因为抽取的个体间的间隔是固定的, 不具有随意性;C不是简单随机抽样, 因为总体的个体之间差别比较大, 抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体, 并且编号为00,01, , 59, 现需从中抽取一个容量为8的样本, 请从随机数表的倒数第5行(下表为随机数表的最后5行)第11.12列的18开始, 依次向下读数, 到最后一行后向右, 直到取足样本为止(大于59及与前面重复的数字跳过), 则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号, 并把编号写在形状、大小相同的签上, 然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2, , 9, 再将转盘分成10等份, 分别标上整数0,1,2, , 9, 转动转盘, 指针指向的数字是几就取几号个体, 直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取, 不能是一次性抽取, 所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件, 为了了解这种轴的直径, 要从中抽取10件在同一条件下测量, 如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少, 可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法, 所以有两种思路.[解析] 方法一: 抽签法:(1)将100件轴编号为1,2, , 100;(2)做好大小、形状相同的号签, 分别写上这100个号码;(3)将这些号签放在一个不透明的容器内, 搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二: 随机数法:(1)将100件轴编号为00,01, , 99;(2)在教材表1-2的随机数表中选定一个起始位置, 如从第21行第1个数9开始;(3)规定读数的方向, 如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上, 欲邀请20名内地、港台艺人参加演出, 其中从30名内地艺人中随机挑选10人, 从18名香港艺人中随机挑选6人, 从10名台湾艺人中随机挑选4人, 试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步: 确定演出人员: 将30名内地艺人从1到30编号, 然后将1到30这30个号码分别写到形状、大小相同的号签上, 然后放在一个不透明的容器中摇匀, 从中逐个抽出10个号签, 相应编号的艺人参加演出, 再运用相同的办法分别从18名香港艺人中抽取6人, 从10 名台湾艺人中抽取4人.第二步: 确定演出顺序: 确定了演出人员后, 再将1到20这20个号码分别写到形状、大小相同的号签上, 用来代表演出的顺序, 然后让每名演出者抽取1个号签, 抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况, 需从中抽取10名做医学检验, 现已对53名同学编号00,01,02, , 50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5, 开始从左向右读下去, 两位两位地读, 在00~52范围内前面没有出现过的记下, 否则跳过, 直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.。

9.1.1简单随机抽样2023-2024学年高一下学期数学人教A版(2019)必修第二册

9.1.1简单随机抽样2023-2024学年高一下学期数学人教A版(2019)必修第二册

鱼的条数 平均每条鱼的质量
第一次捕捞
20
1.6
第二次捕捞
10
2.2
第三次捕捞
10
1.8
那么,你认为鱼塘中的鲢鱼总质量是多少?
解:将三次捞出的40条鱼质量作为一个样本. 则样本中 平均每条质量为
y 201.6 10 2.2 101.8 1.8
40
∵鱼塘中成活的鲢鱼约为 2500×80%=2000(条) ∴鱼塘中鲢鱼总质量约为 2000×1.8=3600kg.
简析:(1)选择166.4为总体的平均数.
因为166.7对应的样本量(200)大于166.4对应的样本量,所以
166.7更有可能接近总体的平均数.
(2)不一定.
因为样本具有随机性,并不能保证样本量大的均值就一定比
样本量小的均值更接近总体的均值.
知识探究(三)
问题2: 眼睛是心灵的窗口,保护好视力非常重要. 树人中学 在“全国爱眼日”前,想通过调查,了解一下全校2174名学生中 视力不低于5.0的学生所占的比例,你觉得该怎么做?
(D)约为5.5kW·h
2.在学生身高的调查中,小明和小华分别独立进行了简单随机
抽样. 小明调查的样本平均数为166.4,样本量为100。小华调查
的样本平均数为164.7,样本量为200 .
请问: (1)你更愿意哪个数值作为总体平均数的估计?
(2)是不是你选的值一定比另一个更接近总体的平均值?
请说说你的理由。
2.如何理解抽签法和随机数法? (1)抽签法的步骤: ①编号: 给总体中的每个个体编号; ②制签:把所有编号写在外观、质地等无差别的小纸片(或 卡片、小球等) 上作为号签; ③拌匀: 将号签放在一个不透明的盒里,充分搅拌; ④抽取:逐个不放回地抽取号签,使与号签上的编号对应的 个体进入样本,直到抽足样本所需要的个体数; ⑤成样:将抽到编号的个体形成一个样本.

2019-2020学年人教A版《简单随机抽样》 作业

2019-2020学年人教A版《简单随机抽样》 作业

2019-2020学年人教A版必修3 2.1 2.1.1简单随机抽样作业一、题组对点训练对点练一简单随机抽样的概念1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A 5 000名居民的阅读时间的全体是总体,每名居民的阅读时间是个体,200是样本容量,故选A.2.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随机逐个抽取了50件,这种抽样方法可称为________.解析:由简单随机抽样的特点可知,该抽样方法是简单随机抽样.答案:简单随机抽样3.下列抽样试验中,适合用抽签法的有()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B A、D中总体的个数较大,不适于用抽签法;C中甲,乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看做是搅拌均匀了,故选B.对点练二简单随机抽样的应用4.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.5.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()C.02 D.01解析:选D从随机数表第1行的第5列和第6列数字开始从左向右一次选取两个数字,开始向右读,依次是65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,所以选出来的5个个体的编号是08,02,14,07,01,所以第5个个体的编号是01.6.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.解析:从三个总体中任取两个即可组成样本,∴所有可能的样本为{1,3},{1,8},{3,8}.答案:{1,3},{1,8},{3,8}7.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?解:选法一满足抽签法的特征,是抽签法;选法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为1 40.8.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检测,如何用随机数法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任取一数作为开始,任选一方向作为读数方向,比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010~600中的跳过去不读,前面已经读过的数也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码对应的元件就是要抽取的对象.二、综合过关训练1.嫦娥四号月球探测器于2018年12月8日在中国酒泉卫星发射中心由长征三号乙运载火箭发射成功.为调查某校540名大学生对嫦娥四号月球探测器的关注度,从中抽取40名大学生进行调查,下列说法正确的是()A.总体是540名大学生B.样本是40名大学生C.总体是540名大学生对嫦娥四号月球探测器的关注度D.样本容量是540解析:选C总体是540名大学生对嫦娥四号月球探测器的关注度,样本是40名大学生对嫦娥四号月球探测器的关注度,样本容量是40.故选C.2.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是() A.①②B.①③C.②③D.③解析:选C根据随机数表的要求,只有编号时数字位数相同,才能达到随机等可能抽样.3.已知下列抽取样本的方式:①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.其中,不是简单随机抽样的是________(填序号).解析:①不是简单随机抽样,因为被抽取的总体的个体数是无限的,而不是有限的;②不是简单随机抽样,因为它是放回抽样;③不是简单随机抽样,因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样,因为指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.答案:①②③④4.某班有34位同学,座位号记为01,02,…,34,用如图的随机数表选取5组数作为参加青年志愿者活动的五位同学的座位号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座位号是( )49 54 43 54 82 17 37 93 23 78 87 35 2096 43 84 26 34 91 64 57 24 55 06 88 7704 74 47 67 21 76 33 50 25 83 92 12 06A .23B .09C .02D .16解析:选D 从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的编号依次为21,32,09,16,其中第4个为16,故选D.5.用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个个体a “第一次被抽到的概率”,“第二次被抽到的概率”,“在整个抽样过程中被抽到的概率”分别是________.解析:从6个个体中抽1个个体,每个个体被抽到的概率均为16,与抽取的次数无关,第二次被抽到的概率仍为16.但由于在整个抽样过程中是从6个个体中抽2个样本,故个体a 被抽到的概率为13. 答案:16,16,136.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.解析:由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位.从0 000到1 000,或者是从0 001 到1 001等.答案:四7.某市环保部门有全市各县(市、区)报送的空气质量材料15份,为了了解全市的空气质量,要从中抽取一个容量为5的样本,试确定用何种方法抽取,请写出具体操作过程.解:总体容量小,样本容量也小,可用抽签法.步骤如下:(1)将15份材料用随机方式编号,号码是01,02,03, (15)(2)将以上15个号码分别写在15张相同的小纸条上,揉成小球,制成号签;(3)把号签放入一个不透明的容器中,充分搅拌均匀;(4)从容器中不放回地逐个抽取5个号签,并记录上面的号码;(5)找出和所抽号码对应的5份材料,组成样本.8.某学生在一次理科竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的抽样方法确定这个学生所要回答的三门学科的题的序号(物理题的序号为1~15,化学题的序号为16~35,生物题的序号为36~47).解:法一(抽签法):第一步,将试题的编号1~47分别写在纸条上.第二步,将纸条揉成团,制成号签.第三步,将物理、化学、生物题的号签分别放在三个不透明的袋子中,充分搅拌.第四步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号,这便是所要回答的问题的序号.法二:(随机数表法):第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,在教材所附的随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第10行第11个数0,并向右开始读取.第三步,从数0开始向右读,每次读取两位,若得到的号码不在01~47中,则跳过,前面已经取出的也跳过.从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.依次可得到09,47,27,17,08,02,43,28.第四步,对应以上号码找出所要回答的问题的序号.物理题的序号为:2,8,9;化学题的序号为:17,27,28;生物题的序号为:43,47.。

人教版2019学年高中数学第二章统计2.1随机抽样2.1.1简单随机抽样检测新人教A版必修3

人教版2019学年高中数学第二章统计2.1随机抽样2.1.1简单随机抽样检测新人教A版必修3

简单随机抽样A 级基础坚固一、选择题1.下面抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取 5 个点作为样本B.可口可乐企业从库房中的 1 000箱可乐中一次性抽取20 箱进行质量检查C.某连队从200 名战士中,精选出50 名最优异的战士去参加抢险救灾活动D.从10 个手机中逐个不放回地随机抽取 2 个进行质量查验( 假定10 个手机已编好号,对编号随机抽取)剖析: A 中平面直角坐标系中有无数个点,这与要求整体中的个体数有限不符合,故错误; B 中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误; C 中 50 名战士是最优异的,不符合简单随机抽样的等可能性,故错误.答案:D2.为了认识全校240 名高一学生的身高情况,从中抽取40 名学生进行测量.以下()说法正确的选项是A.整体是240 名B.个体是每一个学生C.样本是40 名学生D.样本容量是40剖析:在这个问题中,整体是240 名学生的身高,个体是每个学生的身高,样本是40 名学生的身高,样本容量是40.答案:D3.从某批零件中抽取50 个,尔后再从50 其中抽出40 个进行合格检查,发现合格品有36 个,则该批产品的合格率为()A. 36%B. 72%C. 90%D. 25%36剖析:40×100%=90%.答案: C4.用简单随机抽样方法从含有10 个个体的整体中,抽取一个容量为 3 的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是()1131A.10,10 B. 10,51333C. 5,10D.10,10剖析:依照随机抽的定知个体a1两次被抽到的可能性相等,均.10答案: A5.某工厂的人生的100 件品采用随机数表法抽取10 件, 100件品采用下面的号方法:① 01,02,03,⋯,100;② 001,002,003,⋯,100;③ 00,01, 02,⋯, 99. 其中正确的序号是()A.①②B.①③C.②③D.③剖析:依照随机数表法的要求,只有号数字位数相同,才能达到随机等可能抽.答案: C二、填空6.用抽法行抽有以下几个步:①制;②抽;③将匀;④ 号;⑤将抽取的号的个体拿出,成本.些步的正确序________.剖析:由抽法的步知,正确序④①③②⑤.答案:④①③②⑤7.采“七彩”的中号是从分有1,2,⋯, 30的 30个小球中逐个不放回地出7 个小球来按确定中情况,种从30 个号中7 个号的抽方法是 ________.剖析: 30 个小球相当于号,拌均匀后逐个不放回地抽取,是典型的抽法.答案:抽法8.已知以下抽取本的方式:①从无量多个个体中抽取100 个个体作本;②盒子里共有80 个零件,从中出 5 个零件行量,在抽操作,从中任意拿出 1 个零件行量后再把它放回盒子里;③从20 件玩具中一次性抽取 3 件行量;④某班有56 名同学,指定个子最高的 5 名同学参加学校的球.其中,不是随机抽的是________(填序号).剖析:①不是随机抽,因被抽取的体的个体数是无量的,而不是有限的;②不是随机抽,因它是放回抽;③不是随机抽,因是“一次性”抽取,而不是“逐个”抽取;④不是随机抽,因指定个子最高的 5 名同学是56名同学中特指的,不存在随机性,不是等可能抽.答案:①②③④三、解答9.某生位了支援抗震救灾,要在18 名志愿者中取 6 人成医小去参加救治工作,用抽法抽方案.解:方案以下:第一步,将18 名志愿者号,号01, 02, 03,⋯, 18.第二步,将号分写在相同的条上,揉成,制成号.第三步,将获取的号放到一个不透明的盒子中,充足匀.第四步,从盒子中依次拿出 6 个号,并上面的号.第五步,与所得号的志愿者就是医小成.10.有一批号10,11,⋯, 99,100,⋯, 600 的元件,打算从中抽取一个容量 6 的本行量.怎样用随机数表法抽方案?解:第一步,将元件的号整010, 011,012,⋯, 099, 100,⋯, 600.第二步,在随机数表中任一数作开始,任一方向作数方向.比方,第6行第 7个数 9.第三步,从数 9 开始,向右,每次取三位,凡不在 010~ 600 中的数跳去不,前面已的也跳去不,依次可获取544,354, 378, 520, 384, 263.第四步,与以上 6 个号的 6 个元件就是所要抽取的本.B能力提升1. (2015 ·湖北卷 ) 我国古代数学名著《数九章》有“米谷粒分” :粮开收粮,有人送来米 1 534石,得米内谷,抽取米一把,数得254 粒内谷28 粒,批米内谷 ()A. 134 石B. 169 石C. 338 石D.1365 石剖析: 254 粒和 1 534 石中谷的百分比含量是大概相同的,可据此估批米内谷的数量.x281 534 石米内谷x石,由意知1 534=254,解得x≈ 169. 故批米内谷 169 石.答案: B2.某中学高一年级有400 人,高二年级有320 人,高三年级有280 人,若每人被抽到的可能性为 20%,用随机数法在该中学抽取容量为n 的样本,则 n 等于________.n剖析:由400+320+280=20%,解得n= 200.答案: 2003.某电视台举行颁奖典礼,邀请20 名港台、内地艺人演出,其中从30 名内地艺人中随机选出 10 人,从 18 名香港艺人中随机精选 6 人,从 10 名台湾艺人中随机精选 4 人.试用抽签法确定选中的艺人,并确定他们的表演次序.解:第一步:先确定艺人: (1)将 30 名内地艺人从 01~ 30 编号,尔后用相同的纸条做成 30 个号签,在每个号签上写上这些编号,尔后放入一个不透明小筒中摇匀,从中抽出 10 个号签,则相应编号的艺人参加演出;(2) 运用相同的方法分别从10 名台湾艺人中抽取 4 人,从 18 名香港艺人中抽取 6 人.第二步:确定演出次序:确定了演出人员后,再用相同的纸条做成20 个号签,上面写上 1~ 20 这 20 个数字,代表演出的次序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出次序,再汇总即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(九) 简单随机抽样
一、选择题
1.在简单随机抽样中,某一个个体被抽到的可能性( )
A .与第几次有关,第一次可能性最大
B .与第几次有关,第一次可能性最小
C .与第几次无关,与抽取的第几个样本有关
D .与第几次无关,每次可能性相等
答案:D
2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )
A .总体是240
B .个体是每名学生
C .样本是40名学生
D .样本容量是40
答案:D
3.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:
①1,2,3,...,100;②001,002, (100)
③00,01,02,...,99;④01,02,03, (100)
其中正确的序号是( )
A .②③④
B .③④
C .②③
D .①② 答案:C
4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性、“第二次被抽到”的可能性分别是( )
A.110,110
B .310,15 C.15,310
D .310,310
答案:A
5.从一群游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任选m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )
A.kn m
B .k +m -n C.km n
D .不能估计
答案:C
二、填空题 6.某种福利彩票是从1 36的号码中,选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是 .
解析:符合抽签法的特点:①个体数较少;②样本容量小.
答案:抽签法
7.假设要检验某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先被检测的5袋牛奶的编号 .
(下面摘取的是随机数表第7行至第9行.)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
解析:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916大于800,要舍去,第三个数955也要舍去,第四个数667符合题意,这样依次读出结果.
答案:785,667,199,507,175
8.从个体数为N 的总体中抽出一个样本容量是20的样本,每个个体被抽到的可能性是15
,则N 的值是 . 解析:从个体数为N 的总体中抽出一个样本容量是20的样本,∴每个个体被抽取的可能性是20N
. ∵每个个体被抽取的可能性是15,∴20N =15
, ∴N =100.
答案:100
三、解答题
9.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.
解:利用抽签法:第一步,将30辆汽车编号,号码是1,2,…,30;第二步,将号码分别写在形状、大小相同的纸条上,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次不放回地抽取3个号签,并记录上面的号码;第五步,所得号码对应的3辆汽车就是要抽取的对象.
10.某企业调查消费者对某产品的需求量,要从95户居民中抽选10户居民,请用随机数表法抽选样本.
附部分随机数表:
85 38 44 05 2748 98 76 06 0216 08 52 99 7161 27 94 30 2192 98 02 77 68
26 91 62 77 8384 57 27 84 8339 82 06 14 5939 07 37 92 4220 37 22 10 48
解:第一步:将95户居民编号,每一户一个编号,即01 95.
第二步:两位一组的表中,随机确定抽样的起点和抽样的顺序.如假定从第一行的第6列和第7列开始读取,读数顺序从左往右.(横的数列称为“行”,纵的数列称为“列”).第三步:依次抽出10个号码.可能有号码如96,98两个号码不在总体编号范围内,应排除在外,再补充两个号码.得到的样本号码是:40,52,74,89,87,60,21,85,29,16.
由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.
11.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:
A.测量少年体校中180名男子篮球、排球队员的身高;
B.查阅有关外地180名初中男生身高的统计资料;
C.在本市的市区和郊县各任选一所完全中学和两所初级中学,在这六所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.
为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?
解:方案C比较合理,理由如下:
由于A中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果;B中,用外地学生的身高也不能准确地反映本地学生身高的实际情况;而C中的抽样方法符合简单随机抽样,因此用C方案比较合理.。

相关文档
最新文档