2017-2018学年八年级数学下册 1 三角形的证明回顾与思考课时训练北师大版 精品
北师大版八年级数学下册第一章三角形的证明测试题 (1)
2018年北师大版八年级数学下册1.1《等腰三角形》综合训练题一、选择题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35° B.40° C.45° D.50°3. 如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD 等于( )A.36° B.54° C.18° D.64°4. 如图,在△ABC中,AB=AC,AD平分∠BAC,则下列结论错误的是( )A.∠B=∠C B.AD⊥BCC.∠BAD=∠CAD=∠C D.BD=CD5. 如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C 的度数为( )A.35° B.45° C.55° D.60°6. 如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°7. 如图,在△ABC中,AD⊥BC,垂足为D,AD=BD=CD,则下列结论错误的是( )A.AB=AC B.AD平分∠BAC C.AB=BC D.∠BAC=90°8. 如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD =BD=BE,∠A=50°,则∠CDE的度数为( )A.50° B.51° C.51.5° D.52.5°9. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.210. 如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.10二、填空题11.如图,在△ABC中,∠1=∠2,BE=CD,AB=5,AE=2,则CE =____.12. 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D.(1)若∠BAC=80°,则∠BAD=____;(2)若AB+CD=12 cm,则△ABC的周长为____ cm.13. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.14. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.三、解答题15. 如图,在△ABC中,AB=AC,AD平分∠BAC,点M,N分别在边AB,AC上,AM=2MB,AN=2NC,求证:DM=DN.16. 如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB.AE=CE,求证:(1)△AEF≌△CEB;(2)AF=2CD.17. 如图,AB=AE,BC=DE,∠B=∠E,点F是CD的中点.求证:AF⊥CD.18. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y 与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.19. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)20. 如图,在△ABC中,AB=AC,∠BAC=90°,BD是∠ABC的平分线,CE⊥BD,垂足是E,BA和CE的延长线交于点F.(1) 在图中找出与△ABD全等的三角形,并证明你的结论;(2) 证明:BD=2EC.参考答案1.B2.A3.B4.C5.C6.D7.C8.D9.C 10.C11.3 12.40°24 13.20°14.12°15.证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,∴△AMD≌△AND(SAS),∴DM=DN.16.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.17.证明:如图,连接AC,AD,在△ABC和△AED中,∴△ABC≌△AED(SAS),∴AC=AD,∵点F是CD的中点,∴AF⊥CD.18.解:(1)如图所示,BD即为△ABC关于点B的伴侣分割线;(2)设BD为△ABC的伴侣分割线,分两种情况:①△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°-x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且90°≥y>45°;②△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°-x-y=y-90°,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°-x.综上所述,当y=90°-x,或y=90°+x,或x=45°且y>x且90°≥y>45°,或或y=135°-x时,△ABC存在伴侣分割线.19.解:满足条件的所有图形如图所示:共5个.20.证明:(1)△ABD≌△ACF.∵AB=AC,∠BAC=90°,∴∠FAC=∠BAC=90°,∵BD⊥CE,∠BAC=90°,∴∠ADB=∠EDC,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF(ASA). (2)∵△ABD≌△ACF,∴BD=CF,∵BD⊥CE,∴∠BEF=∠BEC,∵BD是∠ABC的平分线,∴∠FBE=∠CBE,∵在△FBE和△CBE中,∴△FBE ≌△CBE (ASA ), ∴EF=EC , ∴CF=2CE , ∴BD=2CE .北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
2017-2018学年八年级数学下专题整合训练1)三角形的证明北师大含答案)
2017-2018 学年八年级数学下专题整合训练 (1) 三角形的证明 ( 北师大含答案 )专题整合训练专题一等腰三角形的性质与判断1.(2017 ?山东滨州中考 ) 如图 , 在△ ABc 中 ,AB=Ac,D 为 Bc 上一点 , 且 DA=Dc,BD=BA,则∠ B 的大小为 (B )A.40°B.36° c.30° D.25°2.如下图 , 点 D,E 在△ ABc 的边 Bc 上, 连结 AD,AE.①AB=Ac;② AD=AE;③ BD=cE.以此三个等式中的两个作为命题的题设, 另一个作为命题的结论 , 组成三个命题: ①② ? ③; ①③ ? ②; ②③ ? ①.(1) 以上三个命题是真命题的为( 直接作答 );(2)请选择一个真命题进行证明 ( 先写出所选命题 , 而后证明 ).(1)解①② ? ③,①③? ②, ②③? ①.(2)证明①② ? ③方法一 : ∵ AB=Ac,∴∠ B=∠ c.又 AD=AE,∴∠ ADG=∠ AEG.∵∠ ADG=∠ B+∠BAD,∠ AEG=∠ c+∠cAE, ∴∠ BAD=∠ cAE.在△ ABD与△ AcE 中 ,AB=Ac, ∠BAD=∠ cAE,AD=AE,则△ ABD ≌△ AcE(SAS).∴BD=cE.方法二 : 过点 A 作△ ABc 的高 AG,∵AB=Ac,AG⊥ Bc, ∴ BG=cG.又 AD=AE,AG⊥ DE,∴DG=EG.∵BD=BG-DG,cE=cG-GE,∴BD=cE.专题二等边三角形的性质与判断3.导学号 99804031 如图 , 在△ ABc 中 ,D 是 AB边上的一点 , 且 AD=Dc=DB,∠ B=30°. 求证 : △ADc 是等边三角形 .证明∵ Dc=DB,∴∠ B=∠ DcB=30° ( 等边平等角 ).∴∠ ADc=∠ DcB+∠ B=60°.又 AD=Dc,∴△ ADc 是等边三角形 ( 有一个角等于 60°的等腰三角形是等边三角形 ).4.导学号 99804032 如图 , △ ABc 是等边三角形 , ∠1=∠ 2= ∠3, 求∠ BEc 的度数 .解∵△ ABc 是等边三角形 ,∴ AB=Bc=cA,∠ ABc=∠ BcA=∠ cAB=60° .∵∠ 1=∠ 2=∠ 3, ∴∠ BAc-∠ 1=∠ ABc- ∠ 2=∠ BcA-∠ 3, 即∠cAF=∠ABD=∠ BcE.在△ ABD和△ BcE 和△ cAF 中 ,{■ (∠1=∠ 2=∠ 3”,” @AB=Bc=cA” ,” @∠ ABD=∠BcE=∠cAF” , ”) ┤∴△ ABD≌△ BcE≌△ cAF(ASA).∴AD=BE=cF,BD=cE=AF.∴AD-AF=BE-BD=cF-cE,即 FD=DE=EF.∴△ DEF是等边三角形 . ∴∠ FED=60° .∴∠ BEc=180° - ∠ FED=180° -60 °=120° .5.导学号 99804033 如下图 , 等边△ ABc 和等边△ DcE 在直线 BcE 的同一侧 ,AE 交 cD 于点 P,BD 交 Ac 于点 Q,求证 : △PQc为等边三角形 .证明在等边△ABc 和等边△DcE 中 ,Bc=Ac,Dc=Ec, ∠ AcB=∠DcE=60°,因此∠ AcB+∠ AcD=∠ DcE+∠ AcD, 即∠ BcD=∠ AcE.在△ BcD 和△ AcE中,{■ (Bc=Ac”,” @∠ BcD=∠AcE” , ”@cD=cE”. ” ) ┤因此△ BcD≌△ AcE(SAS).因此∠ 1=∠ 2.由于∠ AcB=∠ DcE=60° ,因此∠ AcD=180°- ∠ AcB-∠ DcE=60° .因此∠ BcQ=∠ AcP.在△ BcQ 和△ AcP 中 ,{ ■ ( ∠1=∠ 2” , ”@Bc=Ac”, ”@∠ BcQ=∠ AcP” , ” ) ┤因此△ BcQ≌△ AcP. 因此 cQ=cP.又由于∠ QcP=60° , 因此△ PQc为等边三角形.专题三直角三角形的性质与判断6.如下图,在△ ABc中,cD是AB边上的高,且cD2=AD?BD.求证 : △ABc 是直角三角形 .证明在 Rt △AcD 中 , 由勾股定理得Ac2=AD2+cD2.在 Rt △ BcD中 , 由勾股定理得 Bc2=BD2+cD2.∴Ac2+Bc2=AD2+2cD2+BD2=AD2+2AD? BD+BD2=(AD+BD)2=AB2.∴△ ABc 是直角三角形 .7.导学号99804034 如下图, 点P 是等边三角形ABc 内的一点 , 连结 PA,PB,Pc, 以 BP 为边作∠ PBQ=60°, 且 PB=BQ,连结cQ,若 PA∶ PB∶ Pc=3∶ 4∶ 5, 连结 PQ.求证 : △ PQc是直角三角形 .证明∵ PA∶ PB∶ Pc=3∶ 4∶ 5,∴设 PA=3a,PB=4a,Pc=5a.在△ PBQ中, ∵ PB=BQ=4a,且∠ PBQ=60°,∴△ PBQ是等边三角形 . ∴ PQ=4a.在△ PQc中 , ∵ PQ2+Qc2=16a2+9a2=25a2=Pc2,∴△ PQc是直角三角形 .专题四线段垂直均分线与角均分线性质的应用8.(2016 ?贵州毕节中考) 到三角形三个极点的距离都相等的点是这个三角形的(D )A.三条高的交点B.三条角均分线的交点c.三条中线的交点D.三条边的垂直均分线的交点9.(2017 ? 湖南益阳中考 ) 如图 , 在△ ABc 中 ,AB=Ac, ∠BAc=36°,DE 是线段 Ac 的垂直均分线 , 若 BE=a,AE=b, 则用含a,b 的代数式表示△ABc 的周长为 2a+3b.10.如下图,在Rt△ ABc中,∠ AcB=90°,AB的垂直均分线 DE交 Ac 于点 E, 交 Bc 的延伸线于点F, 若∠ F=30°,DE=1, 求 BE的长 .解∵∠ AcB=90°,FD⊥ AB,∴∠ AcB=∠ FDB=90° .∵∠ F=30° , ∴∠ A=∠ F=30° .又 AB的垂直均分线DE交 Ac 于点 E,∴∠ EBA=∠ A=30° .∴ Rt △DBE中 ,BE=2DE=2.11.导学号 99804035 如图 , 已知 AD是△ ABc的角均分线 ,DE ⊥AB于点E,DF⊥Ac 于点F. 求证:AD 垂直均分EF.证明∵ AD均分∠ BAc,DE⊥ AB,DF⊥ Ac, ∴DE=DF.∴点 D 在 EF 的垂直均分线上 .在 Rt △ ADE和 Rt △ADF中 ,AD=AD,DE=DF,∴Rt △ ADE≌ Rt △ADF(HL).∴AE=AF.∴点 A 在 EF 的垂直均分线上.∵两点确立一条直线, ∴直线 AD是线段 EF的垂直均分线.。
初中数学_三角形证明的复习教学设计学情分析教材分析课后反思
北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。
通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。
八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。
在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。
具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。
二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。
本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。
北师大版八年级下册第一章《三角形的证明回顾与思考》教学设计
一、教学目标
(一)知识与技能
1.让学生回顾和巩固三角形的基本概念、性质及判定方法,加深对三角形知识的理解和应用。
2.通过对三角形证明方法的回顾与思考,使学生掌握三角形证明的基本思路和技巧,提高逻辑推理能力和解题能力。
3.引导学生运用三角形的性质和判定方法解决实际问题,培养他们将理论知识运用到实际生活中的能力。
b.引导学生从不同角度分析问题,培养他们的发散思维和创新意识。
5.方法指导,培养习惯:
a.教会学生总结规律,形成自己的解题方法,提高解题效率。
b.引导学生养成良好的学习习惯,如课前预习、课后复习等,提高自主学习能力。
6.评价反馈,促进发展:
a.采用多元化的评价方式,如课堂表现、作业完成情况、小组讨论等,全面评价学生的学习效果。
2.练习题涵盖不同类型的三角形证明题目,使学生在练习中掌握各种证明方法的运用。
3.教师针对学生的练习情况进行个别指导,帮助他们找到解题过程中的不足,并及时给予指导。
4.对学生在练习中普遍存在的问题,进行集中讲解,确保每位学生都能掌握本节课的重点内容。
(五)总结归纳
1.教师引导学生回顾本节课所学的内容,总结三角形证明的基本方法和技巧。
2.讲解三角形证明的基本方法,包括SSS、SAS、ASA、AAS等判定方法,并通过例题进行演示。
3.分析不同证明方法的适用场景和注意事项,引导学生理解证明过程的严谨性。
4.总结三角形证明的常用技巧,如辅助线、角度转化等,帮助学生形成解题思路。
(三)学生小组讨论
1.教学活动:将学生分成若干小组,针对教师提供的例题和练习题,进行小组讨论。
2.学生分享自己在解决问题过程中的心得体会,以及学习三角形证明的收获。
(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义
第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2二.线段垂直平分线的性质(共5小题)2.△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9B.8C.7D.63.到平面上三点A、B、C距离相等的点有()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有4.△ABC中,∠C=90°,AB的垂直平分线交AB于E,交BC于点D,若CD:BD=1:2,BC=6cm,则点D到点A的距离为()A.1.5cm B.3cm C.2cm D.4cm5.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③6.如果一个三角形一边上的中线和这边上的高重合,那么这个三角形是三角形.三.等腰三角形的性质(共9小题)7.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cm C.11cm,11cm或10cm,12cm D.不能确定8.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm9.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.310.等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为.11.顶角为60°的等腰三角形,两个底角的平分线相交所成的角是°.12.AB边上的中线CD将△ABC分成两个等腰三角形,则∠ACB=度.13.如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为.14.如图,△ABC中,AB=AC,O是△ABC内一点,且∠OBC=∠OCB,求证:AO⊥BC.15.如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=∠A.四.等腰三角形的判定与性质(共1小题)16.△ABC中,AB=AC,∠ABC=36°,D,E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形有个.五.等边三角形的性质(共2小题)17.如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=度,18.如图所示,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是.六.等边三角形的判定(共2小题)19.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.角平分线的性质(共1小题)2.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2三.线段垂直平分线的性质(共3小题)3.已知△ABC中,AD⊥BC于点D,且BD=CD,若AB=3,则AC=.4.M、N、A、B是同一平面上的四个点,如果MA=MB,NA=NB,则点、在线段的垂直平分线上.5.△ABC中,AB比AC大2cm,BC的垂直平分线交AB于D,若△ACD的周长是14cm,则AB=,AC=.四.等腰三角形的性质(共6小题)6.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm7.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.38.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.9.如图:△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D、F,若∠AED=140°,则∠C=度,∠A=度,∠BDF=度.10.分别以等腰三角形的腰与底边向三角形外作正三角形,其周长为24和36,求等腰三角形的周长.11.在△ABC中,AB=AC,它的两条边分别为3cm,4cm,那么它的周长为多少.五.等腰三角形的判定与性质(共5小题)12.如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DF∥BC,交AB于点D,交AC于点E.若BD=4,DE=9,则线段CE的长为()A.3B.4C.5D.613.如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DF∥AC交AB于点F,DE∥AB交AC于点E.求四边形AFDE的周长.14.在△ABC中,AB≠AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)如图1,写出图中所有的等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图2,△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.图中还有等腰三角形吗?如果有,分别指出它们.写出EF与BE、CF关系,并说明理由.15.如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.求证:DE=EF.16.如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.六.等边三角形的性质(共3小题)17.如图,等边三角形ABC的边长为2,则它的高为.18.△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC的度数为.19.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.七.等边三角形的判定(共1小题)20.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形第三阶梯三角形的证明综合训练(一)一、填空题1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B 离水平面的高度BC的长为米.2.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是三角形.3.如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是或.4.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).5.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.6.在△ABC中,已知AB=AC,AD是中线,∠B=70°,BC=15cm,则∠BAC=,∠DAC=,BD=cm.7.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC 于E,若BC=10 cm,则△ODE的周长cm.第7题图第8题图8.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.9.如图,△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若DC=7,则点D到AB的距离DE=.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题11.等腰三角形底边上的高与底边的比是1:2,则它的顶角等于()A.60°B.90°C.120°D.150°12.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形13.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点14.△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于点D,若BC=a,则AD等于()A.B.C.D.15.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解答题16.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC的度数;(2)AD、CD的长.17.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.四、证明题18.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.19.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、阅读下面的题目及分析过程,并按要求进行证明.20.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.第四阶梯三角形的证明综合训练(二)一、填空题:1.三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是cm.2.已知等腰三角形的一个角是36°,则另两个角分别是.3.Rt△ABC中,锐角∠ABC和∠CAB的平分线交于点O,则∠BOA=.4.如图,在△ABC中,∠B=115°,AC边的垂直平分线DE与AB边交于点D,且∠ACD:∠BCD=5:3,则∠ACB的度数为度.第4题图第5题图5.如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,则BC=.6.如图,将矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于点O,写出一组相等线段、相等角(不包括矩形的对边、对角).7.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为.8.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).9.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题:11.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B =∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个12.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点13.如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=()A.B.C.D.14.在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=a,则DB等于()A.B.C.D.15.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm216.如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,∠A=50°,AB+BC =16cm,则△BCF的周长和∠EFC分别为()A.16cm,40°B.8cm,50°C.16cm,50°D.8cm,40°17.如图所示,已知△ABC中,AB=AC,∠BAC=90°,直角△EPF的顶点P是BC中点,两边PE、PF 分别交AB、AC于点E,F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有()A.①④B.①②C.①②③D.①②③④18.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解证题:19.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.20.已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF,当D点在什么位置时,DE=DF?并加以证明.21.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.已知:.求证:.证明:22.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.23.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.24.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.参考答案第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.C;二.线段垂直平分线的性质(共5小题)2.A;3.D;4.D;5.B;6.等腰;三.等腰三角形的性质(共9小题)7.C;8.B;9.C;10.7cm、7cm或8cm、6cm;11.60或120;12.90;13.120°或60°;四.等腰三角形的判定与性质(共1小题)16.6;五.等边三角形的性质(共2小题)17.60;18.15;六.等边三角形的判定(共2小题)19.C;20.C;第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.B;二.角平分线的性质(共1小题)2.C;三.线段垂直平分线的性质(共3小题)3.3;4.M;N;AB;5.8cm;6cm;四.等腰三角形的性质(共6小题)6.B;7.C;8.0<x<25;9.50;80;40;五.等腰三角形的判定与性质(共5小题)12.C;六.等边三角形的性质(共3小题)17.;18.20°;七.等边三角形的判定(共1小题)20.C;第三阶梯三角形的证明综合训练(一)一、填空题1.40;2.等腰;3.∠ABC=∠DCB;AC=DB;4.对应角相等的三角形是全等三角形;假;5.220;6.40°;20°;7.5;7.10;8.10;9.7;10.2;二、选择题11.B;12.C;13.B;14.C;15.B;第四阶梯三角形的证明综合训练(二)一、填空题:1.8;2.72°,72°或36°,108°;3.135°;4.40;5.6;6.DE=DC,∠OBD=∠ODB等.;7.;8.对应角相等的三角形是全等三角形;假;9.10;10.2;二、选择题:11.D;12.B;13.B;14.A;15.A;16.A;17.C;18.B;三、解证题:21.在△ABD和△ACE中,AB=AC,AD=AE,BD=CE;∠1=∠2;。
(完整版)北师大版八年级三角形证明课后题汇总
1.1 等腰三角形1、将下面证明中每一步的理由写在括号内:已知:如图,AB=CD,AD=CB.求证:∠A=∠C.证明:连接BD.在△BAD和△DCB中,∵AB=CD( )AD=CB( )BD=DB( )∴△BAD≌△DCB( )∴∠A=∠C( )2、已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.3、如图,在△ABC中,∠BAC=108°,AB=AC,AD⊥BC,垂足为D,求∠BAD的度数。
4、如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,点E是AD上一点,连接BE,CE,请找出图中所有相等的角。
5、如图,在△ABC中,AB=BC,点D,E都在BC上,且AD=AE,证明BD=CE.1、如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D.若BD=BC,则∠A等于多少度?2、已知:如图,在△ABC中,AB=AC,D为BC中点,点E,F分别在AB和AC尚,并且AE=AF.求证:DE=DF3、已知:如图,D,E分别是等边三角形ABC的两边AB,AC上的点,且AD=CE。
求证:CD=BE4、如图,在一个风筝ABCD中,AB=AD,BC=DC⑴分别在AB,AD的中点E,F处拉两根彩线EC,FC.证明:这两根彩线的长度相等。
⑵如果AE=1/3AB,AF=1/3AD,那麼彩线的长度相等吗?如果AE=1/4AB,AF=1/4AD呢?由此你能得到什麼结论?1、已知:如图,∠CEA是△ABC的外角,AD平行BC,且∠1=∠2.求证:AB=AC.2、已知:如图,在△ABC中,AB=AC,点E在CA的延长线上,EP垂直于BC,垂足为P,EP交AB于点F。
求证:△AEF是等腰三角形。
3、如图,一艘船从A处出发,以18kn的速度向北航行,经过10h到处B处。
分别从A,B望灯塔C,测得∠NAC=42°,∠NBC=84°.求从B处到灯塔C 的距离.1、已知:如图,△ABC是等边三角形,与BC平行的直线分别交AB和AC于点D,E, 求证:△ADE是等边三角形。
专题01-三角形的证明-2017-2018学年下学期期末复习备考八年级数学之热点难点突破练(北师大版)(原卷版)
三角形的证明【知识梳理】一、等腰三角形1.等腰三角形的定义:____________的三角形是等腰三角形.2.等腰三角形的性质(1)等腰三角形两底角____________;(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合,简称:____________;(3)等腰三角形是轴对称图形,有条对称轴.3.等腰三角形的判定方法(1)定义判定:一个三角形中,如果有两条边____________,那么这个三角形是等腰三角形.(2)判定定理:等角对等边,即一个三角形中,如果有两个角相等,那么这两个角所对的边____________.4.等边三角形的性质等边三角形的各角都____________,并且每—个角都等于;等边三角形是轴对称图形,有条对称轴.5.等边三角形的判定(1)三边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角等于的等腰三角形是等边三角形.二、直角三角形1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角________;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的____________ ;【例题精讲】考点一、等腰三角形的性质例1若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm考点二、等腰三角形的有关角的计算例2如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°考点三、等腰三角形中的分类讨论问题例3如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7考点四、等边三角形的性质例4如图,已知△ABC为等边三角形,高AH=5cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为_________cm.考点五、角平分线的性质与判定例5如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.(提示:过P 作PE⊥直线BA)考点六、线段的垂直平分线例6如图,在锐角中,,.尺规作图:作BC边的垂直平分线分别交AC,BC于点D、保留作图痕迹,不要求写作法;在的条件下,连结BD,求的周长.【达标测试】一、单选题(本题共10小题,每题3分,满分30分)1.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( )A. 1∶1∶2B. 1∶3∶4C. 9∶25∶36D. 25∶144∶1692.如图,在△ABC中,AB=AC,BD=CD,∠BAD=20°,DE⊥AC于E.则∠EDC的大小是()A. 20°B. 30°C. 40°D. 50°3.如图,△ABC的三边长分别是6,9,12,其三条角平分线将其分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A. 1:1:1 B. 1:2:3 C. 2:3:4 D. 3:4:54.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A. 40° 40°B. 80° 20°C. 50° 50°D. 50° 50°或80° 20°5.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=()A. 60° B. 70° C. 80° D. 90°6.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D 为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 6B. 8C. 9D. 107.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是();A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形8.如图,是三个等边三角形(注:等边三角形的三个内角都相等)随意摆放的图形,则∠1+2∠+∠3等于()A. 90° B. 120° C. 150° D. 180°9.一个三角形的三边长为15,20,25,则此三角形最大边上的高为()A. 10B. 12C. 24D. 4810.在等边三角形ABC中,D ,E 分别是BC,AC 的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在().A. A点处B. D点处C. AD的中点处D. △ABC三条高线的交点处二、填空题(本题共10小题,每题3分,满分30分)11.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.12.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是________.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6,沿DE折叠,使得点A与点B重合,则折痕DE的长为_________.14.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,△ADF的周长为7,则AC的长为__________.15.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点E,交BC于点D,若∠B=35°,则∠CAD=________°.16.如图所示,BD⊥AC于点D ,DE∥AB ,EF⊥AC于点F ,若BD平分∠ABC ,则与∠CEF相等的角(不包括∠CEF)的个数是________.17.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=______________时,△AOP为等腰三角形.18.18.如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连结BD.若AD=12cm,则BC的长为__________ .19.如图,△ABC中,∠ABC=120°,BD平分∠ABC,点P是BD上一点,PE⊥AB于E,线段BP的垂直平分线FH 交B C于F,垂足为H.若BF=2,则PE的长为 .20.如图 , 等边△A1C1C2的周长为 1, 作C1D1⊥A1C2于D1, 在C1C2 的延长线上取点C3, 使D1C3=D1C1, 连接D1C3, 以C2C3为边作等边△A2C2C3; 作C2D2⊥A2C3于D2, 在C2C3的延长线上取点C4, 使D2C4=D2C2, 连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧 , 如此下去 , 则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1的周长和为_______.(n≥2,且n为整数).(面积之和?)三、解答题(本题共7小题,满分60分)21.如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,BC=8.求△AEG周长.22.两个大小不同的等腰直角三角板如图①放置,图②是由它抽象出的几何图形,点B,C,E在同一条直线上,连接CD.求证:CD⊥BE.23.如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.24.如图,在△ABC中,AD是∠BAC的平分线,且∠B=∠ADB,过点C作CM垂直于AD的延长线,垂足为M.(1)若∠DCM=α,试用α表示∠BAD;(2)求证:AB+AC=2AM.25.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.26.(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是__________,△AEF的周长是__________;(2)如图2,若将(1)中“△ABC中,AB=AC=10”该为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长;(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.27.在△ABC中,AB=AC,AB的垂直平分线交AC于点N,交BC的延长线于点M,∠A=40°.(1)求∠NMB的大小.(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?。
八年级数学下册 1 三角形的证明专题训练二线段垂直平分线和角平分线的相关证明试题 新版北师大版
专题训练(二) 线段垂直平分线和角平分线的相关证明1.已知:AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BD =CD ,求证:∠B =∠C.证明:∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠DEB =∠DFC =90 °.在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DE =DF ,BD =CD ,∴Rt △DEB ≌Rt △DFC(HL).∴∠B =∠C.2.如图,已知:OA 平分∠BAC ,∠1=∠2.求证:△ABC 是等腰三角形.证明:过点O 作OD ⊥AB 于点D ,OE ⊥AC 于点E ,则△BOD 和△COE 都是直角三角形.∵OA 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE.∵∠1=∠2,∴OB =OC.∴Rt △BO D ≌Rt △COE(HL).∴∠ABO =∠ACO.∴∠ABC =∠ACB.∴AB =AC.∴△ABC 是等腰三角形.3.如图,△ABC 中,∠ACB =90°,∠B =30°,AD 平分∠CAB ,延长AC 至E ,使CE =AC.(1)求证:DE =DB ;(2)连接BE ,试判断△ABE 的形状,并说明理由.解:(1)证明:∵∠ACB =90 °,∠ABC =30 °,∴∠CAB =180 °-∠ACB -∠ABC =60 °.∵AD 平分∠CAB ,∴∠DAB =12∠CAB =30 °=∠ABC.∴DA =DB. ∵CE =AC ,BC ⊥AE ,∴BC 是线段AE 的垂直平分线.∴DE =DA.∴DE =DB.(2)△ABE 是等边三角形.理由如下:∵BC 是线段A E 的垂直平分线,∴BA =BE ,即△ABE 是等腰三角形.又∵∠CAB =60 °,∴△ABE 是等边三角形.4.如图,已知△ABE ,AB ,AE 边上的垂直平分线m 1,m 2交BE 分别为点C ,D ,且BC =CD =DE.(1)求证:△ACD 是等边三角形;(2)求∠BAE 的度数.解:(1)证明:∵m 1、m 2分别为AB 、AE 边上的垂直平分线, ∴AC =BC ,AD =DE.∵BC =CD =DE ,∴AC =AD =CD.∴△ACD 是等边三角形.(2)∵△ACD 是等边三角形,∴∠CAD =∠ACD =∠ADC =60 °.∵AC =BC ,AD =DE ,∴∠ABC =∠BAC ,∠DEA =∠DAE.∴∠BAC =12∠ACD ∠EAD =12∠ADC 12×60 °=30 °.∴∠BAE =∠BAC +∠CAD +∠EAD =30 °+60 °+30 °=120 °.。
八年级数学下册《三角形的证明》练习题与答案(北师大版)
八年级数学下册《三角形的证明》练习题与答案(北师大版)一、选择题1.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是( )A.PQ>5B.PQ≥5C.PQ<5D.PQ≤52.如图,已知在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )A.31cmB.41cmC.51cmD.61cm3.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°4.若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cmB.4 cmC.6 cmD.8 cm5.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是( )A.20°B.35°C.40°D.70°6.等腰三角形底边上一点到两腰的距离之和等于( )A.腰上的高B.腰上的中线C.底角的平分线D.顶角的平分线7.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是( )A.3cmB.4cmC.5cmD.7 cm8.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标为(6a ,2b -1),则a 和b 的数量关系为( )A.6a -2b =1B.6a +2b =1C.6a -b =1D.6a +b =19.如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,适当长度(大于BC 长的一半)为半径作圆弧,两弧相交于点M 和N ;②作直线MN 交AB 于点D ,连接CD.若AB =9,AC =4,则△ACD 的周长是( )A.12B.13C.17D.1810.如图,已知在直角坐标系中,点A 在y 轴上,BC ⊥x 轴于点C ,点A 关于直线OB 的对称点D 恰好在BC 上,点E 与点O 关于直线BC 对称,∠OBC =35°,则∠OED 的度数为( )A.10°B.20°C.30°D.35°11.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中正确的有( )A.1个B.2个C.3个D.4个12.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6B. 3C. 2D. 1.5二、填空题13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.14.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE周长为14,BC=6,则AB长为 .15.等腰三角形的一个内角为100°,则顶角的度数是________.16.△ABC中其周长为7,AB=3,当BC=时,△ABC为等腰三角形.17.如图,在△ABC中,AB=6cm,AC=4cm,BD平分∠ABC,CD平分∠ACB,EF过点D且EF∥BC,则△AEF 的周长是 cm.18.如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.三、作图题19.如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.四、解答题20.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.21.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.22.如图,在Rt△ABC的场地上,∠B=90°,AB=BC,∠CAB的平分线AE交BC于点E.甲、乙两人同时从A 处出发,以相同的速度分别沿AC和A→B→E线路前进,甲的目的地为C,乙的目的地为E.请你判断一下,甲、乙两人谁先到达各自的目的地?并说明理由.23.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.24.已知射线AP是△ABC的外角平分线,连结PB、PC.(1)如图1,若BP平分∠ABC,且∠ACB=30°,直接写出∠APB= .(2)如图1,若P与A不重合,求证:AB+AC<PB+PC.25.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.参考答案1.B2.C.3.C.4.A.5.B.6.A7.D.8.B9.B.10.B.11.D.12.D.13.答案为:4.14.答案为:8.15.答案为:100°.16.答案为:1或2.17.答案为:10.18.答案为:9.19.解:如图,点P即为所求.(1)作∠AOB 的平分线OC;(2)连结MN,并作MN 的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.20.证明:∵AB=AC=AD∴∠C=∠ABC,∠D=∠ABD∴∠ABC=∠CBD+∠D∵AD∥BC∴∠CBD=∠D∴∠ABC=∠D+∠D=2∠D又∵∠C=∠ABC∴∠C=2∠D.21.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.22.解:同时到达.理由如下:过点E作EF⊥AC于点F.∵AB =BC ,∠B =90°∴∠C =180°-∠B 2=45°. ∵EF ⊥AC∴∠EFC =90°∴∠CEF =90°-∠C =45°=∠C∴EF =CF.又∵AE 平分∠CAB∴EF =EB.易证得△AEF ≌△AEB得AF =AB可知AB +BE =AF +CF =AC故同时到达.23.证明:∵EF 垂直平分AD∴AF =DF ,∠ADF =∠DAF∵∠ADF =∠B +∠BAD ,∠DAF =∠CAF +∠CAD又∵AD 平分∠BAC∴∠BAD =∠CAD∴∠B =∠CAF.24.解:(1)∵∠DAC =∠ABC +∠ACB ,∠1=∠2+∠APB∵AE 平分∠DAC ,PB 平分∠ABC∴∠1=12∠DAC ,∠2=12∠ABC∴∠APB =∠1﹣∠2=12∠DAC ﹣12ABC =12∠ACB =15°(2)在射线AD 上取一点H ,是的AH =AC ,连接PH.则△APH ≌△APC∴PC =PD在△BPH 中,PB +PH >BH∴PB +PC >AB +AC.25.解:(1)∠EDC =180°﹣∠ADB ﹣∠ADE =180°﹣115°﹣40°=25°∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE理由:∵∠C=40°∴∠DEC+∠EDC=140°又∵∠ADE=40°∴∠ADB+∠EDC=140°∴∠ADB=∠DEC又∵AB=DC=2∴△ABD≌△DCE(AAS)(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形理由:∵∠BDA=110°时∴∠ADC=70°∵∠C=40°∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°∴∠DAC=∠AED∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时∴∠ADC=100°∵∠C=40°∴∠DAC=40°∴∠DAC=∠ADE∴△ADE的形状是等腰三角形.。
八年级数学下册《三角形的证明》练习题及答案(北师大版)
八年级数学下册《三角形的证明》练习题及答案(北师大版)班级:___________姓名:___________考号:___________一、选择题1.等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°2.到三角形三边的距离相等的点是( )A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点3.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误..的是( )A.①B.②C.③D.④4.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是( )A.100°B.80°C.60°D.40°5.在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为 ( )A.30°B.45°C.60°D.30°或60°6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是( )A.3.5B.4.2C.5.8D.78.以下叙述中不正确的是( )A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等9.如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH⊥BC 于H,若∠BAC=60°,OH=3cm,OA长为( )cm.A.6B.5C.4D.310.如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C=AB+BC;△BCD④△ADM≌△BCD.正确的有( )A.①②B.①③C.②③D.③④二、填空题11.如图,在Rt△ABC中,∠B的度数是________度.12.如图,已知∠C=∠D=90°,请你添加一个适当的条件:____________,使得△ACB≌△BDA.=7,DE=2,AB=4,则AC长13.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC是 .14.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.15.如图,在△ABC中,DE是AC的垂直平分线,△ABD的周长为13,△ABC的周长为19,则AE=____________16.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④BC2=4S.四边形AEDF其中正确结论是(填序号).三、作图题17.如图,已知∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.四、解答题18.如图所示,在Rt△ABC中,∠ACB=90°,∠A=∠BCD,判断△ACD的形状,并说明理由.19.如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.20.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.21.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.22.如图,已知点D是等边三角形ABC的边BC延长线上的一点,∠EBC=∠DAC,CE∥AB. 求证:△CDE是等边三角形.23.已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)如图1,求证:CD⊥AB;(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.①如图2,若∠B=34°,求∠A′CB的度数;②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).24.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA 逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.参考答案1.D2.C.3.C.4.A5.A6.B.7.D8.C.9.A.10.B11.答案为:25.12.答案为:AD=CD;(答案不唯一).13.答案为:3.14.答案为:40°15.答案为:316.答案为:①②④.17.解:∵点P到∠ABC两边的距离相等∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边∴PB=PD∴点P在线段BD的垂直平分线上∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:18.解:△ACD 是直角三角形.理由:∵∠ACB=90°∴∠ACD+∠BCD=90°.又∵∠A=∠BCD∴∠ACD+∠A=90°∴△ACD 是直角三角形.19.证明:∵CA 平分∠BCD ,AE ⊥BC ,AF ⊥CD∴AE=AF.在Rt △ABE 和Rt △ADF 中∵⎩⎨⎧AB =AD ,AE =AF ,∴△ABE ≌△ADF(HL).20.证明:(1)∵DE ⊥AB ,DF ⊥AC∴∠E =∠DFC =90°∴在Rt △BED 和Rt △CFD 中BD =CD ,BE =CF.∴Rt △BED ≌Rt △CFD(HL)∴DE =DF∵DE ⊥AB ,DF ⊥AC∴AD 平分∠BAC ;(2)解:∵Rt △BED ≌Rt △CFD∴AE =AF ,CF =BE =4∵AC =20∴AE=AF=20﹣4=16∴AB=AE﹣BE=16﹣4=12.21.证明:∵EF垂直平分AD∴AF=DF,∠ADF=∠DAF∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD又∵AD平分∠BAC∴∠BAD=∠CAD∴∠B=∠CAF.22.证明:∵∠ABE+∠CBE=60°,∠CAD+∠ADC=60°,∠EBC=∠DAC ∴∠ABE=∠ADC.又CE∥AB∴∠BEC=∠ABE.∴∠BEC=∠ADC.又BC=AC,∠EBC=∠DAC∴△BCE≌△ACD.∴CE=CD,∠BCE=∠ACD,即∠ECD=∠ACB=60°.∴△CDE是等边三角形.23.(1)证明:∵∠ACB=90°∴∠ACD+∠BCD=90°.∵∠ACD=∠B,∴∠B+∠BCD=90°∴∠BDC=90°,∴CD⊥AB.(2)解:①当∠B=34°时,∵∠ACD=∠B∴∠ACD=34°.由(1)知,∠BCD+∠B=90°∴∠BCD=56°.由折叠知∠A′CD=∠ACD=34°∴∠A′CB=∠BCD-∠A′CD=56°-34°=22°.②当∠B=n°时,同①的方法得∠A′CD=n°∠BCD=90°-n°∴∠A′CB=∠BCD-∠A′CD=90°-n°-n°=90°-2n°.24.解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE理由:∵∠C=40°∴∠DEC+∠EDC=140°又∵∠ADE=40°∴∠ADB+∠EDC=140°∴∠ADB=∠DEC又∵AB=DC=2∴△ABD≌△DCE(AAS)(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形理由:∵∠BDA=110°时∴∠ADC=70°∵∠C=40°∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°∴∠DAC=∠AED∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时∴∠ADC=100°∵∠C=40°∴∠DAC=40°∴∠DAC=∠ADE∴△ADE的形状是等腰三角形.。
2017-2018学年八年级数学下册 1 三角形的证明回顾与思考课时训练(无答案)(新版)北师大版
A B C D 第6题 第7题 第8题 第13题 第一章 三角形的证明一、选择题(每题3分,共24分)1. 到三角形三个顶点的距离相等的点是三角形( )的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高2.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则△ABC 的面积 是( )A.24cm 2B.30cm 2C.40cm 2D.48cm 23.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是( )A .7㎝B .9㎝C .12㎝或者9㎝D .12㎝ 4. 面积相等的两个三角形( )A.必定全等B.必定不全等C.不一定全等D.以上答案都不对5.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70°6. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( )A.30°B.36°C.45°D.70°8.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论X k B 1 . c o m①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)9.“等边对等角”的逆命题是______________________________.10.已知⊿ABC 中,∠A = 090,角平分线BE 、CF 交于点O ,则∠BOC = .11.如果等腰三角形的有一个角是80°,那么顶角是 度.12.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D 第6题 第7题 第8题 第13题 第一章 三角形的证明
一、选择题(每题3分,共24分)
1. 到三角形三个顶点的距离相等的点是三角形( )的交点.
A. 三个内角平分线
B. 三边垂直平分线
C. 三条中线
D. 三条高
2.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则△ABC 的面积 是( )
A.24cm 2
B.30cm 2
C.40cm 2
D.48cm 2
3.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是( )
A .7㎝
B .9㎝
C .12㎝或者9㎝
D .12㎝ 4. 面积相等的两个三角形( )
A.必定全等
B.必定不全等
C.不一定全等
D.以上答案都不对
5.一个等腰三角形的顶角是40°,则它的底角是( )
A .40°
B .50°
C .60°
D .70°
6. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是
( )
A.∠A=∠D
B.∠ACB=∠F
C.∠B=∠DEF
D.∠ACB=∠D
7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( )
A.30°
B.36°
C.45°
D.70°
8.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论X k B 1 . c o m
①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
二、填空题(每题3分,共24分)
9.“等边对等角”的逆命题是______________________________.
10.已知⊿ABC 中,∠A = 0
90,角平分线BE 、CF 交于点O ,则∠BOC = .
11.如果等腰三角形的有一个角是80°,那么顶角是 度.
12.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是 。
13.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC= .
14.Rt ⊿ABC 中,∠C=90º,∠B=30º,则AC 与AB 两边的关系是 ,
15.在△ABC 中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .
16.在△ABC 中,∠A=40°,AB=AC ,AB 的垂直平分线交AC 与D ,则∠DBC 的度数为 .
D
E C B A 三.基础题(每题6分,共36分)
17.如图,在△ABD 和△ACD 中,已知AB =AC ,∠B =∠C ,求证:AD 是∠BAC 的平分线.
18.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ;
19.如下图,CD ⊥AD ,CB ⊥AB ,AB =AD ,求证:CD=CB .
20.如图,DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB .
21.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF
相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上.
22.如图,ABC ∆中,DE A AC AB ,,
50=∠=是腰AB 的垂直平分线,求DBC ∠的度数。
D A
C
四、提高题(每题8分,共16分)
23.作图题:在下图△ABC 所在平面中,
(1)作距△ABC 三边距离相等的点P ; (2)作距△ABC 三个顶点距离相等的点Q.
24. 如图,△ABC 中,∠B=90°,AB=BC ,AD 是△ABC 的角平分线,若BD=1,求DC 的长.
五.综合题(每题10分,共20分)
25.如图,已知: D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中,
⎪⎩
⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB
∴△AEB ≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;
26.如图,在△ABD和△ACE中,有四个等式:①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE.以其中
..三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。
已知: .
求证: .
证明:。