全等三角形的判定3角边角和角角边(ASA AAS)定理PPT课件
三角形全等的判定(AAS、ASA)课件
A
∠F=180o - ∠D -∠E
C
又∵ ∠A=∠D, ∠B=∠E
∴ ∠C=∠F
B
D
在△ABC和△DEF中
∠B=∠E BC=EF ∠C=∠
必须是两角夹的一边才可以证明的两个三角形全等吗? 你发现了什么?
A
结论:
有两个角和 其中一个角的对边 对应 相等的两个三角形全等。
三角形全等的判定
角边角(ASA)、角角边(AAS)
合作探究一:阅读课本P39探究4说出你的结论:
先任意画一个△ABC,再画一个△A'B'C'
使得A'B'=AB, ∠A' = ∠A ,∠B' = ∠B;E D
C
C'
A
B
A'
B'
画法: 1、画A'B'=AB 2、画∠A'= ∠A;再画∠B'= ∠B
A'D、B'E交于点C'
全等? 1. 注意格式
2.字母对应
三角形全等判定方法3: 三角形全等判定方法4:
在ΔABC和ΔDEF中 ∠B=∠E
∵ BC= EF ∠C=∠F
在ΔABC和ΔDEF中 ∠B=∠E
∵ ∠C=∠F AC=DF
∴ΔABC≌DEF(ASA) A
∴ΔABC≌DEF (AAS) D
B
C
E
F
课堂小结
判断三角形全等的两个定理,它们分别是: (1)两角及其夹边分别相等的两个三角形全等 (ASA)
解:△AOC≌△BOD,理由如下:
∵点O是AB的中点
“角边角”、“角角边” PPT课件
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上 的高也相等.
AB=AB(已证),
所以△ABD≌△A'B'D'.所以AD=A'D'.
A
D
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知 B
C
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.
例2 如图,点D在AB上,点E在AC上,AB=AC,
∠B=∠C,求证:AD=AE.
分析:证明△ACD≌△ABE,就可以得出AD=AE.
3. 如图,已知∠ACB=∠DBC,∠ABC=∠CDB, 判别下面的两个三角形是否全等,并说明理由.
A
不全等,因为BC虽然是
公共边,但不是对应边.
C
B
D
4.如图∠ACB=∠DFE,BC=EF,那么应补充一
个条件
,才能使△ABC≌△DEF
(写出一个即可). AB=DE可以吗?×
B
A AB∥DE
C F
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法角边角
13.3 全等三角形的判定 - 第3课时课件(共17张PPT)
3.如图,点C在BD上,AB⟂BD,ED⟂BD,AC⟂CE,AB=CD.求证:△ABC≌△CDE.
证明:∵AB⟂BD,ED⟂BD,AC⟂CE,∴∠B=∠D=∠ACE=90°.∴∠DCE+∠DEC=90°,∠BCA+∠DCE=90°.∴∠BCA=∠DEC.在△ABC与△CDE中,∴△ABC≌△CDE(AAS).
复习巩固
基本事实一: 如果两个三角形的三边对应相等,那么这两个三角形全等.可简记为“边边边”或“SSS”.基本事实二: 如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.可简记为“边角边”或“SAS”.
探究
新知探究
知识点1 角边角
如图,在△ABC和△A'B'C'中,∠B=∠B',BC=B'C',∠C=∠C'.把△ABC和△A'B'C'叠放在一起,它们能够完全重合吗?
全等三角形的判定定理 如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等.可简记为“角角边”或“AAS”.
同学们再见!
授课老师:
时间:2024年9月15日
基本事实三
如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等.
基本事实三可简记为“角边角”或“ASA”.
已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B',BC=B'C'.求证:△ABC≌△A'B'C'.
知识点2 角角边
证明
证明:∵∠A+∠B+∠C=180°,∠A'+∠B'+∠C'=180°,(三角形内角和定理)又∵∠A=∠A',∠B=∠B',(已知)∴∠C=∠C'(等量代换).BC=B'C'在△ABC和△A'B'C'中,∵∴△ABC≌△A'B'C'(ASA)
《全等三角形》ppt课件
《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
《全等三角形的判定3(ASA和AAS)》PPT课件 冀教版八年级数学上
探究新知
观察:△A ' B ' C ' 与 △ABC 全等吗?怎么验证?
ED
C
C′
A
B A′
B′
探究新知
理由: ∵点A与点A' 重合,边AB落在边A′B′上,AB=A ' B ' ∴边AB与边A ' B' 重合。 ∴点B与点B ' 重合。 ∵∠A=∠A ', ∴边AC落在边A ' C ' 上。 ∵∠B=∠B ', ∴边BC落在边B ' C ' 上 ∵两条直线相交只有 一个交点。 ∴点C与点C ' 重合. ∴ △ABC≌△A′B′C′
分析 要证边 方法 角相等
证明两三 角形全等
已有条件 可从图中找
缺少条件 可从已知证
回顾复习
给出三个条件
三条边 三个角 两边一角 两角一边
全等
不一定全等 两边夹角全等 继续探究
“两角和一边”有几种不同的位置关系?
探究新知
学生活动一 【一起探究】
“两角和一边”有几种不同的位置关系? 两角和这两角的夹边 两角和其中一角的对边
当堂训练
1.如图,AD=AE,∠B=∠C,那么BE和CD相等么?为什么?
A
D
E
O
B
C
证明:在△ABE与△ACD中 ∠B=∠C (已知) ∠A= ∠A (公共角) AE=AD (已知)
∴ △ABE ≌△ACD(AAS) ∴ BE=CD (全等三角形对应边相等)
第十三章 全等三角形
13.3 全等三角形的判定
第3课时 全等三角形的判定3(ASA、AAS)
学习目标
1. 掌握“角边角”基本事实以及“角角边”全等判定定 理的内容.
三角形全等的判定:角边角和角角边_课件
结论
两角和其中一角对边对应相等的两个三角形全等 简写为“角角边”或“AAS”.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC与△DEF 中
∠B =∠E ∠A =∠D
一定要按“角,角, 边”的顺序列举条件
AC =DF
已知:点E 是正方形ABCD 的边CD上一点,点F 是CB 的延长 线上一点,且EA⊥AF,求证:DE=BF.
提示:证明△ABF ≌△ADE.
已知△ABC 中,BE ⊥AD 于E,CF⊥AD 于F,且BE =CF, 那么BD与DC 相等吗?
提示:证明△BDE ≌△CDF.
补充题 如图,AB∥CD,AD∥BC,那么 AB =CD 吗?为什么 ?AD 与BC 呢?
2.如图,要测量池塘两岸相对的两点A,B 的距离,可以在 池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画BF 的 垂线DE,使E与A,C在一条直线上,这时测得DE 的长就是 AB 的长.为什么?
如图,小明、小强一起踢球,不小心把一块三角形的装饰玻 璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其 中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗?
结论
两角及夹边对应相等的两个三角形全等 简写为“角边角”或“ASA”.
结论 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能 制作一张与原来同样大小的新教具吗?能恢复原来三角形 的原貌吗?
这利用的是什么原理呢?
ASA可以判定三角形全等.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC 与△DEF 中
八年级数学
精品 课件
第十二章 全等三角形:三角形全等的判定
全等三角形的判定PPT课件共34张
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
全等三角形的判定角边角课件
培养逻辑思维
掌握全等三角形判定定理 对于培养学生的逻辑思维 和推理能力具有重要意义。
角边角判定定理在几何证明中的应用
解决实际问题
角边角判定定理在解决实际问题中发 挥着重要作用,如测量、计算等领域。
提高解题效率
掌握角边角判定定理有助于提高解题 效率,帮助学生更快地解决几何问题。
简化证明过程
使用角边角判定定理可以简化几何证 明的步骤,使证明过程更加简洁明了。
总结词
直角三角形全等判定定理的应用
详细描述
在直角三角形中,如果两个直角边和夹角相等,则两个三角形全等。 这个判定定理可以用于证明两个直角三角形是否全等。
实例分析
假设我们有两个直角三角形ABC和DEF,其中∠C=∠F=90°,AC=DF, AB=DE,并且∠A=∠D。根据角边角判定定理,我们可以得出 △ABC≌△DEF 。
在复杂的几何图形中,识别并证明满足角边 角定理的全等三角形。
练习3
解决涉及角边角定理的实际问题,如测量、 构造等。
05
总结与回顾
全等三角形判定定理的重要性
01
02
03
几何证明的基础
全等三角形判定定理是几 何证明中的基础工具,是 解决各种几何问题的关键。
实际应用
在实际生活中,全等三角 形判定定理的应用也非常 广泛,如建筑设计、机械 制造等领域。
04
角边角判定定理的练习题
基础练习题
01
02
03
04
总结词
理解角边角判定定理的基本应 用
练习1
给出两个三角形,其中一个角 和两条边相等,判断这两个三
角形是否全等。
练习2
根据给定的条件,构造一个全 等三角形。
三角形全等的判定三AAS、ASA(课件)
∴∠C=180°-∠A-∠B,
同理∠F=180°-∠D-∠E , 又∵∠A=∠D,∠B=∠E , ∴∠C=∠F , 在△ABC和△DEF中,
B E
BC
EF
C F
∴△ABC≌△DEF (ASA).
★“角角边”判定方法
◆文字语言:两角分别相等且其中一组等角的对边相等的两个三角形全等. (可以简写成“角角边”或“AAS”). 几何语言:
5.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂
线BF上两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直
线上,这时测得DE的长就是AB的长.为什么?
解:∵ AB⊥BF,DE⊥BF,
∴ ∠ABC=∠EDC=90° , 在△ABC和△EDC中,
ABC EDC
1.如图,使△ABC≌△A′B′C′的条件是( B )
A.AB=A′B′,BC= B′C′ ,∠A=∠ A′
B.AB= A′B′ ,AC= A′C′ ,∠A=∠ A′
C.AB= A′B′ ,AC= A′C′ ,∠B=∠B′
D.AB= A′B′ ,BC= B′C′ ,∠C=∠ C′
2.如图,要使△ABC≌△DEF,已知∠A=∠D,∠C=∠F,则不能使之全
【分析】证明△ACD≌△ABE,就可以得出AD=AE.
证明:在△ACD和△ABE中,
A A
AC
AB
C B
∴ △ACD≌△ABE (ASA) ,
∴ AD=AE.
如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.求证AB=AD.
证明:∵ AB⊥BC,AD⊥DC,
全等三角形的判定ppt课件完整版
注意事项
在证明过程中,需要注意两边和所夹 的角分别相等的条件必须同时满足, 且所夹的角必须是两边的夹角,否则 不能得出全等的结论。
角边角(ASA)判定定理证明
基本思路
证明方法
注意事项
如果两个三角形有两个角和它们的夹边 分别相等,则这两个三角形全等。
可以通过构造法或者余弦定理来证明。 构造法可以构造出两个三角形,然后通 过证明它们有两个角和夹边分别相等来 得出它们全等的结论。余弦定理可以通 过三角形的边角关系来证明两个三角形 有两个角和夹边分别相等,从而得出它 们全等的结论。
注意事项
在证明过程中,需要注意两个角和其 中一个角的对边分别相等的条件必须 同时满足,否则不能得出全等的结论。 同时,AAS和ASA的区别在于所给的条 件不同,但都可以用来判定两个三角 形是否全等。
04
全等三角形的应用举例
Chapter
在几何证明中的应用
证明线段相等
通过证明两个三角形全等,可以推出它们对应的边相等,从而证 明线段相等。
全等三角形的判定ppt课件完整版
目录
• 引言 • 全等三角形的判定方法 • 全等三角形判定定理的证明 • 全等三角形的应用举例 • 实验操作与探究 • 全等三角形判定的拓展与延伸
01
引言
Chapter
三角形的定义与性质回顾
三角形的定义
由不在同一直线上的三条线段首尾顺 次相接所组成的图形。
三角形的分类
在证明过程中,需要注意两个角和夹边 分别相等的条件必须同时满足,且所夹 的边必须是两个角的夹边,否则不能得 出全等的结论。
角角边(AAS)判定定理证明
基本思路
证明方法
如果两个三角形有两个角和其中一个 角的对边分别相等,则这两个三角形 全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∠ A=∠ D, A B =D E , _________;
练一练
3、如图,要测量河两岸相对的两点A,B 的距离,可以在AB的垂线BF上取两点 C,D,使BC=CD,再定出BF的垂线 DE,使A, C,E在一条直线上,这时 测得DE的长就是AB的长。为什么?
A
B CD F
E
练习2
如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
利用“角边角”可知,带第(2)块去, 可以配到一个与原来全等的三角 形玻璃。
在△ABC和△DEF中,∠A=∠D,∠B=∠E , BC=EF,△ABC与△DEF全等吗?能利用角边 角条件证明你的结论吗?
A
A′
B
B′
C
C′
角角边定理
如果两个三角形的两个角及其中一个角的对边分别
对应相等,那么这两个三角形全等. (AAS)
E
D
C C′
A
B
A′
B′
通过实验你发现了什么结论?
角边角定理
如果两个三角形的两个角及其夹边分别对应相等, 那么这两个三角形全等. (ASA)
A
A′
B
C B′
在△ABC和△ A'B'C'中
{∠A= ∠A' AB= A'B' ∠B= ∠B' ∴ △ABC≌△ A'B'C'
C′ (ASA)
(2) (1)
例3、已知:点D在AB上,点E在AC上,
AB=AC,∠B=∠C。
求证: AD=AEA证明:在△ABE和△ACD中 ∠A=∠A(公共角) D
∵ AB=AC(已知) ∠B=∠C(已知) B
∴ △ABE≌△ACD(ASA) ∴AD=AE
E C
1、要使下列各对三角形全等,需要增加 什么条件?
∠ A=∠ D , ∠ B=∠ F, _________;
本节课我们学习了判定两个三角形 全等的两种方法:
1. 两个角及两角的夹边:ASA
2.两个角及其中一角的对边。AAS
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
三角形全等的判定(3)--角边角 和角角边定理(ASA、AAS)
A E
B
FC
判定两个三角形全等有哪些方法? 边边边(SSS)
三边对应相等的两个三角形全等
边角边(SAS)
有两边和它们夹角对应相等的 两个三角形全等。
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
A
A′
B
C B′
在△ABC和△ A'B'C'中
{∠A= ∠A' ∠B= ∠B' BC= B'C' ∴ △ABC≌△ A'B'C'
C′
(AAS)
两角和它们的夹边对应相等的两个三角 形全等,简写成“角边角”或“ASA”。
(ASA)
(AAS)
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
怎么办?可以 帮帮我吗?
A D
C
E
B
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB,∠A/ =∠A,∠B/ =∠B 把画好的△A/B/C/剪下,放到 △ABC上,它们全等吗?
作法: 1、作A/B/=AB; 2、在 A/B/的同旁作∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D与B/E交于点C/。
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日