理论力学 第2版 02平面汇交力系

合集下载

第二章平面汇交力系及平面力偶系

第二章平面汇交力系及平面力偶系
一、几何法合成(作图法)
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至

终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基

第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα


Fy=a’ b’= - Fcosα

静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)

大学_理论力学第2版(唐国兴王永廉主编)课后答案_1

大学_理论力学第2版(唐国兴王永廉主编)课后答案_1

理论力学第2版(唐国兴王永廉主编)课后答案理论力学第2版内容简介第2版前言第1版前言第一章静力学基础知识要点解题方法难题解析习题解答第二章平面汇交力系知识要点解题方法难题解析习题解答第三章力矩、力偶与平面力偶系知识要点解题方法习题解答第四章平面任意力系知识要点解题方法难题解析习题解答第五章空间力系知识要点解题方法习题解答第六章静力学专题知识要点解题方法习题解答第七章点的运动学知识要点解题方法难题解析习题解答第八章刚体的基本运动知识要点解题方法习题解答第九章点的合成运动知识要点解题方法难题解析习题解答第十章刚体的平面运动知识要点解题方法难题解析习题解答第十一章质点动力学基本方程知识要点解题方法难题解析第十二章动量定理知识要点解题方法难题解析习题解答第十三章动量矩定理知识要点解题方法难题解析习题解答第十四章动能定理知识要点解题方法难题解析习题解答第十五章动静法知识要点解题方法习题解答参考文献理论力学第2版目录机械工业出版社本书是与唐国兴、王永廉主编的《理论力学》(第2版)配套的教学与学习指导书。

本书按主教材的章节顺序编写,每章分为知识要点、解题方法、难题解析与习题解答四个部分。

其中,“知识要点”部分提纲挈领地对该章的基本概念、基本理论和基本公式进行归纳总结,以方便读者复习、记忆和查询;“解题方法”部分深入细致地介绍解题思路、解题方法和解题技巧,以提高读者分析问题和解决问题的能力;“难题解析”部分精选若干在主教材的例题与习题中没有涉及的典型难题进行深入分析,以拓展读者视野,满足读者深入学习的需要;“习题解答”部分对主教材中该章的全部习题均给出求解思路和答案,但不提供详细解题过程,以期在帮助读者自主学习和练习的同时为他们留出适量的思考空间。

本书继承了主教材的风格特点,结构严谨、层次分明、语言精练、通俗易懂。

本书虽与主教材配套,但其结构体系完整,亦可单独使用。

本书可作为应用型本科院校与民办二级学院工科各专业学生的.学习和应试指导书,同样适合高职高专、自学自考和成人教育的学生使用,对考研者、教师和工程技术人员也是一本很好的参考书。

工程力学 第2版 第2章 平面力系

工程力学 第2版 第2章 平面力系
2.1 平面汇交力系的合成和平衡 2.2 平面力偶系的合成和平衡 2.3 平面任意力系的简化和平衡
2.1 平面汇交力系的合成和平衡
汇交力系——各力作用线汇交于同一点的力系; 平面汇交力系——若汇交力系中各力作用线在同一平面内。
2.1.1 平面汇交力系的合成
1. 力多边形
力的可传递性和力的三角形法则
2.2 平面力偶系的合成和平衡
2.2.1 力矩
2. 力矩的性质
1)力的作用点沿作用线移动,不改变力对点的矩。 2)当力通过矩心时,此力对矩心的力矩等于零。 3)互成平衡的力对同一点的矩之和等于零。
2.2 平面力偶系的合成和平衡
2.2.2 力偶
1. 力偶的概念
两手操纵方向盘和用丝锥攻螺丝时,都有这样一对大小相等、方向相反、作用线平行但不重合的
工程力学
2024秋季学期
1
0. 绪论
1. 力学的基本概念
2. 平面力系
3. 恒载下杆件结构的内力和内力图

4. 影响线
5. 截面的几何性质
6. 杆件的应力与强度

7. 杆件结构的变形计算
8. 压杆稳定
9. 平面体系的几何组成分析
10. 力法
11. 位移法
12. 力矩分配法
第2章 平面力系
本章学习内容
FR
FRx Fx1 Fx2 Fxn Fxi FRy Fy1 Fy2 Fyn Fyi
Fx Fy
2.1 平面汇交力系的合成和平衡
4.平面汇交力系的合成
当平面汇交力系为已知时,可先求出力系中各力在x轴和y轴上的投影, 再根据合力投影定理求得合力在x、y轴上的投影,即可求得合力。
2.1 平面汇交力系的合成和平衡

《工程力学(第2版)》课后习题及答案—理论力学篇

《工程力学(第2版)》课后习题及答案—理论力学篇

第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。

两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。

2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。

3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。

例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。

4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。

答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。

二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。

5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。

在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。

因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。

6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。

答:若12=F F ,则一般只说明两个力大小相等,方向相反。

若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。

若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。

7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。

二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。

理论力学02平面力系的简化和平衡

理论力学02平面力系的简化和平衡
即它就是作用线方程rxry例题2123平面力偶系作用在同一平面的多个力偶构成平面力偶系以其中任一力偶为基准通过移转改变力偶臂长度将其他力偶与该基准力偶叠合得到两个汇交力系再分别合成可以得到一个新力偶原力偶系的合力偶原力偶系的合力偶矩只受平面力偶系作用的刚体平衡充要条件
第二章
平面力系的简化和平衡
2.1力的合成与分解: 1.平行四边形法则: 作用于物体上同一点的两个力可合成 一个合力,此合力也作用于该点,合力的 大小和方向由以原两力矢为邻边所构成的 平行四边形的对角线来表示。
④ R ≠0, MO ≠0,为最一般的情况。此种情况还可以继续简 化为一个合力 R 。
合力R 的大小等于原力系的主矢 合力R 的作用线到简化中心的距离
MO d R
结论:
平面任意力系的简化结果 :①合力偶MO ; ②合力 合力矩定理:由于主矩 而合力对O点的矩
R
M O mO ( Fi )
主矩:
M O M O ( F ) 3F1 1.5P 1 3.9P 2 2355kN m
(2)求合力及其作用线位置:
d x 3.514m 0 0 cos 90 70.84
(3)求合力作用线方程:
MO MO

' ' FR x FRy y FRx x FRy y FRx
二、汇交力系的合成 由几何法知合力等于各分力的矢量和,即
R F Fn F i 1 F 2 F 3
又 由于
Fi X ii Yi j Zi k Fxii Fyi j Fzi k
代入上式得 R
F i F
xi
yi
j Fzi k
根据合矢量投影定理得合力在坐标轴的投影

理论力学第二章汇交力系与平面力偶系

理论力学第二章汇交力系与平面力偶系

FBC= 224.23 kN 代入(3)、(4)解得
tan θ = 1.631 , θ = 58.5°
FA= 303.29 kN
y
FBC
FD
C
45°
30°
x
W2
y
FA
θB
x
45°
W1 F'BC
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
投影法的符号法则: 当由平衡方程求得某一未知力的值
y
FBC
B 30°
x
FAB
FD 30° W
b
联立求解,得
FAB= -54.5kN , FBC= 74.5kN
反力FAB为负值,说明该力实际指向与图上假定指向相反。 即杆AB实际上受拉力。
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
例2–5 如图已知W1=100 kN, W2=250 kN。不计各
Fx F cos
Fy
Fy F cos
O 2、力在空间直角坐标轴上的投影:
F
Fx x
一次投影法:
Z
Fx F cos Fy F cos
F
O
y
FZ F cos
第二章 汇交力系与平面力偶系
x
★§2–2 空间汇交力系的合成与平衡 二次投影法:
已知力F 和某一平面(oxy)的夹
角为θ,又已知力F 在该平面
杆自重,A,B,C,D各点均为光滑铰链。试求平衡状
态下杆AB内力及与水平的夹角。
A
θB
D
W1
45° C
30°
W2 第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡

理论力学第二章(汇交力系)

理论力学第二章(汇交力系)
力多边形 各分力矢与合力矢构成的多边形。
2) 合力
力矢量合成的力多边形法则: 1) 各分力首尾相接,次序可变;
R 为封闭边。
z F3 FR F2 F1 x
5
2、空间汇交力系合成的几何法
r r r r r r FR = F1 + F2 + F3 + F4 = Σ Fi ,
合成为一个合力,合力的大小与方向等于 各分力的矢量和,合力的作用线过汇交点.
FR = F1 + F2 + L + Fn = ∑ Fi
向两个坐标轴投影,
FR = FRx + FRy = (∑ Fix ) + (∑ Fiy )
2 2 2
2
FR
合力方向 FRx ∑ Fix FRy cos θ = = , sin θ = = FR FR FR 合力投影定理:
∑F
FR
iy
10 合力在任一轴上的投影等于各分力在同一轴上投影的代数和。
FDA
P
FDB=FDC=289N。
18
例 :起重机起吊重量P = 1 kN, ABC 在 yz 平面内,求:立柱 x’ AB、绳BC,BD,BE 的拉力。 解:B点有四个未知力汇 交,故先从C点求解,
[C] 平面汇交力系 z 750
B 450 E FBE FBD 450 450 D x A y 450 F BA 450 FCB FBC 300 FCA
汇交力系的平衡条件为:力系中各力在x、y、z三个坐标 轴的每一轴上投影之代数和均为零。 14 汇交力系平衡的几何条件为:力多边形自行封闭。
汇交力系平衡条件的应用
例:园柱物置于光滑的燕尾槽内,已知:P 为 500 N,求: 接触处A、B的约束力。

理论力学第二章平面汇交力系与平面力偶系

理论力学第二章平面汇交力系与平面力偶系
FR FRx 2 FRy 2
合力作用点:为该力系的汇交点
2-2 平面汇交力系合成与平衡的解析法
(2)平面汇交力系平衡的充要条件: 各力在两个坐标轴上投影的代数和分别等于零。 ——平面汇交力系的平衡方程
X0,
Y
i 1
n
i
0
只可求解两个未知量
[ 例1 ] 系统如图,不计杆、轮自重,忽略滑轮大小, 已知: P=20kN; 求:系统平衡时,杆AB、BC受力。
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图。 用解析法,建图示坐标系
Fix 0
FBA F1 cos 60 F2 cos 30 0

Fiy 0
FBC F1 cos 30 F2 cos 60 0
F1 F2 P
解得: FBC
27.32kN
②应用合力矩定理
mO ( F ) Fx l F y l ctg

m o (Q ) Q l
[例P28 2-4,习题P38 2-10]

[例2]水平梁AB受按三角型分布的载荷作用,如图所示。 载荷的最大值为q,梁长l ,试求合力作用线的位置。
解:在距A端x 的微段dx上, 作用力的大小为q’dx,其中 q’ 为该处的载荷强度。由图可知 ,q’=xq/l。,因此分布载荷合 力的大小为: l
2-2 平面汇交力系合成与平衡的解析法
二、平面汇交力系合成的解析法:
各分力在x轴和在y轴投影的代数 和 等于合力在对应轴上的投影。
FR x X 1 X 2 X 4
X
FR y Y1 Y2 Y3 Y4

Y

i
i

大学本科理论力学课程第2章平面汇交力系

大学本科理论力学课程第2章平面汇交力系

F1
F1 b F2
O
F3
F2 a FR
c
F3
d
理论力学电子教程
第二章 平面汇交力系
二、平衡
平面汇交力系平衡的充要条件是:力多边形自行封闭, 即P28
FR 0 或
F1 F2 F3 F4 0
F4
F1
O
F2
F3
两个矢量关系图
F1
a
b F2
c
F4
F3
d
理论力学电子教程
第二章 平面汇交力系
思考题
试指出图示平面汇交力系所作的力多边形各力 矢量关系如何?合成结果是什么?
(a)
(b)
(c)
(d)
P36
理论力学电子教程
第二章 平面汇交力系
例2-1 水平梁AB中点C作用着力F,其大小等于20kN,方向与梁的轴线成
60º角,支承情况如图a 所示,试求固定铰链支座A和活动铰链支座B的约束力 。梁的自重不计。
理论力学电子教程
第二章 平面汇交力系
由图a知,若已知力FR 的大小FR 和
其与x轴、y轴的夹角为a、b,则
y
Fx FR cosa
Fy FR cos b FR sin a
即力在某个轴上的投影等于力的大小 乘以力与该轴的正向间夹角的余弦。
b1 a1
Fy
b
B
a FR
A
当a、b为锐角时,Fx、Fy均为正值; 当a、b为钝角时,Fx、Fy为负值。 O
理论力学电子教程
第二章 平面汇交力系
第二章 平面汇交力系
1、平面汇交力系合成与平衡的几何法
(1)平面汇交力系的合力为力多边形(各力依次首尾连接)的封闭边 (2)平面汇交力系平衡的充要条件(几何法)是:力多边形(各力依次首尾连接)自行封闭

理论力学第二章平面汇交力系与平面力偶系思维导图

理论力学第二章平面汇交力系与平面力偶系思维导图

①掌握力偶、力偶矩的基本概念及其力偶的基本性质。

力沿坐标轴的分力是一矢量,其合力和分力之间应满足力的平行四边形规则。

一般情况下,力在坐标轴上投
影的大小不等于力沿坐标轴分解的分力的大小。

只有当α(由平行四边形面积表达式证出)平面力对点之矩简称力矩,是一代数量,其绝对值等于力的大小与力臂的乘
积,正负号表示力矩的转向,一般以逆时针转向为正,反之为负
平面力对点之矩还可应用合力矩定理求解。

特别是在力臂计算不方便时,若将其分解
为两个正交分力并用合力矩定理计算则较方便,注意表达中的负号。

由等值、反向、不共线的两个平行力组成的力系效应用力偶矩来度量。

力偶没有合力,力偶只能用力偶来平衡力偶力偶矩
在平面问题中,力偶矩是一个代数量,其绝对值等于力的大小与力偶臂的乘积
解析法根据合力投影定理求出合力在
合力的大小和方向余弦
平衡的几何条件:力多边形自行封闭
平衡的解析条件:力系中各分力在两个坐标轴上的投影的代数和分
别等于零
平面力偶系可合成为一个力偶,称为合力偶。

合力偶矩等于各分力偶矩的代数和
(注意区分转向,即正负号)
平面力偶系平衡的充分和必要条件是:所有各分力偶矩的代数和等于零。

二章理论力学平面汇交力系与平面力偶理论知识讲解

二章理论力学平面汇交力系与平面力偶理论知识讲解

解: ①选碾子为研究对象 ②取分离体画受力图
F
r
NA
7
∵当碾子刚离地面时NA=0,拉力F最大,这时 拉力F和自重及支反力NB构成一平衡力系。 由平衡的几何条件,力多边形封闭,故
FPtg
NBcoPs
又由几何关系:
tg
r2(rh)2 rh 0.577
所以
F=11.5kN , NB=23.1kN
由作用力和反作用力的关系,碾子对障碍物的压力等于 23.1kN。
一、力在坐标轴上的投影
X=Fx=F·cos ; Y=Fy=F·sin = F ·cos
F Fx2Fy2
cosXFx
FF
cosY Fy
FF
10
二、合力投影定理
由图可看出,各分力在x 轴和在y 轴投影的和分别为:
RxX1X2X4X
即:
RyY1Y2Y3Y4 Y
Rx X
Ry Y
合力投影定理:合力在任一轴上的投影,等于各分力在同一 轴上投影的代数和。
1
引言
力系分为:平面力系、空间力系
①平面汇交力系 平面力系 ②平面 力偶系
③平面一般力系(平面任意力系)
平面汇交力系: 各力的作用线都在同一平面内且汇交于一点的力系。
例:起重机的挂钩。
T
研究方法:几何法,解析法。
T1
T2
2
第二章 平面汇交力系与平面力偶理论 §2–1 平面汇交力系合成和平衡的几何法 §2–2 平面汇交力系合成和平衡的解析法 §2–3 力矩 、力偶的概念及其性质 §2–4 平面力偶系的合成与平衡
④解平衡方程 由EB=BC=0.4m,
tgE AB B1 0..2 41 3 解得: SCD si4 n05 cPo4s05 tg 4.2k 4N ;

山东大学《理论力学》教案第2章 平面汇交力系与平面力偶系

山东大学《理论力学》教案第2章  平面汇交力系与平面力偶系

第2章 平面汇交力系与平面力偶系一、目的要求1.平面汇交力系(多个力)合成与平衡的几何法,并能应用平衡的几何条件求解平面汇交力系的平衡问题。

2.能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解,掌握汇交力系合成的解析法和平衡方程,并能熟练的应用平衡方程求解汇交力系的平衡问题。

3. 理解力对点之矩的概念,并能熟练地计算。

4.深入理解力偶和力偶矩的概念,明确平面力偶的性质和平面力偶的等效条件。

二、基本内容1.平面汇交力系合成的几何法·力多边形法则平面汇交力系可合成为通过汇交点的合力,其大小和方向等于各分力的矢量和。

即∑==+++=n i i 11F F F F F n 2R 或 ∑=F F R合力R F 的大小和方向可用力三角形法则或力多边形法则得到。

作出图示首尾相接的开口的力多边形,封闭边矢量即所求的合力。

2.平面汇交力系平衡的几何条件平面汇交力系平衡的必要和充分条件是:力系的合力等于零。

其矢量表达式为∑==0F F R (2-2) 力系平衡的几何条件是:力系的力多边形自行封闭。

如图2-4所示。

3.力在正交坐标轴系的投影与力的解析表达式力F 在y x ,轴上的投影分别为cos cos sin x y F F F F F αβα=⎫⎪⎬==⎪⎭力的投影是代数量。

4.平面汇交力系合成的解析法合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和。

平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上的投影的代数和分别为零。

即00x y F F ⎫=⎪⎬=⎪⎭∑∑ 两个独立的平衡方程,可解两个未知量。

5.平面内的力对点O 之矩是代数量,记为M o (F )ABO Fh M o ∆±=±=2)(F其中F 为力的大小,h 为力臂,∆ABO 为力矢AB 与矩心O 组成三角形的面积。

一般以逆时针转向为正,反之为负。

力矩的解析表达式为: 合力矩定理: 6.力偶和力偶矩:·大小相等,方向相反,作用线平行的两个力称为力偶。

建筑力学第2章平面汇交力系

建筑力学第2章平面汇交力系
• 所以,平面汇交力系平衡的解析条件是:力系中各力在两个坐标轴上 投影的代数和均等于零。式(2-3)也是平面汇交力系的平衡方程 。利用平面汇交力系的平衡方程,一次可以求解两个独立的未知量。
上一页
返回
图 2-1
返回
图 2-3
返回
图 2-4
返回
图 2-6
返回பைடு நூலகம்
• 注意:力在坐标轴上的投影是代数量,有正负号,而分力是矢量,不 能将它们混为一谈。
上一页
返回
第二节 平面汇交力系的合成与平衡
• ■一、平面汇交力系合成的几何法
• 1.两个汇交力的合成 • 图2-3(a)中,力F1、F2作用于刚体上某点A,由力的平行四边
形法则可知,对角线FR即为F1和F2的合力。 • 为简便起见,可用力三角形法求合力,即直接将图2-3(a)中的F
上一页 下一页 返回
第二节 平面汇交力系的合成与平衡
• 由式(2-2)可得合力投影定理:合力在坐标轴上的投影等于各分 力在同一坐标轴上投影的代数和。
上一页 下一页 返回
第二节 平面汇交力系的合成与平衡
• ■四、平面汇交力系平衡的解析条件(平衡方 程)
上一页 下一页 返回
第二节 平面汇交力系的合成与平衡
• 投影的正负号规定如下:若力F在坐标轴上的投影方向与坐标轴方向 一致,取正号;反之取负号。
• 由图2-1可得 • Fx=±Fcosα • Fy=±Fsinα
下一页 返回
第一节 力在直角坐标轴上的投影
• 图2-1中,F1、F2是力F沿x轴、y轴方向的分力,是矢量,它们的 大小和力F在两个坐标轴上投影的绝对值是相等的,即F1=Fx,F2 =Fy
• 力多边形自行封闭,即第一个力的起点和最后一个力的终点重合。 • 工程中,有些平面汇交力系的平衡问题可用图解法,可根据图形的几

理论力学2-平面汇交力系与平面力偶系

理论力学2-平面汇交力系与平面力偶系

R F 1 F 2 F n F
如果一力与某一力系等效,则此力称为该 力系的合力。
2.1.2 平面汇交力系平衡的几何条件
平面汇交力系平衡的必要与充分条件是: 力矢多边形自行封闭或该力系的合力等于零。 用矢量式表示为:
F 0
在平衡的情形下,力多边形中最后一力的 终点与第一力的起点重合,此时的力多边形称 为封闭的力多边形。于是,平面汇交力系平衡 的必要与充分条件是:该力系的力多边形自行 封闭,这是平衡的几何条件。
2 2 2 2
Xi 0
Yi 0
上式称为平面汇交力系的平衡方程。
平面汇交力系平衡的解析条件是:各分力在两个坐标 轴上投影的代数和等于零。
[例2] 已知 P=2kN
求SCD , RA
解:
1. 取AB杆为研究对象 2. 画AB的受力图
3. 列平衡方程
X 0
RAcos SCD cos450 0
2 x 2 y 2
2
Rx cos R
cos
Ry R
合力投影定理:合力在某轴上的投影等于 其分力在同一轴上投影的代数和。 适用于力矢也适用于其他矢量。
——合矢量在某轴上的投影,各等于其分矢量 在同一轴上投影的代数和。
2.2.4 平面汇交力系的平衡方程
R ( Rx ) ( Ry ) ( X i ) ( Yi ) 0
2.4 平面力偶
2.4.1力偶与力偶矩
由两个大小相等、方向相反且不共线的平行力组成的力系, 称为力偶,记为(F, F')。力偶的两力之间的垂直距离d称为力臂, 力偶所在的平面称为力偶作用面。 力偶不能合成为一个力,也不能用一个力来平衡。力和力 偶是静力学的两个基本要素。

理论力学第二章课后习题答案

理论力学第二章课后习题答案

理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。

2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。

(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。

(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。

(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。

6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。

(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。

2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。

则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。

5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。

1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。

(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。

理论力学第二章

理论力学第二章

T
T1
T2
二、平面汇交力系合成的几何法
设有一个平面汇交力系 F1、F2、F3、F4作用于汇交点,如图2-1a
所示。我们可以依次地应用力三角形法则来求该平面汇交力系的
合力。即先将力 F1与 F2合成为一个力 FR1,再将力FR1与F3 合成 为一个力 FR2,最后将力FR2 与F4合成,即得该平面汇交力系的合 力 FR ,且合力的作用线通过汇交点,如图2-1b所示。
第二章 平面汇交力系和平面力偶系
2.1 平面汇交力系合成与平衡的几何法 2.2 平面汇交力系合成与平衡的解析法 2.3 平面力对点之矩的概念与计算 2.4 平面力偶
武汉大学出版社
1
§2-1 平面汇交力系合成与平衡的几何法
一.平面汇交力系的概念
平面汇交力系:各力在同一平面内,作用线交于一
点的力系。
例:起重机的挂钩。
例2-3
已知:图示平面共点力系; 求:此力系的合力.
解:用解析法
FRx
F ix

F1
cos 30

F2
cos 60

F3
cos 45

F4
cos 45
129.3N
FRy
F iy

F1
sin
30

F2
sin
60

F3
sin
45

F4
sin
45
112.3N
FR
FCA AC 1 P AB
FCB BC 1 P AB 2
图2-2
解得
FCA 10 kN, FCB 5 kN
也可给P一定比例,量出FCA和FCB的大小,如取比例尺为1cm=5kN,作

理论力学-平面汇交力系

理论力学-平面汇交力系
第一篇
静力学
第二章
平面力系
第二章
平面力系
主要内容
1. 2. 3. 4. 5. 平面汇交力系的合成与平衡 平面力偶系的合成与平衡 平面任意力系的合成与平衡 静定与超静定 ·物系的平衡 平面简单桁架的内力计算
第二章
平面力系
§2-1 平面汇交力系
§2-1 平面汇交力系
何谓平面汇交力系?
作用在刚体上的力都在同一平面上,
C B
D y
二力杆
Fx 0, Fy 0,
FA cos FC cos 45 0
FA
A
E
FA sin FC sin 45 F 0

C
F
45o
B x
5. 解得: FA =22.4kN FC =28.3kN
FC
§2-1 平面汇交力系
解题技巧及说明
1、通常,对于只受三个力作用而平衡的物体,且角 度特殊时用几何法比较简便。- 解力三角形 2、对于受多个力作用平衡的物体,均用解析法。 3、投影轴的选择原则:与未知力垂直或平行,最好 使每个方程中只有一个未知数。 4、解析法解题时,如果力的指向不能确定,可任意 假定,如求出负值,说明力的实际方向与假设方 向相反。 如:对于二力构件,可先预先设为拉力。
— 力多边形
含义:平面汇交力系的合力等于各分力的矢量和, 合力的作用线通过各分力的汇交点。
§2-1 平面汇交力系 2、平面汇交力系平衡的几何条件 平面汇交力系平衡的充要条件是:
FR = 0 , 即
F2 F1
F3
F5 = FR
F = 0
i
相应地,从几何角度上讲,如何? 平面汇交力系平衡的充要条件是:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fiy 0, FBC F1 cos 30 F2 cos 60 0
解得
FBC 5 kN
FA 5 kN
y
B
A
FA
P
30
FBC
x
D
FBC 为正值,表示其假设方向与实际方向相同,即杆 BC 受压; 而 FA 为负值,则表明其假设方向与实际方向相反。
[例4] 重 P = 20 kN的重物,用钢丝绳挂在铰车 D 与滑轮 B 上。A、B、 C 处均为光滑铰链连接。若钢丝绳、杆和滑轮的自重不计,并忽略 摩擦与滑轮尺寸,试求系统平衡时杆 AB 和 BC 所受的力。
l l/2
A B
P 30
A P
FA
D
B FBC
C
解: 1)选取 AB 梁(包括电动机)为研究对象 2)受力分析
3)选取坐标轴,列平衡方程
Fix 0, FA cos 30 FBC cos 30 0
Fiy 0, FA sin 30 FBC sin 30 P 0
4)求解未知量
解: 1)计算合力的投影 由合力投影定理,得合力的投影
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45
129.3 N
y F2
F1
60
30
45 O
45
x
F3
F4
FRy F1 sin 30 F2 sin 60 F3 sin 45 F4 sin 45 112.3N
四、求解平衡问题的基本步骤 1)适当选取研究对象 2)对研究对象进行受力分析 3)选取坐标轴,列平衡方程 4)解方程,求未知量
[例3] 如图,重 P = 5 kN 的电动机放在水平梁 AB 的中央,梁的 A 端 受固定铰支座的约束,B 端以撑杆BC 支持。若不计梁与撑杆自重, 试求铰支座 A 处的约束力以及撑杆 BC 所受的力。
解:
F1x F1 cos 60
6 1 3kN 2
F1y F1 sin 60
6
3 5.20 kN 2
F2x 0
F2 y F2 6 kN
y
F2
F1
60
F3x F3 sin 30
4 1 2 kN 2
F3y F3co s 30
4
3 3.46 kN 2
j
间的夹角
Oi
Fx
x
说明: 1)力在坐标轴上投影为代数量,正负号由方向余弦确定 2)力在坐标轴上投影的几何意义 3)力在坐标轴上投影的正负号可以直接判断
Fx F cos
2. 已知投影求力
Fy F cos
大小:
F Fx2 Fy2
方向余弦: cos Fx , cos Fy
FR FR 171.3
arccos 0.755 41.0
y

O
arccos 0.656 49.0
FR x
合力 FR 的作用线通过力系的汇交点 O ,方向如图所示
三、平面汇交力系的平衡方程
Fix 0
Fi y 0
说明: 1)可解两个未知量 2)投影轴可任意选择
FRy Fi y
2. 用解析法求合力
大小:
FR FR2x FR2y
2
Fi x
2
Fi y
FR
cos FRy Fi y
FR
FR
[例2] 已知 F1 = 200 N、F2 = 300 N、F3 = 100 N、F4 = 250 N,各力 方向如图所示, 试求该平面汇交力系的合力。
三、平面汇交力系平衡的几何条件 力多边形自行封闭
F1
F2
F3
O
F5
F4
F2
F3
F4
F1
F5
第二节 平面汇交力系合成与平衡的解析法
一、力在直角坐标轴上的投影
1. 定义
y
力 F 在 x 轴上投影: Fx F cos
Fy
力 F 在 y 轴上投影: Fy F cos
F

式中,、 分别为 F 与 i 、j 正方向
30
x
F3
45
F4
2 F4x F4 cos 45 4 2 2.83kN
2 F4y F4 sin 45 4 2 2.83kN
二、平面汇交力系合成的解析法
1. 合力投影定理 力系的合力在任一坐标轴上的投影等于其各分力在同一轴上投 影的代数和,即
FRx Fix
FRx 129.3 N
FRy 112.3 N
2)确定合力的大小和方向
FR FRx2 FRy2 129.32 112.32 N 171.3 N
cos FRx Fix 129.3 0.755
FR FR 171.3
cos FRy Fiy 112.3 0.656
FAB A
FBA
A
B
FBA
F2
60
BD
B
60
30
解: 1)选取滑轮(包含销钉 B ) 为研究对象
FBC
F1
B FBC
30
P C
2)受力分析
C
FCB
注意:受力图中假设杆 AB 和 BC 均受拉
3)选取坐标轴,列平衡方程
Fix 0, FBA F1 cos 60 F2 cos 30 0
第二章 平面汇交力系
平面汇交力系: 力系中的各力的作用线都位于同一平面内且汇 交于同一点 本章讨论平面汇交力系的合成与平衡问题
第一节 平面汇交力系合成与平衡的几何法
一、平面汇交力系合成的几何法·力多边形法则
FR1
FR2
F1
F2
F1
F2
FR
O
F3

F3 O
F4
F4
F2
F3
FR1 FR2
F4
F1
FR
O
一、平面汇交力系合成的几何法·力多边形法则
F
F
y
Fy
Fy F

Fx
j
Oi
Fx
x
3. 分力与投影之间的关系
F Fx Fy Fx i Fy j
说明: 仅在直角坐标系中成立
[例1] 已知平面内四个力,其中F1 = F2 = 6 kN,F3 = F4 = 5 kN,各 力的方向如图所示,试分别求出各力在 x 轴和 y 轴上的投影。
F1
F2
F3 O
FR O
F2
F3
FR1 FR2
F4
F1
FR
F4
O
任一平面汇交力系均可合成为一个作用线通过汇交点的合力 合力的大小和方向由各分力矢依次首尾相连构成的开口多边形 的封闭边矢量确定
对应的矢量关系式为
FR F1 F2
Fn Fi
二、平面汇交力系的平衡条件 平面汇交力系平衡的充分且必要条件为其合力为零
相关文档
最新文档