A1-第四章(不定积分)§3-§5

合集下载

第四章不定积分的概念和性质PPT课件

第四章不定积分的概念和性质PPT课件

第23页/共28页
例13 求

x3 x 1
max{1,
x2
,
x3
}xBiblioteka 2x 11
| x | 1
故 当x 1时 当x 1时 当 | x | 1时
I
x 3dx
1x4 4
C1
I
x 2dx
1x3 3
C2
I dx x C3
第24页/共28页
因被积函数连续,故原函数可导,进而原函数连续
原函数存在定理:
如果函数 f ( x) 在区间I 内连续, 那么在区间I 内存在可导函数F ( x) , 使x I ,都有F ( x) f ( x).
第5页/共28页
简言之:连续函数一定有原函数.
(证明待下章给出)
(2)原函数是否唯一?若不唯一,它们之间有 什么联系?
①若 F ( x) ,则f对(于x任) 意常数 ,
证 f ( x)dx g( x)dx
f ( x)dx
g( x)dx
f
( x)
g( x).
等式成立.
此性质可推广到有限多个函数之和的情况
[ f1( x) fn( x)]dx f1( x)dx fn( x)dx
第16页/共28页
(2) kf ( x)dx k f ( x)dx. (k 是常数,k 0)
结论
既然积分运算和微分运算是互逆的,因此可以根据求导公式 得出积分公式.
第11页/共28页
基 (1) kdx kx C (k是常数);


分 (3) dx ln x C;

x
说明:
x 0, dx ln x C,
x
x 0, [ln( x)] 1 ( x) 1 ,

第四章 不定积分

第四章 不定积分

三角代换x a sint
高等数学(XJD)
双曲代换x a sh t
5. 有理函数的积分
P ( x ) a 0 x n a 1 x n 1 a n 1 x a n Q( x ) b0 x m b1 x m 1 bm 1 x bm a0 0 b 0 0
dF ( x ) F ( x ) C
[k
1
f ( x ) k 2 g( x )]dx k1 f ( x )dx k 2 g( x )dx
高等数学(XJD)
3. 积分方法 1)直接积分法 利用不定积分表、积分性质以及定积分5个公式求积分 2)换元法积分法
f (u)du
1 t 1 1 1 ln C ( )dt 3 t 1 t 1 2(ln 3 ln 2) t 1 2 ln 2 1 3x 2x ln x C. x 2(ln 3 ln 2) 3 2
1
高等数学(XJD)
e x (1 sin x ) dx. 例2 求 1 cos x
7. 简单无理函数的积分
8. 典型例题
高等数学(XJD)
1. 不定积分的定义
f ( x )dx F ( x ) C
2. 不定积分的性质
(连续函数一定有原函数)
d dx
f ( x )dx f ( x )
d [ f ( x )dx] f ( x )dx
F ( x )dx F ( x ) C



f ( x) f ( x) d[ ] f ( x ) f ( x )
1 f ( x) 2 [ ] C. 2 f ( x )
高等数学(XJD)

第四章1-5 不定积分与定积分讲解

第四章1-5  不定积分与定积分讲解

a2 − x2 cost = 1− sin t = a a2 x 1 arcsin + x a2 − x2 + C 原式= 原式= 2 a 2
2
例 5:求∫
dx x +a
2 2
(a > 0)

设 解: x = a tan t 原式= 原式=∫
π
2
<t <
π
2
asec2 t dt = ∫ sectdt = ln(sect + tant) + C asect
§
4.4ቤተ መጻሕፍቲ ባይዱ
分部积分法
′ uv′ = ( uv) − u′v 分析: 分析:(uv)′ = u′v + uv′ ∫uv′dx = ∫ (uv′)dx − ∫u′vdx
∫udv = uv − ∫ vdu 分部积分公式: 分部积分公式: ∫ udv = uv − ∫ vdu
例 1:求∫ xcos xdx
设 解: u = x,dv = cos x;dx = d(sin x), v = sin x 原式= 原式=∫ xd(sin x) = x ⋅ sin x − ∫ sin xdx =xsin x + cos x + C
例 2:求∫ xexdx
解:设u = x, dv = exdx
原式= 原式=∫ xd(ex ) = xex − ∫ exdx = xex − ex + C
例 3:求∫ x ln xdx
解:设u = ln x, dv = xdx 1 2 1 2 1 2 1 原式= 原式=∫ ln xd( x ) = x ⋅ ln x − ∫ x ⋅ dx 2 2 2 x 1 2 1 1 2 1 2 = x ⋅ ln x − ∫ xdx = x ln x − x + C 2 2 2 4

高等数学 课件 PPT 第四章 不定积分

高等数学 课件 PPT 第四章   不定积分
如果一个函数存在原函数,那么这些原函数之间有什 么关系呢?
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.

第四章___不定积分

第四章___不定积分

第四章第1页第四章不定积分讲授内容§4-1不定积分的概念与性质教学目的与要求1、理解不定积分的概念理解不定积分与微分之间的关系. 2、掌握不定积分的性质会用常见不定积分公式和不定积分性质求一些不定积分. 3、熟练掌握常用积分公式. 教学重难点重点——理解的概念与性质熟练掌握常用积分公式. 难点——不定积分的公式熟练掌握. 教学方法讲授法教学建议1、加深对原函数、不定积分的理解. 2、对15个积分公式要进行大量练习. 3、求不定积分一定注意不能漏C . 学时2学时教学过程第二章我们研究了如何求一个函数的导函数问题本章将讨论它的反问题即要寻求一个可导函数使它的导函数等于已知函数.这是积分学的基本问题之一. 一原函数与不定积分的概念1. 定义如果在区间I上函数Fx和fx使得F′xfx 或dFxfxdxx∈I. 称Fx为fx或fxdx在区间I上的原函数. 如sincosxx则cosx是sinx 的一个原函数. 第四章第2页1lnxx1x是lnx的一个原函数问ln2x是否是1x的原函数.2. 定理原函数的存在定理连续函数必有原函数.即: 如果fx在I上连续则在I上必有Fx 使得: F′xfx. x∈I. 注①初等函数在定义区间上必有原函数但原函数并非都是初等函数. ②函数在区间上连续只是在区间上有原函数的充分条件不连续的函数也可能有原函数.3. 两个原函数的关系如果Fx为fx在区间I上的一个原函数则FxC为fx的原函数. 因为FxC′fx 如果Fx和Gx为fx的两个原函数则有FxGxC. 因为Fx-Gx′0 FxGxC. 4. 定义在区间I上函数fx的带有任意常数项的原函数称为fx 或fxdx在I上的不定积分记为xxfd. 即∫ fxdxFxC. 其中∫为积分符号fx为被积函数fxdx为被积表达式x为积分变量. 注①不定积分∫fxdx可以表示fx的任意一个原函数. ②C 不能去掉5. 函数fx的原函数Fx的图形称为fx的积分曲线. 6. 微分与积分的关系: 1 dxfxxf 或xxfxxfddd. 2 CxFxxFd或dFxFxC. 例1 求2xdx 第四章第3页解Cxdxxxx333223 例2 求dxx1 解当xgt0时由于lnx′1/x ∫1/xdxlnxC. 当xlt0时由于ln-x′1/x ∫1/xdxln-xC. 因此∫fxdxlnxC x≠0 例3 设曲线通过点12且其上任意一点处的切线的斜率等于这点横坐标的两倍求此曲线方程. 解设所求曲线方程为yyx由题义有y′x2x y12. y′x2xyx2C. 代y12 得C1. 所以yx21 二、基本积分表见书本P186 注①11d1xxxC 其中1 ②1dlnxxCx 例4 求下列积分1 ∫x-3dx 解∫x-3dx1313xC-221xC 2 ∫x2xdx 第四章第4页解∫x2xdx∫25xdx125125xC2772xC 注用分式或根式表示的幂函数应化为x的形式然后用公式三、不定积分的性质性质1. dxxgxxfxxgxfdd 性质2. dxxfkdxxkf k≠0k 为常数注性质说明不定积分具有线性性可以推广到所有的积分例5 求下列不定积分1∫xx2-5dx∫21255xxdx732221073xxc 2∫ax-3cosxdx∫axdx-3∫cosxdxaaxln-3sinxc. 3∫2xexdx∫2exdx2ln2eexc2ln12xec 4 ∫tan2xdx∫sec2x-1dxtanx-xc 5∫221xxdx∫2121xxdxx-2lnx-x1c 6 ∫1122xxxxdx∫ x1211xdxlnxarctanxc 7∫241xxdx∫24111xxdx∫2221111xxxdx ∫x2-1211xdx33x-xarctanxc 第四章第5页8∫2sin2xdx∫211-cosxdx21x-sinxc 9 ∫2cos2sin122xxdx∫22sin1xdx24cscdxx-4cotxc 例6 设f′lnxx1求fx 解设tlnx 则f′tet1 从而ft∫et1dtettC fxex xc 例7 设xxfxd arctanxC求xxfd 解将darctanxxxCfx两边求导可得211xxfx 所以12xxxf 从而Cxxdxxf4242. 故有dfxxFxC 作业高等数学练习册C类习题十九教学后记第四章第6页参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题证明xxeshxechx都是的xechxshx原函数. 第四章第7页讲授内容: §4-2换元积分法1 教学目的与要求1、理解第一换元积分法. 2、熟练掌握各种形式的“凑微分”. 教学方法讲授法重难点重点——各种形式的“凑微分”的方法. 难点——灵活的使用“凑微分”法. . 教学建议常用的凑微分的公式和方法要求学生牢记. 学时2学时教学过程将复合函数的微分法用于求不定积分利用中间变量的代换得到求复合函数的不定积分的方法称为换元积分法一、第一类换元法定理1设函数fu具有原函数Fuuφx可导则有换元公式∫fφxφ′xdx∫fuduFuCFφxC 证明由复合函数的微分法有FφxC ′ F′φxφ′x fφxφ′x 注关键是找uφx 例1. 求下列积分: 1∫2cos2xdx∫cos2xd2x sin2xC. u2x 第四章第8页2 ∫x231dx21∫xxd232321ln32xC. u32x 3 cxxddxxx31.3231313113121 u1-3x 注1. 形如faxb总可作uaxb把它化为fu 2. 不要忘记变量还原熟练后中间变量可不用设出4 ∫2x2xedx∫2xedx22xeC. u2x 5∫x21xdx-21∫21xd1-x2 -311-x23/2C. u1-x2 注11dnnnnnfaxbxxfaxbdaxba 10na 6∫tanxdx∫xxcossindx -∫xxdcoscos-lncosxC ucosx 7 ∫221xadx∫12axaaxda1arctanaxC uax 8 ∫221xadxa21∫xa1ax1dxa21∫xa1dx∫ax1dx a21∫ax1dxa-∫xa1da-xln21axaxaC agt0 注对21dxaxbxc 若240bac则用法8 若240bac则用法7 第四章第9页如①221d11darctan232122xxxCxxx ②2dd1dd11ln231341343xxxxxCxxxxxxx 9∫chaxdxa∫chaxdax ashaxC uax 10 ∫22xadx∫21axaxdarcsinaxC 11∫ln21xxdx∫xxdln21ln21∫xxdln21ln2121ln12lnxC 12 ∫xex3dx2∫xdex332∫xdex3332xe3C 13 ∫10121xxdx∫1012111xxdx∫101111xxx10111xdx∫100121xx10111xdx∫9911x10012x10111xdx -981981x991992x10011001xc 另一解法另1tx则原式2981001011011d2dttttttt 14 ∫sin3xdx-∫1-cos2xdcosx-cosx31cos3xC 15∫sin2xcos5xdx∫sin2x1-sin2x2dsinx∫sin2x-2sin4xsinx6dsinx 第四章第10页31sin3x-52sin5x71sin7xC 16 ∫cos2xdx∫1cos2x/2dxx/2sin2x/4C 17∫cos4xdx∫22cos1x2dx41∫12cos2xcos22xdx 41∫12cos2x 24cos1xdx41∫232cos2x 24cosxdx 83x41sin2x321sin4xC 18 ∫cscxdx∫xdxsin∫2cos2sin2xxdx∫2cos2tan22xxxd∫2tan2tanxxdln2tanxClncscx-cotxC 注2tanxxxsin2sin22xxsincos1cscx-cotx 19∫secxdx∫xdxcos∫2sin2xxdlncsc2x-cot2xC lnsecxtanxC 20∫sec6xdx∫1tan2x2dtanx∫12tan2xtan4xdtanx tanx32tan3x51tan5xC 21 ∫tan5xsec3xdx∫tan4xsec2xdsecx∫sec2x-12sec2xdsecx 第四章第11页71sec7x-52sec5x31sec3xC 注被积函数中含三角函数2secx经常将它化为正切22cxxxdxxxdxxdxtan2arctan22tan21tantansecsecsin122222 23∫cos3xcos2xdx21∫cosxcos5xdx21sinx101sin5xC. 2411dddd111xxxxxxeee xxxxeee1d1ln11xxxxexeCe 25665666114111dddd444444xxxxxxxxxxxxx 611lnln4424xxC 26322222221111dd1d122111xxxxxxxxx 3122222221111d111231xxxxcx 注1 将代数式进行恒等变形、分子分母同乘一个阶印⒗ 萌范ㄊ 泻愕裙叵怠⑷ 枪 蕉际谴瘴⒎值某S梅椒? 2 常用的公式adxdaxb nndxdxnx1 1lnxdxdxlnx xxxtanddsec2 第四章第12页arcsindd122axxxa 作业高等数学练习册C类习题二十1、2 1-14 教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算dxxxx2211tan 第四章第13页讲授内容§4-2换元积分法2 教学目的与要求1、理解第二类换元积分法的原理. 2、熟练掌握第二类换元积分法中的几种常用的换元方法及第二类换元积分法所适用的类型. 教学方法讲授法重难点重点——第二类换元积分法中的几种常用的换元法. 难点——如何熟练应用第二类换元法. 教学建议熟悉常用变量代换. 学时2学时教学过程定理设xψt单调可导且ψ′t≠0. 又设fψtψ′t有原函数Ft则有∫fxdx∫fψtψ′tdtFtCFψ--1xC. 证明由复合函数和反函数的求导法则有Fψ-1xC′F′t??txfψtψ′t??1/ψ′tfψtfx. 1三角代换例1 求下列积分1∫22xadxtaxsina2∫cos2tdt22at22asintcostC 22aarcsinax21x22xaC agt02∫22xadxtaxtan∫sectdtlnsecttantC 第四章第14页lnx22axC agt0 3∫22axdx 当xgta时设xasect 0lttltπ/2 则22dxxa∫sectdt lnsecttantC lnx22axC 当xlt-a时令x-u那么ugta则22dxxa22duua -lnu22auC - ln-x-22axC 所以x≠a 有∫22axdx lnx22axC421dxxxtxsincossincostttdt 21cossincossin dtsincossincostttttttt 21tlnsintcostC21arcsinxlnx21xC. 5 22211dxxx tanxt 2222secsinarctansin1sin2tan11tantdtdttcttt2arctan1xcx 第四章第15页注22dfaxx一般令sinxat 22dfaxx一般令tanxat 22dfxax一般令secxat 2倒数代换例2 求下列积分14422 1/ d11dxtxttxxt2211d1ttt-t3/3t-arctantC-231xx1-arctanx1C. 2222211arcsin11dxtdtctxxxtt 0x结果一样3∫4211xxdx21∫4222111xxxxdx 21∫42211xxxdx-21∫42211xxxdx21∫1111222xxxdx-21∫1111222xxxdx 21∫3112xxxxd-21∫1112xxxxd321arctan31xx-41ln1111xxxxC 第四章第16页4∫4211xxxdx∫41xxdx∫411xxdx21∫2221xdx∫43111xxdx 21lnx241x-21∫222111xxd 21lnx241x-21ln21x4111xC 3万能代换例3 求积分xdxcos3 解设2tanxt xdxcos3cxdtt2tan21arctan2122 4整体代换例4 求积分exdx1 解设1ln1xetxt dttdx11 1xdxe11ln111xxdtedtctttte 5根式代换第四章第17页例5 求下列积分xdx21 解设xt2 xdx21cxxcttdttt21ln21ln1 注关于第二类换元法非常灵活除上面几种常用代换外经常二类换元同时应用作业高等数学练习册C类习题二十2 15-28 教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算33411xdxx 第四章第18页讲授内容§4-3分部积分法教学目的与要求1、熟练掌握分部积分法公式. 2、会灵活应用分部积分法求一些函数的积分. 教学方法讲授法重难点重点——恰当选取u和v. 难点——恰当选取u和v. 教学建议1、选取原则1v易求2vdu 要比udv简单. 2、用分部积分法有时会出现复原的情况学时2学时教学过程一、分部积分法设ux和vx具有连续导数则uv′u′vuv′ 于是有分部积分法公式∫udvuv-∫vdu. 二、分部积分法常见的几种用法1降幂降低被积函数中幂函数的次幂例1求下列积分 1 ∫xcosxdx∫xdsinxxsinx-∫sinxdxxsinxcosxC 2∫x2exdx∫x2dexx2ex-2∫xexdxx2ex-2xex2exexx2-2x2C 注当被积函数为幂函数、三角函数、指数函数时一般将幂函数视为u将三角函数、指数函数凑微分. 2化难为易降低被积函数中幂函数的次幂利用分部积分法将被积函数中的难积函数如对称函数、反三角函数消第四章第19页除掉. 例2 求下列积分1∫xlnxdx21∫lnxdx221x2lnx-∫xdx21x2lnx-41x2C 2arctanxdx xarctanx-∫21xxdx xarctanx-21ln1x2C 3∫xarcsinxdx∫arcsinxdx2x2arcsinx-∫221xxdx x2arcsinx∫22111xxdx x2arcsinx∫21x-211xdx x2-1arcsinx21arcsinx-21x21xC x2-21arcsinx-21x21xC 注当被积函数为幂函数与反三角函数、对称函数乘积时一般将反三角函数、对称函数视为u 将幂函数凑微3循环积分用分部积分公式后原来积分又重新出现例31∫exsinxdx∫sinxdexexsinx-∫excosxdx exsinx-∫cosxdexexsinx-excosx-∫exsinx21exsinx-cosxC 2sec3xdx∫secxdtanxsecxtanx-∫tan2xsecxdx secxtanx-∫sec3xdx∫secxdx21secxtanxlnsecxtanxC 注当被积函数为指数函数与三角函数乘积时将其中之一视为u用两次分部积分法会出现循环. 第四章第20页4递推例4 求积分sindnxx 导出递推公式解111sindsind-coscossin-cosdsinnnnnnIxxxxxxxx 12cossincos1sincosdnnxxxnxxx 122cossin1sin1sindnnxxnxxx 12cossin11nnnxxnInI12cossin1nnnnIxxnI 所以1211cossinnnnnIxxInn 三、两种积分法的同时运用例5 求下列积分1∫xedx tx 2∫ettdt2ett-1C2xex-1C2∫xsinxcosxdx21∫sin2xdx-41∫xdcos2x-41xcos2x41∫cos2xdx-41xcos2x81∫dsin2x-41xcos2x81sin2xC.3∫23lnxxdx∫ln3xd-x1xx3ln3∫22lnxxdx-xx3ln3∫ln2xd-x1-xx3ln-xx2ln36∫2lnxxdx-xx3ln-xx2ln36∫lnxdx1-xx3ln-xx2ln3-xxln66∫21xdxx1ln3x3ln2x6lnx6C. 或∫23lnxxdxtx/1∫ln3tdttln3t-3∫ln2tdttln3t-3tln2t6∫lntdt 第四章第21页tln3t-3tln2t6tlnt-6tCtln3t-3ln2t6lnt-6C x1 ln3x1-3ln2x16lnx1-6C-x1 ln3x3ln2x6lnx6C4∫coslnxdxxcoslnx∫xsinlnx·x1dxxcoslnxxsinlnx∫xcoslnx·x1dxxcoslnxxsinlnx∫coslnxdx21xsinlnxcoslnxC5∫exsin2xdx∫ex22cos1xdx21ex21∫excos2xdx 121ex21∫exdsin2x2xe41exsin2x∫exsin2xdx 2xe4xesin2x81∫exdcos2x2xe4xesin2x8xecos2x81∫excos2xdx 2 ∫excos2xdx58??4xesin2x21cos2xC1 原式2xe5xesin2x21cos2xCex21101cos2x51sin2xC. 6x2cos22xdx∫x22cos1x21∫x2x2cosxdx2131x3∫x2dsinx61x321x2sinx21∫2xsinxdx63x22xsinx∫xdcosx 63x22xsinxxcosxsinxC. 第四章第22页例6 求In∫naxdx22其中n为正整数. 解当ngt1时有: In-1∫122naxdx122naxx2n-1∫naxx222dx 122naxx2n-1 ∫1221nax-naxa222dx 122naxx2n-1In-1-a2In. 于是In1212na122naxx2n-3In-1. 其中I1a1arctanaxC. 作业高等数学练习册C类习题二十一教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算dxxcosln 第四章第23页讲授内容§4-4 有理函数的不定积分教学目的与要求熟练掌握几种特殊类型函数公式.重难点重点——有理函数的积分三角函数有理式的积分. 难点——无理函数的积分. 教学方法讲授法教学建议1、有理函数必可积但不一定是最简单. 2、三角函数有理式的积分和简单无理函数的积分通常是运用变量代换学时2学时教学过程一、有理函数的积分称xQxPmmmmnnnnbxbxbxbaxaxaxa11101110为有理函数.1 其中m和n为非负整数a0 a1??an b0 b1??bm 为实数a0≠0 b0≠0 . 以下总假设Px和Qx没有公因子. 当nltm时称1为真分式当n≥m时称1为假分式. 对假分式总可以利用多项式的除法将其变为一个多项式与一个真分式的和.真分式划为部分分式的和: 设1为一个真分式且Qx在实数范围内可分解为一次因式和二次因式的乘积Qxb0x-aα??x-bβx2pxqλ??x2rxsμ. 其中p2-4qlt0??r2-4slt0. 则第四章第24页xQxP1axA12axA??axA 1bxB12bxB??bxB 211qpxxNxM1222qpxxNxM??qpxxNxM2 211srxxSxR1222srxxSxR??srxxSxR2 其中A1??Aα B1??Bβ M1??Mλ N1??Nλ R1??Rμ S1??Sμ为待定常数. 有理分式函数的积分只有三种形式多项式函数分式函数naxA 和nqpxxNMx2 但前两个函数的积分较简单主要是第三个积分. 对∫nqpxxNMx2dx 可以用配方法x2pxqx2p2q-22p设tx2p a2q-22p bN-2Mp 则有∫nqpxxNMx2dx∫natMtdt22∫natbdt22 例1. 将真分式6532xxx分解为部分分式. 解设6532xxx323xxx32xBxA 第四章第25页方法一两边去分母:x3Ax-3Bx-2 2 比较同次幂的系数有:AB1-3A-2B3解得A-5B6. 方法二在2中代特殊值:令x2得A-5令x3得B6. 例2. 将真分式1122xxx分解为部分分式. 解设1122xxxxA121xB21xDCx 去分母得xA1x1x2B1x2CxD1x23 即xABDAC2DxAB2CDx2ACx3 于是002020CADCBADCADBA解得A0 B-21C0 D21. 即有1122xxx21211x-211x. 例3. 求下列积分: 1∫6532xxxdx∫36x-25xdx6lnx-3-5lnx-2C 2 ∫1122xxxdx21∫211x-211xdx21 arctanxx11C 3 ∫3222xxxdx21∫326222xxxdx 21∫323222xxxxddx-3∫22211x xd 21lnx22x3-23 arctan21xC 第四章第26页 4 ∫xxxx3458dx∫x2x11182xxxxxdx 31x321x2x∫14138xxxdx31x321x2x8lnx-3lnx-1-4lnx1C. 5 ∫411xdx21∫422111xxxdx21∫222111xxxdx-∫222111xxxdx 21∫22211xxxxd-∫22211xxxxd2121xxarctan21xx-221ln2121xxxxC 42arctanxx212-82ln121222xx.。

教案4-不定积分

教案4-不定积分

教案4-不定积分n e w(共18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 不定积分§ 不定积分概念微分学的基本问题是:已知一个函数,求它的导数。

但是,在科学技术领域中往往还会遇到与此相反的问题:已知一个函数的导数,求原来的函数,由此产生了积分学。

“积分”是“微分”的逆运算。

一、 原函数1、原函数定义我们在讨论导数的概念时,解决了这样一个问题:已知某物体作直线运动时,路程随时间t 变化的规律为()s s t =,那么,在任意时刻t 物体运动的速度为()()v t s t '=。

现在提出相反的问题:例1 已知某物体运动的速度随时间t 变化的规律为()v v t =,要求该物体运动的路程随时间变化的规律()s s t =。

显然,这个问题就是在关系式()()v t s t '=中,当()v t 为已知时,要求()s t 的问题。

例2 已知曲线()y f x =上任意点(,)x y 处的切线的斜率为2x ,要求此曲线方程,这个问题就是要根据关系式2y x '=,求出曲线()y f x =。

从数学的角度来说,这类问题是在关系式()()F x f x '=中,当函数()f x 已知时,求出函数()F x 。

由此引出原函数的概念。

定义 : 设)(x f 是定义在某区间I 内的已知函数,如果存在一个函数)(x F ,对于每一点x I ∈,都有:()()F x f x '= 或 dx x f x dF ⋅=)()(则称函数)(x F 为已知函数)(x f 在区间I 内的一个原函数。

例如,由于(sin )cos x x '=,所以在(,)-∞+∞内,sin x 是cos x 的一个原函数;又因为(sin 2)cos x x '+=,所以在(,)-∞+∞内,sin 2x +是cos x 的一个原函数;更进一步,对任意常数C ,有(sin )cos x C x '+=,所以在(,)-∞+∞内,sin x C +都是cos x 的原函数。

第四章不定积分

第四章不定积分

三、基本性质
d 性质Ⅰ f ( x)dx f ( x) dx
F ( x)dx F ( x) C
由此可看出积分是微分的逆运算,积分符号中dx就是x
的微分,可以运用微分的计算法则,下面的换元积分法和分 布积分法就是利用微分的运算法则得到的。 性质Ⅱ 性质Ⅲ 推论
f ( x) g ( x)dx f ( x)dx g ( x)dx af ( x)dx a f ( x)dx a f ( x) a f ( x) a f ( x)dx a f ( x)dx a f ( x)dx a f
四、直接积分法 下面讨论不定积分的求法。
若被积函数是基本公式中的形式或通过化简可以化为基
本公式中的某种形式,就可以直接利用公式进行积分,这种
方法称为直接积分法。 例 计算下面的不定积分:
x4 1 1 cos x 1 3 e dx 2 2 dx 3 dx 1 cos 2 x x 1 e ( )x x e 3 x e x 解 1 3 x e x dx ( ) dx 3 C C e 3 1 ln 3 ln( ) 3 1 3 x4 1 2 2 )dx x x 2 arctan x C 2 2 dx ( x 1 2 x 1 1 x 3
见课本第205页。
例 求积分∫(1+x3)2dx。 解
(1 x ) dx (1 2x3 x6 )dx
3
2
dx 2 x 3 dx x 6 dx
2 4 1 7 x x x C 4 7
一般几个不定积分相加时, 常把得到的常数加到一起写 成一个常数C 。
1
很容易可以看出:原函数不唯一。事实上,容易得到:

高等数学教案第四章不定积分

高等数学教案第四章不定积分
例13Hale Waihona Puke 求例14.求例15.求
提示:
………………………………………………………………………………………42分钟
内容小结:用换元法计算不定积分
思考题:换元法在引入积分变量时应注意什么
作业:P205 2(1)~(28)单数
备注:
………………………………………………………………………………………3分钟
授课章节
二、基本公式表
p186
例5.求
例6.求
三、不定积分的性质
设 原函数存在,则
性质1
性质2
例7.求
例8.求
例9.求
例10.求
例11.
例12.
例13.
………………………………………………………………………………………42分钟
内容小结:原函数与不定积分的关系及不定积分的性质
思考题:偶函数的原函数一定是奇函数对吗?.
作业:1要求学生回家背三角的和差化积与积化和差公式,下次课用;
2P190 1(3)(5)(7)(9)(11)(13)(15)(17),2
备注:
………………………………………………………………………………………3分钟
授课章节
第四章不定积分第二节换元法(第一讲)
目的要求
用换元法计算不定积分
重点难点
用两类换元法被积函数的特点。
例6.求
例7.求
例8.求
例9.求
提示:
另:做几道作业题。
…………………………………………………………………………………………42分钟
第四节有理函数积分法
一、有理函数
1.有理函数形式
2.假分式化成真分式

3.把真分式化成最简真分式的和

不定积分概念

不定积分概念

ln(x)
C.
1dx x
ln
|
x
|
C
.
二、 基本积分表
实例
x 1 x
1
xdx x1 C . 1
( 1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基本积分表
(1) kdx kx C (k是常数);
(2) x dx x1 C ( 1);
例 求 x5dx.

x6 x5 ,
6
x5dx x6 C . 6
例 求 cos xdx.

sin x cos x
cos xdx sin x C.
例求
1dx. x
解 当x 0时,
ln x 1 ,
x
1dx x
ln
x
C.
当x 0时, ln(x) 1 (1) 1
x
x
1dx x
x
原函数存在定理:如果函数 f ( x)在区间I上连续,
则存在可导函数F( x), 使 F( x) f ( x), x I .
简言之:连续函数一定有原函数.
例如 sin x cos x (sin x C) cos x
(sin x+1) cos x (C 为任意常数) 原函数非唯一:
若 F(x) f (x), 则对任一常数 C,有(F(x) C) f (x), 即 F(x) C 都是 f (x) 的原函数.
x
C;
(10) sec x tan xdx sec x C;
(11) csc x cot xdx csc x C;
例 求积分 x2 xdx.
5
解 x2 xdx x 2dx

【精品】第四章 不定积分

【精品】第四章   不定积分

第四章不定积分讲授内容:§4-1不定积分的概念与性质教学目的与要求:1、理解不定积分的概念,理解不定积分与微分之间的关系.2、掌握不定积分的性质,会用常见不定积分公式和不定积分性质求一些不定积分.3、熟练掌握常用积分公式.教学重难点:重点——理解的概念与性质;熟练掌握常用积分公式.难点——不定积分的公式熟练掌握。

教学方法:讲授法教学建议:1、加深对原函数、不定积分的理解.2、对15个积分公式要进行大量练习。

3、求不定积分一定注意不能漏C.学时:2学时教学过程:第二章我们研究了如何求一个函数的导函数问题,本章将讨论它的反问题,即要寻求一个可导函数,使它的导函数等于已知函数.这是积分学的基本问题之一.一原函数与不定积分的概念1.定义:如果在区间I上,函数F(x)和f(x),使得:F′(x)=f(x)或dF(x)=f(x)dx,x∈I。

称F(x)为f(x)(或f(x)dx)在区间I上的原函数。

'=,则cos x是sin x的一个原函数.如:(sin)cosx x1(ln )x x '=,1x 是ln x 的一个原函数,问ln 2x 是否是1x的原函数。

2. 定理(原函数的存在定理):连续函数必有原函数。

即:如果f (x )在I 上连续,则在I 上必有F (x ),使得:F ′(x )=f (x ). x ∈I .注:①初等函数在定义区间上必有原函数,但原函数并非都是初等函数.②函数在区间上连续只是在区间上有原函数的充分条件,不连续的函数也可能有原函数。

3. 两个原函数的关系如果F(x)为f(x)在区间I上的一个原函数,则F(x)+C为f(x)的原函数。

因为[F(x)+C]′=f(x),如果F(x)和G(x)为f(x)的两个原函数,则有F(x)=G(x)+C.因为[F(x)—G(x)]′=0 F(x)=G(x)+C.4.定义:在区间I上,函数f(x)的带有任意常数项的原函数称为f (x)(或f(x)dx)在I上的不定积分,记为: xx(.f d)即∫f(x)dx=F(x)+C.其中∫为积分符号,f(x)为被积函数,f(x)dx为被积表达式,x为积分变量.注:①不定积分∫f (x )dx 可以表示f (x )的任意一个原函数。

不定积分

不定积分
第四章、不定积分
§1、不定积分的概念与性质
进入
§2、换元积分法 §3、分部积分法
进入
进入
一、原函数
1.定义:
可导函数F ( x ) 的 如果在区间I 内, 导函数为 f ( x ) , 即x I ,都有 F ( x ) f ( x )
那么函数 F ( x ) 就称为 f ( x ) 或dF ( x ) f ( x )dx ,
例 求下列不定积分 (1) 3 dx (2)
2x 5
x 1 x 2 dx
(3)
2 1 sin dx 2 x x
(4)

dx x ln x
§2、换元积分法
解: (1) 3 dx 3 1 1 d (2 x 5) 3 ln(2 x 5) C. 2x 5 2x 5 2 2 (2)
由不定积分的定义及导数公式得如下基本积分表:
kdx kx C,
x x e dx e C,
1 1 x dx 1 x C ( 1), ax x a dx ln a C (a 0, a 1),

1 x dx ln x C ,
或 f ( x )dx 在区间 I 内原函数.
sin x 是cos x 的原函数. 1 1 ln x ( x 0) ln x 是 在区间(0, )内的原函数. x x f ( x ) 是 f ( x) ( x) 的一个原函数.

sin x cos x
微分与积分的互逆性
或 d f ( x)dx f ( x)dx;
(2) kf ( x)dx k f ( x)dx
积分的运算性质

高等数学第四章 不定积分

高等数学第四章 不定积分

积分学不定积分定积分微分与积分是一对互逆的运算第四章不定积分§1 不定积分的定义与性质1.问题的提出2.定积分的定义3.定积分的性质例, ,(sin )cos ()x x x '=∀∈-∞+∞一、原函数存在定理定义1若在I 上恒有F '(x )=f (x )(即d F (x )=f (x )d x ),称F (x ) 为f (x ) 在I 上的一个原函数。

上的一个在是原函数),( cos sin +∞-∞=∴I x x (1) 满足什么条件的函数有原函数?问题:(2) 若原函数存在,如何求出?复习:原函数存在定理:连续函数一定有原函数.(sin 1)(sin 3)(sin )cos ,x x x C x '''+=+=+=原函数F (x )不唯一,但只相差一个常数可以看出:简言之:原函数之间只相差一个常数。

⎰=xatt f x d )()(Φ例:积分常数积分号被积函数定义2:Cx F dx x f +=⎰)()(被积表达式积分变量函数f (x )在区间I 上的全体原函数称为f (x )在I 上的不定积分,记为:不定积分是全体原函数的集合。

⎰dx x f )(C 不可丢!前面两例可写作:⎰+=C x xdx sin cos , ,(sin )cos ()x x x '=∀∈-∞+∞问:不定积分的几何意义?不定积分的几何意义xyoxCx F y +=)()(x F y =是积分曲线上、下平移所得到一族积分曲线,称为积分曲线族.)(x F 在点处有相同的斜率,即这些切线互相平行.x )(x f x x f d )(⎰()F x C=+称为的积分曲线.不定积分的几何意义:的原函数的图形称为的积分曲线.的图形的所有积分曲线组成f d)xx(的积分曲线族.yxO0x每条积分曲线上,横坐标相同的点处的切线是平行的例1.设曲线通过点(1, 2), 且其上任一点处的切线斜率等于该点横坐标的两倍, 求此曲线的方程.解:所求曲线过点(1, 2) ,故有因此所求曲线为12+=x y yx)2,1(O[xd d)1(⎰x x f d )(])(x f =[d ⎰x x f d )(]x x f d )(=或C x +=⎰d )2()(x F ')(x F 或C +=⎰d )(x F )(x F 二.不定积分的性质微分运算与求不定积分的运算是互逆的:线性性质⎰=±dx x g x f )]()([)1(;)()(⎰⎰±dx x g dx x f ⎰=dx x kf )()2(.)(⎰dx x f k (k 是常数,)0≠k⎰+=k Ckx kdx ()1(是常数););1(1)2(1-≠μ++μ=+μμ⎰C x dx x ;||ln )3(⎰+=C x xdx ⎰=C dx 0⎰+=C x dx 1基本积分表⎰=xdx cos )6(;sin C x +⎰=xdx sin )7(;cos C x +-⎰=xdx 2sec ;tan C x +⎰=xdx 2csc ;cot C x +-=⎰dx e x )5(;C e x +=⎰dx a x )4(;ln 1C a a x +(8)(9)⎰=xdx x tan sec )12(;sec C x +⎰=xdx x cot csc )13(;csc C x +-=+⎰dx x211)11(C x +arctan =-⎰dx x 211)10(C x +arcsin C x arc +-=cot C x +-=arccos 注:检验积分结果正确与否的方法是积分结果求导= 被积函数。

第四章不定积分

第四章不定积分

问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 例、(sin x ) cos x,(sin x C ) cos x, sin x、sin x C都是 cos x的原函数 .
上页
下页 返回
3、 原函数形式: 设F ( x )是f ( x )在区间I上的一个原函数, 则f ( x )的 所有原函数为F ( x ) C, 其中C为任意常数. 则G( x ) f ( x ), 证: 设G( x )为f ( x )的任一原函数, G( x ) F ( x ), 由已知可得F ( x ) f ( x ), 故G( x ) F ( x ) C, 即结论得证. 4、 不定积分:函数f ( x )的所有原函数F ( x ) C称为 f ( x )的不定积分, 记为 f ( x )dx .
2、 F ( x )dx F ( x ) C,或 dF ( x ) F ( x ) C .
3、 [ f ( x ) g( x )]dx f ( x )dx g( x )dx . 证: [ f ( x )dx g ( x )dx ] [ f ( x )dx ] [ g ( x )dx ] f ( x ) g ( x ), [ f ( x ) g ( x )]dx f ( x )dx g ( x )dx . 4、 af ( x )dx a f ( x )dx . 证: [a f ( x )dx ] a[ f ( x )dx ] af ( x ), af ( x )dx a f ( x )dx .
第四章 不定积分 第一节 不定积分的概念
上页
下页
返回
一、原函数与不定积分 1、 原函数: 设f ( x )在区间I有定义, 若存在F ( x ),使 F ( x ) f ( x ), 则称F ( x )为f ( x )的原函数. 例1、 (sin x ) cos x, sin x为 cos x的原函数. 1 1 例2、 (ln x ) ( x 0), lnx为 ( x 0)的原函数. x x 2、 原函数存在定理: 如果f ( x )在区间I上连续, 则f ( x )的原函数存在.

同济大学(高等数学)-第四章-不定积分

同济大学(高等数学)-第四章-不定积分

第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及根本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个函数的导数〔或微分〕的问题,例如,变速直线运动中位移函数为()s s t =, 那么质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1.1.1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:假设()()'=F x f x ,那么对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,那么有无穷多个.假设()F x 和()φx 都是()f x 的原函数,那么[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 假设()F x 和()φx 都是()f x 的原函数,那么()()-=F x x C φ〔C 为任意常数〕. 假设()()'=F x f x ,那么()+F x C 〔C 为任意常数〕表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1.1.2不定积分定义2 在区间I 上,函数()f x 的所有原函数的全体,称为()f x 在I 上的不定积分, 记作()d ⎰f x x .其中⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量. 由此定义,假设()F x 是()f x 的在区间I 上的一个原函数,那么()f x 的不定积分可表示为()d ()=+⎰f x x F x C .注 〔1〕不定积分和原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素.〔2〕求不定积分,只需求出它的某一个原函数作为其无限个原函数的代表,再加上一个任意常数C .例1 求23d x x ⎰.解 因为32()3,'=x x 所以233d x x x C =+⎰.例2 求sin cos d x x x ⎰.解 〔1〕因为2(sin )2sin cos ,'=x x x 所以21sin cos d sin 2x x x x C =+⎰.〔2〕因为2(cos )2cos sin ,'=-x x x 所以21sin cos d cos 2x x x x C =-+⎰. 〔3〕因为(cos 2)2sin 24sin cos ,'=-=-x x x x 所以1sin cos d cos 24=-+⎰x x x x C . 例3 求1d x x⎰. 解 由于0x >时,1(ln )'=x x ,所以ln x 是1x在(0,)+∞上的一个原函数,因此在(0,)+∞内,1d ln x x C x=+⎰.又当0x <时,[]1ln()x x '-=,所以ln()-x 是1x在(,0)-∞上的一个原函数,因此在(,0)-∞内,1d ln()=-+⎰x x C x .综上,1d ln x x C x=+⎰.例4 在自由落体运动中,物体下落的时间为t ,求t 时刻的下落速度和下落距离. 解 设t 时刻的下落速度为()=v v t ,那么加速度d ()d va t g t==〔其中g 为重力加速度〕. 因此()()d d v t a t t g t gt C ===+⎰⎰,又当0t =时,(0)0=v ,所以0C =.于是下落速度()=v t gt . 又设下落距离为()=s s t ,那么ds()dt=v t .所以 21()()d d 2===+⎰⎰s t v t t gt t gt C , 又当0t =时,(0)0=s ,所以0C =.于是下落距离21()2=s t gt . 1.1.3不定积分的几何意义设函数()f x 是连续的,假设()()F x f x '=,那么称曲线()y F x =是函数()f x 的一条积分曲线.因此不定积分()d ()f x x F x C =+⎰在几何上表示被积函数的一族积分曲线.积分曲线族具有如下特点〔如图4.1〕:〔1〕积分曲线族中任意一条曲线都可由其中某一条平移得到;〔2〕积分曲线上在横坐标相同的点处的切线的斜率是相同的,即在这些点处对应的切线都是平行的.图4-1例5 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.解 设曲线方程()=y f x ,曲线上任一点(,)x y 处切线的斜率d 2d yx x=,即()f x 是2x 的一个原函数.因为22d =+⎰x x x C ,又曲线过(1,2),所以21C =+,1C =.于是曲线方程为21y x =+.1.2 根本积分公式由定义可知,求原函数或不定积分与求导数或求微分互为逆运算, 我们把求不定积分的运算称为积分运算.既然积分运算与微分运算是互逆的,那么很自然地从导数公式可以得到相应的积分公式.例如,因11x μμ+'⎛⎫ ⎪+⎝⎭=x μ,所以11x x dx C μμμ+=++⎰〔1μ≠-〕. 类似可以得到其他积分公式,下面一些积分公式称为根本积分公式. ①d k x kx C =+⎰〔k 是常数〕; ②1d 1x x x C μμμ+=++⎰〔1μ≠-〕;③1d ln x x C x=+⎰; ④sin d cos x x x C =-+⎰; ⑤cos d sin x x x C =+⎰; ⑥221d sec d tan cos x x x x C x==+⎰⎰; ⑦221d csc d cot sin x x x x C x==-+⎰⎰; ⑧sec tan d sec x x x x C =+⎰; ⑨csc cot d csc x x x x C =-+⎰; ⑩21d arctan C 1x x x =++⎰,21d cot 1x arc x C x -=++⎰;⑪arcsin x x C =+,arccos x x C =+⎰;⑫e d e x x x C =+⎰;⑬d ln xxa a x C a=+⎰;以上13个根本积分公式,是求不定积分的根底,必须牢记.下面举例说明积分公式②的应用.例6求不定积分x x ⎰.解xx ⎰52d x x =⎰512512x C +=++7227x C =+. 以上例子中的被积函数化成了幂函数x μ的形式,然后直接应用幂函数的积分公式②求出不定积分.但对于某些形式复杂的被积函数,如果不能直接利用根本积分公式求解,那么可以结合不定积分的性质和根本积分公式求出一些较为复杂的不定积分.1.3 不定积分的性质根据不定积分的定义,可以推得它有如下两个性质.性质1 积分运算与微分运算互为逆运算〔1〕()d ()'⎡⎤=⎣⎦⎰f x x f x 或d ()d ()d ⎡⎤=⎣⎦⎰f x x f x x . 〔2〕()d ()'=+⎰F x x F x C 或d ()()=+⎰F x F x C 性质2 设函数()f x 和()g x 的原函数存在,那么[]()()d ()d ()d +=+⎰⎰⎰f x g x x f x x g x x .易得性质2对于有限个函数的都是成立的.性质3 设函数()f x 的原函数存在,k 为非零的常数,那么()d =⎰kf x x ()d ⎰k f x x .由以上两条性质,得出不定积分的线性运算性质如下:[]()()d ()d ()d +=+⎰⎰⎰kf x lg x x k f x x l g x x .例7 求23d 1⎛⎫+⎝⎰x x. 解23d 1⎛⎫+⎝x x213d 21x x x =-+⎰3arctan x =2arcsin x -C +.例8 求221d (1)+++⎰x x x x x .解 原式=22(1)d (1)+++⎰x x x x x 211d 1x x x ⎛⎫=+ ⎪+⎝⎭⎰3arctan 3x x x C =-++. 例9 求2e d x x x ⎰.解 原式(2e)d xx =⎰1(2e)ln 2exC =+2e 1ln 2x x C =++. 例10 求1d 1sin x x+⎰.解 1d 1sin x x+⎰()()1sin d 1sin 1sin xx x x -=+-⎰21-sin d cos x x x=⎰ 2(sec sec tan )d =-⎰x x x x tan sec x x C =-+.例11 求2tan d x x ⎰.解 2tan d x x ⎰=2(sec 1)d tan -=-+⎰x x x x C .注 本节例题中的被积函数在积分过程中,要么直接利用积分性质和根本积分公式,要么将函数恒等变形再利用积分性质和根本积分公式,这种方法称为根本积分法.此外,积分运算的结果是否正确,可以通过它的逆运算〔求导〕来检验,如果它的导函数等于被积函数,那么积分结果是正确的,否那么是错误的.下面再看一个抽象函数的例子:例12 设22(sin )cos '=f x x ,求()f x ?解 由222(sin )cos 1sin '==-f x x x ,可得()1'=-f x x , 从而21()2=-+f x x x C .习题4-11.求以下不定积分.〔1〕41d x x⎰; 〔2〕x ⎰; 〔3〕; 〔4〕()2d ax b x -⎰;〔5〕22d 1x x x +⎰; 〔6〕4223d 1x x x x +++⎰;〔7〕x ; 〔8〕22d 1x x⎛⎫+⎝⎰; 〔9〕32e d x x x⎛⎫- ⎪⎝⎭⎰; 〔10〕()22d 1x xx+⎰;〔11〕x ;〔12〕2tan d x x ⎰; 〔13〕2sin d 2xx ⎰;〔14〕cos 2d cos sin x xx x-⎰;〔15〕21cos d 1cos 2xx x++⎰; 〔16〕()sec sec tan d x x x x +⎰;〔17〕2352d 3x xxx ⋅-⋅⎰;〔18〕x .2.某产品产量的变化率是时间t 的函数,()=+f t at b 〔a ,b 为常数〕.设此产品的产量函数为()p t ,且(0)0=p ,求()p t .3.验证12arcsin(21)arccos(12)=-+=-+x C x C 3C =. 4.设33()d f x x x C '=+⎰,求()f x ?第2节 换元积分法和不定积分法2.1 换元积分法上一节介绍了利用根本积分公式与积分性质的直接积分法,这种方法所能计算的不定积分是非常有限的.因此,有必要进一步研究不定积分的求法.这一节,我们将介绍不定积分的最根本也是最重要的方法——换元积分法,简称换元法.其根本思想是:利用变量替换,使得被积表达式变形为根本积分公式中的形式,从而计算不定积分. 换元法通常分为两类,下面首先讨论第一类换元积分法.2.1.1第一类换元积分法定理1 设()f u 具有原函数,()=u x ϕ可导,那么有换元公式()[()]()d ()d =⎡⎤'=⎣⎦⎰⎰u x f x x x f u u ϕϕϕ. 〔4.2.1〕证明 不妨令()F u 为()f u 的一个原函数,那么[]()()d ()=⎡⎤=+⎣⎦⎰u x f u u F x C ϕϕ.由不定积分的定义只需证明([()])[()]()''=F x f x x ϕϕϕ,利用复合函数的求导法那么显然成立.注 由此定理可见,虽然不定积分[()]()d '⎰f x x x ϕϕ是一个整体的记号,但从形式上看,被积表达式中的d x 也可以当做自变量x 的微分来对待.从而微分等式()d d '=x x u ϕ可以方便地应用到被积表达式中.例1 求33e d x x ⎰.解 3333e d e (3)d e d(3)x x x x x x x '=⋅=⎰⎰⎰e d =⎰u u e =+u C , 最后,将变量3u x =代入,即得333ed e xx x C =+⎰.根据例1第一类换元公式求不定积分可分以下步骤:〔1〕将被积函数中的简单因子凑成复合函数中间变量的微分; 〔2〕引入中间变量作换元;〔3〕利用根本积分公式计算不定积分; 〔4〕变量复原.显然最重要的是第一步——凑微分,所以第一类换元积分法通常也称为凑微分法.例2 求()9945d x x +⎰.解 被积函数9945()+x 是复合函数,中间变量45=+u x ,45()=4'+x ,这里缺少了中间变量u 的导数4,可以通过改变系数凑出这个因子:99999911(45)d (45)(45)d (45)d(45)44'+=⋅+⋅+=++⎰⎰⎰x x x x x x x 991d 4=⎰u u 1001001(45)4100400+=⋅+=+u x C C .例3 求22d xx x a +⎰. 解221x a+为复合函数,22u x a =+是中间变量,且222x a x '+=(), 22222222221111d ()d d()22'=⋅+=++++⎰⎰⎰x x x a x x a xax a x a 221111d ln ln()222==+=++⎰u u C x a C u . 对第一类换元法熟悉后,可以整个过程简化为两步完成.例4 求x ⎰.解 322211)(1)23=--=--+⎰x x x C .注 如果被积表达式中出现()d +f ax b x ,-1()d ⋅m m f x x x ,通常作如下相应的凑微分:1()d ()d()+=++f ax b x f ax b ax b a , 111()d ()d()-+=⋅++n n n n f ax b x x f ax b ax b a n.例5 求1d (12ln )x x x +⎰.解 因为1d d ln x x x=,亦即11d d(1+2ln )2x x x=,所以1111d d ln d(1+2ln )(12ln )12ln 212ln x x x x x x x==+++⎰⎰⎰ 1ln 1+2ln 2x C =+. 例6 求arctan 22d 1xx x +⎰.解 因为21d d arctan 1x x x =+,所以 arctan arctan arctan 222d 2d arctan ln 21x x xx x C x ==++⎰⎰.例7 求x .解x =x C ==-⎰.在例4至例7中,没有引入中间变量,而是直接凑微分.下面是根据根本微分公式推导出的常用的凑微分公式.①x=②211d d x x x=-.③1d dln x x x=. ④e d de x x x =.⑤ cos d d sin x x x =. ⑥ sin d d cos x x x =-. ⑦221d sec d d tan cos ==x x x x x. ⑧ 221d csc d d cot sin =-=-x x x x x.d(arcsin )d(arccos )x x x ==-.⑩21d d(arctan )d(arccot )1x x x x ==-+. 在积分的运算中,被积函数有时还需要作适当的代数式或三角函数式的恒等变形后,再用凑微分法求不定积分.例8 求221d x a x +⎰. 解 将函数变形2222111.1a x a x a =+⎛⎫+ ⎪⎝⎭,由d d x x a a=,所以得到221d x a x +⎰2111darctan 1x xC aa a ax a ==+⎛⎫+ ⎪⎝⎭⎰. 例9求x . 解1x x x aa ⎛⎫==⎪⎝⎭ arcsinxC a=+. 例10 求tan d x x ⎰. 解 tan d x x ⎰=sin d d cos ln cos cos cos x x xx C x x-==-+⎰⎰. 同理,我们可以推得cot d ln sin x x x C =+⎰.例11 求3sin d x x ⎰.解 3222sin d sin sin d sin dcos (1-cos )dcos x x x x x x x x x ==-=-⎰⎰⎰⎰31cos cos 3x x C =-++.例12 求23sin cos d x x x ⎰.解 232222sin cos d sin cos cos d sin cos dsin x x x x x x x x x x ==⎰⎰⎰2224sin (1sin )dsin (sin sin )dsin x x x x x x =-=-⎰⎰3511sin sin 35x x C =-+. 例13 求2sin d x x ⎰. 解 21cos 211sin d d sin 2224x x x x x x C -==-+⎰⎰. 例14 求sec d x x ⎰. 解 12211sec d d cos d cos d sin d sin cos 1sin x x x x x x x x x x--====-⎰⎰⎰⎰⎰ 1sin 1ln ln sec tan 2sin 1x C x x C x +=+=++-. 同理,我们可以推得csc d ln csc cot x x x x C =--+⎰.注 对形如sin cos d m n x x x ⎰的积分,如果m ,n 中有奇数,取奇次幂的底数〔如n 是奇数,那么取cos x 〕与d x 凑微分,那么被积函数一定能够变形为关于另一个底数的多项式函数,从而可以顺利的计算出不定积分;如果m ,n 均为偶数,那么利用倍角〔半角〕公式降幂,直至将三角函数降为一次幂,再逐项积分.例15 求sin 2cos3d x x x ⎰. 解 sin 2cos3d x x x ⎰=11sin 5d sin d 22x x x x -⎰⎰=11cos5cos 102x x C -++ =11cos cos5210x x C -+. 一般的,对于形如以下形式sin cos d mx nx x ⎰, sin sin d mx nx x ⎰, cos cos d mx nx x ⎰,的积分〔m n ≠〕,先将被积函数用三角函数积化和差公式进行恒等变形后,再逐项积分.例16 求221d x x a -⎰. 解 因为 2211111()()2⎛⎫==- ⎪-+-+-⎝⎭x a x a a x a x a x a, 所以 221111111d d d d 22⎛⎫⎛⎫=-=- ⎪ ⎪-+-+-⎝⎭⎝⎭⎰⎰⎰⎰x x x x a x a x a a x a x a x a111d()d()2x a x a a x a x a ⎛⎫=--+ ⎪-+⎝⎭⎰⎰ ()11ln ln ln 22x a x a x a C C a a x a-=--++=++. 这是一个有理函数〔形如()()P x Q x 的函数称为有理函数,()P x ,()Q x 均为多项式〕的积分,将有理函数分解成更简单的局部分式的形式,然后逐项积分,是这种函数常用的变形方法.下面再举几个被积函数为有理函数的例子.例17 求23d 56x x x x +-+⎰.解 先将有理真分式的分母256x x -+因式分解,得256-+=x x (2)-x (3)-x .然后利用待定系数法将被积函数进行分拆.设232356x A B x x x x +=+---+=(3)(2)(2)(3)-+---A x B x x x , 从而 3(3)(2)+=-+-x A x B x , 分别将3,2x x ==代入3(3)(2)+=-+-x A x B x 中,易得56A B =-⎧⎨=⎩.故原式=56d 23x x x -⎛⎫+⎪--⎝⎭⎰=5ln 26ln 3x x C --+-+. 例18 求33d 1x x +⎰. 解 由321(1)(1)+=+-+x x x x , 令323111A Bx Cx x x x +=+++-+, 两边同乘以31x +,得23(1)()(1)=-++++A x x Bx C x .令1,x =-得1A =;令0,x =得2C =;令1x =,得1B =-. 所以32312111x x x x x -+=+++-+. 故3223121213d d ln 1d 12111-+--⎛⎫=+=+- ⎪++-+-+⎝⎭⎰⎰⎰x x x x x x x x x x x x =2221d 1d(1)32ln 12211324x x x x x x x ⎛⎫- ⎪-+⎝⎭+-+-+⎛⎫-+⎪⎝⎭⎰⎰.21=ln 1ln(1).2x x x C +--+++2.1.2 第二类换元积分方法定理2 设()=x t ψ是单调,可导的函数,并且()0'≠t ψ,又设[]()()'f t t ψψ具有原函数,那么有换元公式,[]1()()d ()()d -=⎡⎤'=⎣⎦⎰⎰t x f x x f t t t ψψψ,其中,1()-x ψ是()=x t ψ的反函数.证明 设[]()()'f t t ψψ的原函数为()t φ.记1()()-⎡⎤=⎣⎦x F x φψ,利用复合函数及反函数求导法那么得[][]d d 1()()()()()d d ()''=⋅=⋅=='t F x f t t f t f x t x t φψψψψ, 那么()F x 是()f x 的原函数.所以11()()d ()[()][()]()d --=⎡⎤'=+=+=⎣⎦⎰⎰t x f x x F x C x C f t x t ψφψψψ.利用第二类换元法进行积分,重要的是找到恰当的函数()=x t ψ代入到被积函数中,将被积函数化简成较容易的积分,并且在求出原函数后将1()t x ψ-=复原.常用的换元法主要有三角函数代换法、简单无理函数代换法和倒代换法.一、三角函数代换法例19 求22d a x x -⎰(0)>a .解 设ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,22cos a x a t -=,d cos d x a t t =,于是22d a x x -⎰=2222cos cos d cos d sin cos 22a a a t a t t a t t t t t C ⋅==++⎰⎰.因为 ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,所以arcsin ,xt a = 为求出cos t ,利用sin xt a=作辅助三角形〔图4-2〕,求得22cos a x t a-=, 所以 22222221d d arcsin 22a x a x x a x x x a x C a -=-=+-+⎰⎰.图4-2例20 求22d x x a+⎰(0)>a .解 令2ππtan ,,,d sec d 22x a t t x a t t ⎛⎫=∈-= ⎪⎭⎝,22d xx a +⎰=21cos sec d sec d ln sec tan t a t t t t t t C a ⋅==++⎰⎰. 利用tan xt a=作辅助三角形〔图4-3〕,求得 22ππsec ,,22x a t t a +⎛⎫=∈- ⎪⎭⎝ 所以 ()2222122d ln ln xx x a c x x a C a ax a ⎛⎫+ ⎪=++=+++ ⎪+⎝⎭⎰.图4-3例21 求22x a-(0)>a .解 当x a >时,令πsec ,0,,d sec tan d 2x a t t x a t t t ⎛⎫=∈=⋅ ⎪⎭⎝,22x a -=11cot sec tan d sec d ln sec tan t a t t t t t t t C a⋅⋅⋅==++⎰⎰.利用cos at x=作辅助三角形〔图4-4〕,求得22tan x a t -=所以 (2222122lnln x x a C x x a C aax a -=+=+-+-,1(ln )C C a =-. 当x a <-时,令x u =-那么u a >,由上面的结果,得((2222112222ln ln u u a C x x a C x a u a =-=-+=---+--=(221,(2ln )x x a C C C a --+=-. 综上,2222ln x x a C x a =-+-.图4-4注 22a x -22a x +22x a -换元:sin x a t =,tan x a t =,sec x a t =±将根号化去.但是具体解题时,要根据被积函数的具体情况,选取尽可能简捷的代换,不能只局限于以上三种代换.二、简单无理函数代换法 例22 求12x+.解 令22,,d d 2u u x x x u u ===,12x +=d 11d 11u u u u u ⎛⎫=- ⎪++⎝⎭⎰⎰(ln 12ln 12u u C x x C =-+++. 例23 求3(1+)x x.解 被积函数中出现了两个不同的根式,为了同时消去这两个根式,可以作如下代换: 令6t x =6x t =,5d 6d x t t =,从而522322361d 6d 61d (1)11(1+)t t t t t t t t t x x ⎛⎫===- ⎪+++⎝⎭⎰⎰⎰ 666(arctan )6()t t C x x C =-+=+.例24 求211d xx x x +. 解 为了去掉根式,作如下代换:1x t x +=,那么211x t =-,222d d (1)t x t t =--,从而222222112d (1)d 2d (1)x t x t t t t t x x t +-=-⋅=--⎰⎰ 32322133x t C C x +⎛⎫=-+=-+ ⎪⎝⎭. 一般的,如果积分具有如下形式〔1〕()d n R x ax b x +⎰,那么作变换n t ax b +〔2〕(,)d n m R x ax b ax b x ++⎰,那么作变换pt ax b +p 是m ,n 的最小公倍数;〔3〕(R x x ⎰,那么作变换t = 运用这些变换就可以将被积函数中的根数去掉,被积函数就化为有理函数. 三、倒代换法在被积函数中如果出现分式函数,而且分母的次数大于分子的次数,可以尝试利用倒代换,即令1x t=,利用此代换,常常可以消去被积函数中分母中的变量因子x .例25 求6d (1)+⎰xx x .解 令211,d d x x t tt ==-, 6d (1)+⎰x x x =52661d d 1111t t t t t t t -=-+⎛⎫⋅+ ⎪⎝⎭⎰⎰661d(1)61+=-+⎰t t 61ln 16t C =-++ 611ln 16C x ⎛⎫=-++ ⎪⎝⎭. 例26求x . 解 设211,d d ,x x t tt ==-则 于是1222241d (1)d ⎫=-=--⎪⎝⎭⎰x t a t t t t t , 当0x >时,有31222222222231()(1)d(1)23-=---=-+⎰a x x a t a t C a a x . 0x <时,结果相同.本例也可用三角代换法,请读者自行求解.四、指数代换 例27 求2d e (e 1)+⎰x x x.解 设1e ,d d ,x t x t t==则 于是222d 1d e (e 1)(1)=++⎰⎰x x x t t t22111d arctan 1t t C t t t ⎛⎫=-=--+ ⎪+⎝⎭⎰--e arctane x x C =--+. 注 本节例题中,有些积分会经常遇到,通常也被当作公式使用.承接上一节的根本积分公式,将常用的积分公式再添加几个〔0a >〕:①tan d ln cos x x x C =-+⎰; ②cot d ln sin x x x C =+⎰; ③cscd x ⎰=ln csc cot x x C -+; ④sec d ln sec tan x x x x C =++⎰; ⑤2211d arctan xx C a a a x=++⎰; ⑥221d xx a -⎰=1ln 2x a C a x a -++; ⑦arcsin xx C a =+>(a 0);⑧(ln x C =+;⑨ln x C =. 例28 求.解=2arcsin3-=+x C . 例29 求.解=11ln(222=+x C . 例30 求解ln 1=-x C .例31 求322d (22)x x x x -+⎰.解 被积函数为有理函数,且分母为二次质因式的平方,把二次质因式进行配方:2(1)1x -+,令ππ1tan ,,22⎛⎫-=∈- ⎪⎝⎭x t t ,那么2222sec x x t -+=,2d sec d x t t =.所以332224(1tan )d sec d (22)sec x t x t t x x t +=⋅-+⎰⎰23cos (1tan )d t t t =+⎰3(sin cos )d cos t t t t+=⎰ 3122(sin cos 3sin 3sin cos cos )d t t t t t t t -=+++⎰ 2ln cos cos 2sin cos t t t t t C =--+-+.图4-5按照变换ππ1tan ,22x t t ⎛⎫-=∈- ⎪⎝⎭作〔辅助三角形图4-5〕,那么有2cos 22t x x =-+,2sin 22t x x =-+,于是322221d ln(22)2arctan(1)2(22)22x x x x x x C x x x x =-++--+-+-+⎰.2.2 分部积分法前面我们得到了换元积分法.现在我们利用“两个函数乘积的求导法那么〞来推导求积分的另一种根本方法—分部积分法.定理1 设函数()=u u x ,()=v v x 具有连续的导数,那么d d =-⎰⎰u v uv v u .〔4.2.2〕证明 微分公式d()d d =-uv u v v u 两边积分得d d =-⎰⎰uv u v v u ,移项后得d d =-⎰⎰u v uv v u .我们把公式〔4.2.2〕称为分部积分公式.它可以将不易求解的不定积分d u v ⎰转化成另一个易于求解的不定积分d v u ⎰.例32 求cos d x x x ⎰.解 根据分部积分公式,首先要选择u 和d v ,显然有两种方式,我们不妨先设,cos d d ,u x x x v == 即sin v x =,那么cosd dsin sin sin d sin cos x x x x x x x x x x x C ==-=++⎰⎰⎰.采用这种选择方式,积分很顺利的被积出,但是如果作如下的选择: 设cos ,d d ,u x x x v == 即212v x =,那么222111cos d cos d cos sin d 222x x x x x x x x x x ==-⎰⎰⎰, 比拟原积分cos d x x x ⎰与新得到的积分21sin d 2x x x ⎰,显然后面的积分变得更加复杂难以解出.由此可见利用分部积分公式的关键是恰当的选择u 和d v .如果选择不当,就会使原来的积分变的更加复杂.在选取u 和d v 时一般考虑下面两点: 〔1〕v 要容易求得;〔2〕d v u ⎰要比d u v ⎰容易求出. 例33 求e d x x x ⎰.解 令,e d d ,e x x u x x v v ===,那么e d de e e d e e x x x x x x x x x x x x C ==-=-+⎰⎰⎰.例34 求2e d x x x ⎰.解 令2,e d d ,e x x u x x v v ===,那么利用分部积分公式得22222e d dee e d e 2e d xxx x x x x x x x x x x x ==-=-⎰⎰⎰⎰,这里运用了一次分部积分公式后,虽然没有直接将积分积出,但是x 的幂次比原来降了一次,e d xx x ⎰显然比2e d xx x ⎰容易积出,根据例4.3.2,我们可以继续运用分部积分公式,从而得到222e d e2e d e 2de xxx x x x x x x x x x =-=-⎰⎰⎰2e 2(e e )x x x x x C =--+ 2e (22)x x x C =-++.注 当被积函数是幂函数与正〔余〕弦或指数函数的乘积时,幂函数在d 的前面,正〔余〕弦或指数函数至于d 的后面.例35 求ln d x x x ⎰. 解 令ln ,u x =21d d 2x x x =,212v x =,那么 222111ln d ln d ln d 22x x x x x x x x x x ⎛⎫==-⋅ ⎪⎝⎭⎰⎰⎰2211ln 22x x x C ⎛⎫=-+ ⎪⎝⎭ 22ln 124x x x C =-+.在分部积分公式运用比拟熟练后,就不必具体写出u 和d v ,只要把被积表达式写成d ⎰u v的形式,直接套用分部积分公式即可. 例36 求arctan d x x x ⎰.解 222211arctan d arctan d arctan d 221x x x x x x x x x x ⎛⎫==- ⎪+⎝⎭⎰⎰⎰21(arctan arctan )2=-++x x x x C . 注 当被积函数是幂函数与对数函数或反三角函数的乘积时,对数函数或反三角函数在d 的前面,幂函数至于d 的后面.下面再来举几个比拟典型的分部积分的例子.例37 求e sin d x x x ⎰.解 〔法一〕e sin d sin de e sin e cos d x x x x x x x x x x ==-⎰⎰⎰e sin cos de x x x x =-⎰=e sin e cos e sin d x x x x x x x --⎰,∴ 1e sin d e (sin cos )2=-+⎰x xx x x x C . 〔法二〕x e sin d e d(cos )e (cos )cos d(e )=-=-+⎰⎰⎰x x x x x x x x =e cos cos e d e cos e dsin x x x x x x x x x -+=-+⎰⎰ =e cos e sin sin de x x x x x x -+-⎰ =e cos e sin e sin d x x x x x x x -+-⎰,∴ 1e sin d e (sin cos )2=-+⎰x x x x x x C .当被积函数是指数函数与正〔余〕弦函数的乘积时,任选一种函数凑微分,经过两次分部积分后,会复原到原来的积分形式,只是系数发生了变化,我们往往称它为“循环法〞,但要注意两次凑微分函数的选择要一致.例38 求3sec d x x ⎰.解 32sec d sec d tan sec tan sec tan d x x x x x x x x x ==⋅-⋅⎰⎰⎰3sec tan sec d sec d x x x x x x =⋅+-⎰⎰,利用 1sec d ln sec tan x x x x C =++⎰ 并解方程得3sec d x x ⎰=1(sec tan ln sec tan )2⋅++x x x x +C .在求不定积分的过程中,有时需要同时使用换元法和分部积分法.例39求x ⎰.解令2,d 2d t t x t t ===,e 2d 2de 2e 2e d 2e 2e t t t t t t x t t t t t t C C ===-=-+=-+⎰⎰⎰⎰.例40 求cos(ln )d x x ⎰. 解 令ln ,e ,d e d t t t x x x t ===,cos(ln )d x x ⎰=()()1cos e d e sin cos sin ln cos ln 22t t xt t t t C x x C ⋅=++=++⎰. 下面再看一个抽象函数的例子.例41 ()f x 的一个原函数是sin xx,求()d '⎰xf x x ? 解 因为()f x 的一个原函数是sin x x ,所以sin ()d =+⎰xf x x C x, 且 2sin cos sin ()'-⎛⎫==⎪⎝⎭x x x xf x x x .从而 原式()()d d[()]()d '===-⎰⎰⎰xf x x x f x xf x f x x cos 2sin x x xC x-=+.习题4-2一、求以下不定积分. 1.2014(23)d -⎰x x ; 2.23d (12)-⎰xx ;3.()d +⎰k a bx x 〔0b ≠〕; 4.sin3d x x ⎰; 5.()cos d x x αβ-⎰; 6.tan5d x x ⎰; 7.3e d x x -⎰; 8.210d x x ⎰; 9.121e d x x x⎰;10.2d 19xx +⎰; 11.2d πsin 24x x ⎛⎫+ ⎪⎝⎭⎰;12.x ⎰;13.2(23)d 38--+⎰x xx x ;14.;15.e sin e d x x x ⎰; 16.2e d x x x ⎰; 17.x ; 18.θ;19.;20.22(arctan )d 1+⎰x x x ;21.2d 3x x x+⎰;22.21d 413x x x x -++⎰;23.2cos d x x ⎰; 24.4sin d x x ⎰; 25.1tan d sin 2xx x+⎰; 26.22cos sin d x x x ⎰; 27.3cos d x x ⎰; 28.35sin cos d x x x ⎰; 29.4sec d x x ⎰;30.4tan d x x ⎰; 31.22d sin cos xx x⎰;32.4;33.;34.322d (1)-⎰x x ;35.3322d (1)+⎰x xx ;36.2x ;37.3222d ()+⎰xx a ;38.x ; 39. 40. 41.;42.;43.x ; 44.x ;45.42d xx x -⎰; 46.2d (1)+⎰xx x .二、求以下不定积分.1.sin 2d x x x ⎰; 2.-(e e )d 2-⎰x x x x ; 3.2cos d x x x ω⎰; 4.2d x x a x ⎰;5.ln d x x ⎰; 6.ln d n x x x ⎰〔1n ≠〕; 7.arctan d x x ⎰; 8.arccos d x x ⎰; 9.e cos d ax nx x ⎰;10.2ln(1)d +⎰x x x ;11.32ln d xx x⎰;12.2(arcsin )d ⎰x x ;13.2cos d x x x ⎰; 14.2tan d x x x ⎰;15.22cos d x x x ⎰; 16.2ln cos d cos xx x⎰;17.3ln d xx x ⎰; 18.x ⎰.三、()f x 的一个原函数是2-e x ,求()d '⎰xf x x .第3节 有理函数的积分3.1 有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数,即具有如下形式的函数: mm m m nn n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(,其中m 和n 都是非负整数; a 0,a 1,a 2,⋅⋅⋅,a n 及b 0,b 1,b 2,⋅⋅⋅,b m 都是实数,并且a 0≠0,b 0≠0.当n <m 时,称这有理函数是真分式;而当n ≥m 时,称这有理函数是假分式. 假分式总可以化成一个多项式与一个真分式之和的形式.例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时,如果分母可因式分解,那么先因式分解,然后化成局部分式再积分.例1 求⎰+-+dxx x x 6532.解⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536(⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示:)3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x ,A +B =1,-3A -2B =3,A =6,B =-5. 分母是二次质因式的真分式的不定积分: 例2 求⎰++-dxx x x 3222.解⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示:321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x .例3 求⎰-dx x x 2)1(1.解⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示:222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x .3.2 三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四那么运算所构成的函数,其特点是分子分母都包含三角函数的和差和乘积运算.由于各种三角函数都可以用sin x 及cos x 的有理式表示,故三角函数有理式也就是sin x 、cos x 的有理式. 用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数,然后作变换2tan xu =:222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x x x x x +-=-=-=.变换后原积分变成了有理函数的积分. 例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tanx u =,那么212sin u u x +=,2211cos u u x +-=,x =2arctan u ,du u dx 212+=. 于是⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u u du u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+Cx x d xdx x x )sin 1ln()sin 1(sin 11sin 1cos .习题4-3求以下不定积分.1.x dx x +⎰33;2.x dx x x ++-⎰223310; 3.x dx x x +-+⎰2125; 4.()dx x x +⎰21 ;5.()()x dx x x ++-⎰22111;6.()()x dx x ++⎰22211;7.sin dx x +⎰23; 8.cos dxx +⎰3;9.sin dx x +⎰2 ; 10.sin cos dx x x++⎰1;11.sin cos dxx x -+⎰25; 12.⎰.第4节 MATLAB 软件的应用在高等数学中,经常利用函数图形研究函数的性质,在此,我们应用MA TLAB 命令来实现这一操作.MATLAB 符号运算工具箱提供了int 函数来求函数的不定积分,该函数的调用格式为:Int(fx,x) %求函数f(x)关于x 的不定积分参数说明:fx 是函数的符号表达式,x 是符号自变量,当fx 只含一个变量时,x 可省略. 例计算下面的不定积分.sin .cos x xI dx x+=+⎰1syms xI=int((x+sin(x)/(1+cosx))) I=X*tan(x/2)说明:由上述运行结果可知,int 函数求取的不定积分是不带常数项的,要得到一般形式的不定积分,可以编写以下语句:syms x c fx=f(x); int(fx,x)+c以sin cos x xI dx x +=+⎰1为例,编写如下语句可以得到其不定积分:syms x cfx=(x+sin(x))/(1+cos(x)); I=int(fx,x)+c I=C+x*tan(x/2)在上述语句的根底上再编写如下语句即可观察函数的积分曲线族: ezplot(fx,[-2,2]) hf=ezplot(fx,[-2,2]); xx=linspace(-2,2);plot(xx,subs(fx,xx),’k’,’LineWidth’,2) hold on for c=0:6Y=inline(subs(I,C,c));Plot(xx,y(xx),’LineStyle’,’- -’); Endlegend(‘函数曲线’,’积分曲线族’,4).总习题4 (A)一、填空题1.假设()f x 的一个原函数为cos x ,那么()d f x x ⎰=. 2.设()d sin f x x x C =+⎰,那么2(1)d xf x x -⎰=. 3.2e d x x x =⎰. 4.1d 1cos 2x x=+⎰.5.22(arctan )d 1x x x +⎰=.二、选择题1.曲线()y f x =在点(,())x f x 处的切线斜率为1x,且过点2(e ,3),那么该曲线方程为. (A) ln y x =(B) ln 1y x =+(C) 211y x =-+ (D) ln 3y x =+2.设()f x 的一个原函数是2e x -,那么()d xf x x '=⎰.(A) 222e x x C --+ (B) 222e x x -- (C) 22e (21)x x C ---+(D) ()()d xf x f x x +⎰3.设()F x 是()f x 的一个原函数,那么.(A) ()()d ()f x x F x '=⎰(B) ()()d ()f x x f x '=⎰(C)d ()()F x F x =⎰(D) ()()d ()F x x f x '=⎰4.设()f x 的原函数为1x,那么()f x '等于. (A) ln x(B)1x(C) 21x -(D)32x 5.2d x x x =⎰.(A) 22xxx C -+(B) 222ln 2(ln 2)x xx C -+(C) 22ln (ln 2)2x x x x C -+(D) 222x x C + 三、计算以下各题1.x ;2.1d e e x xx --⎰; 3.2ln(1+)d x x ⎰; 4.2d 23++⎰xx x ;5.sin ecosxd xx ⎰;6.742d (1)x xx +⎰;7.12e d x x -⎰; 8.;9.1d e 1xx -⎰; 10.3d (1)xx x -⎰;11.x x ;12.x ; 13.4d 1xx -⎰; 14.; 15.32ln d x x x ⎰; 16.17.x ⎰; 18.19.20.4sin d 2xx ⎰;21.24(tan tan )d x x x +⎰;22.2sec d 1tan ⎛⎫ ⎪+⎝⎭⎰x x x ;23.sin(lnx)d x ⎰; 24.5;25.x ;26.54tan sec d t t t ⎰;27.3sin x π⎰; 28.64tan cos d sin x x x x⎰;29.44d sin cos xx x⎰;30.1sin d 1sin +-⎰xx x;31.x x ;32.x ⎰;33.e (1)d +⎰x x x x ; 34.x ;35.2ln(1)d x x x +⎰;36.x . (B)1.〔1999、数学一〕设()f x 是连续函数()F x 是()f x 的原函数,那么( ). (A) 当()f x 是奇函数时,必是偶函数.(B) 当()f x 是偶函数时,()F x 必是奇函数.(C) 当()f x 是周期函数时,()F x 必是周期函数.(D) 当()f x 是单调增函数时,()F x 必是单调增函数.2.〔2006、数学二〕 求arctan xxe dx e ⎰. 3.〔2003、数学二〕 计算不定积分.)1(232arctan dx x xe x ⎰+.4.(2021、数学三)计算不定积分ln(1dx +⎰(0)x >.。

第四章不定积分

第四章不定积分

第四章:不定积分一、本章的教学目标及基本要求1、理解原函数与不定积分概念及其相互关系;知道不定积分的主要性质;弄清不定积分与求导数的关系,即求导与不定积分互为逆运算;已知曲线在一点的切线斜率,会求该曲线的方程。

2、熟记基本积分公式;能熟练地利用基本积分公式及积分的性质,第一换元积分法和分部积分法计算不定积分;掌握第二换元积分法。

对于复合函数求不定积分一般用第一换元积分法(凑微分法),记住常见的凑微分形式。

3、掌握化有理函数为部分分式的方法,并会计算较简单的有理分式函数的积分、三角有理式的积分、无理式的积分。

二、本章各界教学内容及学时分配第一节不定积分的概念与性质 2学时第二节换元积分法 4学时第三节分部积分法 2学时第四节有理函数的积分 2学时三、本章教学内容的重点和难点1、重点:不定积分和定积分的概念及性质,不定积分的基本公式,不定积分、定积分的换元法与分部积分法;2、难点:不定积分和定积分的概念及性质,凑微分法,有理分式函数的积分、三角有理式的积分、无理式的积分。

四、本章内容的深化和拓广1、了解不定积分在现代数学发展史上的重要意义;2、初步了解不定积分的实际意义,为后面定积分的学习及定积分的应用做好一定的铺垫;3、简介不定积分在建立数学模型中的重要意义。

五、本章教学方式及教学过程中应注意的问题1、以讲课方式为主,留一个课时的时间讲解习题中的难点和容易犯错误的地方;2、教学中应注意教材前后内容之间的联系,突出重点和难点;3、本章主要以计算题为主,要强调本章内容本今后学习的重要性,鼓励学生细致、耐心地完成作业,防止学生只抄教材后的答案。

4.1 不定积分的概念与性质一、内容要点1、原函数与不定积分的概念2、不定积分的性质二、教学要求和注意点教学要求:理解原函数与不定积分概念及其相互关系;知道不定积分的主要性质;弄清不定积分与求导数的关系,即求导与不定积分互为逆运算。

注意点:1、原函数与不定积分的概念:由导数及导数的意义引入原函数的概念;解释不定积分的几何意义;强调原函数和不定积分的特性,并举例说明;由基本积分表说明基本积分方法;2、不定积分的性质:说明不定积分的性质对不定积分计算的重要性;列出不定积分的性质并给与证明,证明过程中有意识地加深学生对不定积分概念更深入的理解;三、作业 同步训练习题23一 原函数与不定积分的概念定义1 如果在区间上,可导函数的导函数为,即对任一,都有或, 那末函数就称为(或)在区间上的原函数。

第四章-不定积分

第四章-不定积分

微积分
练习六:求积分
1、 (x 3)2dx.
x2
2 ( )d x . 2x
3 (10x x10)dx.
微积分
解:
1、 (x3)2dx (x2 6x9)dx
1 x3 3x2 9xc 3
2
(2 x2 x)dx1 4x22lnxc
微积分
一、第一类换元法
sinxdxcosxc
问题
sin 2xdx cos2xC
解决方法
设置中间变量:换元
微积分
例1 求 sin2xdx.

sin2xdx12sin2xd(2x)

1 2

sin
tdt
(令
t

2x)
1cost C; 2
1co2sxC;
2
微积分
微积分
例1 求 x5dx. 解 x6 x5 ,
6
x5dxx6 C.
6
例2


1
1 x2
dx.

11x2 dxarctanxC.
微积分
练习三:求不定积分
1、
x10dx.
2、
e xd x.
1
3、

dx. 1-x 2
微积分
练习三:求不定积分
微积分
F ( x ) f ( x ) F ( x ) 是 f ( x ) 的 一 个 原 函 数

arctanx
1 1x2
1
arcta n x 是 1 x2 的原函数.
微积分
练习一:
1、
是cosx的原函数。
2、cosx是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x cos x d x = ? ∫
2
若选 v′ = x , 1 2 则v = x , 2
6
⇒ ∫ u v′d x = ∫ u d v = u v − ∫ v d u
(1) 都要容易求出。 一般: 一般: 无论怎么选 v’ , v 都要容易求出。 ( 2) ∫ v d u 要比 ∫ u d v 易求。 易求。 (3) v’(x) 的 首选: 首选: 次选: sin x , cos x ; 次选: 再次之: 再次之: x 等幂函数; 等幂函数; 不选: 不选: ln x .
( 5) ∫ x arctan x 1+ x2
2
dx = 1 arctan x dx 2 = arctan xd 1 + x 2 ∫ 2 ∫ 1+ x2
= 1 + x arctan x − ∫
dx 1+x2
= 1 + x 2 arctan x − ln x + 1 + x 2 + C
14
x = t , dx = 2tdt
§3. 分部积分法
1
∫ x sin x d x
特点: 特点:
=?
目前还无法计算
被积函数是两个不同类型的函数的乘积。 被积函数是两个不同类型的函数的乘积。 从函数乘积的导数公式入手
2
§3. 分部积分法
有连续导数, 设 u (x), v (x) 有连续导数,则 ( u v )′ = u′ v + u v′ ⇒ u v′ = ( u v )′ − u′ v
m
令 u = ln ax , arcsin x , arccos x , arctan x , dv = x dx .
m
可使原来含超越函数的被积函数化为 代数函数的积分。 代数函数的积分。
13
练习题
(1)∫ x 2 e − x dx = − x 2 e − x + ∫ 2 xe − x dx = L
如何选择 v ?
5
⇒ ∫ u v′d x = ∫ u d v = u v − ∫ v d u
例:
∫ x sin x d x
1 2 = ∫ sin x d x 2 1 2 2 = ( x sin x − ∫ x d sin x ) 2 1 2 2Байду номын сангаас= ( x sin x − ∫ x cos x d x ) 2
经过几次分部积分后,又出现原来的积分, 经过几次分部积分后,又出现原来的积分, 可移项合并求出积分。(再生法) 。(再生法 这时 可移项合并求出积分。(再生法) 求不定积分往往将换元、 求不定积分往往将换元、分部法结合起来 一起使用!下面再看一些例子。 一起使用!下面再看一些例子。
29
x arcsin x d x 例1: ∫ : 2 1− x 1 1 2 解一: 解一: 原式 = - ∫ arcsin x d(1-x ) 2
例3: :
1 d ( − cos t ) = [− t cos t + ∫ cos t d t ] 2 1 1 [sin x 2 − x 2 cos x 2 ] + C = 2 [− t cos t + sin t ] + C = 2 31
∫x 1 =2∫t
x2 = t
例6: :
2 2

由再生法: 由再生法: ∴ ∫ x + a d x 1 2 2 2 2 2 = [ x x + a + a ln x + x + a ] + C . 2
2 2
26
本例还可用前面讲过的三角代换 令 x = a tan t
原式 = ∫ a sec t d t
2 3
a ( sec t tan t + ln sec t + tan t )+ C . = 2

= sec x tan x − ∫ sec x d x + ln sec x + tan x 由再生法: 由再生法: sec 3 x d x ∫ 1 = [ sec x tan x + ln sec x + tan x + C . 2
3
25
x + a d x (= ∫ u d v ) x 2 2 dx = x x +a − ∫ x⋅ 2 2 x +a 2 x + a 2- a 2 2 2 dx = x x +a −∫ 2 2 x +a 2 a 2 2 2 2 dx = x x + a − ∫ x + a dx+ ∫ 2 2 x +a 2 2 2 2 2 2 2 = x x + a − ∫ x + a d x + a ln x + x + a
dv
=−
∫ x d cos x
则 v = − cos x , d v = − d cos x ,
= − ( x cos x − cos x d x ) ∫ = − x cos x + sin x + C .
4
∫ u v′d x = ∫ (u v )′d x − ∫ v u′d x ⇒ ∫ u d v = uv − ∫ v d u 即 ∫ f ( x )d x = ∫ u⋅ v′ d x = ∫ u d v = u v − ∫ v d u = u v − ∫ v ⋅ u′d x 求 ∫ g( x )d x . = u v − ∫ g ( x )d x 较易求。 要求: 要求: ∫ g ( x )d x = ∫ v u′ d x 较易求。

1 x 2 2 2 = [ x a − x + a arcsin ] + C . 2 a

28
小结( 小结(三):
在 ∫ P (sin x ) e d x 、 P (cos x ) e d x 、 ∫
ax ax
∫ sec
3
x d x 、∫ x + a 、 x − a 、 中 L ∫
2 2 2 2
(6)∫ sin x dx = 2∫ t sin tdt = −2t cos t + 2∫ cos tdt = L
ln x = t , dx = e t dt
(7 )∫ cos ln xdx =
∫e
t
cos tdt
I = ∫ e t cos tdt = e t cos t − ∫ e t d cos t =
15
(
)
16
17
18
19
20
21
22
23
例4: :
∫e
x
x
cos x d x
x
x
= ∫ cos x d e = e cos x − ∫ e d cos x x x = e cos x + ∫ e sin x d x
x
= e cos x + ∫ sin x d e x x x x = e cos x + e sin x − ∫ e d sin x = e cos x + e sin x − ∫ e cos x d x x x ⇒ 2 ∫ e cos x d x = e (cos x + sin x ) x e x (cos x + sin x ) + C . ∴ ∫ e cos x d x = 2
9
1 2 例2: ∫ x ln x d x = ∫ ln x d x : 2 1 2 2 = [ x ln x − ∫ x d ln x ] 2 1 2 2 1 = [ x ln x − ∫ x ⋅ d x ] 2 x 1 2 = [ x ln x − ∫ x d x ] 2 1 2 1 2 = [ x ln x − x ] + C . 2 2
−x
8
= − x e − 2 x e −2 e +C.
小结( 小结(一):
在 ∫ x e d x 、 x cos ax d x 、 x sin ax d x 中 ∫ ∫
m ax m m
令 u = x , dv = e dx , cos axdx , sin axdx
m ax
可降低x 的幂次数。 可降低 m 的幂次数。
= e t cos t + ∫ e t sin tdt

= e cos t + e sin t − ∫ e sin tdt = e cos t + e sin t − I
t t t
t
t
1 t 1 t I = e cos t + e sin t + C = ( x cos ln x + x sin ln x ) + C 2 2
x x
x
再 生 法
24
例5: ∫ sec x d x = ∫ sec x d tan x : = sec x tan x − ∫ tan x d sec x = sec x tan x − ∫ tan 2 x sec x d x
3
= sec x tan x − ∫ (sec 2 x− 1) sec x d x = sec x tan x − sec 3 x d x + ∫ sec x d x
= − ∫ arc sin x d 1 − x 1 2 2 = − [ 1 − x arcsin x − ∫ 1 − x ⋅ dx] 2 2 1− x = − 1 − x arcsin x + x + C . 1 解二: 解二: 令 x = sin t , d x = cos t d t . x t 原式 = ∫ t sin t d t = − ∫ t d cos t 2 1− x = − t cos t + sin t + C
相关文档
最新文档