2.1.1数列的概念
2.1.1 数列的概念与简单表示法(一)
②一些数列的通项公式不是唯一的; 如:数列1,-1,1,-1,…
③不是每一个数列都能写出它的通项公式。 如:1,24,8,3,19
例1、试写出下面数列的一个通项公式,使它的前4项分别 是下列各数:
(1)2,4,6,8; 变题:4,6,8,10
an=2n
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4 天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场 景法
练习:试写出数列1,3,6,10,…的一个递推公式。
例5、已知a1
1, an
1
1 an1
(n
2), 写出这个
数列的前5项.
解:∵a1=1
1
1
a2
1
a1
1 1
2
1
13
a3 1 a 2 1 2 2
a4
1
1 a3
1
2 3
5 3
a5
1
1 a4
1
3 5
8 5
练习:写出下列数列{an}的前5项 (1)a1=5,an=an-1+3 (n≥2); (2)a1=2,an=2an-1 (n≥2);
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
数列通项知识点总结
数列通项知识点总结一、数列通项的概念1.1 数列的定义数列是指按照一定顺序排列的一组数的集合。
数列可以是有限的,也可以是无限的。
有限数列通常用a1,a2,…,an表示,其中a1表示第一个数,an表示第n个数。
而无限数列通常用an表示,其中n为自然数。
1.2 数列的常见类型数列根据其间隔和规律的不同,可以分为等差数列、等比数列、斐波那契数列等。
下面分别对这几种常见类型进行介绍。
1.2.1 等差数列如果一个数列中任意两个相邻的数之差是一个常数d,则称这个数列为等差数列。
一般来说,等差数列的通项公式为an=a1+(n-1)d,其中an表示第n个数,a1表示第一个数,d表示公差。
例如,数列1,3,5,7,9,11,… 是一个公差为2的等差数列,其通项公式为an=1+2(n-1)。
1.2.2 等比数列如果一个数列中任意两个相邻的数之比是一个常数r,则称这个数列为等比数列。
一般来说,等比数列的通项公式为an=a1*r^(n-1),其中an表示第n个数,a1表示第一个数,r表示公比。
例如,数列2,6,18,54,… 是一个公比为3的等比数列,其通项公式为an=2*3^(n-1)。
1.2.3 斐波那契数列斐波那契数列是指从0和1开始,后面每一项都等于前两项之和的数列。
斐波那契数列的通项是比较特殊的,通常用递推关系式来表示。
1.3 数列通项的作用数列通项是对数列中每一项的值进行一般性表示的公式,它能够帮助我们更方便地计算和推导数列中的每一项的值。
通过数列通项,我们可以更好地理解数列的规律和特性,进而推导出一些有用的结论,应用在数学、物理、工程等领域中,具有一定的实际意义。
因此,掌握数列通项的知识是非常重要的。
二、数列通项的求解方法2.1 等差数列的通项对于等差数列,我们可以通过分析数列中相邻两项之间的关系,利用其公差d来推导出数列通项的公式。
一般可以按照以下步骤进行求解:(1)确定公差d;(2)利用已知项求解通项公式。
数列的有关知识点总结
数列的有关知识点总结一、数列的基本概念1.1 数列的定义数列是指按照一定的顺序排列的一组数,这组数称为数列的项。
数列通常用符号{an}或(an)表示,其中an表示第n个数列的项。
例如,{1, 2, 3, 4, 5, ...}就是一个常见的数列,其第n 个项表示为an=n。
1.2 数列的分类根据数列的性质和规律,可以将数列分为不同的类型。
常见的数列包括等差数列、等比数列、等差数列、递减数列、递增数列等。
不同类型的数列具有不同的性质和规律,需要根据具体情况选择适当的方法进行研究和分析。
1.3 数列的通项公式对于某些特定的数列,可以通过观察数列的规律和性质,得到其通项公式。
通项公式可以表示数列的第n个项与n之间的关系,通常用公式an=f(n)表示,其中f(n)为关于n的函数。
通过通项公式,可以方便地计算数列的任意项,从而更好地理解数列的规律和性质。
1.4 数列的性质数列具有许多重要的性质,包括有界性、单调性、敛散性等。
这些性质对于研究数列的规律和性质具有重要的意义,可以帮助我们更好地理解和分析数列的特点。
二、等差数列2.1 等差数列的定义等差数列是指数列的相邻两项之差是一个常数的数列,这个常数称为公差。
例如,{1, 3, 5, 7, 9, ...}就是一个等差数列,公差为2。
2.2 等差数列的通项公式对于等差数列an=a1+(n-1)d,其中a1为等差数列的首项,d为公差,n为项数。
通过这个通项公式,可以方便地计算等差数列的任意项。
2.3 等差数列的性质等差数列具有许多重要的性质,包括有界性、单调性、求和性质等。
这些性质对于研究等差数列的规律和性质具有重要的意义,可以帮助我们更好地理解和分析等差数列。
2.4 等差数列的求和公式对于等差数列,有求和公式Sn=n/2(a1+an),其中Sn表示前n项和,a1表示首项,an表示第n项。
通过这个求和公式,可以方便地计算等差数列的前n项和。
三、等比数列3.1 等比数列的定义等比数列是指数列的相邻两项之比是一个常数的数列,这个常数称为公比。
数学数列知识点总结归纳
数学数列知识点总结归纳一、数列的基本概念1.1 数列的定义数列是按照一定的规律排列的一系列数字的集合。
数列可以用一般数列的形式表示为{an},其中an表示数列的第n项。
例如,{1,2,3,4,5,……}就是一个常见的数列,其中每一项都是正整数,并且每一项都比前一项大1。
1.2 数列的通项公式数列的通项公式是指能够表示数列各项的规律。
通项公式通常用an表示数列的第n项,用n表示项数。
例如,对于等差数列{1,3,5,7,9,……},其通项公式为an=2n-1;对于等比数列{2,4,8,16,32,……},其通项公式为an=2^n。
1.3 数列的性质数列有很多重要的性质,包括有界性、单调性、收敛性等。
这些性质在数列的研究和应用中发挥着重要作用,对于理解和分析数列是非常重要的。
二、常见的数列类型2.1 等差数列等差数列是指一个数列中任意相邻两项的差都相等的数列。
例如,{1,3,5,7,9,……}就是一个等差数列,其中相邻两项的差都是2。
等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
2.2 等比数列等比数列是指一个数列中任意相邻两项的比都相等的数列。
例如,{2,4,8,16,32,……}就是一个等比数列,其中相邻两项的比都是2。
等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
2.3 调和数列调和数列是指其倒数数列是一个等差数列的数列。
例如,{1,1/2,1/3,1/4,1/5,……}就是一个调和数列。
调和数列的通项公式为an=1/n。
2.4 斐波那契数列斐波那契数列是一个非常有趣的数列,其定义是前两项为1,之后的每一项都是其前两项之和。
例如,{1,1,2,3,5,8,13,……}就是一个斐波那契数列。
2.5 幂和数列幂和数列是指数列的项是由幂函数的和得到的数列。
例如,{1,2^2,3^3,4^4,5^5,……}就是一个幂和数列。
三、数列的性质3.1 有界性数列的有界性是指数列的所有项都在某一范围内。
2.1数列的概念与简单表示法
第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。
2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。
3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。
(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。
2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。
3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。
4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。
数学数列知识点归纳总结
数学数列知识点归纳总结一、数列的概念1.1 数列的定义数列是按照一定的顺序排列的一系列数的集合,通常用一对大括号{}表示,其中的每个数称为数列的项。
例如:{1, 2, 3, 4, 5, ...}就是一个数列,它包含了无穷多个项,每个项都是自然数。
1.2 数列的表示数列可以用不同的方式表示,常见的表示方法有公式法、图形表示法和文字描述法。
- 公式法:可以用一个通项公式来表示数列的每一项,例如:an = n^2表示数列{1, 4, 9, 16, ...}的通项公式。
- 图形表示法:可以用图形来表示数列,例如:等差数列可以用直线表示,等比数列可以用曲线表示。
- 文字描述法:可以用文字描述数列的规律,例如:数列{2, 4, 6, 8, ...}可以描述为“每一项都比前一项大2”。
1.3 数列的分类数列可以按照不同的规律进行分类,常见的分类有等差数列、等比数列和斐波那契数列等。
- 等差数列:数列中相邻两项的差等于一个常数,这个常数称为公差。
- 等比数列:数列中相邻两项的比等于一个常数,这个常数称为公比。
- 斐波那契数列:数列中每一项都是前两项之和,例如:1, 1, 2, 3, 5, 8, 13, ...1.4 数列的通项公式数列的通项公式是指数列中任意一项与项号之间的函数关系式,一般用an表示第n项的值,n表示项号。
如果一个数列存在通项公式,则可以利用通项公式计算数列的任意项的值。
1.5 数列的性质数列有许多重要的性质,例如数列的有界性、单调性、敛散性以及极限等。
- 有界性:如果数列的项有上界或下界,则称该数列是有界的。
- 单调性:如果数列的项都单调递增或单调递减,则称该数列是单调的。
- 敛散性:数列是否有极限,如果有极限则称该数列是收敛的,否则是发散的。
二、等差数列2.1 等差数列的定义等差数列是指数列中相邻两项的差等于一个常数的数列,这个常数称为公差。
例如:{2, 4, 6, 8, ...}就是一个等差数列,公差为2。
高中数学必修五2.1.1 数列的概念与简单表示法(一)
2.1 数列的概念与简单表示法2.1.1 数列的概念与简单表示法(一)从容说课本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式. 教学重点 数列及其有关概念,通项公式及其应用.教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.教具准备 课件三维目标 一、知识与技能1.理解数列及其有关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式. 二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性. 三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程 导入新课师 课本图211中的正方形数分别是多少?生 1,3,6,10,….师 图212中正方形数呢?生 1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….推进新课[合作探究] 折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展] 师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n ),…. 师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析]1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1+n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+; (5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象. 生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关? 生 与我们学过的一次函数y=x+3的图象有关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象有关? 生 与我们学过的反比例函数x y 1=的图象有关. 师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点. 本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.课堂小结对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本第38页习题2.1 A 组第1题.板书设计数列的概念与简单表示法(一)定义1.数列 例12.项3.一般形式 例2 函数定义4.通项公式5.有穷数列6.无穷数列备课资料一、备用例题1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)515;414,313;2122222----; (3)211⨯-,321⨯- ,431⨯- ,541⨯-. 分析:(1)项:1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号: 1 2 3 4所以我们得到了a n =2n -1;(2)序号: 1 2 3 4↓ ↓ ↓ ↓项分母: 2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓项分子: 22-1=(1+1)2-1 32-1=(2+1)2-1 42-1=(3+1)2-1 52-1=(4+1)2-1所以我们得到了a n =1)1(2++n n 或1)2(+•+n n n ; (3)序号: 1 2 3 4↓ ↓ ↓ ↓211⨯- 321⨯- 431⨯- 541⨯- ↓ ↓ ↓ ↓)11(11+⨯- )12(21+⨯- )13(31+⨯- )14(41+⨯- 所以我们得到了a n =-)1(1+⨯n n . 2.写出下面数列的一个通项公式,使它的前n 项分别是下列各数:(1)1,0,1,0; 〔a n =2)1(11+-+n ,n ∈N *〕 (2)-32,83 ,154- ,245,356-; 〔a n =(-1)n ·1)1(12-++n n 〕 (3)7,77,777,7 777; 〔a n =97×(10n -1)〕 (4)-1,7,-13,19,-25,31; 〔a n =(-1)n (6n -5)〕(5)23,45 ,169 ,25617. 〔a n =12212-+n n 〕 点评:上述两题都是根据数列的前几项来写出这数列的通项公式,根据数列的前几项来写出这数列的通项公式时,常可联想奇数、偶数、平方数、指数等等.遇到分数的时候,常可根据需要把分子和分母同时扩大再来看看分子和分母中数的规律性,有时可直截了当地研究分子和分母之间的关系.3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( )A .30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .4.(链接探究题)假定有一张极薄的纸,厚度为2001cm 就是每200张叠起来刚好为1 cm ,现在把这张纸裁一为二,叠起来,它的厚度记为a 1;再裁一为二,叠起来,它的厚度记为a 2,又裁一为二,叠起来,它的厚度记为a 3,这样一裁一叠,每次叠起来所得的厚度依次排列,就得到一个数列:a 1,a 2,a 3,…,a k ,….你能求出这个数列的通项公式吗?你知道a 50,即裁了50次、叠了50次后的厚度是多少厘米吗?是否有10层楼高呢?答案:这个数列的通项公式为a n =2002n, 裁了50次、叠了50次后的厚度是5 629 499 534 213.12 cm >56 294 995 km ,大于地球到月球距离的146倍. 二、阅读材料无法实现的奖赏相传古印度舍罕王朝有一位宰相叫达依尔,据说是他发明了国际象棋,古印度的舍罕王学会了下国际象棋以后,非常激动,他要重赏他的宰相达依尔. 达依尔对他的国王说:陛下,我不要您的重赏,只要您按我下面的办法赏我一些麦粒就可以了:在我的棋盘上(它有64个格)第一格赏1粒,第二格赏2粒,第三格赏4粒,第四格赏8粒……依此类推每后一格的麦粒数都是前面一格的两倍.国王答应了达依尔的要求,但是几天以后他就发现事实上这是一个无法兑现的奖赏.请问国王为什么不能兑现他的奖赏呢? 2.1.2 数列的概念与简单表示法(二)从容说课这节课通过对数列通项公式的正确理解,让学生进一步了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;通过经历数列知识的感受及理解运用的过程,作好探究性教学.发挥学生的主体作用,提高学生的分析问题以及解决问题的能力.教学重点 根据数列的递推公式写出数列的前几项.教学难点 理解递推公式与通项公式的关系.教具准备 多媒体三维目标一、知识与技能1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.二、过程与方法1.经历数列知识的感受及理解运用的过程;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程导入新课师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列{a n }的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师 你能举例说明吗?生 如数列0,1,2,3,…的通项公式为a n =n -1(n ∈N *);1,1,1的通项公式为a n =1(n ∈N *,1≤n ≤3); 1,21 ,31 ,41 ,…的通项公式为a n =n1 (n ∈N *). [合作探究]数列的表示方法 师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列? 生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n 为横坐标,相应的项a n 为纵坐标,即以(n ,a n )为坐标在平面直角坐标系中作出点(以前面提到的数列1, 21,31,41,…为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 ……师 下面我们来介绍数列的另一种表示方法:递推公式法 知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型.生 模型一:自上而下第1层钢管数为4,即14=1+3;第2层钢管数为5,即25=2+3;第3层钢管数为6,即36=3+3;第4层钢管数为7,即47=4+3;第5层钢管数为8,即58=5+3;第6层钢管数为9,即69=6+3;第7层钢管数为10,即710=7+3.若用a n 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且a n =n +3(1≤n ≤7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a 1=4;a 2=5=4+1=a 1+1;a 3=6=5+1=a 2+1.依此类推:a n =a n -1+1(2≤n ≤7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推关系的式子叫做递推公式. 推进新课1.递推公式定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n -1(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a 1=3,a 2=5,a n =a n -1+a n -2(3≤n ≤8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法. [例题剖析]【例1】 设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项. 师 分析:题中已给出{a n }的第1项即a 1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:a n =1+11-n a 我们将如何应用呢? 生 这要将n 的值2和a 1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 请大家计算一下!生 解:据题意可知:a 1=1,a 2=1+11a =2,a 3=1+21a =32,a 4=1+31a =35,a 5=58师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a 1=2,a n +1=2a n ,写出前5项,并猜想a n .师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n 项.生 由a 1=2,a 2=2×2=22,a 3=2×22=23观察可得,我猜想a n =2n .师 很好!生 老师,本题若改为求a n 是否还可这样去解呢?师 不能.必须有求解的过程.生 老师,我由a n +1=2a n 变形可得a n =2a n -1,即21=-n n a a ,依次向下写,一直到第一项,然后将它们乘起来,就有⨯⨯⨯-----32211n n n n n n a a a a a a …×1122-=n aa ,所以a n =a 1·2n -1=2n .师 太妙了,真是求解的好方法.你所用的这种方法通常叫迭乘法,这种方法在已知递推公式求数列通项的问题中是比较常用的方法,对应的还有迭加法. [知识拓展]已知a 1=2,a n +1=a n -4,求a n .师 此题与前例2比较,递推式中的运算改为了减法,同学们想一想如何去求解呢? 生1 写出:a 1=2,a 2=-2,a 3=-6,a 4=-10,…观察可得:a n =2+(n -1)(n -4)=2-4(n -1).生2 他这种解法不行,因为不是猜出a n ,而是要求出a n .我这样解:由a n +1-a n =-4依次向下写,一直到第一项,然后将它们加起来,a n -a n -1=-4a n -1-a n -2=-4a n -2-a n -3=-4 …… )1(44a )112--=--=-+n a a a n ∴a n =2-4(n -1).师 好极了,真是触类旁通啊,这种方法也请同学们课后多体会.[教师精讲](1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列{a n }中的递推公式a n +1=2a n +1无法写出数列{a n }中的任何一项,若又知a 1=1,则可以依次地写出a 2=3,a 3=7,a 4=15,….(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.[学生活动]根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.(投影片)(1)a 1=0,a n +1=a n +(2n -1)(n ∈N );(2)a 1=1,a n +1=2+n n a a (n ∈N ); (3)a 1=3,a n +1=3a n -2(n ∈N ).(让学生思考一定时间后,请三位学生分别作答)解:(1)a 1=0,a 2=1,a 3=4,a 4=9,a 5=16,∴a n =(n -1)2.(2)a 1=1,a 2=32,a 3=21=42,a 4=52,a 5=31 =62,∴a n =12+n . (3)a 1=3=1+2×30,a 2=7=1+2×31,a 3=19=1+2×32,a 4=55=1+2×33,a 5=163=1+2×34,∴a n =1+2·3 n -1.注:不要求学生进行证明归纳出通项公式.[合作探究]一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多能上跃起三级,从地面上到最上一级,你知道这只猴子一共可以有多少种不同的爬跃方式吗?析:这题是一道应用题,这里难在爬梯子有多种形式,到底是爬一级还是上跃二级等情况要分类考虑周到.爬一级梯子的方法只有一种.爬一个二级梯子有两种,即一级一级爬是一种,还有一次爬二级,所以共有两种.若设爬一个n级梯子的不同爬法有a n种,则a n=a n-1+a n-2+a n-3(n≥4),则得到a1=1,a2=2,a3=4及a n=a n-1+a n-2+a n-3(n≥4),就可以求得a8=81.课堂小结师这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,要注意理解它与通项公式的区别,谁能说说?生通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.生对于通项公式,只要将公式中的n依次取1,2,3…,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求得其他的项.(让学生自己来总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.培养学生的概括能力和语言表达能力)布置作业课本第38页习题2.1A组第4、6题.预习内容:课本P41~P 44.数列的概念与简单表示法(二)一、定义二、例题讲解小结:7.递推公式:例1通项公式与例2 递推公式区别。
2.1.1数列
互动探究
• 你是如何得出数列{2n}中的第n项an与它的位置 序号n之的关系的?
an =
an=n2 a = n 1
n +1
{
-1(n为奇数) 为奇数) 1(n为偶数) 为偶数)
an=(-1)n (n∈N*)
互动探究
• 问题4:数列是否一定有通项公式?数列通项 公式惟一吗? • 结论: • 1.并不是所有的数列都有通项公式。 • 2.数列的通项公式不是唯一的。 • 问题5:怎样理解数列与函数之间的关系? • 数列是一种特殊的函数,它的自变量只能取正 整数,数列的项是函数值,序号是自变量,因 此数列的通项公式也就是相应函数的解析式。
归纳小结 本节课主要学习了以下内容: 本节课主要学习了以下内容: 1.数列的定义及其分类; 1.数列的定义及其分类; 数列的定义及其分类 2.数列与函数的关系及其图象。 2.数列与函数的关系及其图象。 数列与函数的关系及其图象 3.数列的通项公式: 3.数列的通项公式: 数列的通项公式 求数列的特定项; ①会由通项公式 求数列的特定项; 通项公式。 ②会由数列的前几项写出数列通项公式。
2.1.1 数列
青云学府高二数学组 王斌
概念形成
• 这些数据有什么共同的特点?
概念形成
• • • • • 共同特点:都是按照一定次序排列的数。 数列的概念: 像这样按照一定次序排列的数,叫做数列。 问题1:数列等同于数集吗?为什么? 1 (1)数列与数集都是具有某种共同属性的数 的全体。 • (2)数列中的数是可重复的,而数集中的数 是互异的。 • (3)数列中的数是有顺序的,而数集中的数 是无序的。
数列与数列的极限计算
数列与数列的极限计算一、数列的定义与性质1.1 数列的定义:数列是按照一定规律排列的一组数的有序集合。
1.2 数列的性质:数列可以分为收敛数列和发散数列。
收敛数列指的是数列随着项数的增大,数列的值逐渐趋向于一个确定的有限值,而发散数列则是指数列的值无限制地增大或减小。
二、数列的极限表示与计算方法2.1 数列的极限表示:当数列随着项数增大时,数列的值是否趋向于一个确定的数值,我们用极限来表达这个概念。
常用的数列极限表示方法有两种:(1) 用极限符号表示:lim(n→∞)an = A,表示当n趋向于正无穷时,数列an的极限是A。
(2) 用等式表示:an → A (n→∞),表示当n趋向于正无穷时,数列an的值趋近于A。
2.2 数列的极限计算方法:(1) 利用数列的通项公式逐项代入,观察数列随项数变化的趋势;(2) 利用数列的递推关系,递推出数列的极限值;(3) 利用数列的性质和常用的极限公式,进行数列极限计算。
三、数列极限计算的典型例题下面通过一些典型的数列极限计算例题,来进一步说明数列极限的计算方法。
3.1 例题一:计算数列lim(n→∞)(n+1)/n。
解:我们可以对数列的通项式进行观察和化简。
lim(n→∞)(n+1)/n = lim(n→∞)1 + 1/n = 1。
3.2 例题二:计算数列lim(n→∞)(3n² + 2n)/(n³ + 4)。
解:通过观察,我们可以发现该数列的极限计算可以简化为计算最高次项之间的比值。
lim(n→∞)(3n² + 2n)/(n³ + 4) = lim(n→∞)(3 + 2/n)/(n + 4/n³) = 3/1 = 3。
3.3 例题三:计算数列lim(n→∞)(√n + n)/(n + 1)。
解:我们可以对数列的分子和分母进行合理的化简。
lim(n→∞)(√n + n)/(n + 1) = lim(n→∞)(√n/n + 1)/(n/n + 1/n) =lim(n→∞)(1/√n + 1)/(1 + 1/n) = 1/1 = 1。
2.1数列极限
点x0的去心邻域,
x0
x0
x
体现x接近x0程度.
1. 定义 :
定义 2 如果对于任意给定的正数 (不论它多
么小),总存在正数 ,使得对于适合不等式
0 x x0 的一切 x,对应的函数值 f ( x ) 都
满足不等式 f ( x ) A ,那末常数 A 就叫函数
x x0 时, 函数 f ( x) 极限的几何意义
y
y f (x)
考虑两个问题.
y=a y=a y=a
Oபைடு நூலகம்
x0
x0
x0 +
x
曲线只能从该矩形的左右两边穿过
想想这种情形下, 函数有极限吗 ?
如何描述这种情形?
y
y f (x)
y=a y=a y=a
O
x0
x0 +
2( x 2 4) 即 lim 8 . x 2 x2
说明:在极限定义中
1) 与和x0有关,即 = ( , x0). 一般说来,值越小,相应的 值也越小.
f ; 2) 函数极限与( x)在点x0是否有定义无关
3) 函数 f (x) 以a为极限,但函数f (x)本身可以 不取其极限值 a.
本节仿照数列极限讨论给出函数极限,先给出 函数极限的一般概念:在自变量的某个变化过程中, 如果对应的函数值无限接近某个确定常数,那么这
一确定常数就叫作在这一过程中函数的极限.函数的
极限与自变量的变化过程有关.自变量的变化过程不
同,函数极限的形式就不同.主要研究两种情形:
自变量趋于无穷大时函数的极限
x x0 0 ( x x0 )
右极限
2.1.1数列的概念与简单表示法
已知下列数列: 例 1 已知下列数列: (1)2,22,222,2222; ; n-1 - 1 2 (2)0, , ,…, n ,…; ,2 3 1 1 1 (3)1, , ,…, n-1,…; , 3 9 3 (-1)n-1 ) (4)-1,0,- ,…, - ,-1,0, ,…; ,- 2 (5)a,a,a,a,…. , , , ,
写出下面数列的一个通项公式, 例 2 写出下面数列的一个通项公式, 使它的前 4 项分别 是下列各数: 是下列各数: 1 1 1 1 (1) ,- , ,- ; 1×2 2×3 3×4 4×5 × × × × 22-1 32-1 42-1 52-1 (2) 2 , 3 , 4 , 5 ; 1 1 1 1 (3)1 ,2 ,3 ,4 ; 2 4 8 16 (4)9,99,999,9999. [分析 细心寻找每一项 an 与序号 n 之间的变化规律即 分析] 分析 可.
ห้องสมุดไป่ตู้
3.由数列的前几项归纳其通项公式的方法 由数列的前几项归纳其通项公式的方法 据所给数列的前几项求其通项公式时, 据所给数列的前几项求其通项公式时 , 需仔细观察分 抓住其几方面的特征: 析,抓住其几方面的特征: (1)分式中分子、分母的特征; 分式中分子、 分式中分子 分母的特征; (2)相邻项的变化特征; 相邻项的变化特征; 相邻项的变化特征 (3)拆项后的特征; 拆项后的特征; 拆项后的特征 (4)各项的符号特征和绝对值特征. 各项的符号特征和绝对值特征. 并对此进行联想、 各项的符号特征和绝对值特征 并对此进行联想、 转 归纳. 化、归纳.
1 1 [解] (1)是无穷递减数列 > 是无穷递减数列( ). 解 是无穷递减数列 n . n+1 + (2)是有穷递增数列 项随着序号的增加而增大 . 是有穷递增数列(项随着序号的增加而增大 是有穷递增数列 项随着序号的增加而增大). (3)是无穷数列,由于奇数项为正,偶数项为负,故为摆 是无穷数列, 是无穷数列 由于奇数项为正,偶数项为负, 动数列. 动数列. (4)是有穷递增数列. 是有穷递增数列. 是有穷递增数列 (5)是无穷数列,也是摆动数列. 是无穷数列, 是无穷数列 也是摆动数列. (6)是无穷数列,且是常数列. 是无穷数列,且是常数列 是无穷数列
2.1.1 数列的概念与通项公式
2.1 数列的概念与通项公式第1课时 数列的概念与通项公式人民币从小到大:0.1, 0.5, 1, 5, 10, 20, 50, 1000,1,2,3,…1,3,5,7,…2,4,6,8,…1,4,8,16,…21,41,81,… 1,1,1,1,…2,0,2,0,…一、数列的概念:二、数列的分类:三、数列的通项公式:1.数列的概念及分类例1.1.已知下列数列:(1) 0,0,0,0,0,0;(2) 0,-1,2,-3,4,-5,…;(3) 0,12,23,…,n -1n ,…;(4) 1,0.2,0.22,0.23,…;(5) 0,-1,0,…,cos n 2π,….其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________(填序号).变式1.下列数列哪些是有穷数列?哪些是无穷数列?哪些是递增数列?哪些是递减数列?哪些是摆动数列?哪些是常数列?(1)1,12,13,…,1n,…;(2)1,3-1,3-2,…,3-63;(3)1,-0.1,0.12,…,(-0.1)n-1,…;(4)10,20,40,…,1 280;(5)-1,2,-1,2,…;(6)6,6,6,….2.根据数列的前几项写出通项公式例2.写出下列数列的一个通项公式:(链接教材P29-例1)(1)12,2,92,8,252,…;(2)9,99,999,9 999,…;(3)22-11,32-23,42-35,52-47,…;(4)-11×2,12×3,-13×4,14×5,….变式2.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…;(2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…;(4)32,1,710,917,….3.数列通项公式的应用例3.已知数列{a n}的通项公式是a n=n2n2+1.(1)写出该数列的第4项和第7项;(2)试判断910和110是否是该数列中的项?若是,求出它是第几项;若不是,说明理由.变式3.已知数列{a n }的通项公式是a n =n 2n 2+1. (1)写出该数列的第4项和第7项;(2)试判断 910 和 110 是否是该数列中的项?若是,求出它是第几项;若不是,说明理由.课堂练习:1.下列叙述正确的是( )A .数列1,3,5,7与7,5,3,1是相同的数列B .数列0,1,2,3,…可以表示为{n }C .数列0,1,0,1,…是常数列D .数列{n n +1}是递增数列 2.数列2,3,4,5,…的一个通项公式为( )A .a n =n ,n ∈N *B .a n =n +1,n ∈N *C .a n =n +2,n ∈N *D .a n =2n ,n ∈N *3.已知数列{a n }的通项公式a n =(-1)n -1·n 2n -1,n ∈N *,则a 1=________;1+n a =________.课后作业一、选择题1.已知数列{a n }的通项公式为a n =1+(-1)n +12,n ∈N *,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C.12,0,12,0 D .2,0,2,02.已知数列{a n }的通项公式为a n =n 2-n -50,n ∈N *,则-8是该数列的( )A .第5项B .第6项C .第7项D .非任何一项3.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+14.数列23,45,67,89,…的第10项是()A.1617 B.1819 C.2021 D.22235.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有()A.1个B.2个C.3个D.4个6.如图1是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图2中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为().A.a n=n,n∈N*B.a n=n+1,n∈N*C.a n=n,n∈N*D.a n=n2,n∈N*7.设a n=1n+1+1n+2+1n+3+…+12n(n∈N*),那么an+1-a n等于()A.12n+1B.12n+2C.12n+1+12n+2D.12n+1-12n+2二、填空题8.观察数列的特点,用一个适当的数填空:1,3,5,7,________,11,…. 9.数列3,5,9,17,33,…的一个通项公式是________.10.323是数列{n(n+2)}的第________项.三、解答题11.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…;(2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…;(4)32,1,710,917,….12.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式;(2)判断88是不是数列{a n }中的项?13.已知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫9n 2-9n +29n 2-1,n ∈N *. (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么?(3)求证:该数列是递增数列;(4)在区间⎝ ⎛⎭⎪⎫13,23内有无数列中的项?若有,有几项?若没有,请说明理由.。
2.1.1数列的概念与简单表示法
2011-2012学年上学期高一 数学 编号:7 使用时间:2011年 9 月 日 12.1.1数列的概念与简单表示法 编写:樊云峰 审核组长: 审核主任: 温馨寄语:如果你再努力一点点,那第一名就是你! 使用说明:1、课前15分钟完成问题导学,掌握基础知识. 2、认真限时完成,规范书写;课上小组合作探讨,答疑解惑. 学习目标:1.理解数列及其有关概念,了解数列和函数之间的关系; 2.了解数列的通项公式,并会用通项公式写出数列的任意一项; 3.对于比较简单的数列,会根据其前几项写出它的通项公式. 学习重点:数列及其有关概念,通项公式及其应用 学习难点: 根据一些数列的前几项抽象、归纳数列的通项公式. 一、课前先学 1.探究数列的定义. 概念辨析(判断正误) (1)对任意数列来说,调整其中任意两项次序,得到的数列与原数列相同. (2)同一个数在数列中可以重复出现. (3)项与序号不相同. (4)项数与序号相同. (5){}不相同与n n a a 2.举例说明什么是递增数列、递减数列、常数数列、摆动数列?什么是有穷数列、无穷数列? 3.什么叫数列的通项公式? 4.什么叫数列的递推公式?它与通项公式有什么区别? 5.总结数列有哪几种常见给出方法? 二:课中学习 例1.根据下面数列{a n }的通项公式,写出前5项: (1)a n =1+n n ;(2)a n =(-1)n ·n. 导学案装订线 ——————————————————————————————————————————————————————————班级:高三 班 小组: 姓名: 组内评价: 教师评价: 2 例2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,13…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)9,99,999,9999…; (5)2,-6,12,-20,30,-42,…(6),...225,8,29,2,21例3.设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项三:课后作业1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)(A 组)1,3,5,7;(2)(B 组)515;414,313;2122222----; (3)(C 组)211⨯-,321⨯- ,431⨯- ,541⨯-。
人教新课标A版高一数学《必修5》§2.1.1 数列的概念
典例突破
(四)数列的规律性
2
-16
-36
典例突破
(四)数列的规律性
6
谢谢大家!
(二)数列的分类
(2)1,2,3,4和1,2,3,4,…有区别吗? 【答案】有区别.数列1,2,3,4表示有穷数列,
而1,2,3,4,…表示无穷数列.
新ቤተ መጻሕፍቲ ባይዱ探究
(二)数列的分类
问题5. (1) 根据定义,数列对其项的大小顺序有限制
吗?如果按项的大小对数列分类,该怎样分? 【答案】没有限制. 如果按项的大小对数列分类,应
典例突破
(二)数列的分类
①
①⑤ ③⑥ ②
②③④⑤⑥ ④
典例突破
(二)数列的分类
D
典例突破
(三)数列的表示
典例突破
(三)数列的表示
【答案】(1)不足近似值构成的数列: 1,1.7,1.73,1.732,1.7320,1.73205,1.732050; (2)过剩近似值构成的数列: 2,1.8,1.74,1.733,1.7321,1.73206,1.732051.
分为:递增数列,递减数列,常数列和摆动数列.
新知探究
(二)数列的分类
(2) 你能从项的大小上对下面的数列进行分类吗?
① 1,0.1,0.01,0.001,…… ;② 1,0,1,0,…… ;
③ 3,3,3,3,……. 【答案】① 递减数列;② 摆动数列;③ 常数列.
新知探究
(三)数列与函数的关系
知识链接
新知探究
(一)数列的概念
都是按照一定的顺序排列的 一定的顺序 每一个数 序号 首项 第n项
获取新知
(一)数列的概念
问题2. {an}与an的含义一样吗?
§2.1.1 等差数列的概念
一.学习目标: 1、熟练掌握等差数列的概念,提高利用等差数列知识解题的能力。
2、自主学习、合作交流,学会求等差数列通项公式的规律和方法。
3、激情投入、高效学习,培养良好的数学思维品质。
二、问题导学:自学课本P10—P12思考并回答下列问题:1、等差数列是怎样定义的? 用数学符号怎样表示?请你写出两个等差数列。
2、如何得出等差数列的通项公式?所用的方法是什么?要确定一个等差数列的通项公式,需要知道几个独立的条件?例1: 已知数列}{n a 的通项公式为4-n 3=n a ,这个数列是等差数列吗?如果是,求出首项和公差。
拓展1.已知一个等差数列的首项是1a ,公差为d,(1)将数列的前m 项去掉,其余各项组成的数列是等差数列吗?如果是,它们的首项和公差是什么?(2)取出数列的所有奇数项,组成一个新的数列,这个数列是等差数列吗?如果是,它们的首项和公差是什么?(3)取出数列中所有项数是7的倍数的各项,组成一个新的数列,这个数列是等差数列吗?如果是,它们的首项和公差是什么? (4)数列123234345,,,a a a a a a a a a ++++++是等差数列吗?如果是,它们的首项和公差是什么? 拓展2.由下列等差数列的通项公式,求首项和公差: (1)53+=n a n (2)n a n 212-= 小结: 例2: 已知等差数列3,7,11,……; (1)试求此数列的第10项;(2)100是不是这个数列的项?79是不是这个数列的项?如果是,是第几项? 拓展1:已知等差数列}{n a 中,5109,4a a ==,试求出该数列的通项公式;问此等差数列从第几项开始 出现负数? 拓展2:已知等差数列的公差为d ,第m 项为m a ,试求第n 项n a 。
拓展3:梯子共有5级,从上往下数第1级宽35厘米,第5级宽43厘米,且各级的宽度以此组成等差数列}{n a ,求第2、3、4级的宽度。
小结:例3:已知成等差数列的四个数的和为26,且第二个数与第三个数的积为40,求这四个数。
2.1.1 数列的概念与简单表示法
奇数项都为负,且分子都是1,偶数项都为正,且分子
都是3,分母依次是1,2,3,4,…正负号可以用
(-1)n调整.
an
3
n
1 (n n (n
2k 1), 2k),其中k
N
. *
由于1=2-1,3=2+1,所以数列的通项公式可合写成
an= (1)n 2 (1)n .
2.(1)这个数列各项的整数部分分别为1,2,3,4,
…,恰好是序号n;分数部分分别为 1,2,3,4,…,与序
2345
号n的关系是
n
n
1
,所以这个数列的一个通项公式是an=
n n n2 2n . n 1 n 1
(2)数列各项的绝对值为1,3,5,7,9,…,是连续的
正奇数;考虑(-1)n具有转换符号的作用,所以数列的一
5,那么可以叫做数列的个数为( )
A.1
B.2
C.3
D.4
【解析】选D.按照数列定义得出四种形式均为数列.
3.已知数列 3, 5 , 7 , 9 , a b ,…,根据前三项给
2 4 6 a b 10
出的规律,则实数对(a,b)可能是( )
A.(19,3) C.( 19,3 )
22
B.(19,-3) D.( 19, 3 )
个通项公式为an=(-1)n(2n-1).
(3)数列1,0,1,0,…的通项公式为 (1)n1 1,数列
2
0,1,0,1…的通项公式为 (1)n 1 ,因此数列a,0,
2
a,0…的通项公式为 (1)n1 1a ,数列0,b,0,b,…
2
的通项公式为 (1)n 1b ,所以数列a,b,a,b,a,b,
2.1(1)数列的概念
说 明:
(1) 数列中的数按照一定的次序排列 4,5,6,7,8,9,10. 10,9,8,7,6,5,4. (2) 数列中的数可以重复出现 这是二个不同的数列 . -1,1,-1,1,…. (3)注意区分数列中的数与集合中的元素
① 数列中的数是有序的,而集合中的元素是无序的. ② 数列中的数可以重复出现,而集合中的元素不能 重复出现.
an
n 1
n1
2
1
(3)an
1 n
n1
.
?数列的通项公式唯一吗
注意:① 并不是所有的数列都有通项公式;
如:数列15,5,16,16,28.就没有通项公式.
② 有些数列的通项公式并不唯一. 如:数列 -1,1,-1,1,…
an (1) ,
n
1 或 an 1
序号 1 2 3 4 5 6 an n 3 ( n 7)
数列的通项公式。
如果数列{ an }的第n项an与n之间的关 系可以用一个公式来表示,则称此公式为 数列的通项公式。 函数观点看:数列可以看作是一个定义域 为正整数集N*(或其有限子集)的函数当自变 量从小到大依次取值时对应的一列函数值,而 数列的通项公式也就是相应函数的解析式.
公式。
课后作业
1.教材第33页 习题2.1 A组 1~6 2.《新概念》2.1.1 3.教材P31练习(书上)
4.预习《新概念》2.1.2学生用书
(n 2k 1 ,k N *) (n 2k ,k N *)
.
变式练习 写出下面数列的一个通项公式, 使它的前4项分别是下列各数。
(1)9,99,999,9999 …; 3 5 2 4 ; (2) , , , ... 3 8 15 24 解:
§2.1.1数列的概念与简单表示法(一)
§2.1.1数列的概念与简单表示法(一)
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同 一 个数列吗?与“1, 3, 2, 4, 5”呢?
——数列的有序性 (2) 数列中的数可以重复吗? (3) 数列与集合有什么区别? 集合讲究:无序性、互异性、确定性, 数列讲究:有序性、可重复性、确定性.
重庆市万州高级中学 曾国荣 wzzxzgr@
15
§2.1.1数列的概念与简单表示法(一)
如何用数学式子表示递增数列、递减数列 和常数列?
递增数列: an > an - 1(n = 2, 3, 4, L ) 递减数列: an < an - 1(n = 2, 3, 4, L ) 常数列: an = c (n = 1, 2, 3, L )
22 1 32 1 42 1 52 1 (2) , , , ; 2 3 4 5 解:此数列的前四项的分母都是序号加1,分 子都是分母的平方减去1,所以通项公式是:
an
n 1
1 nn 2 n 1 n 1
2
重庆市万州高级中学 曾国荣 wzzxzgr@ 20
每个格子里的麦粒数都是 前 一个格子里麦粒数的 2倍 且共有 64 格子
2 1
0
2 2 18,446,744,073,709,551,615
2
1
2
3
2 63 ?
2013-8-14
重庆市万州高级中学 曾国荣 wzzxzgr@
3
§2.1.1数列的概念与简单表示法(一)
一斤小麦约1万粒。
项
2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 数列的概念
一、选择题
1.数列1,3,6,10,…的一个通项公式是( )
A .a n =n 2-n +1
B .a n =n (n -1)2
C .a n =n (n +1)2
D .a n =n 2+1 答案 C
解析 令n =1,2,3,4,代入A 、B 、C 、D 检验即可.排除A 、B 、D ,从而选C.
2.已知数列{a n }的通项公式为a n =1+(-1)n +12
,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1
C.12,0,12
,0 D .2,0,2,0 答案 A
3.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )
A .a n =12
[1+(-1)n -1] B .a n =12
[1-cos(n ·180°)] C .a n =sin 2(n ·90°)
D .a n =(n -1)(n -2)+12
[1+(-1)n -1] 答案 D
解析 令n =1,2,3,4代入验证即可.
4.已知数列{a n }的通项公式为a n =n 2-n -50,则-8是该数列的( )
A .第5项
B .第6项
C .第7项
D .非任何一项
答案 C
解析 n 2-n -50=-8,得n =7或n =-6(舍去).
5.设a n =1n +1+1n +2+1n +3
+…+12n (n ∈N *),那么a n +1-a n 等于( ) A.12n +1 B.12n +2
C.12n +1+12n +2
D.12n +1-12n +2
答案 D
解析 ∵a n =1n +1+1n +2+1n +3
+…+12n ∴a n +1=1n +2+1n +3
+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2
.
6.已知a n =n -98n -99
,则这个数列的前30项中最大项和最小项分别是( ) A .a 1,a 30 B .a 1,a 9
C .a 10,a 9
D .a 10,a 30
答案 C
解析 ∵a n =n -99+(99-98)n -99
=99-98n -99
+1 ∴点(n ,a n )在函数y =99-98x -99
+1的图象上, 在直角坐标系中作出函数y =99-98
x -99
+1的图象, 由图象易知
当x ∈(0,99)时,函数单调递减.
∴a 9<a 8<a 7<…<a 1<1,
当x ∈(99,+∞)时,函数单调递减,
∴a 10>a 11>…>a 30>1.
所以,数列{a n }的前30项中最大的项是a 10,最小的项是a 9.
二、填空题
7.已知数列{a n }的通项公式为a n =⎩
⎪⎨⎪⎧
3n +1(n 为正奇数)4n -1(n 为正偶数).则它的前4项依次为____________.
答案 4,7,10,15
8.用火柴棒按下图的方法搭三角形:
按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是
______________.
答案 a n =2n +1
解析 a 1=3,a 2=3+2=5,a 3=3+2+2=7,a 4=3+2+2+2=9,…,∴a n =2n +1.
9.传说古希腊毕达哥拉斯(Pythagoras ,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.
答案 55
10.数列a ,b ,a ,b ,…的一个通项公式是______________________.
答案 a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2
解析 a =a +b 2+a -b 2,b =a +b 2-a -b 2,
故a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2.
11.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.
解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;
图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1.
解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.
三、解答题
12.根据数列的前几项,写出下列各数列的一个通项公式:
(1)-1,7,-13,19,…
(2)0.8,0.88,0.888,…
(3)32,1,710,917
,… (4)0,1,0,1,…
解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数
的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5)(n ∈N *).
(2)数列变形为89(1-0.1),89
(1-0.01), 89(1-0.001),…,∴a n =89⎝
⎛⎭⎫1-110n (n ∈N *). (3)将数列统一为32,55,710,917
,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n 2},可得分母的通项公式为c n =n 2+1,
∴可得它的一个通项公式为a n =2n +1n 2+1
(n ∈N *). (4)a n =⎩⎪⎨⎪⎧
0 (n 为奇数)1 (n 为偶数)或a n =1+(-1)n 2(n ∈N *) 或a n =1+cos n π2
(n ∈N *). 13.已知数列⎩⎨⎧⎭
⎬⎫9n 2-9n +29n 2-1; (1)求这个数列的第10项;
(2)98101
是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;
(4)在区间⎝⎛⎭⎫13,23内有、无数列中的项?若有,有几项?若没有,说明理由.
(1)解 设f (n )=9n 2-9n +29n 2-1
=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1
. 令n =10,得第10项a 10=f (10)=2831
. (2)解 令3n -23n +1=98101
,得9n =300. 此方程无正整数解,所以98101
不是该数列中的项. (3)证明 ∵a n =3n -23n +1=3n +1-33n +1=1-33n +1
, 又n ∈N *,∴0<33n +1
<1,∴0<a n <1. ∴数列中的各项都在区间(0,1)内.
(4)解 令13<a n =3n -23n +1<23,则⎩⎪⎨⎪⎧
3n +1<9n -69n -6<6n +2, 即⎩⎨⎧ n >76n <83
.∴76<n <83. 又∵n ∈N *,∴当且仅当n =2时,上式成立,故区间⎝⎛⎭⎫13,23上有数列中的项,且只有一项为a 2=47.。