人教版七年级数学上册 线段、角
人教版七年级上册数学第四章几何图形初步线段长短的比较与运算ppt教学课件
另外两个端点的位置作比较.
C (A)
BD
叠合法结论: A
C (A)
B 1. 若点 A 与点 C 重合,点 B 落
在C,D之间,那么 AB < CD. BD
A C (A)
B 2. 若点 A 与点 C 重合,点 B 与
(B) D
点 D 重合 ,那么 AB = CD.
A (A) C
B 3. 若点 A 与点 C 重合,点 B 落
a+b
a
b
A
a-b
D bB
C
做一做
1. 如图,点B,C在线段 AD 上则AB+BC=_A__C_; AD-CD=_A_C_;BC= _A_C_ -_A_B_= _B_D_ - _C_D_.
A
B
C
D
2. 如图,已知线段a,b,画一条线段AB,使
AB=2a-b.
a
b
2a
b
A 2a-b B
A
MB
在一张纸上画一条线段,折叠纸片,使 线段的端点重合,折痕与线段的交点处于线 段的什么位置?
反之也成立:∵ AM = MB = 1 AB 2
( 或 AB = 2 AM = 2 AB )
∴ M 是线段 AB 的中点
点 M , N 是线段 AB 的三等分点:
A
M
N
B
1
AM = MN = NB = __3_ AB
(或 AB = _3__AM = __3_ MN = __3_NB)
典例精析
例1 若 AB = 6cm,点 C 是线段 AB 的中点,点 D
连接两点间的线段的长度,叫做这两点的距离.
你能举出这条性质在生活中的应用吗?
想一想
人教版七年级上册数学-第4章 几何图形初步 专题训练(十三) 线段与角的计算中的思想方法
专题训练(十三) 线段与角的计算中的思想方法
思想方法一 方程的思想 1.如 图,已 知 OB 平 分 ∠AOC,OD 平 分 ∠COE, ∠AOD=110°,∠BOE=100°,求∠AOE 的度数. 解:∵OB 平分∠AOC,OD 平分 ∠COE,∴设∠EOD=∠DOC= x,∠AOB=∠COB,∵∠AOD= 110°,∠BOE=100°,∴∠AOB= ∠BOC=100°-2x,∵ ∠COD + ∠COB+ ∠AOB =110°,∴x+100°-2x+100°-2x=110°,x= 30°,即 ∠EOD=∠DOC=30°,∴∠AOE=∠AOD +∠DOE=110°+30°=140°.
10.点O 是直线AB 上的一点,∠COD =90°,射 线 OE 平分∠BOC. (1)如图①,如 果∠AOC=50°,依题意补全图形, 写出求∠DOE 度数的思路(不需要写出完整 的 推理过程); (2)将OD 绕点O 顺时针旋转一定的角度得到图 ②,使得 直 角 边 OC 在 直 线 AB 的 上 方,若 ∠AOC=α,其他条件不变,依题意补全图形, 并求 出 ∠DOE 的 度 数 (用 含α 的 代 数 式 表 示); (3)将OD 绕点O 继续顺时 针旋转一周,回到图 ①的位置.在旋转过程中,你发现 ∠AOC 与 ∠DOE(0°≤ ∠AOC ≤180°,0°≤ ∠DOE ≤ 180°)之间有怎样的数量 关 系? 请 直 接 写 出 你的发现.
解:(1) 当 DP =2PE 时,DP = 2/ 3 DE =10 cm;当 2DP=PE 时, DP= 1/ 3 DE=5cm.综 上 所述,DP 的长为5cm或10cm; (2)①根据题意,得(1+2)t=15,解得t=5.所以当t =5秒时,点P 与点Q 重合;②(Ⅰ)点P,Q 重合前: 当2AP=PQ 时,有t+1/2t+2t=15,解得t=3;当 AP=2PQ 时,有t+ 1 2 t+2t=15,解得 t= 30/ 7 ;(Ⅱ)点 P,Q 重合后:当AP=2PQ 时,有t=2(t-5),解得t =10;当2AP=PQ 时,有 2t=(t-5),解得t=-5 (不合题意,舍去).综上所述,当t=3秒, 30 /7 秒或10 秒时,点P 是 线段AQ 的三等分点.
2024年新人教版七年级数学上册 第六章 大单元整体设计 -(课件)
评价任务 1.借助生活实例 引入图形.2.认识 立体图形和平面 图形.3.通过练习 巩固
1.引入从不同方 向观察物体所得 到的平面图形和 展开图的概念.2. 学生动手操作.3. 总结常见立体图 形的展开图
课题
7.理解角的概念,能比较角的大小;认识度、分、秒等角的 度量单位,能进行简单的单位换算,会计算角的和、差.
8.理解余角、补角的概念,探索并掌握同角(或等角)的余角 相等、同角(或等角)的补角相等的性质.
教学目标 1.能从简单实物的外形中抽象出几何图形,理解立体图形和平
面图形的概念,会判断一个几何图形是立体图形还是平面 图形,能准确识别棱柱与棱锥. 2.从不同方向观察常见几何体及它们的组合体,并能画出从正 面、左面、上面三个方向看到的平面图形,能画出简单的 几何体的展开图. 3.认识点、线、面、体及它们之间的关系,能用它们解释生活 中的现象.
7.掌握比较角的大小的方法,能根据图形分析得出角的和、差 关系,并进行计算.
8.理解并掌握角的平分线、等分角的概念,能运用角的平分线 的概念解决问题,能进行角的乘除运算.
9.了解余角、补角的概念,能借助简单的推理,归纳出余角、 补角的性质,并能利用其解决相关问题.
课题
6.1.1 第1课时 立体图形与平 面图形
课时目标
达成目标
评价任务
6.1.2 点、线、面、 体
认识点、线、面、 知道点、线、面、 1.生活中的现象 体及它们之间的关 体是构成几何图形 引入.2.从静、动 系.区分平面和曲 的元素,能用它们 两个角度体会.3. 面、直线和曲线 解释生活中的现象 通过练习感受
6.Байду номын сангаас.1 直线、射线、 线段
人教版七年级数学上图形的规律和线段及角度的计算专题训练含答案
专题训练(一) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A.671 B.672 C.673 D.6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(二) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(c m ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置;(2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92 cm .专题训练(三) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CAE 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC =4∠B AD , 所以5∠BAD=90°,即∠BAD=18°. 所以∠DAC=4×18°=72°. 因为∠DAE =90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE =3∠BCD, 所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°. 解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2 利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数; (2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数. 解:(1)因为∠AOB 与∠BOC 互补, 所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决. 5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠C OD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC=12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.。
人教版初中数学七年级上册《线段与角的分类讨论》
合作探究
变式1.1:若点A、B、C在同一直线 上,且 AB=10 M是 C㎝,BC=4㎝,点 M M C AC中点,求线段BM的长.
合作探究
变式2.1:∠AOB=80°,∠BOC= 20°, 1.自主完成题目编写( 1分钟)
2.组长选出代表本组的题目 则∠ 3.抽选一组题目让全班挑战 大小是__________.
合作探究
变式1.1:点C在直线AB上,且AB= 10㎝,BC=4 ㎝,点M是AC中点,求 C C 线段AM的长.
合作探究
变式1.3:点C在直线AB上,且AB= 10㎝, BC = 4 ㎝,点 M 、 N 分别是 AB 、 M N C BC中点,求线段MN的长.
MC N
合作探究
变式2.2:∠AOB=80°,∠BOC= °, 1.自主完成题目编写( 1分钟)
线段与角的分类讨论
陈可晴 蔡智键
课前汇总 作业优秀
李芷晴
蔡洁颖
课前汇总 整体情况
网上任务一:
6
网上任务二:
合作释疑
若点C是线段AB上的点,且AB=10,
BC=3,则AC=(
A
A.7
C.7或13
B.13)ຫໍສະໝຸດ AC=AB-BC=7CB
D.10或13
合作释疑
己知线段AB=12cm,在直线AB上画 线段AC=4cm,则BC的长为( ) A.8cm
2.组长选出代表本组的题目 则∠ 3.抽选一组题目让全班挑战 大小是__________.
What?什么分类讨论?
图形位置 When?什么时候用分类讨论? 不确定时
小结WWH
How?怎么用分类讨论?
确定 分类对象 确定 分类数量 描述(图示) 分类情况
人教版七年级上数学几何初步--线段与角的经典题(含答案)
几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。
七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版
重要提示
内容
(1)连接AB,就是要画出以A、B为端点的线段, 不要向任何一方延伸; (2)画一条线段等于已知线段a,可以用圆规在 射线AC上截取AB=a,也可以先量出线段a的 长度,再画一条等于这个长度的线段
图例
有两个端点,不可延伸,可度量
两点之间,线段最短
(1)度量法:用刻度尺量出两条线段的长度,再比较两者的大小; (2)叠合法:把要比较的两条线段移到同一条直线上,使它们的一个端点重合,另一个端点落在 重合的端点的同一侧,进行比较
(1)两点间的距离:连接两点间的线段的长度,叫做这两点间的距离; (2)线段的中点一定在线段上; (3)“线段”是一个几何图形,而“线段的长度”是一个正数,二者是有区别的,不要混淆
.
例3 如图4-2-3,点A,B,C,D是直线l上的四个点,则图中共有几条线段?
图4-2-3 解析 解法一:(端点确定法) 以点A为左端点的线段有3条:线段AB,线段AC,线段AD;以点B为左端点 的线段有2条:线段BC和线段BD;以点C为左端点的线段有1条:线段CD. 因此共有3+2+1=6(条)线段. 说明:用端点确定法确定线段条数时,直线上的任意一点只能作为左端 点(或右端点),否则线段会重复. 解法二:(画线确定法) 先从左边第一个点(A)开始向右依次画弧线,共有3条,再从第二个点(B) 开始向右依次画弧线,共有2条,再从第三个点(C)开始向右画弧线,共有1 条,最后一点不再考虑.故题图中共有3.+2+1=6(条)线段.
图4-2-5 (2)将射线反向延伸就可得到直线;将线段向一方延伸就可得到射线;将 线段向两方延伸就可得到直线.
.
2.三者的区别如下表:
直线
人教版数学初中七年级上期末几何培优提升训练(线与角动点问题)
人教版数学七年级上期末几何培优提升训练(线与角动点问题)一、线段动点1. 【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则 A ,B 两点之间的距离AB=|a -b |,线段AB 的中点表示的数为2a b 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB= ________,线段AB 的中点表示的数为________ ; ②用含t 的代数式表示:t 秒后,点P 表示的数为 ________;点Q 表示的数为________.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,PQ=12AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.2. 操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示_______的点重合;操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示数________的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.3.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:________ ;用含t的代数式表示点P和点C的距离:PC=________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动的过程中有________ 处相遇,相遇时t=________ 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)4.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A与点B的距离是2,记作AB=2,以下类同,BC=3,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A所对应的数为_______,点C所对应的数为_______,p的值为_______;若以C为原点,则p的值为_______ ;(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值;在此基础上,将原点O 向右移动a(a>0)个单位,则p的值为_______;(用含a的式子表示)(3)若原点O在点B与C之间,且CO=2,则p=_______;若原点O从点C出发沿着数轴向左运动,当p=5.5时,求CO的值.二、角度运动1.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________.(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.2.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD 同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB 与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.4. 已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=28°,则∠BOE=________°;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD+∠AOF= 12(∠BOE-∠BOD)?若存在,请求出∠BOD的度数;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找准你真正的位置。
七年级数学(上册)线段及角精选练习试题整理
七年级数学(上册)线段及角精选练习试题整理一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短 B.两点确定一条直线C.两点之间,线段最短 D.经过一点有无数条直线5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣26.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间11.若一个角为65°,则它的补角的度数为()A.25° B.35° C.115°D.125°12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20° B.50° C.70° D.30°14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15° B.20° C.25° D.30°17.一个角是这个角的余角的2倍,则这个角的度数是()A.30° B.45° C.60° D.75°18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115°D.105°20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40° B.60° C.120°D.135°21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65° B.70° C.75° D.80°22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE()A.一定是钝角 B.一定是锐角 C.一定是直角 D.都有可能二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于度.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为度.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是,∠AOC的余角是;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC 内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.试题解析一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱【分析】侧面为长方形,底边为2个圆形,故原几何体为圆柱.2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条【分析】由图知,线段有AB,BC,CD,AC,BD,AD.3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个【分析】根据正数、负数、直线、射线的定义和表示方法对各小题分析判断后利用排除法求解.4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短 B.两点确定一条直线C.两点之间,线段最短 D.经过一点有无数条直线【分析】根据线段的性质,可得答案.5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB 长为()A.1cm B.1.5cm C.2cm D.4cm【分析】由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间 D.BC之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.11.若一个角为65°,则它的补角的度数为()A.25° B.35° C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20° B.50° C.70° D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.【分析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15° B.20° C.25° D.30°【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.17.一个角是这个角的余角的2倍,则这个角的度数是()A.30° B.45° C.60° D.75°【分析】先表示出这个角的余角为(90°﹣α),再列方程.18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°【分析】根据互为余角的两个角的和等于90°和同角的余角相等解答.19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115°D.105°【分析】根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40° B.60° C.120°D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65° B.70° C.75° D.80°【分析】首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE﹣∠COD即可求得∠COE的度数.22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE()A.一定是钝角 B.一定是锐角 C.一定是直角 D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到 6 个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n﹣2)个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于135 度.【分析】根据平角和角平分线的定义求得.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140 度.【分析】根据角平分线的定义得到∠AOC=2∠AOD=40°,根据平角的定义计算即可.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)【分析】要确定点O的位置,根据“两点之间,线段最短”只需要连接AC,BD,交点即为所求.27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.【分析】根据比例设AC=xcm,CD=2xcm,DB=3xcm,然后根据AC的长度列方程求出x的值,再根据线段中求解即可.点的定义表示出CM、DN,然后根据MN=CM+CD+DN29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.可【分析】因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC求.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.【分析】直接利用周角的定义得出∠AOC=120°,进而利用已知得出答案.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是∠AOE ,∠AOC的余角是∠BOC ;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.【分析】(1)根据互余和互补解答即可;(2)利用角平分线的定义和平角的定义解答即可.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【分析】根据余角和补角的概念进行计算即可.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF 的度数.【分析】依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即可得到∠DOF=∠DOF=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.【分析】(1)根据角平分线的性质可得∠BOD=∠AOD=∠AOB=60°,再计算出∠AOE的度数,然后可得∠DOE的度数;(2)根据余角定义进行分析即可.。
第4章 几何图形初步 整理与复习(教学课件)七年级数学上册(人教版)
目录
一、几何图形 二、直线、射线、线段
三、角
知识点梳理
一、几何图形 1. 立体图形与平面图形
(1) 立体图形的各部分不都在同一平面内,如:
(2) 平面图形的各部分都在同一平面内,如:
A.①
B.②
C.③
D.④
【解答】解:根据题意可得, 从学校A到书店B有①、②、③、④四条路线,其中最短的路线是②. 故选:B.
考点分析
例14:如图,是一个三级台阶,A 和 B是这个台阶的两个相对的端 点,A 点上有一只蚂蚁,想到 B 点去吃可口的食物. 若这只蚂蚁从 A 点出发,沿着台阶面爬到B 点,你能画出蚂蚁爬行的最短路线吗?
② 如果两个角的和等于180°(平角),就说这两个角 互为补角 ( 简称为两个角互补 ).
(2) 性质:① 同角 (等角) 的补角相等. ② 同角 (等角) 的余角相等.
知识点梳理
(3) 方位角 ① 定义:物体运动的方向与正北、正南方向之间的夹角称为
方位角,一般以正北、正南为基准,用向东或向西旋转的角 度表示方向.
知识点梳理
3. 角的平分线 应用格式:
OC 是 ∠AOB 的角平分线, ∠AOC =∠BOC = 1 ∠AOB
2 ∠AOB = 2∠BOC = 2∠AOC
B C
O
A
知识点梳理
4. 余角和补角 (1) 定义:① 如果两个角的和等于90°( 直角 ),就说这两个角 互为余角 ( 简称为两个角互余 ).
)
【解答】解:A是圆柱; B是圆锥; C是三棱锥,也叫四面体; D是球体,简称球; 故选:B.
数学人教版七年级上册角(第一课时)
4.3角(第一课时)教学目标:(1)掌握角的静态定义以及动态定义.(2)掌握角的三种表示方法.(3)通过类比,使学生理解和掌握角的度量单位,并能进行单位换算.学情分析角这一节知识是建立在射线、线段等相关知识的基础上.学生在小学时对角已经有了粗浅的知识,可以从实物中发现一些角,并且初步了解角的分类,知道有锐角、钝角以及平角等.初中阶段学生开始对角进行严格的定义,准确地度量角的大小,比较角的大小;高中阶段还要对角进行推广,进而学习孤度制和三角函数,从而对于角的认识层次不断螺旋式上升.角的概念、角的表示方法、角的度量以及比较角的大小,这一部分是建立有关角的知识体系的基础,在学生学习角的过程中,起到了承上启下的作用.本节在已有的知识基础上,学生将进一步地认识角,理解角的静态和动态两种描述方法以及角的几种表示方法和角的度量.本节课以适当的实例帮助学生理解角的概念,让学生发现生活中还有哪些物体具有角的形象.学生在小学没有涉及过角的表示,初一阶段学生是第一次用数学符号语言对角进行表示,学生需要一个感知、体会、辨析和运用的过程,所以角的表示以及角的度量是本节课的重点.教学中对角的呈现方式多种多样,根据角的不同选取适当的表示方法.之后又介绍了角的度量,并且进行了角度的换算,最后以钟表问题让学生掌握钟表时针、分针、秒针所形成的夹角,从而也让学生再次掌握角度的单位换算.教学重点:角的表示和角的度量单位换算教学难点:角的度量单位换算教学过程:1.从实际背景中感知角的形象在我们日常生活中,角无处不在.通过观察钟表时针与分针所成的角、楼梯的拐角等实例引出今天课题.在小学我们学过角,从这节课开始我们还要更深入、更具体地研究角.问题1 通过观察以上图形,你找出关于角的图形吗?过程:学生观察生活中的图片从而找到记忆中的角.设计意图:通过学生观察,展现学生现有的对角的理解水平.问题2 根据小学对角的认识,你能任意画一个角的图形吗?设计意图:通过学生动手画角,让学生积极参与活动,调动学生的积极性,利用实物投影展示学生的作品.2.抽象出角的定义问题3 你能给出角的一个定义吗?定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.设计意图:通过活动给出定义,有利于培养学生的抽象概括能力.问题4 你能否说出角的构成元素及其位置关系吗?重点强调:(1)构成角的两个要素是顶点和两边.(2)每个角都有两条边,这两条边是射线.(3)角的两边有公共端点.设计意图:引导学生观察并归纳角的共同点,培养学生思考问题的科学性和严谨性.问题5 角的边画出部分越长,角就越大吗?角的大小与什么有关?设计意图:通过提问,再次让学生明白角的两边不是线段而是射线,射线是可以无限延伸的.3.探究角的表示问题6 在实际应用中如何来表示一个角呢?角的表示符号“∠”角的表示方法一般有三种:1、用三个大写字母或用一个大写字母.问题7 能把∠ BOC记作∠O吗?为什么?注意:用三个大写字母表示时,中间字母是顶点字母;用一个大写字母表示时,这个字母是顶点字母,且顶点处只能有一个角.2、用一个数字加弧线表示.并在角的内部靠近角的顶点处画一弧线.3、用一个希腊字母加弧线表示.并在角的内部靠近角的顶点处画一弧线. 问题8 能把∠AOB记作∠1吗?为什么?注意:用一个数字或一个希腊字母表示角时必须在图上标出才可使用,且一般用于表示单独的角.设计意图:学生熟悉角的几种表示方法,并且掌握每一种方法需要注意的事项. 问题9 将图中的角用不同的方法表示出来,并填写下表.设计意图:学生进一步掌握角的各种表示方法.问题10 如图,回答下列问题.(1)∠ABD与∠ABC是同一个角吗?(2)图中能用一个大写字母表示的角有哪几个?(3)以点A为顶点的角有哪几个?设计意图:学生能够掌握对于复杂的图形该如何表示一个角.4.探究角的第二定义创设情境:教师用几何画板展示射线绕其端点旋转.问题11 你能根据旋转给出角的一个定义吗?设计意图:角的旋转观点是学生比较难理解的地方因此用几何画板展示,让学生直观地看到角的形成,使学生更易概括出角的动态定义.定义:角是一条射线绕其端点旋转所形成的图形.射线OA叫做角的始边,射线OB 叫做角的终边.师生活动:教师用几何画板展示角的形成过程,学生仔细观察.问题12 从角的第二定义出发,旋转射线OA可以得到哪些特殊角?设计意图:教师用几何画板展示平角、周角形成过程.学生通过几何画板的展示更加直观体会平角和周角的概念.问题13 线段有长度,可以用尺子去度量,角有大小,用什么去度量角呢?角的度量单位又是什么呢?它们之间有什么怎么的运算关系呢?把一个周角360等分,每一份就是1度的角,记作1°.把1度的角60等分,每一份叫做1分的角,记作1′.把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.如∠α的度数是48度56分37秒,记作∠α=48°56′37″.设计意图:学生掌握角的度量以及角度的换算.问题14 填空1、度、分、秒之间的转换1°=_______′ 1′=_________″ 1°=__________″1′=______ ° 1″=_________ ′ 1″= __________ °2、单位转换例1:把5.38°化成度分秒表示。
人教七年级数学上册《几何图形初步》课件(共42张PPT)
如下图:OC是∠AOB的平分线,则有 ∠AOC=∠BOC= ∠AOB ∠AOB=2 ∠AOC= 2∠BOC
类似地,还有角的三等分线等。 通过折纸作角的平分线
4.余角和补角
(1)概念 如果两个角的和等于90°(直角),就说这两个角
互为余角。如∠3=35°,∠4=55°,那么∠3和∠4互为余角
。
如果两个角的和等于180°(平角),就说这两个角互 为补角。如下图∠1+∠2=180°,则∠1和∠2互为补角
同理分别规定出“西北” 、“西南”方向。
(1)方位角的表示 ----------通常先写北或南,再写偏东还是偏西 。例如:“北偏东35°”;“ 南偏西60°”等。
(2)方位角的应用
经常用于航空、航海、测绘中,领航员常用地图和罗盘进 行方位角的测定。
在下图中,射线OA、射线OB、射线OC、射线OD分别表示
3.角的四种表示方法
表示方法
图标
用三个大写的字母
A
表示
B
C
用一个顶点的字母 表示
o
用希腊字母表示
α
用一个数字表示
1
记法
注意事项
ABC 顶点字母在中间
o
顶点处只有 一个角时
α 在靠近顶点处
画弧线, 注上数字 或希腊字母 1
4.角的符号 用“ ” 表示 5.角的分类
小于号是“< ”
锐角: 大于0度而小于90度的角
4.线段的大小和比较
度量法
(1)线段的长短比较 叠合法
(2)线段的中点
把一条线段分成两条相等线段的点,叫做这条线段的中 点。
例如:点B是线段AC的中点
...
则有: AB=BC= AC
ABC
人教版数学七年级上册4.2《 直线、射线、线段(1)》教学设计
人教版数学七年级上册4.2《直线、射线、线段(1)》教学设计一. 教材分析人教版数学七年级上册4.2《直线、射线、线段(1)》是学生在学习了平面几何基本概念的基础上进一步深入学习直线、射线、线段的性质和特点。
本节内容通过实例让学生理解直线、射线、线段的定义,掌握它们之间的联系和区别,能够正确地识别和运用直线、射线、线段解决实际问题。
二. 学情分析学生在小学阶段已经接触过直线、射线、线段的概念,但对其本质特征和应用可能理解不深。
因此,在教学过程中,教师需要从学生的实际出发,通过生动形象的实例,引导学生深入理解直线、射线、线段的内涵和外延,提高他们的空间想象能力和解决问题的能力。
三. 教学目标1.了解直线、射线、线段的定义,掌握它们之间的联系和区别。
2.能够识别和运用直线、射线、线段解决实际问题。
3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.直线、射线、线段的定义及其特性。
2.直线、射线、线段在实际问题中的应用。
五. 教学方法1.采用实例教学法,通过生动的实例让学生理解直线、射线、线段的定义和特性。
2.采用问题驱动法,引导学生运用直线、射线、线段解决实际问题。
3.采用小组合作学习法,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的实例和图片,用于讲解直线、射线、线段的概念和特性。
2.准备一些实际问题,让学生练习运用直线、射线、线段解决。
3.准备黑板和粉笔,用于板书重点内容。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如交通指示灯、射线枪等,引导学生思考直线、射线、线段的概念和特点。
2.呈现(10分钟)讲解直线、射线、线段的定义和特性,用图片和实例进行说明,让学生清晰地理解它们之间的联系和区别。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用直线、射线、线段解决。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)选取一些实际问题,让学生独立解决,检验他们对直线、射线、线段的理解和运用能力。
人教版七年级数学上册热点:第4章:线与角(附模拟试卷含答案)
学生做题前请先回答以下问题问题1:请写出关于直线和线段的两个基本事实:①____________________________;②____________________________.问题2:(1)角可以分为______、______、______、______和______.(2)平角是_______度,周角是______度,直角是_______度,______________是锐角,_________________是钝角.问题3:度分秒的换算:1°=______′;1′=_______″.问题4:比较线段长短的方法和比较角大小的方法是:______________、______________.问题5:请用四种方式表示下面的角:_________________________.线与角(人教版)一、单选题(共14道,每道7分)1.下列说法正确的是( )A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线答案:B解题思路:A:直线没有方向,所以直线AB和直线BA是同一条直线,A选项错误;B:射线有方向,射线AB的端点是A,射线BA的端点是B,所以射线AB和射线BA是两条射线,B选项正确;C:线段无方向,所以线段AB和线段BA是同一条线段,C选项错误;D:直线AB和直线a可以是同一条直线的两种表示方式,D选项错误.故选B.试题难度:三颗星知识点:直线2.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大;③平角是一条直线;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个B.2个C.3个D.4个答案:A解题思路:角的定义:有公共顶点的两条射线组成的图形叫做角,角也可以看成是由一条射线绕它的端点旋转而成的,所以①错误,④正确;角的两边是射线,射线无法度量,所以角的度数与边长无关,所以②错误;根据角的定义,角要有顶点和边,直线没有端点,所以③错误.综上,正确的有1个.故选A.试题难度:三颗星知识点:角的定义与分类3.一条直线上有4个点,那么( )A.它有6条线段,4条射线B.它有6条线段,8条射线C.它有3条线段,8条射线D.它有4条线段,2条射线答案:B解题思路:根据题意,首先画图:直线上有4个点,以A为端点的线段有:AB、AC、AD共3条;以B为端点的线段有:BC、BD共2条;以C为端点的线段有:CD共1条;所以线段有3+2+1=6条线段;以每个点为端点的射线有2条,则共有8条射线.故选B.试题难度:三颗星知识点:直线4.往返于郑州和某市之间的某高速客车,在途中共有两个停车点,那么该客车应该准备( )种车票.A.4B.6C.8D.12答案:D解题思路:根据题意,可以用点A表示郑州,用点D表示某市,点B,C表示途经的两个停车点,如下图:要求票的种类,首先要求出线段的条数,因为车票有往返两种,所以再乘2即可.由图可知,图中有AB,AC,AD,BC,BD,CD共6条线段,所以,该客车应该准备6×2=12种车票.故选D.试题难度:三颗星知识点:求线段的个数5.如图所示,由A到B有①、②、③、④四条路线,最短的线路选②的理由是( )A.因为它是直线B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短答案:D解题思路:因为A,B两点是确定的,由“两点之间,线段最短”,可知最短的线路为②.故选D.试题难度:三颗星知识点:两点之间线段最短6.值日生每天值完日后,总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆得整整齐齐,他们这样做的道理是( )A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.以上说法都不对答案:A解题思路:把每一列最前和最后的课桌看作两个点,两点确定一条直线,那么沿着这条直线摆放课桌,课桌都在这一条直线上,就会整整齐齐的.故选A.试题难度:三颗星知识点:两点确定一条直线7.下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④答案:C解题思路:①③是利用“两点确定一条直线”,②④是利用“两点之间,线段最短”.故选C.试题难度:三颗星知识点:两点之间线段最短8.下列选项正确的是( )A.延长直线ABB.反向延长射线AB到点C,使AC=aC.延长射线OAD.以上说法都不对答案:B解题思路:直线可以向两边无限延伸,射线可以向一个方向无限延伸,所以不能说延长直线或射线,但可以反向延长射线,故A,C选项错误,B选项正确.故选B.试题难度:三颗星知识点:直线9.如图1,已知三点A,B,C,根据下列语言描述作出图2,下列选项中语言描述错误的是( )A.作射线CAB.作直线ABC.连接BCD.取线段BC的中点D,连接AD答案:A解题思路:射线只有一个端点,并且有方向,从图中可以看出是作射线AC,所以A选项错误.故选A.试题难度:三颗星知识点:几何作图10.下列图形中所标出的角可用∠O来表示的是( )A. B.C. D.答案:B解题思路:角的表示:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,所以只有B选项可用∠O来表示.故选B.试题难度:三颗星知识点:角的表示11.如图,下列说法中:①∠BAC,∠A,∠EAD表示同一个角;②∠DBC与∠CBD表示同一个角;③∠AED 与∠DEC表示同一个角;④∠AED也可表示为∠E.正确的说法有( )A.①②B.③④C.①②④D.①②③④答案:A解题思路:根据角的表示,结合图形,只有①②说法正确.故选A.试题难度:三颗星知识点:角的表示12.如图,如果∠AOD>∠BOC,那么下列说法正确的是( )A.∠COD>∠AOBB.∠AOB>∠CODC.∠COD=∠AOBD.∠AOB与∠COD的大小关系无法确定答案:B解题思路:试题难度:三颗星知识点:角的比较13.下列等式成立的是( )A. B.C. D.答案:B解题思路:进行度、分、秒的换算,,则.选项A:所以A选项错误;选项B:所以B选项正确;选项C:所以C选项错误;选项D:所以D选项错误.故选B.试题难度:三颗星知识点:度分秒的换算14.若,,,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:角的比较2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列关于角的说法正确的个数是:( )①由两条射线组成的图形一定是角 ②角的边长,角越大 ③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形A .1B .2C .3D .42.下列各图中,经过折叠能围成一个正方体的是( )A .B .C .D .3.如图,平行河岸两侧各有一城镇P ,Q ,根据发展规划,要修建一条公路连接P ,Q 两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )A .B .C .D .4.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A.7 B.5 C.3 D.05.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还多出2个座位.有下列四个等式:①4010432m m +=-;②1024043n n +-=;③1024043n n -+=;④4010432m m -=+.其中正确的是( ).A.①②②B.②④C.①③D.③④ 6.下列计算正确的是( )A .3x 2﹣x 2=3B .﹣3a 2﹣2a 2=﹣a 2C .3(a ﹣1)=3a ﹣1D .﹣2(x+1)=﹣2x ﹣27.下列计算正确的是( )A .a 5+a 2=a 7B .2a 2﹣a 2=2C .a 3•a 2=a 6D .(a 2)3=a 68.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ).A.-7B.-6C.6D.79.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( )A.0B.1-C.1D.210.-(–5)的绝对值是( )A.5B.-5C.15D.15- 11.若a≠0,则a a +1的值为( ) A .2 B .0 C .±1 D .0或212.有理数a 、b 在数轴上对应的点的位置如图所示,下列各式正确的是( )A.0a b +<B.0a b +>C.0ab >D.a b>0 二、填空题13.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.14.如图,在Rt ABC ∆中,90︒∠=C ,30A ︒∠=,9BC =,若点P 是边AB 上的一个动点,以每秒3个单位的速度按照从A B A →→运动,同时点Q 从B C →以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。
人教版数学七年级上册第四章几何图形初步(教案)
3.培养学生的逻辑思维和推理能力,能够运用所学几何知识进行严密的论证和解决问题。
4.培养学生的创新意识和实践能力,通过平面图形的密铺等实际应用,激发学生将几何知识应用于现实生活的兴趣,提高解决实际问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线、直线等基本概念。线段是有两个端点的有限长度的部分,射线是一个端点出发无限延伸的部分,直线则是无端点无限延伸的部分。它们是构成各种几何图形的基础,也是我们研究几何学的重要起点。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们教室的黑板边缘可以看作是一条直线,而黑板擦则可以看作是一个线段。这些实际例子能帮助我们更好地理解几何图形的概念。
-多边形的内角和与外角和定理:理解并掌握多边形内角和与外角和的计算方法,能够应用于实际计算。
-举例:三角形的内角和为180度,外角和为360度;四边形的内角和为360度,外角和为360度。
2.教学难点
-线段、射线、直线的区分与应用:学生容易混淆线段、射线、直线的概念,需通过实例讲解和练习加强理解。
-举例:线段AB与射线AB的区别在于射线无限延伸,而线段有限定长度。
3.重点难点解析:在讲授过程中,我会特别强调线段、射线、直线的区别和多边形的内角和与外角和的计算。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与几何图形相关的实际问题,如三角形和四边形的性质和应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器测量角的度数,或用几何图形拼图来理解平面图形的密铺。
人教版七年级数学上册热点:第4章:线与角
学生做题前请先回答以下问题问题1:请写出关于直线和线段的两个基本事实:①____________________________;②____________________________.问题2:(1)角可以分为______、______、______、______和______.(2)平角是_______度,周角是______度,直角是_______度,______________是锐角,_________________是钝角.问题3:度分秒的换算:1°=______′;1′=_______″.问题4:比较线段长短的方法和比较角大小的方法是:______________、______________.问题5:请用四种方式表示下面的角:_________________________.线与角(人教版)一、单选题(共14道,每道7分)1.下列说法正确的是( )A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线答案:B解题思路:A:直线没有方向,所以直线AB和直线BA是同一条直线,A选项错误;B:射线有方向,射线AB的端点是A,射线BA的端点是B,所以射线AB和射线BA是两条射线,B选项正确;C:线段无方向,所以线段AB和线段BA是同一条线段,C选项错误;D:直线AB和直线a可以是同一条直线的两种表示方式,D选项错误.故选B.试题难度:三颗星知识点:直线2.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大;③平角是一条直线;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个B.2个C.3个D.4个答案:A解题思路:角的定义:有公共顶点的两条射线组成的图形叫做角,角也可以看成是由一条射线绕它的端点旋转而成的,所以①错误,④正确;角的两边是射线,射线无法度量,所以角的度数与边长无关,所以②错误;根据角的定义,角要有顶点和边,直线没有端点,所以③错误.综上,正确的有1个.故选A.试题难度:三颗星知识点:角的定义与分类3.一条直线上有4个点,那么( )A.它有6条线段,4条射线B.它有6条线段,8条射线C.它有3条线段,8条射线D.它有4条线段,2条射线答案:B解题思路:根据题意,首先画图:直线上有4个点,以A为端点的线段有:AB、AC、AD共3条;以B为端点的线段有:BC、BD共2条;以C为端点的线段有:CD共1条;所以线段有3+2+1=6条线段;以每个点为端点的射线有2条,则共有8条射线.故选B.试题难度:三颗星知识点:直线4.往返于郑州和某市之间的某高速客车,在途中共有两个停车点,那么该客车应该准备( )种车票.A.4B.6C.8D.12答案:D解题思路:根据题意,可以用点A表示郑州,用点D表示某市,点B,C表示途经的两个停车点,如下图:要求票的种类,首先要求出线段的条数,因为车票有往返两种,所以再乘2即可.由图可知,图中有AB,AC,AD,BC,BD,CD共6条线段,所以,该客车应该准备6×2=12种车票.故选D.试题难度:三颗星知识点:求线段的个数5.如图所示,由A到B有①、②、③、④四条路线,最短的线路选②的理由是( )A.因为它是直线B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短答案:D解题思路:因为A,B两点是确定的,由“两点之间,线段最短”,可知最短的线路为②.故选D.试题难度:三颗星知识点:两点之间线段最短6.值日生每天值完日后,总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆得整整齐齐,他们这样做的道理是( )A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.以上说法都不对答案:A解题思路:把每一列最前和最后的课桌看作两个点,两点确定一条直线,那么沿着这条直线摆放课桌,课桌都在这一条直线上,就会整整齐齐的.故选A.试题难度:三颗星知识点:两点确定一条直线7.下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④答案:C解题思路:①③是利用“两点确定一条直线”,②④是利用“两点之间,线段最短”.故选C.试题难度:三颗星知识点:两点之间线段最短8.下列选项正确的是( )A.延长直线ABB.反向延长射线AB到点C,使AC=aC.延长射线OAD.以上说法都不对答案:B解题思路:直线可以向两边无限延伸,射线可以向一个方向无限延伸,所以不能说延长直线或射线,但可以反向延长射线,故A,C选项错误,B选项正确.故选B.试题难度:三颗星知识点:直线9.如图1,已知三点A,B,C,根据下列语言描述作出图2,下列选项中语言描述错误的是( )A.作射线CAB.作直线ABC.连接BCD.取线段BC的中点D,连接AD答案:A解题思路:射线只有一个端点,并且有方向,从图中可以看出是作射线AC,所以A选项错误.故选A.试题难度:三颗星知识点:几何作图10.下列图形中所标出的角可用∠O来表示的是( )A. B.C. D.答案:B解题思路:角的表示:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,所以只有B选项可用∠O来表示.故选B.试题难度:三颗星知识点:角的表示11.如图,下列说法中:①∠BAC,∠A,∠EAD表示同一个角;②∠DBC与∠CBD表示同一个角;③∠AED 与∠DEC表示同一个角;④∠AED也可表示为∠E.正确的说法有( )A.①②B.③④C.①②④D.①②③④答案:A解题思路:根据角的表示,结合图形,只有①②说法正确.故选A.试题难度:三颗星知识点:角的表示12.如图,如果∠AOD>∠BOC,那么下列说法正确的是( )A.∠COD>∠AOBB.∠AOB>∠CODC.∠COD=∠AOBD.∠AOB与∠COD的大小关系无法确定答案:B解题思路:试题难度:三颗星知识点:角的比较13.下列等式成立的是( )A. B.C. D.答案:B解题思路:进行度、分、秒的换算,,则.选项A:所以A选项错误;选项B:所以B选项正确;选项C:所以C选项错误;选项D:所以D选项错误.故选B.试题难度:三颗星知识点:度分秒的换算14.若,,,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:角的比较2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,两块直角三角板的直顶角O重合在一起,若∠BOC=15∠AOD,则∠BOC的度数为()A.30° B. 45° C.54° D.60°2.如图,是由相同小正方体组成的立体图形,它的主视图为()A.B.C.D.3.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为()A.150°B.140°C.120°D.110°4.如图,钟面上的时间是8:30,再经过t分钟,时针、分针第一次重合,则t为()A.756B.15011C.15013D.180115.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+16.若一个代数式与代数式2ab2+3ab的和为ab2+4ab-2,那么,这个代数式是()A.3ab2+7ab-2 B.-ab2+ab-2 C.ab2-ab+2 D.ab2+ab-27.下列选项中,不是同类项的是( )A .-1和0B .-x 2y 和3yx 2C .-2xy 2和2x 2yzD .-m 2和6m 28.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x ,可列方程( )A .54+x=2(48﹣x )B .48+x=2(54﹣x )C .54﹣x=2×48 D.48+x=2×549.已知x 的方程2x+k=5的解为正整数,则k 所能取的正整数值为( )A .1B .1或3C .3D .2或310.五个有理数中有三个是负数,则这五个数的积为( )A .负数B .正数C .非负数D .非正数11.2017的绝对值是( )A.2017B.2017-C.12017D.12017- 12.以下选项中比|﹣12|小的数是( ) A.1B.2C.12D.-12二、填空题 13.如图,已知∠MOQ 是直角,∠QON 是锐角,OR 平分∠QON ,OP 平分∠MON ,则∠POR 的度数为_____.14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y 的值为____.15.数学兴趣小组原有男生和女生相同,如果增加 6 名女生,那么女生是全组人数的23,求这个数学兴趣小组原有多少人?设数学兴趣小组原有 x 人,可得方 程_______________ .16.某商品进价100元,提价30%后再打九折卖出,则可获利______元.17.计算:()()35---=______;()225323a a b b ---=______. 18.写出3x 3y 2的一个同类项_____.19.24-+=______.20.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.三、解答题21.已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O .(1)若∠AOC=36°,求∠BOE 的度数;(2)若∠BOD :∠BOC=1:5,求∠AOE 的度数;(3)在(2)的条件下,请你过点O 画直线MN ⊥AB ,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出∠EOF 的度数.22.某市出租车收费标准是:起步价为8元,3千米后每千米为2元,若某人乘坐了(3)x x >千米. ()1用含x 的代数式表示他应支付的车费.()2行驶30千米,应付车费多少钱?()3若他支付了36元,你能算出他乘坐的路程吗?23.某校班级篮球联赛中,每场比赛都要分胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中得48分,那么这个班胜了多少场?24.理解计算:如图①,∠AOB=90°,∠AOC 为∠AOB 外的一个角,且∠AOC=30°,射线OM 平分∠BOC ,ON 平分∠AOC .求∠MON 的度数;拓展探究:如图②,∠AOB=α,∠AOC=β.(α,β为锐角),射线OM 平分∠BOC ,ON 平分∠AOC .求∠MON 的度数;迁移应用:其实线段的计算与角的计算存在着紧密的联系,如图③线段AB=m ,延长线段AB 到C ,使得BC=n ,点M ,N 分别为AC ,BC 的中点,则MN 的长为_____(直接写出结果).25.先化简,再求值:()()()2331a a a +-+-,其中12a =. 26.计算:(1)()()()332122-⨯-+-÷(2)201813121234⎛⎫-+-+-⨯ ⎪⎝⎭(3)先化简,再求值:221131a 2a b a b 4323⎛⎫⎛⎫--+-+⎪ ⎪⎝⎭⎝⎭,其中3a 2=,1b 2=-. 27.计算:(﹣13+56﹣38)×(﹣24). 28.计算:(1)()2114--6031215⎛⎫+⨯ ⎪⎝⎭(2)()()()32201713--2-2-2-1184⨯÷⨯⨯+【参考答案】***一、选择题1.A2.A3.B4.B5.A6.A7.C8.A9.B10.D11.A12.D二、填空题13.45°14.15. SKIPIF 1 < 0解析:26(6)23xx +=+16.1717.SKIPIF 1 < 0解析:223a b +18.x3y219.220.-1三、解答题21.(1)54°;(2)120°;(3)∠EOF 的度数为30°或150°.22.()1支付车费22(x +元);(2)他应该支付62元;(3) 他乘坐的里程是17千米.23.10场24.理解计算:45MON ∠=︒;拓展探究:2MON α∠=;迁移应用:2m . 25.102a -,926.() 12-;()24-;(3)54-.27.-328.(1)-1;(2)-14 .2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列几何体是棱锥的是( )A. B. C.D.2.如图所示,两个直角∠AOB,∠COD有公共顶点O,下列结论:(1)∠AOC=∠BOD;(2)∠AOC+∠BOD=90°;(3)若OC平分∠AOB,则OB平分∠COD;(4)∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数是( )A.1B.2C.3D.43.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A.B.C分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A.B.C的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,04.一艘轮船航行在A、B两地之间,已知该船在静水中每小时航行12千米,轮船顺水航行需用6小时,逆水航行需用10小时,则水流速度和A、B两地间的距离分别为()A.2千米/小时,50千米B.3千米/小时,30千米C.3千米/小时,90千米D.5千米/小时,100千米5.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(n>6),则a-b的值为()A.6B.8C.9D.12 6.下列代数式中:1x ,2x y +,213a b ,x y π-,54y x ,0,整式有( ) 个 A.3个 B.4个 C.5个 D.6个7.下列等式变形正确的是( )A.如果s =12ab ,那么b =2s aB.如果12x =6,那么x =3 C.如果x -3=y -3,那么x -y =0D.如果mx =my ,那么x =y 8.﹣2的绝对值是( )A.2B.﹣2C.±2D.﹣|2|9.若x 1=时,3ax bx 7++式子的值为2033,则当x 1=-时,式子3ax bx 7++的值为( )A .2018B .2019C .2019-D .2018-10.下列算式中,结果正确的是( )A .(﹣3)2=6B .﹣|﹣3|=3C .﹣32=9D .﹣(﹣3)2=﹣911.12的相反数是( ) A.﹣2 B.﹣12 C.12 D.212.将方程去分母,得( )A.B.C.D.二、填空题 13.如下图,在已知角内画射线,画1条射线,图中共有 个角;画2条射线,图中共有 个角;画3条射线,图中共有 个角;求画n 条射线所得的角的个数 .14.上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是_____.15.一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是___元.16.若x=1是关于x 的方程2x+3m-5=0的解,则m 的值为______.17.如图是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a +b)米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b)米,则王明家楼梯的竖直高度(即BC 的长度)为________米.18.如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律,猜想第n 个图中小正方形的个数为___________(用含n 的式子表示)19.-4的倒数是________,相反数是_______.绝对值是_________.20.a 的相反数是,则a 的倒数是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段、角
[思维基础]
I 直线、射线、线段
II 角
思维训练4 选择填空
画一个钝角∠AOB ,然后以O 为顶点,以OA 为一边,在角的内部画一条射线OC ,使∠AOC=90°. 根据上述题目要求,画出了下列四个图形. 请问哪个图形符合题目的要求. 正确答案是( )
揭示思路:什么是角?什么是钝角?什么是角的顶点?什么是角的边?90°的角是什
么角?
明确上述概念后,逐一用题目要求的条件去衡量.
(A )射线OC 作到了∠AOB 的外部了. (B )90°角作成了以OB 为一边了,则∠AOC ≠90°. (C )射线OC 作到∠AOB 的外部了,又90°角以OB 为一边了. (D )符合条件. [错例研究]
思维训练1 下列说法错在什么地方.
(1)延长射线OP ; (2)画一条长5cm 的直线;
(3)一条直线上从左至右依次有A 、B 、C 三个点,则射线AC 比射线BC 长; (4)直线可看成平角;
揭示思路:直线、射线、线段各有什么特征?什么是平角?什么是互余的角?什么是互补的角? 上述5个说法都是错误的.
根据直线、射线、线段的特征和属性,可以规纳为:直线没有端点,向两方无限延伸;射线有一个端点,向一方无限延伸,它们的长度都不能度量,不能比较长短,直线不能延长. 所以(1)(2)(3)都不正确.只有线段可以延长,可以度量,可以比较长短,射线只能向一方延长.
角与直线、射线的意义不同. 一条直线不是一个平角,平角是有公共端的两条射线组成的,两条射线恰好在一条直线上,直线不是两条射线,它也没有端点.
单独说一个角是余角,是补角是没有意义的. 互余的角和互补的角说的是两个角的关系.如果两个角互为余角时,一个角是另一个角的余角. 两个角互为补角时,一个角是另一个角的补角. 所以说“补角是余角的两倍”是错误的.
思维训练2 下面画图是错误的,正确的应该怎么画.
已知线段a 、b 、c (a > b )画一条线段等于a - b + c.
揭示思路: 画一条线段等于已知线段 a ,怎样画?画一条线段等于两条已知线段a ,b 的和,怎么画?画一条第线段等于两条已知线段 a 、b (a > b )的差,怎样画?
画一条线段等于已知线段a.
画一条射线AC ,在射线AC 上用圆规截取AB= a . AB 就是所要求画的线段.
已知线段a
画一条线段等于两条已知线段a 、b 的和.
画一条直线,在直线上画一条线段AB= a ,再在AB 的延长线上画线段BC= b , 线段AC= a + b.
画一条线段等于两条已知线段a 、b ( a > b )的差.
在直线上画线段AB = a , 再在线段AB 上画线段AC 或BC 等b. BC 或AC 就是所要求的线段.
BC= a - b
AC = c - b
∴本例 a - b + c 正确的画图是 a + c - b
即CD = a + c - b = a - b + c . 为所要求的线段.减去的线段要从整体线段的一端去减,不能从中间去减.
[创新园地] 将两块直角三角板叠在一起,使直角的顶点重合于O (如
图)
(1)∠AOB + ∠DOC 是多少度?能确定吗? (2)∠AOD 与∠COB 是什么关系? (3)∠AOB 与∠DOC 是什么关系?
三、智能显示
[心中有数] 本章概念多,它又是以后学习的基础,要注意培养概括、阅读和表达能力,需要注意检查的概念有:有关直线的公理和性质,有关线段的公理,角和角的分类,线段中点和角平分线等. [动手动脑]
1. 下列关系式与图形所表示的条件,不相符的是( ).
(A )AB + CB = AD - BC (B )AC + CD = AB - BD (C )AB - CD = AC + BD (D )AD - AC = CB - DB
2. 平面内有两两相交的三条直线,如果说最多有m 个交点,最少有n 个交点.那么m-n 的值是( ). (A )1 (B )2 (C )3 (D )4
3. 从点O 发出的5条射线,可以组成的角最多有( ). (A )4个 (B )5个 (C )7个 (D )10个
4. C 是线段AB 的中点,D 是线段BC 的中点,下列式子不正
确
的
( ).
(A )CD =
21
CB (B )AB = 2AC (C )BD = 41AB (D )CD = 2
1
AB - BD
5. 已知线段a 、b 、c ( a > b ),画一条线段等于: (1)2 a - b (2)2 ( a - b )
6. 已知线段AB = 18 cm ,M 是AB 中点,C 是AB 上一点,且AC = 5BC , 求MC 的长.
7. 若∠A 与∠B 的和为180度,且∠A :∠B = 1:2,求∠A -
3
1
∠B 的度数. 8. ∠AOC = 30°,∠BOC = 120°,OD 平分∠AOC , OE 平分∠BOC , 求∠EOD 的度数. 专题检测 一、填空题
1. 长度,叫做两点间距离.
2. 和 都是直线的一部分.
3.已知AB=a 厘米,CD=b 厘米,若a=b ,则AB CD,若a>b ,则AB CD ,若CD>AB ,a b.
4.已知线段AB=8,延长AB 到C ,使AC=3AB ,M 、N 为AB 、BC 的中点,则NM= .
5.角可以看成一条 绕着一个端点从一个位置 另一个位置所成的图形.
6.如图1-10,用三种方法分别表示角① ,② ,③ .
图1-10 图1-11 7.比较两个角的大小可能有 、 、 .
8.如图1-11,∠AOC 和∠BOD 都是直角,则角 =角 . 9.38.32°= 度 分 秒.
10.若α=17°30′,则它的余角是 ,补角是 .
11.如图1-12,∠BOC= - = - = - - .
图1-12 图1-13 图1-14 图1-15
12.如图1-13中有 个角,把它们表示出来 .
13.下列各角中57°、35°12′、125°、90°、137°29′、35°6′12″、5°21′35、120°、175°42′是锐角 个,钝角的有 个. 二、选择题
14.如图1-14中共有线段 条.
(A)3 (B)4 (C)5 (D)6 15.下列说法正确的是 .
(A )由两条射线组成的叫角 (B )射线就是周角,直线就是平角 (C )如图1-5中∠AOB 可以用∠O 表示 (D )∠AOB 和∠BOA 是同一个角 16.下面说法错误的是 . (A)B 是线段AC 的中点,则BC=2
1
AC (B )直线上一点和它一旁的部分
叫射线
(C )一条射线把一个角分成两个角,这条射线叫这个角的平分线
17.如图1-16,∠AOB=∠COD=∠BOE ,那么相等的角有 对. (A)2 (B)3
(C)4
(D)5
18.在同一平面内有4个不重合的点,经过每两点作一直线,
最多可作直线的条数是 . (A)4 (B)5 (C)6 (D)7 19.如图1-17,把一个平角分成若干个角,其中锐角有 个.
(A)5 (B)5
(C)7
(D)8
20.如果A、B、C三点在同一直线上,A到B的距离是8厘米,B到C的距离是3厘米,那么A、C两
点的距离是 .
(A)11厘米(B)5厘米(C)5或11厘米(D)无法确定
21.从2时整到4时30分,时针转过的角度为 .
(A)25°(B)65°(C)75°(D)135°
22.点M与点N的距离为20厘米,有一点Q,如果QM+QN=20厘米,那么下列结论正确的是 .
(A)点Q必在线段MN的延长线上(B)点Q必在线段NM的延长线上
(C)点Q必在线段MN外(D)点Q必在线段MN上
23.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,求
(1) 线段AC等于线段AB的几倍?(2)线段AB等于线段DB的几分之几?
(3)线段DB等于线段DC的几分之几?
24.计算 180°-110°37′35″
25.计算 171°43°÷5
图1-18
26.如图1-18,A、O、E三点在一条直线上,∠AOC=∠BOD=105°,∠BOC=50°,求∠DOE的度数.
27.线段AB=54cm,C是AB的中点,D是AC上的一点,且CD=2AD,E是BC的中点,求线段DE的长.
28.如图1-19,AC=BD,E为CD的中点,求证:E为AB的中点.
29.如图1-20,∠AOD=∠BOE,OC是∠DOE的平分线,求证:OC是∠AOB的平分线.
图1-19 图1-20
30.B、C两点把线段AD分成2:3:4三部分,M是线段AD的中点,CD=12厘米,求(1)MC的长;(2)AB:BM的值.。