中考复习《几何的综合题》圆(一)

合集下载

中考几何综合题(圆)

中考几何综合题(圆)

中考专项练习题(圆)1、已知:如图,在△ABC中,AB=AC,点D是边BC的中点,以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E。

(1)求证:AD是圆O的切线;(2)若PC是圆O的切线,BC=8,求DE的长.2、如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,A E⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=6,BD=3,求AE和BC的长。

3、如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B。

(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长。

4、如图,AB是⊙O的直径,CB是⊙O的弦,D是AC的中点,过点D作直线与BC垂直,交BC延长线于E点,且交BA延长线于F点。

(1)求证:EF是⊙O的切线;(2)若tanB= ,BE=6,求⊙O的半径。

5、已知:如图,在⊙O中,AB是直径,AC是弦,O E⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D。

(1)求证:FD是⊙O的切线;(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积。

6、如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D,过点D作D E⊥AC,垂足为E.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为5,∠BAC=60°,求DE的长.7、如图,AB是⊙O的直径,M是线段OA上一点,过M作AB的垂线交弦AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且,求AM的长.8、已知:如图,点A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12OB。

(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长。

决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)

决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)

决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)1.如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,与⊙M相切于点H的直线EF交x轴于点E(﹣5,0),交y轴于点F(0,).(1)求⊙M的半径r;(2)如图2所示,连接CH,弦HQ交x轴于点P,若cos∠QHC=,求的值;(3)如图3所示,点P为⊙M上的一个动点,连接PE,PF,求PF+PE的最小值.2.如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.(1)求证:△AED是等腰直角三角形;(2)如图1,已知⊙O的半径为.①求的长;②若D为EB中点,求BC的长.(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.3.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH,若∠OHC=∠HCA=90°时,求证:CH=DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.4.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.5.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan∠AFC的值;(3)若△DEF与△AEB相似,求EF的值.6.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.(1)连接OP,证明:△ADM∽△APO;(2)证明:PD是⊙O的切线;(3)若AD=12,AM=MC,求PB和DM的值.7.如图1,AB是⊙O的直径,C是⊙O上一点,CD⊥AB于D,E是BA延长线上一点,连接CE,∠ACE=∠ACD,K是线段AO上一点,连接CK并延长交⊙O于点F.(1)求证:CE是⊙O的切线;(2)若AD=DK,求证:AK•AO=KB•AE;(3)如图2,若AE=AK,=,点G是BC的中点,AG与CF交于点P,连接BP.请猜想P A,PB,PF的数量关系,并证明.8.对于平面内的点P和图形M,给出如下定义:以点P为圆心,以r为半径作⊙P,使得图形M上的所有点都在⊙P的内部(或边上),当r最小时,称⊙P为图形M的P点控制圆,此时,⊙P的半径称为图形M的P点控制半径.已知,在平面直角坐标系中,正方形OABC的位置如图所示,其中点B(2,2).(1)已知点D(1,0),正方形OABC的D点控制半径为r1,正方形OABC的A点控制半径为r2,请比较大小:r1r2;(2)连接OB,点F是线段OB上的点,直线l:y=x+b;若存在正方形OABC的F点控制圆与直线l有两个交点,求b的取值范围.9.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sin A=,求BH的长.10.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM 的值.参考答案1.解:(1)如图1,连接MH,∵E(﹣5,0),F(0,﹣),M(﹣1,0),∴OE=5,OF=,EM=4,∴在Rt△OEF中,tan∠OEF==,∴∠OEF=30°,∵EF是⊙M的切线,∴∠EHM=90°,∴sin∠MEH=sin30°=,∴MH=ME=2,即r=2;(2)如图2,连接DQ、CQ,MH.∵∠QHC=∠QDC,∠CPH=∠QPD,∴△PCH∽△PQD,∴,由(1)可知,∠HEM=30°,∴∠EMH=60°,∵MC=MH=2,∴△CMH为等边三角形,∴CH=2,∵CD是⊙M的直径,∴∠CQD=90°,CD=4,∴在Rt△CDQ中,cos∠QHC=cos∠QDC=,∴QD=CD=3,∴;(3)连MP,取CM的点G,连接PG,则MP=2,G(﹣2,0),∴MG=CM=1,∴,又∵∠PMG=∠EMP,∴△MPG∽△MEP,∴,∴PG=PE,∴PF+PE=PF+PG,当F,P,G三点共线时,PF+PG最小,连接FG,即PF+PE有最小值=FG,在Rt△OGF中,OG=2,OF=,∴FG===.∴PF+PE的最小值为.2.解:(1)∵BC=CD,AB是直径,∴△BCD是等腰直角三角形,∴∠DBD=45°,∵∠CBD=∠EAD=45°,∵∠AEB=90°,∴△AED是等腰直角三角形;(2)①∵∠EAD=45°,∴∠EOC=90°,∴△EOC是等腰直角三角形,∵⊙O的半径为,∴CE的弧长=×2×π×=;②∵D为EB中点,∴ED=BD,∵AE=ED,在Rt△ABE中,(2)2=AE2+(2AE)2,∴AE=2,∴AD=2,∵ED=AE,CD=BC,∠AED=∠BCD=90°,∴△AED∽△BCD,∴BC=;(3)∵AF:FD=7:3,∴AF=AD,过点E作EG⊥AD,∴EG=AD,∴GF=AD,∴tan∠EFG=,∴==,∴FO=r,在Rt△COF中,FC=r,∴EF=r,在Rr△EFG中,(r)2=(AD)2+(AD)2,∴AD=r,∴AF=r,∴AC=AF+FC=r,∵CD=BC=4,∴AC=4+AD=4+r,∴r=4+r,∴r=.3.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∴∠D+∠ABD=90°,∵FB是⊙O的切线,∴∠FBD=90°,∴∠FBA+∠ABD=90°,∴∠FBA=∠D,∵AB=AC,∴∠C=∠ABC,∵∠C=∠D,∴∠ABF=∠ABC;(2)如图2,连接OC,∵∠OHC=∠HCA=90°,∴AC∥OH,∴∠ACO=∠COH,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC+∠CBO=∠ACB+∠OCB,即∠ABD=∠ACO,∴∠ABD=∠COH,∵∠H=∠BAD=90°,∴△ABD∽△HOC,∴==2,∴CH=DA;(3)由(2)知,△ABD∽△HOC,∴=2,∵OH=6,⊙O的半径为10,∴AB=2OH=12,BD=20,∴AD==16,在△ABF与△ABE中,,∴△ABF≌△ABE,∴BF=BE,AF=AE,∵∠FBD=∠BAD=90°,∴AB2=AF•AD,∴AF==9,∴AE=AF=9,∴DE=7,BE==15,∵AD,BC交于E,∴AE•DE=BE•CE,∴CE===.4.(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.5.解:(1)∵点A(0,4),∴AO=4,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS)∴AE=AO=4;(2)设BO=x,则AB=x+2,在Rt△ABO中,由AO2+OB2=AB2得:42+x2=(x+2)2,解得:x=3,∴OB=BE=3,AB=5,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC∴==,设EF=x,则AF=4+x,BF=(4+x),∵在Rt△BEF中,BE2+EF2=BF2,∴32+x2=[(4+x)]2,解得:x=,即EF=,∴tan∠AFC===;(3)①当△DEF∽△AEB时,∠BAE=∠FDE,∴∠ADE=∠FDE,∴BD垂直平分AF,∴EF=AE=4;②当△DEF∽△BEA时,∠ABE=∠FDE,∴AB∥DF,∴∠ADF=∠CAB=90°,∴DF相切⊙Q,∴∠DAE=∠FDE,设⊙Q交y轴于点G,连接DG,作FH⊥DG于H,如图所示:则∠FDH=∠DAG,四边形OGHF是矩形,∴OG=FH,∵△ABE≌△ABO,∴∠OAB=∠EAB,∵AB⊥AD,∴∠DAE=∠CAO,∵∠CAO=∠DAE,∴∠DAE=∠DAE,∴∠DAE=∠DAG=∠FDE=∠FDH,∴AG=AE=4,∴EF=FH=OG=AO+AG=4+4=8,综上所述,若△DEF与△AEB相似,EF的值为4或8.6.(1)证明:连接OD、OP、CD.∵AD•AO=AM•AP,∴,∠A=∠A,∴△ADM∽△APO.(2)证明:∵△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠DOP=∠MDO,∠POC=∠DMO,∵OD=OM,∴∠DMO=∠MDO,∴∠DOP=∠POC,∵OP=OP,OD=OC,∴△ODP≌△OCP(SAS),∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(3)解:连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+122=9R2,∴R=3,∴OD=3,MC=6,∵,∴,∴AP=18,∴DP=AP﹣AD=18﹣12=6,∵O是MC的中点,∴,∴点P是BC的中点,∴PB=CP=DP=6,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=12,MC=6,∴BM===6,∵△BCM∽△CDM,∴,即,∴DM=2.7.解:(1)证明:连接OC,如图所示:∵CD⊥AB,∴∠CAD+∠ACD=90°,∵OA=OC,∴∠CAD=∠ACO,又∵∠ACE=∠ACD,∴∠ACE+∠ACO=90°,即∠ECO=90°,∴CE是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠B=90°,又∵∠CAD+∠ACD=90°,∠ACD=∠B,∴∠ACE=∠B,∵AD=DK,CD⊥AB,∴CA=CK,∠CAD=∠CKD,∴∠CAE=∠BKC,∴△CAE∽△BKC,∴=,∴AC•KC=AE•KB,又∵∠CAD=∠CKD,∠CAD=∠OCA,∴△OCA∽△CAK,∴=,∴AC•KC=AK•AO,∴AK•AO=KB•AE;(3)P A2+PF2=PB2.理由如下:如图,连接AF、BF,∵=,∴∠ACF=∠BCF=∠ACB=45°,AF=BF,∴∠ECK=∠ACK+∠ACE=45°+∠ACE,∠EKC=∠BCK+∠KBC=45°+∠ABC,∴∠ECK=∠EKC,∴EC=EK=AE+EK=2AE,∵∠ACE=∠CBE,∠E=∠E,∴△EAC∽△ECB,∴==,∴BC=2AC,∵点G是BC的中点,∴BC=2CG=2GB,∴AC=CG,∠ACF=∠BCF,∴CP⊥AG,AP=PG,设AC=CG=GB=x,则AG==x,∴==,又∠PGB=∠BGA,∴△PGB∽△BGA,∴∠GBP=∠GAB,∴∠GBP+∠BCF=∠GAB+∠GAC,即∠BPF=∠BAC=∠BFP,∴BP=BF=AF,∵在Rt△APF中,P A2+PF2=AF2,∴P A2+PF2=PB2.8.解:(1)由题意得:r1=BD=CD==,r2=AC==2,∴r1<r2,故答案为:<.(2)如图所示:⊙O和⊙B的半径均等于OB,当直线l:y=x+b与⊙O相切于点M时,连接OM,则OM⊥l,则直线OM的解析式为:y=﹣x,设M(x,﹣x),∵OM=OB,∴OM==,∴x2+=8,解得:x=﹣或x=(舍),∴﹣x=,∴M(﹣,),将M(﹣,)代入y=x+b得:=×(﹣)+b,解得:b=4.当直线l:y=x+b与⊙B相切于点N时,连接BN,则BN⊥l,同理,设直线BN的解析式为:y=﹣x+n,将B(2,2)代入得:2=﹣×2+n,∴n=2+,∴直线BN的解析式为:y=﹣x+2+,设N(m,﹣m+2+),∵BN=OB,∴=,∴4﹣4m+m2+﹣+=8∴m2﹣4m+2=0,∴m=2﹣(舍)或m=2+,∴﹣m+2+=﹣(2+)+2+=2﹣,∴N(2+,2﹣),∴将N(2+,2﹣)代入y=x+b得:2﹣=(2+)+b,解得:b=,∴存在正方形OABC的F点控制圆与直线l有两个交点,此时b的取值范围为:<b<.9.(1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图2所示:∵OF⊥BC,∴=,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴=,∴CE2=EH•EA;(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵=,∴BE=CE=3,∵CE2=EH•EA,∴EH=,∴在Rt△BEH中,BH===.10.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,则GE=CE﹣CG=﹣=﹣()=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.。

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是cm,⊙M与直线CD的位置关系是;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.2.已知:如图,△ABC中,AB=AC=5,BC=6,点O在AB上,以O为圆心,OB为半径画⊙O,分别与边AB、BC相交于点D、E,EF⊥AC,AH⊥BC,垂足分别为F、H.(1)求证:EF是⊙O的切线;(2)①设OB=2,求EC的长;②设OB=t,求FC的长(用含t的代数式表示).3.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.(1)求证:OD⊥BE;(2)连结AD,交BE于点G,若△AGE≌△DGF,且AB=2,求AE的长.4.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=m,BD=n,求的值(用含m,n的式子表示).5.定义:如图①,⊙O的半径为r,若点P'在射线OP上,且OP•OP'=r2.则称点P'是点P关于⊙O的“反演点”.(1)如图①,设射线OP与⊙O交于点A,若点P'是点P关于⊙O的“反演点”,且OP'=PA,求证:点P'为线段OP的一个黄金分割点;(2)如图②,若点P'是点P关于⊙O的“反演点”,过点P'作P'B⊥OP,交⊙O于点B,连接PB,求证:PB为⊙O的切线;(3)如图③,在Rt△CDE中,∠E=90°,CE=6,DE=8,以CE为直径作⊙O,若点P为CD边上一动点,点P'是点P关于⊙O的“反演点”,则在点P运动的过程中,线段OP'长度的取值范围是.6.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连结DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连结AD,BE,若=x,=y,求y关于x的函数表达式.7.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”,例如,在△ABC中,∠A=100°,∠B=60°,∠C=20°,满足∠A﹣∠B=2∠C,所以△ABC是关于∠C的“差倍角三角形”;(1)若等腰△ABC是“差倍角三角形”,求等腰三角形的顶角∠A的度数;(2)如图1,△ABC中,AB=3,AC=8,BC=9.小明发现这个△ABC是关于∠C的“差倍角三角形”.他的证明方法如下:证明:在BC上取点D,使得BD=1,连结AD.(请你完成接下去的证明)(3)如图2,五边形ABCDE内接于圆,连结AC,AD与BE相交于点F,G,==,△ABE是关于∠AEB的“差倍角三角形”.①求证:四边形CDEF是平行四边形;②若BF=1,设AB=x,y=,求y关于x的函数关系式.8.如图,在Rt△ABC中,∠C=90°,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AO=,求的长;(3)若AC=2,BD=3,求AE的长.9.如图1,CD是⊙O的直径,弦AB⊥CD,垂足为点E,连结CA.(1)若∠ACD=30°,求劣弧AB的度数;(2)如图2,连结BO并延长交⊙O于点G,BG交AC于点F,连结AG.①若tan∠CAE=2,AE=1,求AG的长;②设tan∠CAE=x,=y,求y关于x的函数关系式.10.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.参考答案1.解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,AQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPQ(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.2.证明:(1)如图1,连结OE,∵OE=OB,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∴∠OEF=∠EFC,∵EF⊥AC,∴∠EFC=90°,∴∠OEF=90°,∴EF⊥OE,∵点E在⊙O上,∴EF是⊙O的切线;(2)①如图2,连结OE,∵OE∥AC,∴△BOE∽△BAC.∴=,∴=,∴BE=,∴EC=6﹣=;②∵AB=AC,∴BH=BC,∵BC=6,∴BH=3,由①知:=,即=,∴BE=,∴EC=6﹣,∵AH⊥BC,EF⊥AC,∴∠AHB=∠EFC=90°,∵∠OBE=∠C,∴△ABH~△EFC,∴=,∴=,∴FC=﹣.3.(1)证明:如图,∵AB为⊙O的直径,∴∠ADB=90°,∠AEB=90°,∴AD⊥BC,AE⊥BE,∵AB=AC,∴BD=DC,∵BO=OA,∴OD为△BAC的中位线,∴OD∥AC,∴OD⊥BE.(2)∵△AGE≌△DGF,∴AE=DF,∵AO=OB,FO∥AE,∴EF=FB,∴OF=AE=DF,∵AB=2,∴OD=AB=1,∴DF=OD=,∴AE=DF=.4.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠ABE=∠DBC=60°,∴∠DBE=∠ABC,又∵AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=AD,即AB+BM=AD,∴AB+AC=AD;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=m,BD=n,∴=.5.(1)证明:由已知得OP•OP'=r2,∵OP'=PA,∴PP'=PA+AP'=OP'+P'A=r,∴,∴点P'为线段OP的一个黄金分割点;(2)证明:∵P'B⊥OP,∴∠OP'B=90°,∵OP•OP'=r2,∴,∴△P'OB∽△BOP,∴∠OBP=∠OP'B=90°,∴PB⊥OB,∴PB为⊙O的切线;(3)解:如图③,过点O作OH⊥CD于H,连接OD,∵CE=6,∴⊙O的半径为3,即r=3,∵点P'是点P关于⊙O的“反演点”,∴OP•OP'=32=9,∴OP'=,∵OH≤OP≤OD,∵∠CEB=90°,CE=6,DE=8,∴CD=10,∵sin∠C===,∴OH=OC=,由勾股定理得:OD===,∵OP=,OH≤OP≤OD,则≤OP'≤.故答案为:≤OP'≤.6.解:(1)∵点D是的中点,∴,∵点E是的中点,∴,∴∠CDE=∠BCG,∴△DFC∽△CGE;(2)由(1)知,∠ACD=∠CED,∠CDE=∠BCG,∴∠ACD+∠CDE=∠CED+∠BCG,∴∠CFG=∠CGF,∵CF=CG,∵∠ACB=60°,∴△CFG是等边三角形,如图1,过点C作CH⊥FG于H,∴∠DHC=90°,设FH=a,∴∠FCH=30°,∴FG=CF=2a,CH=a,∵DF=3,∴DH=DF+FH=3+a,∵∠GCE=∠CDE,tan∠GCE=,∴tan∠CDE=,在Rt△CHD中,tan∠CDE==,∴=,∴a=1,∴FG=2a=2;(3)如图2,连接AE,则∠AEB=∠ACB=60°,∠DAE=∠CAD+∠CAE=∠ACD+∠CDF=∠CFG=60°,∴∠AEB=∠DAE,∴BE∥AD,设BE与AD的距离为h,∴=,∴S△ABE=•S△ADE,∵D,E分别是,的中点,∴CD=AD,BE=CE,∴S△ABE=•S△ADE,过点D作DM⊥AC于M,∵,∴AD=CD,∴AC=2CM,由(2)知,△CFG是等边三角形,∴∠CFG=60°,∴∠DFM=60°,∴∠MDF=30°,设MF=m,则DM=m,DF=2m,∵=x,∴CF=x•DF=2mx,∴CG=CF=2mx,由(1)知,△DFC∽△CGE,∴,∴=,∴S△ABE=•S△ADE=S△ADE,∴S四边形ABED=S△ADE+S△ABE=S△ADE,∵MF=m,CF=x•DF=2mx,∴CM=MF+CF=m+2mx=(2x+1)m,∴AC=2CM=2(2x+1)m,∴AF=AC﹣CF=2(2x+1)m﹣2mx=2(x+1)m,过点A作AN⊥DF于N,∴S△ADF=AF•DM=DF•AN,∴AN===(x+1)m,过点C作CP⊥FG,由(2)知,PF=CF=mx,CP=mx,∴y===•=•=•=•=.7.解:(1)设等腰三角形的顶角∠A为2x,则等腰三角形的底角为90°﹣x,∵等腰△ABC是“差倍角三角形”,∴90°﹣x﹣2x=2•2x或2x﹣(90°﹣x)=2(90°﹣x),∴x=或x=54°,∴∠A=2x=或∠A=2x=108°,∴顶角∠A的度数为或108°;(2)如图1,在BC上取点D,使得BD=1,连结AD,∴CD=BC﹣BD=8,∵AC=8,∴CD=AC,∴∠CAD=∠ADC,∵AB=3,AC=8,BC=9,∴==,=,∴,∵∠ABD∽△CBA,∴∠BAD=∠C,∴∠ADC=∠CAD,∴∠BAC﹣∠BAD=∠CAD=∠ADC,∴∠BAC﹣∠C=∠ADC,∵∠ADC=∠B+∠BAD=∠B+∠C,∴∠BAC﹣∠C=B+∠C,∴∠BAC﹣∠B=2∠C,∴△ABC是关于∠C的“差倍角三角形”;(3)①∵==,∴∠BAC=∠AEB=∠ACB=∠DAE,设∠BAC=∠AEB=∠ACB=∠DAE=α,∵△ABE是关于∠AEB的“差倍角三角形”,∴∠BAE﹣∠ABE=2∠AEB,∴α+∠CAD+α﹣∠ABE=2α,∴∠CAD=∠ABE,∴,∴DE∥AC,∵,∴CD∥BE,∴四边形CDEF是平行四边形;②∵∠BAF=∠AEB,∠ABF=∠EBA,∴△ABF∽△EBA,∴==,∴BE===x2,∴EF=BE﹣BF=x2﹣1,∵四边形CDEF是平行四边形,∴CD=EF=x2﹣1,∵,∴AE=CD=x2﹣1,∴AF===,过点B作BM⊥AC于M,EN⊥AC于N,∴BM∥EN,∴△BFM∽△EFN,∴=,∴BM=EN,过点G作GH⊥AE于H,∵∠BAC=ACB=∠AEG=∠EAG,∴△ABC∽△AGE,∴,∴==,∴=,∴y===•=•=.8.解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴∠DAB=30°,∴OD=AO,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==π;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴△ACD∽△BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB===2,∵DE∥AC,∴,∴AE=×2=.9.解:(1)如图1,连接OA,OB,∵CD是⊙O的直径,弦AB⊥CD,∴=,∴∠AOD=∠BOD,∵∠ACD=30°,∴∠AOD=60°,∴∠AOB=120°,∴劣弧AB的度数是120°;(2)①∵CD⊥AB,∴AE=BE=1,∠AEC=90°,在Rt△AEC中,tan∠CAE==2,∴CE=2,设OE=x,则OC=2﹣x=OB,在Rt△OEB中,由勾股定理得:OB2=OE2+BE2,即(2﹣x)2=x2+1,解得:x=,∴OE=,∵OG=OB,AE=BE,∴OE是△AGB的中位线,∴AG=2OE=;②∵BG是⊙O的直径,∴∠BAG=90°,∵∠BAG=∠BEO=90°,∴OC∥AG,∴∠C=∠GAC,∵∠GFA=∠OFC,∴△GAF∽△OCF,∴,∵,且GF+BF=2OG,∴OG=•GF,∵OF=OG﹣GF,∴OF=,∴=,如图3,连接OA,∵OA=OC,AG=2OE,∴==,∵tan∠CAE==x,∴CE=x•AE=OA+OE,∴AE=,Rt△AOE中,OA2=OE2+AE2,∴OA2=OE2+()2,即OA2=OE2+(OA2+2OA•OE+OE2),两边同时除以OA2,得:1=()2+(+1)2,设=a,则原方程变形为:a2+(a2+2a+1)﹣1=0,(1+)a2++﹣1=0,(a+1)[(1+)a+(﹣1)]=0,∴a1=﹣1(舍),a2=,∴=,∴=,∴y=﹣.10.(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠PAF=∠PBC,∵AP平分∠BAF,∴∠PAF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠PAF=∠PAB,∴△ACE∽△APB,∴,∴PA•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,∴S△ABC=AB•CQ=,∴PA•AE=S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时PA•AE=×=80.。

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

备战2022最新年九年级中考数学考点训练——几何专题:《圆的综合》(一)1.对于平面内⊙C和⊙C外一点P,若过点P的直线l与⊙C有两个不同的公共点M,N,点Q为直线l上的另一点,且满足(如图1所示),则称点Q是点P关于⊙O的密切点.已知在平面直角坐标系xOy中,⊙O的半径为2,点P(4,0).(1)在点D(﹣2,1),E(1,0),F(3,)中,是点P关于⊙O的密切点的为.(2)设直线l方程为y=kx+b,如图2所示,①k=﹣时,求出点P关于O的密切点Q的坐标;②⊙T的圆心为T(t,0),半径为2,若⊙T上存在点P关于⊙O 的密切点,直接写出t的取值范围.2.A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB 边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O 上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T 与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.3.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tanB=,tanC=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.4.如图,⊙O是△ABD的外接圆,AB为直径,点C是弧AD的中点,连接OC,BC分别交AD于点F,E.(1)求证:∠ABD=2∠C.(2)若AB=10,BC=8,求BD的长.5.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.6.如图,已知Rt△ABC中,∠A=30°,AC=6.边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线).当等边△DEF的边DF、EF与Rt△ABC的边AB分别相交于点M、N(M、N不与A、B重合)时,设AD=x.(1)则△FMN的形状是,△ADM的形状是;(2)△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出的取值范围;(3)若以点M为圆心,MN为半径的圆与边AC、EF同时相切,求此时MN的长.7.如图,以点O为圆心,OE为半径作优弧EF,连接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取点A,B(点B在点A 的顺时针方向)且使AB=2,以AB为边向弧内作正三角形ABC.(1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是;点C到直线EF的最大距离是.(2)思考:当点B在直线OE上时,求点C到OE的距离,在备用图1中画出示意图,并写出计算过程.(3)探究:当BC与OE垂直或平行时,直接写出点C到OE的距离.8.如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON =OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.9.如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.10.如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC 于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.(1)填空:AC=;∠F=.(2)当BD=DE时,证明:△ABC≌△EAF.(3)△EAF面积的最小值是.(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围.参考答案1.解:(1)当圆心在坐标原点时,直线l为y=0时,∵⊙O的半径为2,点P(4,0).∴M(2,0),N(﹣2,0),PM=2,PN=6,=,∵,∴=,设Q点坐标为(x,y),则QM=|2﹣x|,QN=|x﹣(﹣2)|=|x+2|,∴=,∴|2+x|=3|2﹣x|,∴2+x=6﹣3x,或2+x=3x﹣6,∴x=1,或x=4,∴E(1,0)是点P关于⊙O的密切点.故答案为:E.(2)①依题意直线l:y=kx+b过定点P(4,0),∵k=﹣∴将P(4,0)代入y=﹣x+b得:0=﹣×4+b,∴b=,∴y=﹣x+.如图,作MA⊥x轴于点A,NB垂直x轴于点B,设M(x,﹣x+),由OM=2得:x2+=4,∴5x2﹣4x﹣10=0,则M,N两点的横坐标xM,xN是方程5x2﹣4x﹣10=0的两根,解得xM=,xN=,∴AB=,PA=,PB=,∵,∴=,=,∴=,∴HA=,∴OH=OA﹣HA=﹣=1,∴Q(1,1).②点P关于⊙O的密切点的轨迹为切点弦ST(不含端点),如图所示:∴﹣1≤t<0或2<t≤3.2.解:(1)如图1,∵P1(1,0),A(0,﹣5),B(4,3),∴AB==4,P1A==,P1B==3,∴P1不在以AB为直径的圆弧上,故∠AP1B不是AB关于⊙O的内直角,∵P2(0,3),A(0,﹣5),B(4,3),∴P2A=8,AB=4,P2B=4,∴P2A2+P2B2=AB2,∴∠AP2B=90°,∴∠AP2B是AB关于⊙O的内直角,同理可得,P3B2+P3A2=AB2,∴∠AP3B是AB关于⊙O的内直角,故答案为:∠AP2B,∠AP3B;(2)∵∠APB是AB关于⊙O的内直角,∴∠APB=90°,且点P在⊙O的内部,∴满足条件的点P形成的图形为如图2中的半圆H(点A,B均不能取到),过点B作BD⊥y轴于点D,∵A(0,﹣5),B(4,3),∴BD=4,AD=8,并可求出直线AB的解析式为y=2x﹣5,∴当直线y=2x+b过直径AB时,b=﹣5,连接OB,作直线OH交半圆于点E,过点E作直线EF∥AB,交y 轴于点F,∵OA=OB,AH=BH,∴EH⊥AB,∴EH⊥EF,∴EF是半圆H的切线.∵∠OAH=∠OAH,∠OHB=∠BDA=90°,∴△OAH∽△BAD,∴,∴OH=AH=EH,∴OH=EO,∵∠EOF=∠AOH,∠FEO=∠AHO=90°,∴△EOF≌△HOA(ASA),∴OF=OA=5,∵EF∥AB,直线AB的解析式为y=2x﹣5,∴直线EF的解析式为y=2x+5,此时b=5,∴b的取值范围是﹣5<b≤5.(3)∵对于线段MN上每一个点H,都存在点T,使∠DHE是DE 关于⊙T的最佳内直角,∴点T一定在∠DHE的边上,∵TD=4,∠DHT=90°,线段MN上任意一点(不包含点M)都必须在以TD为直径的圆上,该圆的半径为2,∴当点N在该圆的最高点时,n有最大值,即n的最大值为2.分两种情况:①若点H不与点M重合,那么点T必须在边HE上,此时∠DHT =90°,∴点H在以DT为直径的圆上,如图3,当⊙G与MN相切时,GH⊥MN,∵OM=1,ON=2,∴MN==,∵∠GMH=∠OMN,∠GHM=∠NOM,ON=GH=2,∴△GHM≌△NOM(ASA),∴MN=GM=,∴OG=﹣1,∴OT=+1,当T与M重合时,t=1,∴此时t的取值范围是﹣﹣1≤t<1,②若点H与点M重合时,临界位置有两个,一个是当点T与M重合时,t=1,另一个是当TM=4时,t=5,∴此时t的取值范围是1≤t<5,综合以上可得,t的取值范围是﹣﹣1≤t<5.3.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a2=﹣2(舍去),∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,解得a1=2,(舍去)∴BD=3+a=3+2=5.∴或5.(3)①如答图4,连接AD,BD,∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.4.(1)证明:∵C是的中点,∴=,∴∠ABC=∠CBD,∵OB=OC,∴∠ABC=∠C,∴∠ABC=∠CBD=∠C,∴∠ABD=∠ABC+CBD=2∠C;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴AC==6,∵C是的中点,∴OC⊥AD,∴OA2﹣OF2=AF2=AC2﹣CF2,∴52﹣OF2=62﹣(5﹣OF)2,∴OF=1.4,又∵O是AB的中点,∴BD=2OF=2.8.5.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.6.解:(1)如图1,∵△DEF是等边三角形,∴∠FDE=∠F=60°.∵∠A=30°,∴∠AMD=∠FDE﹣∠A=30°,∴∠FMN=∠AMD=30°,∴∠MNF=90°,即△FMN是直角三角形,∵∠FDE=60°,∴∠AMD=∠FDE﹣∠A=30°,∴∠AMD=∠A,∴DM=DA,∴△ADM是等腰三角形;故答案为:直角三角形,等腰三角形;(2)如图2,△ADM是等腰三角形,∴DM=AD=x,FM=4﹣x,又∵∠FED=60°,∠A=30°,∴∠FNM=90°,∴MN=MF•sinF=(4﹣x),FN=,∴y==,=.当0<x≤2时,∴y=S四边形DENM=S△FDE﹣S△FMN=4,当2≤x<4时,CD=6﹣x,∵∠BCE=90°,∠PDC=60°,∴PC=(6﹣x),∴,=.(3)如图3,点M作MG⊥AC于点G,由(2)得DM=x,∵∠MDG=60°,∴MG=,MNF=90°∴MN⊥FC要使以点M为圆心,MN长为半径的圆与边AC、EF相切,则有MG=MN,∴,解得:x=2,∴圆的半径MN=.7.解:(1)如图1,连接OA、OB、OC,延长OC交AB于点G,在正三角形ABC中,AB=BC=AC=2,∵OA=OB,AC=BC,∴OC垂直平分AB,∴AG=AB=1,∴在Rt△AGC中,由勾股定理得:CG===,在Rt△AGO中,由勾股定理得:OG===2,∴OC=2﹣;如图2,延长CO交EF于点H,当CO⊥EF时,点C到直线EF的距离最大,最大距离为CH的长,∵OE=OF,CO⊥EF,∴CO平分∠EOF,∵∠EOF=120°,∴∠EOH=∠EOF=60°,在Rt△EOH中,cos∠EOH=,∴cos60°==,∴OH=,∴CH=CO+OH=,∴点C到直线EF的最大距离是.故答案为:2﹣;.(2)如图3,当点B在直线OE上时,由OA=OB,CA=CB可知,点O,C都在线段AB的垂直平分线上,过点C作AB的垂线,垂足为G,则G为AB中点,直线CG过点O.∴由∠COM=∠BOG,∠CMO=∠BGO∴△OCM∽△OBG,∴=,∴=,∴CM=,∴点C到OE的距离为.(3)如图4,当BC⊥OE时,设垂足为点M,∵∠EOF=120°,∴∠COM=180°﹣120°=60°,∴在Rt△COM中,sin∠COM=,∴sin60°==,∴CM=CO=(2﹣)=﹣;如图5,当BC∥OE时,过点C作CN⊥OE,垂足为N,∵BC∥OE,∴∠CON=∠GCB=30°,∴在Rt△CON中,sin∠CON=,∴sin30°==,∴CN=CO=(2﹣)=﹣;综上所述,当BC与OE垂直或平行时,点C到OE的距离为﹣或﹣.8.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6﹣3t,ON=t.若△ABO∽△MNO,则=,即=,解得t=1.若△ABO∽△NMO,则=,即=,解得t=1.8.综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.(2)①当0<t<2时,在ON的延长线的截取ND=OM,连接CD、CN、CM,如图所示:∵直线y=x与x轴的夹角为450,∴OC平分∠AOB.∴∠AOC=∠BOC.∴CN=CM.又∵在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,∴∠CND=∠CMO.∴△CND≌△CMO(SAS).∴CD=CO,∠DCN=∠OCM.又∵∠AOB=90°,∴MN为⊙O的直径,∴∠MCN=90°.∴∠OCM+∠OCN=90°.∴∠DCN+∠OCN=90°.∴∠OCD=90°.又∵CD=CO,∴OD=OC.∴ON+ND=OC.∴OM+ON=OC.②当t>2时,过点C作CD⊥OC交ON于点D,连接CM、CN,如图所示:∵∠COD=45°,∴△CDO为等腰直角三角形,∴OD=OC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM(SAS).∴DN=OM.又∵OD=OC,∴ON﹣DN=OC.∴ON﹣OM=OC.9.证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.10.解:(1)∵∠BAC=90°,∠B=60°,AB=2,tanB=,∴AC=AB•tanB=2tan60°=2;∵AE⊥EF,∴∠AEF=90°,∵∠EAF=∠B=60°,∴∠F=90°﹣∠EAF=90°﹣60°=30°.故答案为:2,30°;(2)证明:当BD=DE时,∵AD⊥BC于D,∴AB=AE,∵∠AEF=90°,∠BAC=90°,∴∠AEF=∠BAC,又∠EAF=∠B,∴△ABC≌△EAF(ASA);(3)∵∠AEF=90°,∠EAF=60°,tan∠EAF=,∴EF=AE•tan∠EAF=AE•tan60°=AE,∴S△EAF=AE•EF=AE×AE=AE2,当AE⊥BC时,AE最短,S△EAF最小,此时∠AEB=90°,sinB=,∴AE=AB•sinB=2sin60°=2×=,S△EAF=AE2=×3=,∴△EAF面积的最小值是,故答案为:;(4)当△EAF内心恰好落在AC上时,设△EAF的内心为N,连接EN,如图:∵N是△EAF的内心,∴AN平分∠EAF,EN平分∠AEF,∴∠EAC=∠AEF=×60°=30°,∵∠BAC=90°,∴∠BAE=∠BAC﹣∠EAC=90°﹣30°=60°,又∵∠B=60°,∴△ABE是等边三角形,∴AE=AB=2,∵E为BC上的一点,不与B、C重合,由(1)可知AC=2,∴当△EAF的内心在△ABC的外部时,.故答案为:.。

中考圆综合解题技巧

中考圆综合解题技巧

教育教学jiao yu jiao xue69中考圆综合解题技巧◎孙旺生摘要:运用圆的五条结论作辅助线是解决初中几何圆中重要的做题思路,其本质是利用三角形的边和角的关系,运用勾股定理和三角形及其性质。

将分散的线段和角集中在一起,从而进行有效的排列组合,解决实际问题。

关键词:圆;辅助线;初中数学一、问题的提出陕西数学中考命题圆综合题型是试卷中重难点题型[1],在陕西中考中占比重较大:陕西中考数学主要依据这类题型来体现区分度来完成中考的目标,当前中考综合题相当于简单知识点的复合应用,对于学生的能力考察、知识考察更加明显,圆综合题是完美的凸显了中考数学中数形结合的思想,对于学生的思维能力,创新能力会有大幅度的提升.本文通过大量的实例来说明陕西省中考圆综合的解答技巧,进而达到提升学生能力的效果。

二、思路及解答探究(一)切线连切点例1、如图1所示,已知⊙o 的半径为4,点B 是圆外一点,连接OB,过点B 作⊙o 的切线BD,切点为D,其中OB=6,过点A 作切线BD 的垂线,延长BO 交⊙o 于点A,垂足为C,求证:AD 平分∠BAC;图1 图2分析:连接OD,由BD 是⊙O 的切线,AC ⊥BD,易证得OD ∥AC,继而可证得AD 平分∠BAC;证明:连接OD,如图2∵BD 是⊙o 的切线,OD ⊥BD,AC ⊥BD,∴OD // AC, ∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2, 即AD 平分∠BAC 说明:这道题目考查了圆的知识点,圆切线的性质以及相似三角形的判定与性质,在解决此类题目时,一定要注意掌握辅助线的做法,注意掌握数形结合思想的应用[2]。

(二)等边对等角,等角对等边图3 图4例2、如图3,已知AB 是⊙o 的一根弦,作BC ⊥A 交圆于点C,过点C 作⊙o 的切线,交AB 的延长线于点D 且取A E=DE,EF //BC,EF 和DC 相较于F 且连接AF,AF 和BC 相交于点G,证明:FC=FG分析:证出∠DCB=∠G,对顶角相等得出∠GCF=∠G;证明:(1)如图4,EF//BC,AB ⊥BG,EF ⊥AD.又∵E 是AD 的中点,∴ FA=FD,∠FAD=∠D 又∵GB ⊥AB,∠GAB+∠G=∠D+∠1=90°∴∠1=∠G.而∠1=∠2,∴∠2=∠G. ∴FC=FG说明:题目运用了等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理。

九年级上册数学 圆 几何综合中考真题汇编[解析版]

九年级上册数学 圆 几何综合中考真题汇编[解析版]

九年级上册数学 圆 几何综合中考真题汇编[解析版]一、初三数学 圆易错题压轴题(难)1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得()()30103a =++,∴33a =. ∴()()313y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.2.如图,矩形ABCD 中,BC =8,点F 是AB 边上一点(不与点B 重合)△BCF 的外接圆交对角线BD 于点E ,连结CF 交BD 于点G . (1)求证:∠ECG =∠BDC .(2)当AB =6时,在点F 的整个运动过程中. ①若BF =22时,求CE 的长.②当△CEG 为等腰三角形时,求所有满足条件的BE 的长.(3)过点E 作△BCF 外接圆的切线交AD 于点P .若PE ∥CF 且CF =6PE ,记△DEP 的面积为S 1,△CDE 的面积为S 2,请直接写出12S S 的值.【答案】(1)详见解析;(2182当BE 为10,395或445时,△CEG 为等腰三角形;(3)724. 【解析】 【分析】(1)根据平行线的性质得出∠ABD =∠BDC ,根据圆周角定理得出∠ABD =∠ECG ,即可证得结论;(2)根据勾股定理求得BD =10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得:当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445;(3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果. 【详解】 (1)∵AB ∥CD . ∴∠ABD =∠BDC , ∵∠ABD =∠ECG , ∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°, ∵∠EFC =∠CBD . ∴sin ∠EFC =sin ∠CBD , ∴35CE CD CF BD ==∴CF∴CE ②Ⅰ、当EG =CG 时,∠GEC =∠GCE =∠ABD =∠BDC .∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EFFC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.3.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似4.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.5.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.6.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t<1时,求矩形DEGF的最大面积;(3)点Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.【答案】(1)BQ=5t,DF=23t;(2)16;(3)t的值为35或3.【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可. 试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.7.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点(不与A 、B 重合),D 为的AC 中点,过点D 作弦DE ⊥AB 于F ,P 是BA 延长线上一点,且∠PEA =∠B .(1)求证:PE 是⊙O 的切线;(2)连接CA 与DE 相交于点G ,CA 的延长线交PE 于H ,求证:HE =HG ; (3)若tan ∠P =512,试求AHAG的值. 【答案】(1)证明见解析;(2)证明见解析;(3)1310AH AG =. 【解析】 【分析】(1)连接OE ,由圆周角定理证得∠EAB+∠B =90°,可得出∠OAE =∠AEO ,则∠PEA+∠AEO =90°,即∠PEO =90°,则结论得证;(2)连接OD ,证得∠AOD =∠AGF ,∠B =∠AEF ,可得出∠PEF =2∠B ,∠AOD =2∠B ,可证得∠PEF =∠AOD =∠AGF ,则结论得证; (3)可得出tan ∠P =tan ∠ODF =512OF DF =,设OF =5x ,则DF =12x ,求出AE ,BE ,得出23AE BE =,证明△PEA ∽△PBE ,得出23PA PE =,过点H 作HK ⊥PA 于点K ,证明∠P =∠PAH ,得出PH =AH ,设HK =5a ,PK =12a ,得出PH =13a ,可得出AH =13a ,AG =10a,则可得出答案.【详解】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为AC的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴AE AD=,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=512 OFDF=,设OF=5x,则DF=12x,∴OD22OF DF+13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE22AF EF+13,BE22EF BF+13,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴41323613PA AEPE BE===,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH=AH,过点H作HK⊥PA于点K,∴PK=AK,∴13 PKPE=,∵tan ∠P =512, 设HK =5a ,PK =12a , ∴PH =13a , ∴AH =13a ,PE =36a , ∴HE =HG =36a ﹣13a =23a , ∴AG =GH ﹣AH =23a ﹣13a =10a ,∴13131010AH a AG a ==. 【点睛】本题是圆的综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,切线的判定,解直角三角形,勾股定理,等腰三角形的性质等知识,掌握相似三角形的判定定和性质定理及方程思想是解题的关键.8.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长; (3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】 【分析】 (1)作EHBM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MFAF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NFAF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EHBM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH =∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭解得:2516r =∵,E O 分别为,BA BM 中点∴BAM BEO OBE ∠=∠=∠ 又∵CMN BAM ∠=∠ ∴CMN OBE ∠=∠ ∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-=(2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠ ∴AMB CNM ∠=∠ 又∵AMB MAD ∠=∠ ∴MAD CNM ∠=∠ 又∵AFM NFD ∠=∠ ∴AFM NFD ∆~∆∴AF MFAF DF NF MF NF DF =⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NFAF MF NF DF DF MF =⇒=② 由①⨯②得;22AF NF AF NF =⇒= ∴NF DF = ∴5MN AD == 故MN 的长为5; (3)作如图:∵圆O 与圆'O 外切且均与圆N 内切 设圆N 半径为R ,圆O 半径为r ∴'=NO R r NO -= ∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO ∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒ ∴A 点在圆上 ∴54cos 5AB B BM BM === 解得:254BM =O 的半径长为258【点睛】本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.9.已知点A 为⊙O 外一点,连接AO ,交⊙O 于点P ,AO=6.点B 为⊙O 上一点,连接BP ,过点A 作CA ⊥AO ,交BP 延长线于点C ,AC=AB .(1)判断直线AB 与⊙O 的位置关系,并说明理由. (2)若3 PB 的长.(3)若在⊙O 上存在点E ,使△EAC 是以AC 为底的等腰三角形,则⊙O 的半径r 的取值范围是___________.【答案】(1)AB 与⊙O 相切 ,理由见解析;(2)33PB =;(3)6565r ≤< 【解析】 【分析】(1)连接OB ,有∠OPB=∠OBP ,又AC=AB ,则∠C=∠ABP ,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC ,利用勾股定理先求出半径,作OH ⊥BP 与H ,利用相似三角形的判定和性质,即可求出PB 的长度; (3)根据题意得出OE=12AC=122216r 2-22162r r -≤,即可求出取值范围.【详解】解:(1)连接OB ,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH =∴23PH =, ∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤,∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6,即565r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.10.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值; ②在A 1(5,0),A 2(0,10),A 322)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y 3=x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围;(3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:3l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD ===则点D 到⊙O 1-,即直线:l y b =+上的点到⊙O 的最小值为1-要使直线:l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则1418≥≤,解得:1m ≤≤或1m ≤≤- 故当1m 时,m的取值范围为31m ≤≤④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O的最小值为11则418m -≥⎧≤,解得:4m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O11;点T 到⊙O11则1418≥≤,解得:1m ≤≤--1m ≤≤(舍去)故当2m <-时,m 的取值范围为774m -≤≤-综上,m 的取值范围为3771m ≤≤-或774m -≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.。

中考数学专题训练---圆的综合的综合题分类

中考数学专题训练---圆的综合的综合题分类

中考数学专题训练---圆的综合的综合题分类一、圆的综合1.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).(1)若∠BOH=30°,求点H的坐标;(2)求证:直线PC是⊙A的切线;(3)若OD=10,求⊙A的半径.【答案】(1)(132)详见解析;(3)5 3 .【解析】【分析】(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】(1)解:如图,过点H作HM⊥y轴,垂足为M.∵四边形OBCD是平行四边形,∴∠B=∠ODC∵四边形OHCD是圆内接四边形∴∠OHB=∠ODC∴∠OHB=∠B∴OH=OB=2∴在Rt△OMH中,∵∠BOH=30°,∴MH=12OH=1,33∴点H的坐标为(13(2)连接AC.∵OA=AD,∴∠DOF=∠ADO∴∠DAE=2∠DOF∵∠PCD=2∠DOF,∴∠PCD=∠DAE∵OB与⊙O相切于点A∴OB⊥OF∵OB∥CD∴CD⊥AF∴∠DAE=∠CAE∴∠PCD=∠CAE∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;(3)解:⊙O的半径为r.在Rt△OED中,DE=12CD=12OB=1,OD=10,∴OE═3∵OA=AD=r,AE=3﹣r.在Rt△DEA中,根据勾股定理得,r2﹣(3﹣r)2=1解得r=53.【点睛】此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.2.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知B O′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.3.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴3;连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG ,BF=BE ;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD 的面积为203. 4.如图所示,以Rt △ABC 的直角边AB 为直径作圆O ,与斜边交于点D ,E 为BC 边上的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)连接OE ,AE ,当∠CAB 为何值时,四边形AOED 是平行四边形?并在此条件下求sin ∠CAE 的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,5, ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.5.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.6.如图1,延长⊙O的直径AB至点C,使得BC=12AB,点P是⊙O上半部分的一个动点(点P不与A、B重合),连结OP,CP.(1)∠C的最大度数为;(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP=OPOC =24=12,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.7.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当BC=233时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.【答案】(1)直线FD与以AB为直径的⊙O相切,理由见解析;(2)222.【解析】试题分析:(1)根据已知及切线的判定证明得,直线FD与以AB为直径的⊙O相切;(2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC的长.试题解析:(1)判断:直线FD与以AB为直径的⊙O相切.证明:如图,作以AB为直径的⊙O;∵△ADB是将△ACB沿AB边所在的直线翻折得到的,∴△ADB≌△ACB,∴∠ADB=∠ACB=90°.∵O为AB的中点,连接DO,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.8.如图,AB是半圆O的直径,半径OC⊥AB,OB=4,D是OB的中点,点E是弧BC上的动点,连接AE,DE.(1)当点E是弧BC的中点时,求△ADE的面积;(2)若3tan 2AED ∠= ,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADE S =;(2)1655AE =;(3)23m = ,22m =,71m =-.【解析】【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF AD EF BD=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值.【详解】解:(1)如图,作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,∵点E 是弧BC 中点,∴∠COE =∠EOH =45°,∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH ,(2+a )2=(6+a )(2﹣a ), 解得a =222±-,∴a =222-,EH=22,S △ADE =1622AD EH =;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x∵DF ∥BE ∴AF AD EF BD = ∴622AF x ==3 ∴AF =6x 在Rt △AFD 中,AF 2+DF 2=AD 2(6x )2+(3x )2=(6)2解得x =255AE =8x =1655 (3)当点D 为等腰直角三角形直角顶点时,如图设DH =a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH ,∴∠DFO=∠EDH∴△ODF ≌△HED∴OD =EH =2在Rt △ABE 中,EH 2=AH•BH(2)2=(6+a )•(2﹣a )解得a =±232-m =23当点E 为等腰直角三角形直角顶点时,如图同理得△EFG ≌△DEH设DH=a,则GE=a,EH=FG=2+a在Rt△ABE中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=222±-∴m=22当点F为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)解得a=71m71【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.9.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1.【解析】【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系(2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O ,证明CDB AEB ∆∆≌,得到CD AE =,EB BD =,根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案.【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌,∴AE=CD ,BE=BD ,∴CD+AD=AD+AE=DE ,∵BDE ∆是等腰直角三角形,∴2BD ,∴2BD ,2.(2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠,∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠,∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =,∴CDB AEB ∆∆≌,∴CD AE =,EB BD =,∴BD ∆为等腰直角三角形,2DE BD =. ∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH == ∴21BD AD ==+.【点睛】 本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.10.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.【详解】(1)连接OC ,∵OA =OC ,∴∠A =∠OCA =28°,∴∠POC =56°,∵CP 是⊙O 的切线,∴∠OCP =90°,∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径,∴OD ⊥AC ,∵∠CAB =12°,∴∠AOE =78°,∴∠DCA =39°,∵∠P =∠DCA ﹣∠CAB ,∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.11.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2)354.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD225DE CE=-=,证明△CDE∽△DBE,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.∵AB=AC,∴∠ABC=∠ACB.∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.∵CE=2,∠BCD=90°,∴∠DCE=90°,∴CD225DE CE=-=∵∠BDE=90°,CD⊥BE,∴∠DCE=∠BDE=90°.∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 533522⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析;【解析】【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=,OA OD =,ADO OAD ∴∠=∠,PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=, PFA DFE ∠=∠,90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠,PA PF ∴=.【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.13.如图,⊙O 的直径AB =8,C 为圆周上一点,AC =4,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E .(1)求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE∥OB,又∵CO∥EB∴四边形OBEC为平行四边形.又∵OB=OC=4.∴四边形OBEC是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.14.如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点M,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°,∴332∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)331534【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.15.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.【答案】(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH313.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明. (3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC , ∴2322AH =+,∴31AH =-,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴2322CH ,=+∴31CH =-,∴()233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.。

九年级上册数学 圆 几何综合(篇)(Word版 含解析)

九年级上册数学 圆 几何综合(篇)(Word版 含解析)

九年级上册数学圆几何综合(篇)(Word版含解析)一、初三数学圆易错题压轴题(难)1.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.(1)如图1,求证:GD=GF;(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;(3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长.【答案】(1)见解析;(2)∠ADF=45°;(3)1810.【解析】【分析】(1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°;(3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】解:(1)证明:∵DE⊥AB∴∠BED=90°∴∠A+∠ADE=90°∵∠ADC=90°∴∠GDF+∠ADE=90°∴∠A=∠GDF∵BD BD∴∠A=∠GFD∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD =∵∠BFE =∠EBF =45° ∴EF =BE∵∠DAE =∠ADE =45° ∴DE =AE ∴DF =AB =∵四边形ABCD 内接于⊙O ∴∠DAB +∠BCD =180° ∴∠BCD =135° ∴∠BCG =45°=∠CBG ∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP ∴△GCP ≌△GBP (SAS ) ∴∠PCG =∠PBG =90° ∴∠PCD =∠CDH =∠DHP =90° ∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90°令CN =m ,则PN =6﹣m ,MN =m +3 在Rt △PMN 中,∵PM 2+PN 2=MN 2 ∴32+(6﹣m )2=(m +3)2,解得m =2 ∴PN =4过点N 作NS ⊥DP 于S , 在Rt △PSN 中,PS =SN =22 DS =62﹣22=42SN 221tan DS 242SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6 ∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O , ∴∠DAF +∠DKF =180° ∴∠DAF =180°﹣∠DKF =∠FKR 在Rt △DFR 中,∵DF =1122,tan 2FDR ∠=∴12102410,FR DR ==在Rt △FKR 中,∵FR =1210tan ∠FKR =2 ∴KR =6105∴DK =DR ﹣KR =24106101810=-=.【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.2.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3331331+- 【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形 ∴∠BOC=60° ∵点D 是BC 的中点 ∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x 4+=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=- 解得:331x 4-=∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.3.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似4.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q 以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m为何值时,⊙O与△ABC的一边相切?②直接写出点F所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10﹣433时,⊙O 与△ABC 的边相切.②点F 的运动路径的长为1136+572. 【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯===3tan30(2)3EP AP m =⋅=+⋅, 533(2)m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin603OB ON ==, 4310AO ∴=-, 43123AP ∴=-, 432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。

人教版数学九年级初三上册 中考复习圆的综合题 名师教学教案 教学设计反思

人教版数学九年级初三上册 中考复习圆的综合题 名师教学教案 教学设计反思

《中考复习圆的综合题》微课敎學设计玉州区名山中学庞业献敎學过程∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B= ,⊙O的半径是4,求EC 的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.四、玉林中考23题总结满分技法1.解有关切线问题的基本思路:抓“相切”,连接圆心与切点2.证明切线的方法:①若已知直线与圆的公共点,则连接圆心与公共点,证出所连半径垂直于已知直线即可.即“连半径,证垂线”;②若未给出直线与圆的公共点,则过圆心作已知直线的垂线段,证出所作垂线段的长度与圆的半径相等即可,即“作垂直,证半径”3.证明两角相等的方法①在两个直角三角形中通过同角或等角的余角相等来证明②利用半径相等,转化到等腰三角形中利用等边对等角来证明4.证明两线段相等的方法:敎學过程①若所证两线段相连不共线,则可以考虑将两条线段放到一个三角形中,利用等腰或等边三角形等角对等边来证明;②若所证两线段相连共线,则可以考虑等腰三角形三线合一或直角三角形斜边上的中线等于斜边的半来证明;③若所证两线段平行,则可以考虑特殊四边形对边相等来证明5.求线段长时②题干中出现三角函数时,一般考虑用三角函数解题;②若题于中不含三角函数,一般考虑用相似三角形或勾股定理解题。

五、玉林中考23题练习(2019.玉林)如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O 分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.敎學过程让学生先做后点评。

中考圆的综合题

中考圆的综合题

圆的综合题
问题分析
垂径定理+勾股定理+相似
圆的综合题
问题分析
导角+ 解30°的直角三角形+垂径定理
圆的综合题
问题分析
圆周角+垂径定理+切线
可以用辅助圆的几何综合题
问题分析Βιβλιοθήκη 辅助圆简化导角过程可以用辅助圆的几何综合题
问题分析
辅助圆简化导角过程,开启一 系列对称和辅助圆的问题
可以用辅助圆的几何综合题
总结: 圆综=圆+相似+三角函数
圆的综合题
问题分析
相似 + 三角函数
总结: ① 圆综的二倍角模型 ② 圆综或者几综的1:2+1:3=45°
圆综的二倍角模型
1 二倍角公式: 2 常用的二倍角:
A
C D
B
圆综的二倍角模型
常用二倍角的几何证明
D
α 5
A
5
3
α
C
4
B
圆综或者几综的1:2+1:3=45°
考试说明对《相似三角形》的解读
考试内容
考试要求
A
B
C
了解相似三 相似三角形 角形的性质定
理与判定定理
能利用相似三角形 的性质定理与判定定 理解决有关简单问题
圆有关性质的填空选择题
问题分析 简洁法
圆周角的性质 +三角形内角和
度量法:用量角器
圆有关性质的填空选择题
圆的综合题
问题分析
三角形函数 + 相似

直角坐标系,一次函数, 三角形,四边形
新定义综合题
4
考试说明对《圆》的解读
考试内容

数学九年级上册 圆 几何综合(篇)(Word版 含解析)

数学九年级上册 圆 几何综合(篇)(Word版 含解析)

数学九年级上册圆几何综合(篇)(Word版含解析)一、初三数学圆易错题压轴题(难)1.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.2.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F .(1)若⊙O 半径为2,求线段CE 的长;(2)若AF =BF ,求⊙O 的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =2;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r -= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC =,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE切⊙O于E,∴∠OEC=90°,∵AC=8,⊙O的半径为2,∴OC=6,OE=2,∴CE=2242OC OE-=;(2)设⊙O的半径为r,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC=22AB A C-=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关3.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.4.如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,以D 为圆心,D 长为半径作作⊙D .⑴求证:AC 是⊙D 的切线.⑵设AC 与⊙D 切于点E ,DB=1,连接DE ,BF ,EF.①当∠BAD= 时,四边形BDEF 为菱形;②当AB= 时,△CDE 为等腰三角形.【答案】(1)见解析;(2)①30°,②2+1【解析】【分析】(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.【详解】⑴证明:如图:作DE⊥AC于M,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60° ∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF 为菱形;②∵△CDE 为等腰三角形.∴DE=CE=BD=1,∴DC=2设AB=x ,则AE=x∴在Rt △ABC 中,AB=x ,AC=1+x ,BC=1+2 ∴()222(12)1x x ++=+ ,解得x=2+1 ∴当AB=2+1时,△CDE 为等腰三角形. 【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.5.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,10PQ OQ +=求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG+∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G,从而证出结论;(2)在MB上截取一点H,使AM=MH,连接DH,根据垂直平分线性质可得DH=AD,再根据等边对等角可得∠DHA=∠DAH,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C,可得AB=AC,再根据垂直平分线的判定可得AO垂直平分BC,从而证出结论;(3)延长CF交BD于M,延长BO交CQ于G,连接OE,证出tan∠BGE=tan∠ECF=2,然后利用AAS证出△CFN≌△BON,可设CF=BO=r,ON=FN=a,则OE=r,根据锐角三角函数和相似三角形即可证出四边形OBPE为正方形,利用r和a表示出各线段,最后根据+=,即可分别求出a和CF.PQ OQ610【详解】解:(1)延长BO交O于G,连接CG∵BD是O的切线∴∠OBD=90°∴∠DBC+∠CBG=90°∵BG为直径∴∠BCG=90°∴∠CBG+∠G=90°∴∠DBC=∠G∵四边形ABGC为O的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB上截取一点H,使AM=MH,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45°∴△NQC为等腰直角三角形∴NC=NQ=3a,∴BC=2NC=6a在Rt△CFN中,CF=2210+=NC FN a∵PQ OQ⊥∴PQ∥BC∴∠PQE=∠BCG∵PE∥BG∴∠PEQ=∠BGC∴△PQE∽△BCG∴=PQ PEBC BG即126=+PQ rra r解得:PQ=4a∵610PQ OQ+=,∴4a+2a=610解得:a=10∴CF=1010⨯=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.6.如图,PA,PB分别与O相切于点A和点B,点C为弧AB上一点,连接PC并延长交O于点F,D为弧AF上的一点,连接BD交FC于点E,连接AD,且2180APB PEB∠+∠=︒.(1)如图1,求证://PF AD;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠, ∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒, ∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形,∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,OP ==延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,7PE ==在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+- ∴257PH =. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.7.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ长最短是1.2;(3)四边形ADCF面积最大值是81313+,最小值是81313-.【解析】【分析】(1)连接线段OP交⊙C于A,点A即为所求;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.理由:分别在线段AB,⊙C上任取点P',点Q',连接P',Q',CQ',如图2,由于CP⊥AB,根据垂线段最短,CP≤CQ'+P'Q',∴CO+PQ≤CQ'+P'Q',又∵CQ=CQ',∴PQ <P 'Q ',即PQ 最短. 在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴68 4.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP =-=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2.(3)△ACF 的面积有最大和最小值.如图3,取AB 的中点G ,连接FG ,DE .∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB ,∴AC =GB =3,又∵AD =9,∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD ,∴13FG AF DE AE ==, ∵DE =3,∴FG =1,∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值,在Rt △ABC 中,AC ===∴sinBC BAC AC ∠===在Rt △ACH 中,sin 3GH AG BAC =•∠==∴111F H GH GF =-=-,∴△ACF 面积有最小值是:11127(1)22132AC F H -•=⨯-=;∴四边形ADCF 面积最小值是:27812722--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN ,又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM ,∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值,∵221F H GH GF =+=+,∴△ACF 面积有最大值是2111)22AC F H •=⨯+=;∴四边形ADCF 面积最大值是27812722+++=综上所述,四边形ADCF 面积最大值是812+,最小值是812- 【点睛】本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切? (3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可. ②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tan EF EP EBF EB EB ∠==为定值可知其轨迹为图中的2F B ,在2Rt F BC 中用勾股定理求解即可.【详解】(1)2222DP m AO =+=+,8BP AB AP m =-=-(2)情况1:与AC 相切时,Rt AOH ∆中,∵30A ∠=︒∴2AO OH =∴22m m +=解得4m =情况2:与BC 相切时,Rt BON ∆中,∵60B ∠=︒∴3cos 2ON B OB ==即3282mm =- 解得32348m =-(3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒, ∴3cos30cos302FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353326F F AC AF CF =--=-=, 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒. ∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,2222225357522BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.9.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题﹣﹣如图1,从A点出发,到笔直的河岸l去饮马,然后再去B 地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.解答问题:(1)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(2)如图3,已知菱形ABCD的边长为6,∠DAB=60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P从点A出发,以每秒2个单位的速度,沿A→C 的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.【答案】(1)PA+PC的最小值是32)①点M30)时,用时最少;②S与t之间的函数关系式是当3t3S=3﹣3t;当0<t3S =3t.当3t3S=﹣3t3【解析】【分析】(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;②根据三角形的面积公式求出从A到C时,s与t的关系式和从C3,0)以及到B 的解析式.【详解】解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,∴∠ACM=90°,∠AMC=30°,∴AC=12AM=2,AM=4,由勾股定理得:CM=22AM AC=23.答:PA+PC的最小值是23.(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,∴当PB⊥AB时,根据垂线段最短得出此时符合题意,∵菱形ABCD,AB=6,∠DAB=60°,∴∠BAO=30°,AB=AD,AC⊥BD,∴△ABD是等边三角形,∴BD=6,BO=3,由勾股定理得:AO=3在Rt△APB中,AB=6,∠BAP=30°,BP=12AP,由勾股定理得:AP=3,BP=3,∴点M30)时,用时最少.②当0<t3AP=2t,∵菱形ABCD,∴∠OAB=30°,∴OB=12AB=3,由勾股定理得:AO=CO=3,∴S =12AP ×BO =12×2t ×3=3t ;③当t AP =2t ﹣2t ,∴S =12AP ×BO =12×(2t )×3=﹣3t .当tS =12AB ×BP =12﹣(t ﹣]=﹣3t答:S 与t 之间的函数关系式是当<t 时,S =3t ;当0<t S =3t .当t S =﹣3t【点睛】本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.10.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:3l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD === 则点D 到⊙O1-,即直线:l y b =+上的点到⊙O的最小值为1-要使直线:3l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m + 此时,点M 到⊙O 的最小值为2211m +-,最大值为2211m ++;点S 到⊙O 的最小值为22(1)21m ++-,最大值为22(1)21m +++则2222114(1)218m m ⎧++≥⎪⎨++-≤⎪⎩,解得:22771m ≤≤-或77122m --≤≤-(舍去) 故当1m 时,m 的取值范围为3771m ≤≤-④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O 的最小值为2211m +-,最大值为2211m ++则224118m m -≥⎧⎨+-≤⎪⎩,解得:454m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O 的最小值为22(1)11m ++-,最大值为22(1)11m +++;点T 到⊙O 的最小值为2221m +-,最大值为2221m ++则2222(1)114218m m ⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m -≤≤--或22177m -≤≤(舍去) 故当2m <-时,m 的取值范围为774m -≤≤-综上,m 的取值范围为3771m ≤≤-或774m -≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.。

中考圆的综合题解题技巧

中考圆的综合题解题技巧

中考圆的综合题解题技巧
中考圆的综合题是中考数学中的重点难点之一,需要掌握一定的解题技巧。

以下是关于中考圆的综合题解题技巧的详细讲解:
1. 熟练掌握圆的基本性质
在解题前,要熟练掌握圆的基本性质,如圆心角、圆周角、弧长公式、弦长公式等。

这些基本性质是解题的基础,只有熟练掌握了这些知识点,才能更好地解决综合题。

2. 确定已知条件和求解目标
在解题时,首先要明确已知条件和求解目标,根据题目给出的条件,确定需要求解的未知量。

然后,可以根据已知条件和求解目标,将题目转化为不同形式的方程或几何关系。

3. 运用平面几何图形绘制技巧
在解决综合题时,可以通过平面几何图形的绘制来帮助自己更好地理解题目。

可以根据题目给出的条件,画出对应的图形,从而更好地确定几何关系,进而解决问题。

4. 运用代数方法解题
在解决综合题时,还可以运用代数方法,通过列方程求解未知量。

在列方程时,需要根据题目的要求,选择适当的未知量,并根据已知条件列出方程。

通过解方程求解未知量,从而得到答案。

5. 综合运用多种方法
在解决综合题时,还可以综合运用多种方法,如平面几何图形绘制、代数方法、解方程、等比例等。

通过综合运用多种方法,可以更好地解决复杂的综合题。

综上所述,中考圆的综合题需要掌握一定的解题技巧,包括熟练掌握圆的基本性质、确定已知条件和求解目标、运用平面几何图形绘制技巧、运用代数方法解题以及综合运用多种方法等。

只有掌握了这些技巧,才能更好地解决中考圆的综合题。

(完整版)中考数学圆综合题(含答案)

(完整版)中考数学圆综合题(含答案)

1 / 17一.圆地概念集合形式地概念: 1. 圆可以看作是到定点地距离等于定长地点地集合; 2.2.圆地外部:可以看作是到定点地距离大于定长地点地集合;圆地外部:可以看作是到定点地距离大于定长地点地集合; 3.3.圆地内部:可以看作是到定点地距离小于定长地点地集合圆地内部:可以看作是到定点地距离小于定长地点地集合 轨迹形式地概念:1.1.圆:到定点地距离等于定长地点地轨迹就是以定点为圆心圆:到定点地距离等于定长地点地轨迹就是以定点为圆心圆:到定点地距离等于定长地点地轨迹就是以定点为圆心,,定长为半径地圆;(补充)2.2.垂直平分线:到线段两端距离相等地点地轨迹是这条线段地垂直平分线(也叫中垂线)垂直平分线:到线段两端距离相等地点地轨迹是这条线段地垂直平分线(也叫中垂线); 3.3.角地平分线:到角两边距离相等地点地轨迹是这个角地平分线;角地平分线:到角两边距离相等地点地轨迹是这个角地平分线;4.4.到直线地距离相等地点地轨迹是:平行于这条直线且到这条直线地距离等于定长地两条直线;到直线地距离相等地点地轨迹是:平行于这条直线且到这条直线地距离等于定长地两条直线;5.5.到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线. .二.点与圆地位置关系1.1.点在圆内点在圆内 ⇒ d r < ⇒ 点C 在圆内;2.2.点在圆上点在圆上 ⇒ d r = ⇒ 点B 在圆上;3.3.点在圆外点在圆外 ⇒ d r > ⇒点A 在圆外;三.直线与圆地位置关系1.1.直线与圆相离直线与圆相离 ⇒ d r > ⇒ 无交点;2.2.直线与圆相切直线与圆相切⇒ d r = ⇒ 有一个交点; 3.3.直线与圆相交直线与圆相交 ⇒ d r < ⇒有两个交点; drd=rrd四圆与圆地位置关系外离(图1)⇒ 无交点⇒ d R r >+; r dd CBAO外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒d R r <-; 图1rRd图3rR d五.垂径定理垂径定理:垂直于弦地直径平分弦且平分弦所对地弧垂径定理:垂直于弦地直径平分弦且平分弦所对地弧. .推论1:(1)平分弦(不是直径)地直径垂直于弦)平分弦(不是直径)地直径垂直于弦,,并且平分弦所对地两条弧; (2)弦地垂直平分线经过圆心)弦地垂直平分线经过圆心,,并且平分弦所对地两条弧;(3)平分弦所对地一条弧地直径)平分弦所对地一条弧地直径,,垂直平分弦垂直平分弦,,并且平分弦所对地另一条弧以上共4个定理个定理,,简称2推3定理:此定理中共5个结论中个结论中,,只要知道其中2个即可推出其它3个结论个结论,,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论个结论. . 推论2:圆地两条平行弦所夹地弧相等:圆地两条平行弦所夹地弧相等. .即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD六.圆心角定理图2r Rd 图4rRd图5r RdO EDCBAOCDAB圆心角定理:同圆或等圆中同圆或等圆中,,相等地圆心角所对地弦相等相等地圆心角所对地弦相等,,所对地弧相等相等,,弦心距相等弦心距相等. . 此定理也称1推3定理定理,,即上述四个结论中即上述四个结论中,,只要知道其中地1个相等个相等,,则可以推出其它地3个结论个结论, , 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七.圆周角定理1.1.圆周角定理:同弧所对地圆周角等于它所对地圆心地角地一半圆周角定理:同弧所对地圆周角等于它所对地圆心地角地一半圆周角定理:同弧所对地圆周角等于它所对地圆心地角地一半. . 即:∵AOB ∠和ACB ∠是弧AB 所对地圆心角和圆周角 ∴2AOB ACB ∠=∠2.2.圆周角定理地推论:圆周角定理地推论:推论1:同弧或等弧所对地圆周角相等;同圆或等圆中:同弧或等弧所对地圆周角相等;同圆或等圆中,,相等地圆周角所对地弧是等弧;即:在⊙O 中,∵C ∠D ∠都是所对地圆周角 ∴C D ∠=∠推论2:半圆或直径所对地圆周角是直角;圆周角是直角所对地弧是半圆是半圆,,所对地弦是直径所对地弦是直径. .即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上地中线等于这边地一半:若三角形一边上地中线等于这边地一半,,那么这个三角形是直角三角形角三角形. .即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形地推论:在直角三角形中斜边上地中线等于斜边地一半地逆定理注:此推论实是初二年级几何中矩形地推论:在直角三角形中斜边上地中线等于斜边地一半地逆定理. .八.圆内接四边形F E DCBAOCBAODCB AOCBAOC BAO圆地内接四边形定理:圆地内接四边形地对角互补圆地内接四边形定理:圆地内接四边形地对角互补,,外角等于它地内对角外角等于它地内对角. . 即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠九.切线地性质与判定定理(1)切线地判定定理:过半径外端且垂直于半径地直线是切线; 两个条件:过半径外端且垂直半径两个条件:过半径外端且垂直半径,,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 地切线 (2)性质定理:切线垂直于过切点地半径(如上图) 推论1:过圆心垂直于切线地直线必过切点:过圆心垂直于切线地直线必过切点. . 推论2:过切点垂直于切线地直线必过圆心:过切点垂直于切线地直线必过圆心. . 以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线即:①过圆心;②过切点;③垂直切线,,三个条件中知道其中两个条件就能推出最后一个三个条件中知道其中两个条件就能推出最后一个. .十.切线长定理 切线长定理:从圆外一点引圆地两条切线从圆外一点引圆地两条切线,,它们地切线长相等它们地切线长相等,,这点和圆心地连线平分两条切线地夹角切线地夹角. .即:∵PA .PB 是地两条切线 ∴PA PB =PO 平分BPA ∠EDCBANMAOPBAO十一十一..圆幂定理(1)相交弦定理:圆内两弦相交:圆内两弦相交,,交点分得地两条线段地乘积相等交点分得地两条线段地乘积相等. . 即:在⊙O 中,∵弦AB .CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交)推论:如果弦与直径垂直相交,,那么弦地一半是它分直径所成地两条线段地比例中项条线段地比例中项. .即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆地切线和割线:从圆外一点引圆地切线和割线,,切线长是这点到割线与圆交点地两条线段长地比例中项点地两条线段长地比例中项. .即:在⊙O 中,∵PA 是切线是切线,,PB 是割线 ∴2PA PC PB =⋅ (4)割线定理:从圆外一点引圆地两条割线:从圆外一点引圆地两条割线,,这一点到每条割线与圆地交点地两条线段长地积相等(如上图)这一点到每条割线与圆地交点地两条线段长地积相等(如上图). . 即:在⊙O 中,∵PB .PE 是割线 ∴PC PB PD PE ⋅=⋅十二十二..两圆公共弦定理圆公共弦定理:两圆圆心地连线垂直并且平分这两个圆地地公共弦共弦. .如图:12O O 垂直平分AB 即:∵⊙1O .⊙2O 相交于A .B 两点 ∴12O O 垂直平分AB 十三十三..圆地公切线两圆公切线长地计算公式:PO DCBAO EDCBA DEC BPAOBA O1O2C O2O1B A(1)公切线长:12Rt O O C ∆中,22221122AB CO O O CO ==-; (2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和是半径之和 . . 十四十四..圆内正多边形地计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;(2)正四边形同理同理,,四边形地有关计算在Rt OAE ∆中进行中进行,,::1:1:2OE AE OA =:(3)正六边形同理同理,,六边形地有关计算在Rt OAB ∆中进行中进行,,::1:3:2AB OB OA =十五十五..扇形扇形..圆柱和圆锥地相关计算公式1.1.扇形:扇形:(1)弧长公式:180n R l π=;(2)扇形面积公式:213602n R S lR π== n :圆心角 R :扇形多对应地圆地半径l :扇形弧长 S :扇形面积2012数学中考圆综合题数学中考圆综合题1.如图,△ABC 中,以BC 为直径地圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆地切线;是圆地切线;DCBAOECBADOBAOS lBAO(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆地直径.求圆地直径.2如图,已知AB 是⊙O 地弦,OB =2,∠B =30°,C 是弦AB 上地任意一点(不与点A.B 重合),连接CO 并延长CO 交于⊙O 于点D,连接AD .(1)弦长AB 等于等于▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 地度数;地度数;(3)当AC 地长度为多少时,以A.C.D 为顶点地三角形与以B.C.O 为顶点地三角形相似?请写出解答过程.为顶点地三角形相似?请写出解答过程.3. 如图右如图右,,已知直线PA 交⊙交⊙00于A.B 两点两点,AE ,AE 是⊙是⊙00地直径.点C 为⊙为⊙00上一点上一点,,且AC 平分∠分∠PAE,PAE,PAE,过过C 作CD CD⊥⊥PA,PA,垂足为垂足为D. (1)(1)求证:求证:求证:CD CD 为⊙为⊙00地切线;地切线;(2)(2)若若DC+DA=6,DC+DA=6,⊙⊙0地直径为l0,l0,求求AB 地长度地长度. . 1. (1)证明:连接证明:连接OC, ∵点C 在⊙在⊙00上,0A=OC,,0A=OC,∴∠∴∠∴∠OCA=OCA=OCA=∠∠OAC,OAC,∵∵CD CD⊥⊥PA,PA,∴∠∴∠∴∠CDA=90CDA=90CDA=90°°,有∠有∠CAD+CAD+CAD+∠∠DCA=90DCA=90°°,∵AC 平分∠平分∠PAE,PAE,PAE,∴∠∴∠∴∠DAC=DAC=DAC=∠∠CAO. ∴∠∴∠DC0=DC0=DC0=∠∠DCA+DCA+∠∠ACO=ACO=∠∠DCA+DCA+∠∠CAO=CAO=∠∠DCA+DCA+∠∠DAC=90DAC=90°°. 又∵点C 在⊙在⊙O O 上,OC 为⊙为⊙00地半径地半径,,∴CD 为⊙为⊙00地切线.地切线. (2)(2)解:过解:过0作0F 0F⊥⊥AB,AB,垂足为垂足为F,F,∴∠∴∠∴∠OCA=OCA=OCA=∠∠CDA=CDA=∠∠OFD=90OFD=90°°, ∴四边形OCDF 为矩形为矩形,,∴0C=FD,OF=CD. ∵DC+DA=6,DC+DA=6,设设AD=x,AD=x,则则OF=CD=6-x,OF=CD=6-x,∵⊙∵⊙∵⊙O O 地直径为10,10,∴∴DF=OC=5,DF=OC=5,∴∴AF=5-x,在Rt Rt△△AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =.由AD<DF,AD<DF,知知05x <<,故2x =. 从而AD=2, AF=5-2=3.∵OF OF⊥⊥AB,AB,由垂径定理知由垂径定理知由垂径定理知,F ,F 为AB 地中点地中点,,∴AB=2AF=6.4.(已知四边形ABCD 是边长为4地正方形,以AB 为直径在正方形内作半圆,P 是半圆上地动点(不与点A.B 重合),连接PA.PB.PC.PD .(1)如图①,当PA 地长度等于地长度等于 ▲ 时,∠PAB =60°;°; 当PA 地长度等于地长度等于 ▲ 时,△PAD 是等腰三角形;是等腰三角形;(2)如图②,以AB 边所在直线为x 轴.AD 边所在直线为y 轴,建立如图所示地直角坐标系示地直角坐标系(点(点A 即为原点O ),把△PAD.△PAB.△PBC 地面积分别记为S 1.S 2.S 3.坐标为(a ,b ),试求2 S 1 S 3-S 22地最大值,并求出此时a ,b 地值.地值.5.6.6.((11金华)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF地两边相交于A .B 和C .D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 地长;地长;(3)若以图中已标明地点(即P .A .B .C .D .O )构造四边形,则能构成菱形地四个点为则能构成菱形地四个点为 ▲ ,能构成等腰梯形地四个点为能构成等腰梯形地四个点为▲ 或 ▲ 或 ▲ .(1)∵PG 平分∠EPF ,∴∠DPO =∠BPO ,∵OA//PE ,∴∠DPO =∠POA ,∴∠BPO =∠POA ,∴P A =OA ; ……2分 (2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB ,……1分 ∵ tan ∠OPB =12OH PH=,∴PH =2OH ,…………1分 设OH =x ,则PH =2x ,由(1)可知P A =OA = 10 ,∴AH =PH -P A =2x -10,∵222222AH OH OA +=, ∴222222(210)10x x -+=, ……1分 解得10x =(不合题意,舍去),28x =, ∴AH =6, ∴AB=2AH=12; ……1分 (3)P A O C ;A B.D.C 或 P .A.O.D或P .C.O.B . 7.(芜湖市)(本小题满分12分)分)如图,BD 是⊙O 地直径,OA ⊥OB ,M 是劣弧AB ⌒上一点,过点M 点作⊙O 地切线MP 交OA 地延长线于P 点,MD 与OA 交于N 点.点.(1)求证:PM =PN ;(2)若BD =4,P A = 32AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 地长.地长.8.(黄冈市)(6分)如图如图,,点P 为△为△ABC ABC 地内心地内心,,延长AP 交△交△ABC ABC 地外接圆于D,D,在在AC 延长线上有一点E,E,满足满足AD 2=AB AB··AE,求证:求证:DE DE 是⊙是⊙O O 地切线地切线. .PABCO D EFG第21题图题图H PABCO DEF G(证明:连结DO,DO,∵∵AD 2=AB AB··AE,AE,∠∠BAD BAD=∠=∠=∠DAE,DAE,DAE,∴△∴△∴△BAD BAD BAD∽△∽△∽△DAE, DAE, ∴∠∴∠ADB ADB ADB=∠=∠=∠E. E. E. 又∵∠又∵∠又∵∠ADB ADB ADB=∠=∠=∠ACB,ACB,ACB,∴∠∴∠∴∠ACB ACB ACB=∠=∠=∠E,BC E,BC E,BC∥∥DE, 又∵又∵OD OD OD⊥⊥BC,BC,∴∴OD OD⊥⊥DE,DE,故故DE 是⊙是⊙O O 地切线)地切线)9.(义乌市)如图,以线段AB 为直径地⊙O 交线段AC 于点E ,点M 是»AE 地中点,OM 交AC 于点D ,60BOE ∠=°,1cos 2C =,23BC =.(1)求A ∠地度数;地度数;(2)求证:BC 是⊙O 地切线;地切线;(3)求¼MD 地长度.地长度. (解:(1)∵∠BOE =60=60°° ∴∠A =12∠BOE = 30° (2)在△ABC 中 ∵1cos 2C = ∴∠C =60=60°…°…°…11分 又∵∠A =3030°°∴∠ABC =90=90°∴°∴AB BC ⊥…………22分 ∴BC 是⊙O 地切线地切线 (3)∵点M 是»AE 地中点地中点 ∴OM ⊥AE 在Rt Rt△△ABC 中∵23BC = ∴AB =tan 60233BC ︒=⨯=g 6 ∴OA =32AB = ∴OD =12OA =32∴MD =32) 10. (兰州市)(本题满分10分)如图如图,,已知AB 是⊙是⊙O O 地直径地直径,,点C 在⊙在⊙O O 上,过点C 地直线与AB 地延长线交于点P,AC=PC,∠COB=2COB=2∠∠PCB.(1)求证:)求证:PC PC 是⊙是⊙O O 地切线;地切线; (2)求证:)求证:BC=BC=21AB AB;;(3)点M 是弧AB 地中点地中点,CM ,CM 交AB 于点N,N,若若AB=4,AB=4,求求MN MN··MC 地值地值. . 解:(1)∵)∵OA=OC,OA=OC,OA=OC,∴∠∴∠∴∠A=A=A=∠∠ACO ∵∠∵∠COB=2COB=2COB=2∠∠A ,∠COB=2COB=2∠∠PCB ∴∠∴∠A=A=A=∠∠ACO=ACO=∠∠PCB∵AB 是⊙是⊙O O 地直径地直径 ∴∠∴∠ACO+ACO+ACO+∠∠OCB=90OCB=90°° ∴∠∴∠PCB+PCB+PCB+∠∠OCB=90OCB=90°°,即OC OC⊥⊥CP ∵OC 是⊙是⊙O O 地半径地半径 ∴PC 是⊙是⊙O O 地切线地切线(2)∵)∵PC=AC PC=AC ∴∠∴∠∴∠A=A=A=∠∠P ∴∠∴∠A=A=A=∠∠ACO=ACO=∠∠PCB=PCB=∠∠P ∵∠∵∠COB=COB=COB=∠∠A+A+∠∠ACO,ACO,∠∠CBO=CBO=∠∠P+P+∠∠PCB ∴∠∴∠CBO=CBO=CBO=∠∠COB∴BC=OC ∴BC=21AB(3)连接MA,MB∵点M 是弧AB 地中点地中点 ∴弧∴弧AM=AM=弧弧BM ∴∠∴∠∴∠ACM=ACM=ACM=∠∠BCM∵∠∵∠ACM=ACM=ACM=∠∠ABM ∴∠∴∠∴∠BCM=BCM=BCM=∠∠ABM∵∠∵∠BMC=BMC=BMC=∠∠BMN ∴△∴△MBN MBN MBN∽△∽△∽△MCB MCB∴BM MNMC BM = ∴BM 2=MC =MC··MN∵AB 是⊙是⊙O O 地直径地直径,,弧AM=AM=弧弧BM ∴∠∴∠AMB=90AMB=90AMB=90°°,AM=BM∵AB=4 ∴BM=22 ∴MC MC··MN=BM 2=811.(本题满分14分) OB ACE M D如图(1),两半径为r 地等圆1O e 和2O e 相交于M N ,两点,且2O e 过点1O .过M 点作直线AB 垂直于MN ,分别交1O e 和2O e 于A B ,两点,连结NA NB ,.(1)猜想点2O 与1O e 有什么位置关系,并给出证明;并给出证明;(2)猜想NAB △地形状,并给出证明;并给出证明; (3)如图(2),若过M 地点所在地直线AB 不垂直于MN ,且点A B ,在点M 地两侧,那么(2)中地结论是否成立,若成立请给出证明.若成立请给出证明.4. (1)2O 在1O e 上证明:2O Q e 过点1O ,12O O r ∴=.又1O Q e 地半径也是r ,∴点2O 在1O e 上.上. (2)NAB △是等边三角形是等边三角形 证明:MN AB ⊥Q ,90NMB NMA ∴∠=∠=o o. BN ∴是2O e 地直径,AN 是1O e 地直径,即2BN AN r ==,2O 在BN 上,1O 在AN 上.上.连结12O O ,则12O O 是NAB △地中位线.1222AB O O r ∴==. AB BN AN ∴==,则NAB △是等边三角形.是等边三角形.(3)仍然成立.证明:由(2)得在1O e 中¼MN 所对地圆周角为60o.在2O e 中¼MN 所对地圆周角为60o. ∴当点A B ,在点M 地两侧时,在1O e 中¼MN 所对地圆周角60MAN ∠=o ,在2O e 中¼MN 所对地圆周角60MBN ∠=o,NAB ∴△是等边三角形.是等边三角形.12.如图12,已知:边长为1地圆内接正方形ABCD 中,P 为边CD 地中点,直线AP 交圆于E 点.点.O 2O 1NMBA 图(1) O 2O 1NMBA图(2)(1)求弦DE 地长.地长.(2)若Q 是线段BC 上一动点,当BQ 长为何值时,三角形ADP 与以Q C P ,,为顶点地三角形相似.为顶点地三角形相似. 1)如图1.过D 点作DF AE ⊥于F 点.在Rt ADP △中,2252AP AD DP =+=又1122ADP S AD DP AP DF ==Q g g △ 55DF ∴=»AD Q 地度数为90o 45DEA ∴∠=o 1025DE DF ∴==(2)如图2.当Rt Rt ADP QCP △∽△时有AD DP QCCP=得:1QC =.即点Q 与点B 重合,0BQ ∴=如图3,当Rt Rt ADP PCQ △∽△时,有AD PD PC QC =得14QC =,即334BQ BC CQ =-=∴当0BQ =或34BQ =时,三角形ADP 与以点Q C P ,,为顶点地三角形相似.为顶点地三角形相似.13..(本小题满分10分)如图,⊙O 是Rt △ABC 地外接圆,AB 为直径,∠ABC =30°=30°,,CD 是⊙O 地切线,ED ⊥AB 于F , (1)判断△DCE 地形状;(2)设⊙O 地半径为1,且OF =213-,求证△DCE ≌△OCB . 6. 解:(1)∵∠ABC =30°=30°,,∴∠BAC =60°.又∵OA =OC , ∴△AOC 是正三角形.是正三角形.又∵CD 是切线,∴∠OCD =90°=90°,,∴∠DCE =180°=180°-60°-60°-60°-90°-90°-90°=30°=30°. 而ED ⊥AB 于F ,∴∠CED =90°=90°--∠BAC =30°.故△CDE 为等腰三角形.为等腰三角形.(2)证明:在△ABC 中,∵AB =2,AC =AO =1,∴BC =2212-=3.OF =213-,∴AF =AO +OF =213+. 又∵∠AEF =30°=30°,,∴AE =2AF =3+1. ∴CE =AE -AC =3=BC .而∠OCB =∠ACB -∠ACO =90°=90°--60°=30°=∠ABC ,故△CDE ≌△COB .14(08湖北襄樊24题)8.(本小题满分10分)分) BADE PC图12第6题图题图A B DEOF C B A D E P C5题图1FB A D E P C5题图2Q BA D EPC5题图3(Q如图14,直线AB 经过O e 上地点C ,并且OA OB =,CA CB =,O e 交直线OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是O e 地切线;地切线;(2)试猜想BC BD BE ,,三者之间地等量关系,并加以证明;并加以证明; (3)若1tan 2CED ∠=,O e 地半径为3,求OA 地长.地长.(1)证明:如图3,连接OC . OA OB =Q ,CA CB =,OC AB ∴⊥.AB ∴是O e 地切线.地切线.(2)2BC BD BE =g . ED Q 是直径,90ECD ∴∠=o o. 90E EDC ∴∠+∠=o o. 又90BCD OCD ∠+∠=o oQ ,OCD ODC ∠=∠, BCD E ∴∠=∠. 又CBD EBC ∠=∠Q ,BCD BEC ∴△∽△ BC BD BE BC∴=.2BC BD BE ∴=g . (3)1tan 2CED ∠=Q ,12CDEC ∴=.BCD BEC Q △∽△,12BD CD BC EC ∴==.设BD x =,则2BC x =. 又2BC BD BE =g ,2(2)(6)x x x ∴=+g .解之,得10x =,22x =.0BD x =>Q ,2BD ∴=. 325OA OB BD OD ∴==+=+=.15 如图如图14,14,直线直线AB 经过O e 上地点C ,并且OA OB =,CA CB =,O e 交直线OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是O e 地切线;地切线; (2)试猜想BC BD BE ,,三者之间地等量关系三者之间地等量关系,,并加以证明;并加以证明; (3)若1tan 2CED ∠=,O e 地半径为3,3,求求OA 地长.地长. 4 解:解:(1)证明:如图3,3,连接连接OC . OA OB =Q ,CA CB =,OC AB ∴⊥.AB ∴是O e 地切线.地切线.(2)2BC BD BE =g . ED Q 是直径是直径,,90ECD ∴∠=o.90E EDC ∴∠+∠=o. 又90BCD OCD ∠+∠=o oQ ,OCD ODC ∠=∠,BCD E ∴∠=∠.又CBD EBC ∠=∠Q ,BCD BEC ∴△∽△.BC BD BE BC∴=.2BC BD BE ∴=g . (3)1tan 2CED ∠=Q ,12CD EC ∴=.BCD BEC Q △∽△,12BD CD BC EC ∴==.设BD x =,则2BC x =.又2BC BD BE =g ,2(2)(6)x x x ∴=+g .解之解之,,得10x =,22x =.0BD x =>Q ,2BD ∴=.325OA OB BD OD ∴==+=+=.5 ⊙O 地半径OD 经过弦AB (不是直径不是直径))地中点C ,过AB 地延长线上一点P 作⊙O 地切线PE ,E 为切点为切点,,PE ∥OD ;延长直径(5题) PEDKHGC A B F OAG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K . (1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ; (3)若EF =2,FO =1,1,求求KE 地长.地长.5解:(1)∵AC =BC ,AB 不是直径,∴OD ⊥AB ,∠PCO =90°90°(1(1分) ∵PE ∥OD ,∴∠P =90°90°,,∵PE 是切线,∴∠PEO =90°90°,(2,(2分) ∴四边形OCPE 是矩形.(3分)(2)∵OG =OD ,∴∠OGD =∠ODG .∵PE ∥OD ,∴∠K =∠ODG .(4分) ∵∠OGD =∠HGK ,∴∠K =∠HGK ,∴HK =HG .(5分)(3)∵EF =2,OF =1,∴EO =DO =3.(6分)∵PE ∥OD ,∴∠KEO =∠DOE ,∠K =∠ODG .∴△OFD ∽△EFK ,(7分)∴EF ∶OF =KE ∶OD =2∶1,∴KE =6.(8分) 6 如图如图如图,,直角坐标系中直角坐标系中,,已知两点O(0,0) A(2,0),A(2,0),点点B 在第一象限且△在第一象限且△OAB OAB 为正三角形为正三角形,,△OAB 地外接圆交y 轴地正半轴于点C,C,过点过点C 地圆地切线交X 轴于点D . (1)求B C ,两点地坐标;(2)求直线CD 地函数解析式;地函数解析式; (3)设E F ,分别是线段AB AD ,上地两个动点上地两个动点,,且EF 平分四边形ABCD 地周长.地周长. 试探究:AEF △地最大面积?地最大面积?6 (1)(20)A Q ,,2OA ∴=.作BG OA ⊥于G ,OAB Q △为正三角形, 1OG ∴=,3BG =.(13)B ∴,.连AC ,90AOC ∠=oQ ,60ACO ABO ∠=∠=o ,23tan 303OC OA ∴==o.2303C ⎛⎫∴ ⎪ ⎪⎝⎭,.(2)90AOC ∠=oQ ,AC ∴是圆地直径,又CD Q 是圆地切线,CD AC ∴⊥.30OCD ∴∠=o ,2tan 303OD OC ==o .203D ⎛⎫∴- ⎪⎝⎭,. 设直线CD 地函数解析式为(0)y kx b k =+≠,则233203b k b⎧=⎪⎨⎪=-+⎪⎩,解得3233k b ⎧=⎪⎨=⎪⎩.∴直线CD 地函数解析式为2333y x =+. (3)2AB OA ==Q ,23OD =,423CD OD ==,233BC OC ==,∴四边形ABCD 地周长2363+.设AE t =,AEF △地面积为S ,则333AF t =+-,133sin 603243S AF AE t t ⎛⎫==+- ⎪ ⎪⎝⎭og . 233393733434632St t t ⎡⎤⎛⎫⎛⎫+⎢⎥=+-=--++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦Q .∴当936t +=时,max 733128S =+. Q 点E F ,分别在线段AB AD ,上,023203233t t ⎧⎪∴⎨+-+⎪⎩≤≤≤≤,解得1323t +≤≤. 936t +=Q 满足1323t +≤≤,AEF ∴△地最大面积为733128+. 7 如图(1818)),在平面直角坐标系中在平面直角坐标系中,,ABC △地边AB 在x 轴上轴上,,且OA OB >,以AB 为直径地圆过点C .若点C 地坐6题(第6题)题)标为(02),,5AB =,A.B 两点地横坐标A x ,B x 是关于x 地方程2(2)10x m x n -++-=地两根.地两根. (1)求m .n 地值;地值;(2)若ACB ∠平分线所在地直线l 交x 轴于点D ,试求直线l 对应地一次函数解析式;对应地一次函数解析式; (3)过点D 任作一直线l '分别交射线CA .CB (点C 除外)于点M .N .则11CM CN+地是否为定值?若是地是否为定值?若是,,求出该定值;若不是该定值;若不是,,请说明理由.请说明理由.7 解:(1)Q 以AB 为直径地圆过点C ,90ACB ∴∠=o ,而点C 地坐标为(02),, 由CO AB ⊥易知AOC COB △∽△,2CO AO BO ∴=g ,即:4(5)AO AO =-g ,解之得:4AO =或1AO =.OA OB >Q ,4AO ∴=,即41A B x x =-=,.由根与系数关系有:21A B A B x x m x x n +=+⎧⎨=-⎩g ,解之5m =-,3n =-. (2)如图()如图(33),过点D 作DE BC ∥,交AC 于点E ,易知DE AC ⊥,且45ECD EDC ∠=∠=o ,在ABC △中,易得255AC BC ==,,AD AE DE BC DB EC∴=Q ∥,,AD AE DE EC BD DE =∴=Q ,, 又AED ACB △∽△,有AE AC ED BC =,2AD ACDB BC∴==,553AB DB ==Q ,,则23OD =,即203D ⎛⎫-⎪⎝⎭,,易求得直线l 对应地一次函数解析式为:32y x =+. 解法二:过D 作DE AC ⊥于E ,DF CN ⊥于F ,由ACD BCD ABC S S S +=△△△,求得253DE = 又1122BCD S BD CO BC DF ==g g △求得5233BD DO ==,.即203D ⎛⎫- ⎪⎝⎭,,易求直线l 解析式为:32y x =+.(3)过点D 作DE AC ⊥于E ,DF CN ⊥于F .CD Q 为ACB ∠地平分线地平分线,,DE DF ∴=. 由MDE MNC △∽△,有DE MDCN MN=由DNF MNC △∽△, 有DF DN CM MN =1DE DF MD DNCN CM MN MN ∴+=+=, 即1113510CMCNDE+==8 如图如图如图,,在ABC △中90ACB ∠=o,D 是AB 地中点地中点,,以DC 为直径地O e 交 ABC △地三边地三边,,交点分别是G F E ,,点.GE CD ,地交点为M ,且46ME =, :2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O e 地直径CD 地长.地长.8 (1)连接DF CD Q 是圆直径是圆直径,,90CFD ∴∠=o,即DF BC ⊥90ACB ∠=o Q ,DF AC ∴∥. BDF A ∴∠=∠.Q 在O e 中BDF GEF ∠=∠,GEF A ∴∠=∠. 2分(2)D Q 是Rt ABC △斜边AB 地中点地中点,,DC DA ∴=,DCA A ∴∠=∠, 又由(又由(11)知GEF A ∠=∠,DCA GEF ∴∠=∠.y x图(3)NB AC O DM EE F (0,2) l l 'EADGBFCOM第25题图题图又OME EMC ∠=∠Q ,OME ∴△与EMC △相似OM MEME MC∴=2ME OM MC ∴=⨯4分 又46ME =Q ,2(46)96OM MC ∴⨯==:2:5MD CO =Q ,:3:2OM MD ∴=,:3:8OM MC ∴=设3OM x =,8MC x =,3896x x ∴⨯=,2x ∴= ∴直径1020CD x ==.。

圆的几何综合题 (27题)

圆的几何综合题 (27题)

圆的几何综合题成都市龙泉驿区第九中学陈礼勇一、历年圆的几何综合题回顾1、一般分成三个问题,三个问题由易到难,由一般到特殊或由特殊到一般层层递进的方式设置问题;2、一般三个问题涉及到圆的切线的证明,线段相等、角相等、线段与角的计算、图形面积的计算、几何变量之间的函数关系探究、线段关系式的证明、角的关系式的证明等;3、常见的知识点有:垂径定理及其推论、圆心角定理及其推论、圆周角定理及其推论、切线的性质与判定、等腰三角形的性质与判定、解直角三角形、全等三角形与相似三角形的性质与判定、锐角三角函数定义,特殊角的三角函数值等;4、常见的数学思想方法有:方程思想、函数思想、由特殊到一般或由一般到特殊的探究思想等;二、命题规律:1、圆中的如下定理出现的频率很高:垂径定理及其推论,圆心角定理及其推论,圆周角定理及其推论,切线的性质及其判定定理;2、常与等腰三角形(两半径加弦),直角三角形(直径、半圆),相似三角形,全等三角形和锐角三角函数的概念结合考查;3、相似三角形基本图形的分解是关健,如:正A字形(A1形)、斜A字形(A2形)、正八字形(X1形)、斜八字形(X2形或蝴蝶形)、射影定理图、共角共边相似(A3形)图等出现的频率很高.4、结合重要的几何定理(及其逆定理)的基本图形命题,如弦切角定理的逆定理,切线长定理的逆定理,相交弦定理,切割线定理,割线定理等(具体见后面的例题)三、常见的几何模板及辅助线回顾1、三角形:图中若有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;要证线段倍与半,延长缩短可试验;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线.2、四边形:平行四边形出现,对称中心等分点;梯形里面作高线,平移一腰试试看;平行移动对角线,补成三角形常见;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片.3、圆:半径与弦长计算,弦心距来中间站;圆上若有一切线,切点圆心半径连;切线长度的计算,勾股定理最方便;要想证明是切线,半径垂线仔细辨;是直径,成半圆,想成直角径连弦;弧有中点圆心连,垂径定理要记全;圆周角边两条弦,直径和弦端点连;弦切角边切线弦,同弧对角等找完;如果遇到相交圆,不要忘作公共弦;内外相切的两圆,经过切点公切线;若是添上连心线,切点肯定在上面;要作等角添个圆,证明题目少困难.四、27题解题程序1、画:生长性画图,边画图边解决三个小问;2、标:将题中的已知条件标在图中;3、标:将未知问题、猜想的结论标在图中;4、联:联系知识点、联想常见的几何模块、不同知识进行联结,联系前面证明的结论;5、写:写出解题过程. 五、常见定理及基本图形分析1、垂直于弦的直径,径连弦得射影定理;如2007成都、2010成都、2011成都.2、角平分线加“相似三角形的斜八字形”会出现“共边共角相似”:如2009成都、2010成都.3、以切线长定理的基本图形,关于切线的性质与判定的证明,出现两公共底边的两等腰三角形:如2007成都、2012辽宁朝阳、2012北京.4、直径与切线(性质或判定)相结合命题:如2007成都、2012成都、2012湖北天门、2012辽宁朝阳、2012北京、2012福建甫田、2012辽宁锦州. (1)圆中常见的二级图G FE O DC BA垂径定理图垂径定理与射影定理 点C 为弧AF 中点 AB 垂 相交弦定理图 直于CD ,有AE=CEED C BA点C 为弧BD 中点,有 切割线定理图 割线定理图 切线长定理图 ABC ∽△BEC(2) 部分中考题图形选2007成都 2008成都 2009成都2010成都 2011成都 2012成都2012湖北天门2012辽宁朝阳2012北京中考2012福建甫田2012辽宁锦州六、中考真题分析⊥于点D,过点B作⊙O 1、(成都中考2007,10分)如图,A是以BC为直径的O上一点,AD BC,是AD的中点,连结CG并延长与BE相交于点F,延长AF与的切线,与CA的延长线相交于点E GCB的延长线相交于点P.=;(1)求证:BF EF(2)求证:PA是⊙O的切线;=,且⊙O的半径长为32,求BD和FG(3)若FG BF的长度.2、(成都中考2008,共10分)如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧AB 上的一个动点(不与点A ,点B 重合).连结AC ,BC ,分别与⊙M 相交于点D ,点E ,连结DE.若AB=23. (1)求∠C 的度数; (2)(2)求DE 的长; (3)(3)如果记tan ∠ABC=y ,ADDC=x (0<x<3),那么在点C 的运动过程中,试用含x 的代数式表示y.3、(成都中考2009,共10分).如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G . (1)判断0G 与CD 的位置关系,写出你的结论并证明; (2)求证:AE=BF ;(3)若3(22)OG DE ⋅=-,求⊙O 的面积.4、(成都中考2010,共10分).已知:如图,ABC ∆内接于⊙O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE ,BC 于点P ,Q .(1)求证:P 是ACQ ∆的外心; (2)若3tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2()FP PQ FP FG +=.5、(成都中考2011,共10分)已知:如图,以矩形ABCD 的对角线AC 的中点为圆心,以OA 长为半径作⊙O ,⊙O 经过B ,D 两点.过点B 作B K ⊥AC ,垂足为K .过点D 作DH ∥KB ,DH 分别与AC ,AB ,⊙O 及CB 的延长线相交于点E ,F ,G ,H . (1)求证:AE=CK ;(2)如果AB=a ,AD=a a (31为大于零的常数),求BK 的长; (3)若F 是EG 的中点,且DE=6,求⊙O 的半径.6、(成都中考2012,共10分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ;(2)若2KG =KD ·GE ,试判断AC 与EF 的位置关系,并说明理由; (3) 在(2)的条件下,若sinE=35,AK=23FG 的长.7、(2013年成都)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由: (2)若3tan 4ADB ∠=,4333PA AH -=,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.8、(2014年成都)如图,在⊙O 的内接△ABC 中,∠ACB=90°,AC=2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E.设P 是⌒AC 上异于A,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G. (1)求证:△PAC ∽△PDF ;(2)若AB=5,⌒AP =⌒BP ,求PD 的长; (3)在点P 运动过程中,设x BGAG=,y AFD =∠tan , 求y 与x 之间的函数关系式.(不要求写出x 的取值范围)9、(2013年北京)如图,AB 是⊙O 的直径,PA ,PC 分别与⊙O 相切于点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E . (1)求证:∠EPD=∠EDO (2)若PC=6,tan ∠PDA=43,求OE 的长.10、(2014•北京)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.11、(2014•南昌)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.12、(2014辽宁盘锦)如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交B C于点E,连结DE.(1)求证:DE是⊙O的切线;(2)若cosA=12,AB=83AG=3BE的长;(3)若cosA=12,AB=3BE的取值范围.G FEDO CBA13、(2013泸州)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且CDA CBD ∠=∠. (1)求证:2CD CA CB =⋅;(2)求证:CD 是⊙O 的切线;(3)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC=12,2tan 3CDA ∠=,求BE 的长.14、(2012上海)如图,在半径为2的扇形AOB 中,∠AOB=90°,点C 是弧AB 上的一个动点(不与点A ,B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D ,E . (1)当BC=1时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由; (3)设BD=x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.E15、(2014•德阳)如图,⊙O 中,FG 、AC 是直径,AB 是弦,FG ⊥AB ,垂足为点P ,过点C 的直线交AB 的延长线于点D ,交GF 的延长线于点E ,已知AB=4,⊙O 的半径为. (1)分别求出线段AP 、CB 的长;(2)如果OE=5,求证:DE 是⊙O 的切线; (3)如果tan ∠E=,求DE 的长.第24题图EOAD16、(2014•甘孜州)如图,在△ABC 中,∠ABC=90°,以AB 的中点O 为圆心,OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)求证:BC 2=2CD •OE ; (3)若cos ∠BAD=,BE=,求OE 的长.17、(2012湖北天门8分)如图,D 为O ⊙上一点,点C 在直径BA 的延长线上,CDA CBD ∠=∠. (1)求证:CD 是O ⊙的切线;(2)过点B 作O ⊙的切线交CD 的延长线于点E ,若26tan 3BC CDA =∠=,,求BE 的长. EO DBCA18、(2012北京中考)已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与⊙O 相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.EDCBOA19、(2012辽宁朝阳)如图已知P 为⊙O 外一点.PA 为⊙O 的切线,B 为⊙O 上一点,且PA=PB ,C 为 优弧AB 上任意一点(不与A ,B 重合),连接OP ,AB ,AB 与OP 相交于点D ,连接AC ,BC . (1)求证:PB 为⊙O 的切线; (2)若2tan BCA 3∠=,⊙O,求弦AB 的长.20、(2012辽宁锦州)如图:在△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 做直线DE 垂直BC 于F ,且交BA 的延长线于点E. (1)求证:直线DE 是⊙O 的切线; (2)若cos ∠BAC=31,⊙O 的半径为6,求线段CD 的长.B21、(福建甫田2012,本小题满分10分)如图,点C 在以AB 为直径的半圆O 上,延长BC 到点D ,使得 CD =BC ,过点D 作DE ⊥AB 于点E ,交AC 于点F ,点G 为DF 的中点,连接CG ,OF ,FB . (1)(5分)求证:CG 是⊙O 的切线;(2)(5分)若△AFB 的面积是△DCG 的面积的2倍,求证:OF ∥BC .EO22、(福建厦门2012,本题满分9分)已知:如图8,⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,弦CD 交AB 于E ,∠BCD =∠BAC . (1)求证:AC =AD ;(2)过点C 作直线CF ,交AB 的延长线于点F ,若∠BCF =30°,则结论“CF 一定是⊙O 的切线”是否正确?若正确,请证明;若不正确,请举反例.图8A23、(肇庆2012,本小题满分10分)如图7,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D ,连结BE ,AD 交于点P . 求证:(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)AB ⋅ CE=2DP ⋅AD .24、如图,已知AB 为⊙O 的直径,过⊙O 上的点C 的切线交AB 的延长线于点E ,AD ⊥EC 于点D 且交⊙O 于点F ,连接BC ,CF ,AC . (1)求证:BC=CF ;(2)若AD=6 ,DE=8 ,求BE 的长; (3)求证:AF + 2DF = AB .25、(湖北十堰2012)如图1,⊙O 是△ABC 的外接圆,AB 是直径,OD ∥AC ,且∠CBD=∠BAC ,OD 交⊙O 于点E .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,证明:以O ,A ,C ,E 为顶点的四边形是菱形; (3)作CF ⊥AB 于点F ,连接AD 交CF 于点G (如图2),求FG :FC 的值.EDCB OA26、(2012年湖北襄阳市)如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙于点E ,F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF . (1)求证:直线PA 为⊙O 的切线;(2)试探究线段EF ,OD ,OP 之间的等量关系,并加以证明; (3)若BC=6,1tan 2F ∠=,求cos ∠ACB 的值和线段PE 的长. CFED OBAP27、(2012广西桂林,10分)如图,等圆⊙O 1和⊙O 2相交于A ,B 两点,⊙O 1经过⊙O 2的圆心,顺次连接A ,O 1,B ,O 2.(1)求证:四边形AO 1BO 2是菱形;(2)过直径AC 的端点C 作⊙O 1的切线CE 交AB 的延长线于E ,连接CO 2交AE 于D ,求证:CE =2O 2D ; (3)在(2)的条件下,若△AO 2D 的面积为1,求△BO 2D 的面积.DCEO 2O 1BA28、(内蒙古包头12分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B,C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.DlFE OCBA29、(2011四川宜宾)已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧⌒AD上到一点E 使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.O HG ED CBA30、(2013宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.。

九年级数学上册 圆 几何综合中考真题汇编[解析版]

九年级数学上册 圆 几何综合中考真题汇编[解析版]

九年级数学上册圆几何综合中考真题汇编[解析版]一、初三数学圆易错题压轴题(难)1.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB 于点D,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.(1)如图1,当点D是弧AB的中点时,求CD的长;(2)如图2,设AC=x,ACOOBDSS=y,求y关于x的函数解析式并写出定义域;(3)若四边形AOBD是梯形,求AD的长.【答案】(1)2;(2)2825x x x-+(0<x<8);(3)AD=145或6.【解析】【分析】(1)根据垂径定理和勾股定理可求出OC的长.(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.(3)分OB∥AD和OA∥BD两种情况讨论.【详解】解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB,AC=12AB=4,在Rt△AOC中,∵∠ACO=90°,AO=5,∴22AO AC-,∴OD=5,∴CD=OD﹣OC=2;(2)如图2,过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3,∵AC=x,∴CH=|x﹣4|,在Rt△HOC中,∵∠CHO=90°,AO=5,∴22HO HC+223|x4|+-2825x x-+∴CD=OD ﹣OC=5过点DG ⊥AB 于G ,∵OH ⊥AB ,∴DG ∥OH ,∴△OCH ∽△DCG , ∴OH OC DG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x ) ∴y=ACO OBD S S=()323582x x -(0<x <8) (3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF=AE ,∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°, ∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)y=()2825x x x -+(0<x <8);(3)AD=145或6. 【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.2.如图所示,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE//BD ,交BC 于点F ,交AB 于点E.(1)求证:∠E=∠C ;(2)若⊙O 的半径为3,AD=2,试求AE 的长;(3)在(2)的条件下,求△ABC 的面积.【答案】(1)证明见解析;(2)10;(3)485. 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB 的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB ,∵CD 为⊙O 的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==3.如图①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,点D是AC边上一点(不与C 重合),以AD为直径作⊙O,过C作CE切⊙O于E,交AB于F.(1)若⊙O半径为2,求线段CE的长;(2)若AF=BF,求⊙O的半径;(3)如图②,若CE=CB,点B关于AC的对称点为点G,试求G、E两点之间的距离.【答案】(1)CE=2;(2)⊙O的半径为3;(3)G、E两点之间的距离为9.6【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC,然后通过证得△OEC∽△BCA,得到OE OCBC BA=,即8610r r-=解得即可; (3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE 切⊙O 于E ,∴∠OEC =90°,∵AC =8,⊙O 的半径为2, ∴OC =6,OE =2,∴CE =2242OC OE -= ;(2)设⊙O 的半径为r ,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,∴BC 22AB A C -=6,∵AF =BF ,∴AF =CF =BF ,∴∠ACF =∠CAF ,∵CE 切⊙O 于E ,∴∠OEC =90°,∴∠OEC =∠ACB ,∴△OEC ∽△BCA ,∴OE OC BC BA =,即8610r r -= 解得r =3,∴⊙O 的半径为3;(3)如图②,连接BG ,OE ,设EG 交AC 于点M ,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关4.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=,∴2PB BN BC =⋅, ∴BN BP BP BC=,∵B B ∠=∠, ∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽,∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC =, 在Rt △CDF 中,∠DCF=60°,CD=4,∴DF=CD •sin60°=23CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.5.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴AP m=52810mAP⋅,解得m=42或﹣42(舍弃),∴DE=2m=82.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.6.已知:ABC 内接于O,过点B作O的切线,交CA的延长线于点D,连接OB.(1)如图1,求证:DAB DBC∠=∠;(2)如图2,过点D作DM AB⊥于点M,连接AO,交BC于点N,BM AM AD=+,求证:BN CN=;(3)如图3,在(2)的条件下,点E为O上一点,过点E的切线交DB的延长线于点P,连接CE,交AO的延长线于点Q,连接PQ,PQ OQ⊥,点F为AN上一点,连接CF,若90DCF CDB∠+∠=︒,tan2ECF∠=,12ONOQ=,10PQ OQ+=求CF的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO交O于G,连接CG,根据切线的性质可得可证∠DBC+∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG+∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G,从而证出结论;(2)在MB上截取一点H,使AM=MH,连接DH,根据垂直平分线性质可得DH=AD,再根据等边对等角可得∠DHA=∠DAH,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C,可得AB=AC,再根据垂直平分线的判定可得AO垂直平分BC,从而证出结论;(3)延长CF交BD于M,延长BO交CQ于G,连接OE,证出tan∠BGE=tan∠ECF=2,然后利用AAS证出△CFN≌△BON,可设CF=BO=r,ON=FN=a,则OE=r,根据锐角三角函数和相似三角形即可证出四边形OBPE为正方形,利用r和a表示出各线段,最后根据+=,即可分别求出a和CF.610PQ OQ【详解】解:(1)延长BO交O于G,连接CG∵BD是O的切线∴∠OBD=90°∴∠DBC+∠CBG=90°∵BG为直径∴∠BCG=90°∴∠CBG+∠G=90°∴∠DBC=∠G∵四边形ABGC为O的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB上截取一点H,使AM=MH,连接DH∴DM垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r ∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF ∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45° ∴△NQC 为等腰直角三角形∴NC=NQ=3a ,∴BC=2NC=6a在Rt △CFN 中,=∵PQ OQ ⊥∴PQ ∥BC∴∠PQE=∠BCG∵PE ∥BG∴∠PEQ=∠BGC∴△PQE ∽△BCG ∴=PQ PE BC BG即126=+PQ r r a r解得:PQ=4a ∵610PQ OQ +=,∴4a +2a=610解得:a=10∴CF=1010⨯=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.7.如图,∠ACL =90°,AC =4,动点B 在射线CL ,CH ⊥AB 于点H ,以H 为圆心,HB 为半径作圆交射线BA 于点D ,交直线CD 于点F ,交直线BC 于点E .设BC =m .(1)当∠A =30°时,求∠CDB 的度数;(2)当m =2时,求BE 的长度;(3)在点B 的整个运动过程中,①当BC =3CE 时,求出所有符合条件的m 的值.②连接EH ,FH ,当tan ∠FHE =512时,直接写出△FHD 与△EFH 面积比. 【答案】(1)60°;(2)45;(3)①m =2或226 【解析】【分析】(1)根据题意由HB =HD ,CH ⊥BD 可知:CH 是BD 的中垂线,再由∠A =30°得:∠CDB =∠ABC =60°;(2)由题意可知当m =2时,由勾股定理可得:AB =5cos ∠ABC 5,过点H 作HK ⊥BC 于点K ,利用垂径定理可得结论;(3))①要分两种情况:I .当点E 在C 右侧时,II .当点E 在C 左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF ∥BD ,根据平行线间距离相等可得:△FHD 与△EFH 高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB=22AC BC=25,∴cos∠ABC=BCAB =5,∴BH=BC•cos∠ABC=25,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE=32AC=6,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:62+21m3⎛⎫⎪⎝⎭=m2,∵m>0,∴m=2;综上所述,①当BC=3CE时,m=2或2.②如图4,过F 作FG ⊥HE 于点G ,∵CH ⊥AB ,HB =HD ,∴CB =CD ,∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD ,∴FHDEFH S S =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH =22FG HG +=22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF =22FG EG +=22(5)k k +=26k ,∴FHDEFH SS =26k =26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.8.△ABC 内接于⊙O ,AB=AC ,BD ⊥AC ,垂足为点D ,交⊙O 于点E ,连接AE .(1)如图1,求证:∠BAC=2∠CAE;(2)如图2,射线AO交线段BD于点F,交BC边于点G,连接CE,求证:BF=CE;(3)如图3,在(2)的条件下,连接CO并延长,交线段BD于点H,交⊙O于点M,连接FM,交AB边于点N,若BH=DH,四边形BHOG的面积为52,求线段MN的长.【答案】(1)见详解;(2)见详解;(3)6MN【解析】【分析】(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG=52,可求得a=2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形的性质可得到HG=2x,然后依据S△BHG=12BH•HG=42,可求得x=2,故此可得到HB、GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB.∴∠BAC+2∠C=180°.∵BD⊥AC,∴∠ADE=90°.∴∠E+∠CAE=90°.∴2∠CAE+2∠E=180°.∵∠E=∠ACB,∴2∠CAE+2∠ACB=180°.∴∠BAC=2∠CAE.(2)连接OB、OC.∵AB=AC,AO=AO,OB=OC,∴△ABO≌△ACO.∴∠BAO=∠CAO.∵∠BAC=2∠CAE,∴∠BAO=∠CAE.在△ABF和△ACE中,ABF ACEAB ACBAF CAE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF≌△ACE.∴BF=CE.(3)连接HG、BM.∵AB=AC,∠BAO=∠CAO,∴AG⊥BC,BG=CG.∵BH=DH,∴HG是△BCD的中位线.∴HG∥CD.∴∠GHF=∠CDE=90°.∵OA=OC,∴∠OAC=∠OCA.∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°,∴∠FHO=∠AFD=∠HFO.∴HO=OF.∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°,∴∠OGH=∠OHG.∴OH=OG.∴OF=OG.∵OM=OC,∴四边形MFCG是平行四边形.又∵MC是圆O的直径,∴∠CBM=90°.∴四边形MFGB是矩形.∴MB=FG ,∠FMB=∠AFN=90°.∵MF ∥BC ,∴△MFH ∽△CBH . ∴12HF MF BH CB ==. ∴HF :HD=1:2.∴HF=FD . 在△ADF 和△GHF 中,AFD GFH ADF GHF FH FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GHF .∴AF=FG .∴MB=AF .在△MNB 和△NAF 中,90BMF AFN ANF BNM MB AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△MNB ≌△NAF .∴MN=NF .设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a ,∴S 四边形BHOG.∴.设HF=x ,则BH=2x .∵∠HHG=∠GFB ,∠GHF=∠FGB ,∴△GFH ∽△BFG . ∴HF GH HG BH =,即2x HG HG x=. ∴. ∴S △BHG =12BH•HG=12, 解得:x=2.∴HB=4,.由勾股定理可知:.∴.∴.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.9.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长; (2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】 【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN∴AFN DFM ∆~∆ ∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM =O的半径长为258【点睛】本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.10.在O中,AB为直径,CD与AB相较于点H,弧AC=弧AD(1)如图1,求证:CD AB⊥;(2)如图2,弧BC上有一点E,若弧CD=弧CE,求证:3EBA ABD∠=∠;(3)如图3,在(2)的条件下,点F在上,连接,//FH FH DE,延长FO交DE于点K,若165,5FK DB BE==,求AB.【答案】(1)证明见解析;(2)证明见解析;(3)185AB=.【解析】【分析】(1)连接,OC OD,根据AC AD=得出COA DOA∠=再根据OC OD=得出OCD ODC∠=∠,从而得证;(2)连接,BC BD,根据AC AD=得出,BC BD BA CD=⊥,CBA ABD∠=∠,再根据CE CD=,得出CBE CBD∠=∠,从而得出结论;(3)作,CM DB CN BE⊥⊥,过点P作,PT BE PS BD⊥⊥,,5BE BP a DB a===先证CDM CEN∆≅∆,DM EN=,再证,CMB CNB BM BN∆≅∆=,设DM b=,得出2b a=,再算出,CM CD得出CPD∆为等腰三角形,再根据BP是角平分线利用角平分线定理得出BCPEBPS DP BDS PE BE∆==,从而算出,PE DE,再根据三角函数值算出BG,,,,AB r OG OH,再根据//FH DE得出HO OFGO OK=,从而计算AB.【详解】(1)连接OC,CD因为AC AD=,所以COA DOA∠=∠OC OD=,,OA CD CD AB∴⊥∴⊥;(2)连接BC ,,BC BD BA CD =⊥所以AB 平分CBD ∠,设ABD ABC α∠=∠=2CBD α∴∠=CD CE ∴=2CBE CBD α∴∠=∠=,3EBA α∴∠=3EBA ABD ∴∠=∠.(3) 2,90EBC BPE PEB αα︒∠=∠=∠=-设,5BE BP a DB a ===作,CM DB CN BE ⊥⊥,可证:CDM CEN ∆≅∆,DM EN =,再证:,CMB CNB BM BN ∆≅∆=设,5,2DM EN b a b a b b a ==+=-∴=在CBM ∆中勾股4CM a =在CDM ∆中勾股25CD a =得CPD ∆为等腰三角形25DP DC a ==因为BP 为角平分线,过点P 作,PT BE PS BD ⊥⊥ 可证:5BCP EBP S DP BD S PE BE∆=== 2525,PE DE ∴==14tan ,tan 223αα== 2555,BG a AB a ∴== 557535,,4124r a OG a OH a === //FH DE97HO OF GO OK ∴== 995185,16OF KF AB ===【点睛】本题是一道圆的综合题目,难度较大,考查了圆相关的性质以及与三角形综合,掌握相关的线段与角度转化是解题关键.。

最新-九年级数学专题复习圆综合题精品

最新-九年级数学专题复习圆综合题精品

(1)求证: △CBE ∽△ AFB ;
BE 5
CB
(2)当
时,求
的值.
A
FB 8
AD
O E
C
使
D F

10.( 10 日照)
如图,在△ ABC中, AB=AC,以 AB为直径的⊙ O交 AC与 E,交 BC与 D.求证:
(1) D是 BC的中点;
(2)△ BEC∽△ ADC;
(3) BC2=2AB· CE.
3.( 10 郴州)如图, AB 是 O 的直径, CD 为弦, CD ⊥ AB
C
A
O EB
D
于 E ,则下列结论中不成.立..的是( )
A. A D
B. CE DE
C. ACB 90
D. CE BD
4.( 10 青岛)如图,在 Rt△ABC中,∠C = 90°,∠B = 30°, BC = 4 cm ,以点 C为圆心,
如图, AB为⊙ O的直径,弦 CD⊥ AB,垂足为点 M, AE切⊙ O于点 A,交 BC的延长线于点 E,
连接 AC.
(1)若∠ B= 30°, AB= 2,求 CD的长; (2)求证: AE2= EB·EC.
EC
A MO
B
D
六.湛江中考圆解答题针对性训练(课后训练)
1.( 10兰州) 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外
C .3个
D .4 个
7.( 10 衢州)小刚用一张半径为 24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面
(接
缝忽略不计 ) ,如果做成的圆锥形小丑帽子的底面半径为
10cm,那么这张扇形纸板的面积是
() A. 120π cm2 C. 260π cm2

圆综合篇(解析版)--中考数学必考考点总结+题型专训

圆综合篇(解析版)--中考数学必考考点总结+题型专训

专题12圆综合知识回顾1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。

3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。

4.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。

②性质:I:圆内接四边形的对角互补。

II:圆内接四边形的任意一个外角等于它的内对角。

7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。

圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

8.切线的性质:①圆的切线垂直于经过切点的半径。

②经过圆心且垂直于切线的直线必经过切点。

③经过切点且垂直于切线的直线必经过圆心。

运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。

9.切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。

在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5
证明:设直线 OE 交 CD 于点 H,如答图 5, ∵AB,CD 分别与⊙O 相切于点 E,G, ∴OE⊥AB 于点 E,OG⊥CD 于点 G. ∵AB∥CD,∴OE⊥CD 于点 H,∴点 G 与 H 重合, ∴点 O,E,G 在同一条直线上.
(2)∠BOC=90°;
证明:如答图 5,连接 OF.
答图1
(2)若 BC=2,∠CAB=30°,求阴影部分的面积(结果保留 π).
【点拨】由圆周角定理得∠BOC=2∠CAB=60°,由等边三角形 的判定和性质得 OC=OB=BC=2,由扇形和三角形的面积公式 可求得结果.
解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°. ∵OC=OB,∴△COB 是等边三角形,∴OC=OB=BC=2, ∴易得 CE= 3OC=2 3, ∴S 阴影部分=S△OCE-S 扇形 COB=12×2×2 3-60×36π0×22=2 3-23π.
AE=PB,连接 EC,则 PE=PA+PB.
∵点 A,P,B,C 都在⊙O=BC,∴△ACE≌△BCP(SAS),∴CE=CP.
由(1)得∠APC=60°,∴△CPE 是等边三角形,
∴CP=PE,∴PC=PA+PB.
答图3
例 4 如图 4,⊙O 的直径 AB 为 10,弦 AC 为 6,∠ACB 的平分 线 CD 分别交 AB,⊙O 于点 P,D.连接 DA,DB.

∵PF=6,∴EF=8. 由勾股定理,可得 PE=10. ∵∠FBC=∠PCF=∠CAF,∠CPF=∠APC, ∴△PCF∽△PAC.∴PPCF=PPAC,即 PC2=PF·PA. ∴PC2=PE2,∴PC=PE=10.
∵∠G=∠CBF,∴∠PCF=∠CBF.
②若 PF=6,tan∠PEF=34,求 PC 的长. 解:如图②,连接 AC.
∵AB 是直径,点 F 在⊙O 上,∴∠AFB=∠PFE=90°=∠CEA.
∵∠EPF=∠APE,∴△PEF∽△PAE.
∴PPEF=PPAE,即 PE2=PF·PA.
在 Rt△PEF 中,tan∠PEF=EPFF=34.
(1)求 BC,AD,BD 的长;
图4
解:∵AB 为⊙O 的直径,∴∠ACB=∠ADB=90°. ∵CD 是∠ACB 的平分线,∴∠ACD=∠BCD=45°, ∴A︵D=B︵D,∴AD=BD,∴∠ABD=∠BAD=45°. 在 Rt△ABD 中,∵AB=10,∴AD=BD=AB·sin∠ABD=5 2. 在 Rt△ABC 中,∵AC=6,AB=10,∴BC= AB2-AC2=8.
∴2OP=EB+CG.由(3)得 2PB=2PC=BC=BE+CG,
∴BC=2OP,∴OP=PC, ∴EG 是以 BC 为直径的圆的切线.
答图5
(7)若 OC 交⊙O 于点 I,连接 FG,GI,如图 6,则 GI 平分∠CGF.
证明:∵BC,CD 分别与⊙O 相切于点 F,G,
∴CO 平分∠FCG,FC=GC,∴OC 垂直平分 FG.
∵AB,BC 分别与⊙O 相切于点 E,F,
答图5
∴OE⊥AB 于点 E,OF⊥BC 于点 F,OE=OF,BE=BF.
∴∠OEB=∠OFB=90°.
∴△OBE≌△OBF,
∴∠BOE=∠BOF. 同理∠COF=∠COG. ∵点 O,E,G 在同一条直线上, ∴∠BOC=12(∠EOF+∠FOG)=90°.
类型2 圆与三角函数结合的问题 例 2 【2020·宁德质检·10 分】如图 2,已知△ABC,以 AB 为直
径的⊙O 交 AC 于点 D,∠CBD=∠A. (1)求证:BC 为⊙O 的切线;
图2
证明:∵AB 是⊙O 的直径,∴∠ADB=90°, ∴∠A+∠ABD=90°. ∵∠A=∠CBD,∴∠CBD+∠ABD=90°, ∴∠ABC=90°,∴AB⊥BC. ∵AB 是⊙O 的直径,∴BC 为⊙O 的切线.
2.【2020·泉州洛江区一模·12 分】如图①,AB 为⊙O 的直径,C 为⊙O 上一点,D 为 BC 延长线上一点,且 BC=CD,直线 CE 与⊙O 相切于点 C,与 AD 相交于点 E.
(1)求证:CE⊥AD;

证明:如图①,连接 OC.∵直线 CE 与⊙O 相切于点 C, ∴OC⊥CE,即∠OCE=90°. ∵OA=OB,BC=CD,∴OC 是△BDA 的中位线. ∴OC∥AD.∴∠CED=∠OCE=90°,∴CE⊥AD.
(2)若 OB=BF,EF=4,求 AD 的长. 解:∵OB=BF,OD=OB,∴OF=2OD, 又∵∠ODF=90°,∴∠F=30°. ∵∠FBE=90°,∴BE=12EF=2,∴DE=BE=2,∴DF=6. ∵∠F=30°,∠ODF=90°,∴∠FOD=60°. ∵OD=OA,∴∠A=∠ADO=12∠BOD=30°, ∴∠A=∠F,∴AD=DF=6.
⊙O 相切于点 A,在 l 上取一点 D 使得 DA=DC,DC,AB 的延长线交于点 E.
图1
(1)求证:直线 DC 是⊙O 的切线;
【点拨】连接 OC,由切线的性质得∠DAB=90°,由等腰三角形 的性质及等式的性质得∠DCO=∠DAO=90°,可得结论.
证明:连接 OC,如答图 1. ∵AB 是⊙O 的直径,直线 l 与⊙O 相切于点 A,∴∠DAB=90°. ∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA, ∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°, ∴OC⊥CD,∴直线 DC 是⊙O 的切线.
(5)EG2=4BE·CG; 证明:由(1)易得 EG=2R,∴EG2=4R2=4BE·CG.
(6)EG 是以 BC 为直径的圆的切线; 证明:取 BC 的中点 P,连接 PO,如答图 5,则 PB=PC.
又∵AB∥CD,OE=OG,点 O,E,G 在同一条直线上,
∴易得 OP⊥EG 于点 O,OP=12(EB+CG),
(2)若 E 为A︵B的中点,BD=6,sin∠BED=35,求 BE 的长. 解:连接 AE,如答图 2.
∵AB 是⊙O 的直径,∴∠AEB=∠ADB=90°.
∵∠BAD=∠BED,∴sin∠BAD=sin∠BED=35, ∴在 Rt△ABD 中,sin∠BAD=BADB=35.
答图2
∵BD=6,∴AB=10. ∵E 为A︵B的中点,∴A︵E=B︵E,∴AE=BE, ∴△AEB 是等腰直角三角形, ∴∠BAE=45°,∴BE=AB·sin∠BAE=5 2.
∴AP=37AB=370,EP=37EF=37 2,FP=47EF=47 2, ∴PC=CE+EP=274 2,PD=DF+FP=275 2.
类型4 教材题目的挖掘与应用 例 5 如图 5,AB,BC,CD 分别与⊙O 相切于点 E,F,G,AB∥CD,
连接 OE,OG,OB,OC.求证以下结论: (1)点 O,E,G 在同一条直线上;
∴∠OIG+∠FGI=90°.
图6
∵OG=OI,∴∠OGI=∠OIG.
又∵∠OGI+∠CGI=90°,∴∠CGI=∠FGI,∴GI 平分∠CGF.
02 福建4年中考聚焦
1
2
1.【2020·南平质检·10 分】如图,点 D 是以 AB 为直径的⊙O 上 一点,过点 B 作⊙O 的切线,交 AD 的延长线于点 C,E 是 BC 的中点,连接 DE 并延长与 AB 的延长线交于点 F.
专题突破
专题四 几何的综合题 第45课时 圆(一)
目录
01 试题凝聚
02 福建4年中考聚焦
01 试题凝聚
·类型1 圆中切线的证明与阴影面积的计算 ·类型2 圆与三角函数结合的问题 ·类型3 圆中的线段问题 ·类型4 教材题目的挖掘与应用
类型1 圆中切线的证明与阴影面积的计算 例 1 如图 1,△ABC 内接于⊙O,AB 是⊙O 的直径.直线 l 与
∵∠EDA+∠BDF=∠ADB=90°,∠EDA+∠EAD=90°, ∴∠BDF=∠EAD. 又∵AD=BD,∠AED=∠BFD=90°,∴△AED≌△DFB(AAS), ∴FD=EA=EC=3 2,DE=FB=FC=4 2, ∴EF=CF-EC= 2. ∵AE⊥CD,BF⊥CD,∴AE∥BF, ∴△APE∽△BPF,∴AP∶BP=EP∶FP=AE∶BF=3∶4,
类型3 圆中的线段问题 例 3 如图 3,等边三角形
ABC
是⊙O
的内接三角形,动点
P
在A︵B
上,连接 PA,PB,PC,PC 交 AB 于点 D.
(1)求证:∠APC=∠BPC=60°; 证明:∵等边三角形 ABC 是⊙O 的内接三角形,
∴AB=BC=CA,∠BAC=∠ABC=∠BCA=60°,
∴A︵B=B︵C=C︵A,

(2)如图②,设 BE 与⊙O 交于点 F,AF 的延长线与 CE 交于点 P, 连接 CF.
①求证:∠PCF=∠CBF;

证明:如图②,作直径 CG,连接 FG,
∵CG 是直径,点 F 在⊙O 上,∴∠CFG=90°.
∴∠G+∠FCG=90°.

由(1)可知∠OCE=∠PCF+∠FCG=90°,∴∠G=∠PCF.
(3)BC=BE+CG;
证明:∵AB,BC,CD 分别与⊙O 相切于点 E,F,G, ∴BE=BF,CF=CG, ∴BC=BF+CF=BE+CG.
(4)R2=BE·CG(R 为⊙O 的半径); 证明:由(2)可得∠BOC=90°,OF⊥BC 于 F, ∴∠BFO=∠OFC=90°,∠OBF+∠BOF=90°, ∠OBF+∠OCF=90°, ∴∠BOF=∠OCF,∴△BOF∽△OCF, ∴OF∶CF=BF∶OF,∴OF2=BF·CF. ∵BF=BE,CF=CG,∴OF2=R2=BE·CG.
(1)求证:DF 是⊙O 的切线;
证明:如图,连接 OD,BD. ∵AB 为⊙O 的直径,∴∠ADB=90°,∴∠BDC=90°. 在 Rt△BDC 中,∵BE=EC, ∴DE=EC=BE,∴∠1=∠3. ∵BC 是⊙O 的切线,∴∠3+∠4=90°,∴∠1+∠4=90°. ∵OD=OB,∴∠2=∠4, ∴∠1+∠2=90°,即 OD⊥DF,∴DF 为⊙O 的切线.
相关文档
最新文档